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Abstract. Due to the rapid development of the technology, next-ge-
neration sequencers can produce huge amount of short DNA fragments
covering a genomic sequence of an organism in short time. There is a
need for the time-efficient algorithms which could assembly these frag-
ments together and reconstruct the examined DNA sequence. Previously
proposed algorithm for de novo assembly, SR-ASM, produced results of
high quality, but required a lot of time for computations. The proposed
hybrid parallel programming strategy allows one to use the two-level hi-
erarchy: computations in threads (on a single node with many cores)
and computations on different nodes in a cluster. The tests carried out
on real data of Prochloroccocus marinus coming from Roche sequencer
showed, that the algorithm was speeded up 20 times in comparison to
the sequential approach with the maintenance of the high accuracy and
beating results of other algorithms.
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1 Introduction

A molecule of deoxyribonucleic acid (DNA) can be found in every cell of a living
organism. It carries genetic information necessary for its functioning. Despite
the fact that DNA is similar for individuals from the same species, each in-
dividual has a unique DNA sequence. These differences in DNA cause different
appearance of each individual but may also cause susceptibility to some diseases.
Thanks to the knowledge of specific differences in DNA, a proper therapy can
be applied to an ill patient. Thus, its proper decoding has a crucial meaning in
all the aspects of the health issues.

DNA sequence is in the form of a double helix, where two strands are
closely connected by hydrogen bonds according to specific rules. Each strand
is composed of small molecules, called nucleotides, which differ in nitrogenous
bases. Four different bases can be distinguished: adenine, cytosine, guanine and
thymine, and are abbreviated respectively as A, C, G, T. Reading a DNA se-
quence means reading the order of nucleotides (letters A, C, G, and T). It is
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sufficient to read only one strand, because the other one is complementary to
it, which means that if there is ‘A’ in one strand, then there is ‘T’ at the same
position in the other strand. Similarly, ‘C’ is always opposite to ‘G’. The DNA
assembly is a part of the process of reading a DNA sequence. In the DNA as-
sembly problem short fragments of DNA (of length up to a few hundreds of
nucleotides) are combined together in order to construct a longer sequence, e.g.
a sequence of a whole chromosome of length ca 108 nucleotides. The set of short
DNA fragments is the output of the preceding process: DNA sequencing. Orig-
inally, in DNA sequencing phase gel-based methods were used [15,16], which
produced long fragments but with a lot of effort and time. A few years ago sev-
eral techniques of next-generation sequencing were developed, which read huge
amount of DNA fragments in parallel. Among next-generation sequencing sys-
tems the most known are Roche (454) sequencer [14], Illumina sequencer [1]
and SOLiD Applied Biosystems sequencer [8]. Huge amounts of data force the
implementation of time-efficient algorithms which optimize the memory usage.

DNA assembly problem is strongly NP-hard, because even its simplified ver-
sion, shortest common superstring problem is strongly NP-hard [9](cf. also [10]).
In DNA assembly problem the aim is to reconstruct a sequence from shorter
DNA fragments. Fragments may contain errors like insertions, deletions or mis-
matches, and may come from both strands of a DNA helix.

Several heuristic algorithms were developed, both for assembling DNA frag-
ments coming from gel-based methods, e.g. [11,13, 18], and for shorter fragments
obtained with next-generation sequencers, e.g. [12,19]. Some methods are spe-
cialized for the special type of the sequencer, e.g. Newbler assembler is designed
only for Roche sequencer [14]. The method developed previously by the authors
of the current paper [2] proved to give as its output long reconstructed sequences
of high quality, outperforming other available methods. The crucial point of the
algorithm was long computation time, even in the case of parallel version [5].

The aim of the current paper was to develop an algorithm, which will main-
tain high accuracy of the previous approach but being much faster. The proposed
hybrid strategy allows to use the two level hierarchy: computations in threads
(on a single node with many cores) and computations on different nodes in a
cluster. The applied parallel mechanism reduces computational time giving at
the same time a high quality of the results.

A construction of the paper is as follows. Section 2 describes the algorithm
for DNA assembly while Section 3 — the parallel version of the algorithm. In
Section 4 results of the computational experiment are presented. The last section
concludes the paper.

2 Short Reads ASseMbly (SR-ASM) algorithm

SR-ASM algorithm [2] is based on operations on an overlap graph. Here, we
modify slightly a concept of DNA graphs introduced in [4]. The vertices of the
overlap graph correspond to DNA fragments which are connected by arcs if there
exists a feasible overlap between vertices. Next, in this graph a path(s) is searched
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for, which passes a maximum number of vertices. At the end, the sequence(s) is
reconstructed from the path(s). Each step of the algorithm is described in details
below.

