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Studies conducted during the last decade unexpectedly revealed several new biological functions of

RNA molecules. The involvement of RNA in many complex processes requires highly effective systems

controlling its accumulation. In this context, the mechanisms of degradation appear as one of the

most important factors influencing RNA activity. Here, we present our first attempt to describe the

RNA degradation process using bioinformatics methods. Based on the obtained data, we propose a

formulation of a new problem, called RNA Partial Degradation Problem (RNA PDP) and the algorithm
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degradation. In addition, we present the results of biochemical experiments and computational tests.
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1 Introduction

Studies conducted during the last decade clearly demonstrated that RNA molecules play much more

important role in all biological systems than it has been earlier expected. They are not only templates for

protein synthesis (mRNA), adaptors translating information encoded in nucleotide sequence into amino

acid chain (tRNA), skeletons joining multi-enzymatic complexes (rRNA, snRNA) but also regulators of

numerous processes including the gene expression process. Recently, several different classes of regulatory

RNA molecules have been identified. Usually, they bind with proteins and function as specific probes

targeting enzymes into RNA or DNA molecules. Depending on the localization and composition of

ribonucleoprotein complexes they can participate in RNA degradation, translation repression or in the

modification of genomic DNA.

The level of RNA accumulation is regulated by maintaining balance between transcription and degra-

dation pathways. Consequently, the stability of RNA molecules is one of the major factors shaping the

composition of cellular transcriptome. In eukaryotic cells, the degradation of mRNA is initiated by the

removal of a poly(A) tail by deadenylases. Next, the RNA molecule is digested by 3’-5’ exonucleases in

exosome. In addition, DCP2 protein-mediated decapping causes mRNA to be a proper substrate for 5’-3’

exoribonucleases (Eulalio et al. 2007). Many of the enzymes and cofactors involved in RNA degradation

participate also in RNA-processing or maturation (Houseley et al. 2009). Although all RNA molecules

present in a given cell are exposed to the same RNA degradation machinery some of them exist and func-

tion for a longer time than other. The half-life of mRNAs can range from hours, to seconds (Lorentzen

et al. 2006). Unfortunately, at present our knowledge about different factors affecting RNA degradation

is very limited. Accordingly, one cannot predict the stability of individual RNAs. Some short-living mR-

NAs have been shown to carry adenosine and uracil rich cis-acting elements (ARE) usually located in

their 3’ UTRs. These molecules undergo rapid degradation by the ARE-mediated mRNA decay (AMD)

(Houseley et al. 2009). To avoid errors in RNA biogenesis or function, aberrant or nonfunctional RNAs

are preferentially degraded by numerous quality control systems. One of them, nonsense-mediated decay

(NMD), enables degradation of mRNAs carrying nonsense mutations (e.g. premature translation termi-

nation codon). Quality control systems are also involved in the repression of function or in degradation

of viral and parasitic RNAs (Doma et al. 2007).

In contrast with mRNA, the degradation pathways of relatively stable molecules like tRNA and

rRNA, accounting for more than 90% of total cellular RNA, have been poorly characterized. In bac-

teria, the degradation of stable RNAs is usually associated with starvation (Deutscher 2003). Recent

reports have shown that rRNA and tRNAs can undergo cleavage in response to oxidative stress or under

developmental regulation (Thompson et al. 2008). Now, the most important question concerns biolog-

ical function of the cleavage products. There are some evidences suggesting that they may function as

translation inhibitors or signaling molecules (Kierzek 1992, Zhang et al. 2009).
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Better understanding of RNA degradation is indispensable not only for broadening our knowledge on

the physiological functions of RNA molecules. It is also necessary if one wishes to modulate a half-life

of any RNA molecule and in this way regulate its biological activity, e.g. by influencing the stability

of mRNA one can affect the level of protein accumulation. There is a large number of factors that can

affect RNA stability. Generally, they can be divided into two groups: (i) factors acting in trans - all

cellular factors; and (ii) factors acting in cis - RNA primary, secondary and tertiary structure.

Although many RNAs are similarly accessible by the degradation machinery, some molecules are

more stable than the others. It suggests that the primary, secondary and tertiary structure of RNA

molecules significantly affect their degradation.

Unfortunately, currently available experimental methods do not allow for studying all aspects of this

process. Instead, experiments in model in vitro systems can be performed in well-defined conditions.

In this paper, we present our first attempt to describe the RNA degradation process using bioinfor-

matics methods. Our studies were focused on cis acting factors affecting RNA stability and involved two

artificial RNA molecules. Both of them were designed in such a way that they contained well defined

unstable regions (Bibillo et al. 1999, Bibillo et al. 2000, Kierzek 2001). The undertaken biochemical and

bioinformatics analyses confirmed the predicted pattern of RNA degradation. Based on the obtained

data, we proposed a formulation of a new problem, called RNA Partial Degradation Problem (RNA

PDP) and the algorithm that is capable of reconstructing RNA molecule using results of biochemical

analysis of its degradation. By solving RNA PDP problem one can determine the location of cleavage

sites within analyzed RNA molecule having as an input the lengths of fragments being the degrada-

tion products. As a result one can identify the unstable regions of RNA molecules which are the most

susceptible to the degradation.

The organization of the paper is as follows. Section 2 discusses the combinatorial model and gives

the strong NP-completeness proof of the decision version of RNA PDP problem which is equivalent to

a non-existence of a polynomial-time exact algorithm for the problem in question (Garey et al. 1979).

Section 3 presents the exact algorithm for RNA PDP based on the branch-and-cut idea. In Section 4

the results of the biochemical experiment and computational tests are given, while Section 5 points out

the directions for further research.
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2 Problem formulation and complexity

To analyze the degradation process dependent on cis acting elements (RNA structure) the following two

types of experiments have been carried out: (i) involving multi-labeled RNA - 32P labeled nucleotides

were randomly introduced along the RNA molecule; and (ii) involving single labeled RNA - 32P was

introduced at the 5’ terminus of the tested RNA. The first type of experiment was carried out to

visualize all fragments generated during degradation. In this case the information of exact position of

the fragments within analyzed molecule is missing. The second type of experiment was carried out to

visualize only these degradation products which contained labeled 5’ end. In this