Construction of the overlap graph. Every DNA fragment corresponds to one
vertex in the graph. Additionally, for each vertex its complementary counterpart
is created, which corresponds to the fragment coming from the other strand of
the DNA helix, which is reverse and complementary to the original fragment.
Next, the overlaps between pairs of fragments are calculated with the Smith-
Waterman (SW) algorithm [17]. The algorithm aligns two fragments returning
an error rate (the number of mismatches in the alignment) and a shift between
fragments. The SW algorithm takes O(kl) time, where k and [ are the lengths of
the fragments. The number of alignments, which need to be calculated, is O(n?),
where n is the number of fragments. The most preferable would be to determine
the alignment between each pair of the fragments (every one taken twice, as the
original and the reverse and complementary version), but then the number of
fragments goes up to a million. Most of the fragments do not overlap with each
other in a satisfying manner, thus, determining the alignment is not necessary.
The algorithm selects in a fast and intelligent way the pairs of fragments which
possibly give high score of the alignment. In our algorithm, a heuristic was
introduced, which searches for common substrings in pairs of fragments. Based
on this, it selects pairs of promising fragments, i.e. the fragments which would
overlap with high probability.

For each pair of the promising fragments the alignment is determined accord-
ing to the SW algorithm. The score of the alignment gives an information about
the number of errors (mismatches, insertions and deletions), but also about the
shift between two fragments. If the shift and the error rate for two fragments is
feasible, an arc is added to the graph which connects corresponding vertices.

The construction of the graph is composed of many independent operations,
very suitable for distributing among parallel processes.

Searching for the path in the graph. In the overlap graph a path is searched
for, which contains most of the vertices. (Here, the approach is very similar to the
one constructing a DNA sequence in the SBH approach [3,6]) Optimally, it will
be a Hamiltonian path. Unfortunately, due to errors present in the instance it is
usually not possible. Another reason is that the heuristic used for construction
of the overlap graph, selects just few pairs of fragments for further comparison,
and many connections between vertices are not considered at all. In that case,
the graph is quite sparse and might not be connected. Following this fact, many
shorter paths are returned. Some vertices may be not used in any of the path,
because they may represent contaminated fragments.

As the output of this step we obtain for each path an ordered set of vertices,
for which respective fragments are tightly overlapping.
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Printing the consensus sequence. In this step, the consensus sequences are
constructed from the paths. Consecutive fragments (vertices) from each path
are aligned together. The fragments which cover a certain position (letter) in
the consensus sequence vote and the majority settle the proper letter (A, C, G
or T). The consensus sequence of a path is called a contig (contiguous consensus
sequence)

Again the problem of multiple alignment of the sequences is NP-hard, thus
heuristic algorithm was applied here.

3 Parallelization of the algorithm

The parallelism can be introduced to the aforementioned algorithm, especially
in the first step. However, one should remember that the process of building
the graph is composed of a few parts. Some parts cannot be parallelized at all
and some to a satisfactory extent. Although the comparison of fragments with
each other was efficiently performed by different threads (on different nodes),
the stage of selecting fragments to be compared was implemented sequentially,
due to high demand on the memory and relatively short computation time.

The second part of the algorithm (searching for paths in the graph) was
also parallelized. This part is more complex and CPU-time consuming than the
previous one. Searching for paths in a graph is, in general, very difficult to
perform in a parallel way. Nevertheless, our method has partially solved this
problem by running the same algorithm (on many nodes, in many threads)
starting from different initial points. In each iteration every fragment is taken as
the initial solution. The longest path is chosen and the arcs from the path are
deleted from the graph.

This approach has two major disadvantages. First, each thread on every node
requires full information about the graph, which dramatically increases require-
ments of memory and limits size of problem instances that can be processed.
The second problem involves the implementation of searching method. Our so-
lution offered the possibility of modifying the structure of the graph by adding
some arcs during the phase of finding paths. If the algorithm finds out that there
is no way to continue the process of extending the path from the last vertex,
but there are some premises to continue the path, coming from the preceding
vertices, additional alignments are calculated and if feasible — respective arcs are
added. Possible extensions to the overlap graph are presented in Figure 1.

Adding arcs to the graph implies possibility of desynchronizing information
about the graph among different processes and could be the reason of receiving
different results on different computing environments (various number of pro-
cesses or threads, different computer architectures). The results obtained from
the desynchronized data may be of lower quality. To avoid these situations, addi-
tional functionality was implemented - the synchronization. After every iteration
of the algorithm, information about modifications in the graph is gathered from
all processes and, if there are any differences, the graphs from each node are
synchronized. In such a case, the iteration is calculated from the beginning.
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Fig. 1. An example of adding arcs in the overlap graph in the phase of searching for
paths. (a) In the graph a path was found (A,B,C,D). The path cannot be extended
because there is no arc outgoing from D, but some arcs from the predecessors of D
were detected. (b) Scores of alignments between D and E, and D and F are calculated,
and if they are feasible, the respective arcs are added to the graph. These arcs were
not inserted in the first phase of the algorithm because the fragments (vertices) were
not selected as ‘promising pairs’ (due to errors in fragments).
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Synchronization ensures that the results obtained are the same as in the sequen-
tial version of the algorithm. At the same time, the synchronization leads to
overhead time (single iteration may be computed a few times) and the user can
decide to turn it off.

The third part of the algorithm (printing the consensus sequence) takes rel-
atively little time and no attempt was made to parallelize it.

The implementation of parallelism in the program is based on a hybrid strat-
egy introducing two level hierarchy: the communication between nodes in one
cluster is realized by MPI library implementing the message passing paradigm,
while the computations on a single node with many cores are parallelized utiliz-
ing POSIX threads. When the program is run on a single node, the first thread
becomes a dedicated supervisor responsible for synchronization and distribution
of the data as well as for doing sequential computations. The other available
threads become worker units executing parallel computations. Similarly, in the
case of using MPI, the first MPI process is designed to be a master, while the
other MPI processes (slaves) do parallel computations.

In a typical scenario of running the SR-ASM program on a cluster, the pro-
cess being an MPI master divides the tasks and distributes them among other
MPT processes located on different nodes. Next, the MPI processes (dedicated
supervisor threads) being a node-level coordinators, receive the data, once again
divide the tasks and distribute them among the worker threads. After computa-
tions, the worker threads send results back to supervisor threads on theirs nodes
and finally these threads response to the MPI master that gathers all the results.
The MPI communication is here both synchronous and asynchronous. The MPI
master communicates with supervisor threads (MPI slaves) fully synchronously.
It sends tasks and waits for results. When the results are obtained from one of
the MPI slave processes, the master stores the data, generates next set of tasks
and sends it to this process for further computations. On the other hand, on a
single computing node level, worker threads communicate with the supervisor
thread in an asynchronous way. Thanks to this approach, the computations and
communication may be done simultaneously in order to improve efficiency of
the whole process. Moreover, the implemented communication scheme utilizes
queues to ensure that the next task to compute will be immediately available
for processing after finishing the currently executed one. The performed tests
confirm that all these mechanisms significantly improve an overall program scal-
ability and performance.

4 Computational tests

The scalability and performance tests were done on the Zeus cluster being a part
of the Polish National Grid Initiative - PL-Grid Project. The cluster consists of
several types of Intel-based nodes, which offer total computational power about
105 TF. The results presented in the paper are the outcome of running SR-ASM
program on nodes with the following parameters:

Processor: Intel Xeon L5650 2666MHz (2 x 6 cores)
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Memory: 24GB per node

Network Interface: Ethernet 1Gb/s

Operating System: Scientific Linux 5

The test bed used in the computational experiment consists of raw data pro-
duced at Joint Genome Institute. The data cover the whole genome of Prochloro-
coccus marinus bacteria of length 1.84 nucleotides [7]. The output of the se-
quencer contains over 300 000 DNA fragments, each approximately 100 nu-
cleotides long. The sequencer also provides rates of confidence for every nu-
cleotide.

As compared with its standard sequential version [2] the parallel SR-ASM
improves the speed of the computations considerably. In fact, while the sequential
version solved the analyzed instance of the problem in 255 min. (the first version
of the algorithm published in [2] produced the results in 80 hrs., but since then
it has been improved), its parallel version, even in the simplest case of the 1
node and 12 cores, needed 27 min only. What’s more the parallel version is well
scalable (to some extent).
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Fig. 2. Speedup of the parallel version of SR-ASM: version with synchronization turned
on and synchronization turned off. Computations were performed on a computer cluster
of 12-core nodes.

Speedup of the whole algorithm with enabled and disabled synchronization
is shown in Figure 2. One can easily see from this chart that the speedup for
24 cores is much lower than for 12 cores. This dramatic fall off is a result of
changing the type of parallelism. For the first 12 cores, only one machine was
used to compute results, while bigger number of cores was achieved by running
SR-ASM on a cluster consisting of many 12-core nodes, what resulted in a higher
communication overhead. Speedup of the version with synchronization turned
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algorithm 1st contig 2nd contig 3rd contig
(time[s]) |length coverage quality|length coverage quality |length coverage quality
SR'/?%\{[)’S*OH 105951 5.66% 99.71 [81990 4.38% 99.76 |59714 3.19%  99.68
SR-A(,rsll\L/ll)’&OH 82209 4.39% 99.27 | 73071 3.90% 98.95 [60475 3.23% 88.32
at JGI
) 86108 4.60% 96.85 | 74315 3.97% 96.94 73941 3.95% 97
NEV‘E?LER 84798 4.53% 99.29 |73192 3.91% 99.38 [72818 3.89% 99.45
P(I;géé)P 88729 4.74% 94.56 [35379 1.89% 81.66 |35192 1.88% 98.56
CAP3
7862  0.42% 99.85 | 7113  0.38% 99.69 | 5990 0.32% 99.91
(12376)
V]E];Q\g)aT 3182 0.17% 99.9 | 2808 0.15% 99.96 | 2621 0.14%  99.9

Table 1. The results of the computational experiment performed on the dataset of
short fragments coming from the experiment of sequencing bacteria Prochlorococcus
marinus. The length of the genome is 2Mbp. The number of fragments in the dataset
is ca. 3% 10°

off varies between 30% (for the small number of cores) and 5% (for the big
number of cores) as compared to the version with synchronization turned on. It
is worth stressing that the parallel version of the algorithm with the synchro-
nization turned on, maintains the high quality level for constructed sequences,
already known for the sequential SR-ASM. As compared with other assembling
algorithms: Newbler [14], Velvet [19], Phrap [11], Cap3 [12], the basic quality
measures are favorable for SR-ASM. These measures include:

a) the length of the contig (for the three largest contigs),

b) the coverage, i.e. the percentage of the total length of the reconstructed se-
quence (genome), which is covered by the contig,

c¢) the quality, i.e. the similarity of a contig to a sequence of the genome; it was
calculated by the Smith-Waterman algorithm.

The coverage and the similarity to a sequence of the reference genome can
be calculated by comparing the obtained results with the reference genome. The
reference genome of Prochlorococcus marinus is known and can be downloaded
from Genbank (National Center for Biotechnology Information — NCBI).

The comparison of the results obtained for the considered instance are given
in Table 1. Each algorithm is evaluated with the time of computations and
the measures (mentioned above) for three largest contigs. Two versions of our
algorithm are compared: with the synchronization turned on and off. Parallel
SR-ASM with the synchronization on gives the same results in the quality terms
as the sequential algorithm. When the synchronization is off, the algorithm does
not update the information about new arcs in the graph (in the part of searching
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for paths). This may lead to nondeterministic results. Time of computations is
shorter than for SR-ASM with synchronization on, but the contigs are shorter,
and often with lower quality. Thus, updating the information about the graph
among the nodes seems to be very important. The results of other methods pre-
sented in Table 1 are obtained by assemblers from the Joint Genome Institute
with an additional step of experts’ finishing (‘at JGI’), NEWBLER, (assembler
available with the Roche sequencer), PHRAP and CAP3 (well known publicly
available assemblers), and VELVET (specialized algorithm for assembling short
fragments). The executing time for NEWBLER and JGI were not available. All
the methods except SR-ASM were tested sequentially. CAP3 and VELVET re-
sulted in a great amount of short contigs but of very high quality. Thus, these
methods are not likely to be used for de novo sequencing, but rather for re-
sequencing, when the reference genome is known and good quality contigs are
aligned to it to check for the difference between genomes of individuals. VELVET
was the fastest method among all, while CAP3 the slowest. PHRAP obtained
contigs shorter and of worse quality than the NEWBLER and JGI methods.

None of the algorithms found one contig covering the whole genome. This is
usually the case, because the fragments are not uniformly distributed among the
genome sequence. S0, they result in disjoint contigs. Further order of the contigs
can be determined e.g. on the basis of paired end fragments or by aligning contigs
to a reference genome. If the reference genome is not known (this is the case of
de novo sequencing) one may try to align contigs to a genome closely related to
the examined organism.

5 Conclusions

The parallelization of SR-ASM algorithm satisfactorily speeded up the compu-
tations, especially in the case of multi-threading (almost linear speedup can be
viewed for up to 12 cores in Fig. 2). The possible improvement of the algorithm
could be realized on machines with more cores and shared memory to decrease
the time needed for the communication and synchronization.

The results presented in Table 1 and in Figure 2 show, that although turning
off synchronization may speed up the method (5-30% in comparison with the
synchronization turned on), the results have worse quality. For a greater number
of clusters the speedup goes down. This is a result of changing time distribution
between the computation, communication and synchronization.

It can be seen, that the parallel version of SR-ASM maintained high quality
of the results as for the sequential version, while the time was greatly speeded
up. Thus, the proposed solution can be of practical interest for those who would
like to sequence whole genomes, based on the massive data coming from next-
generation sequencers.
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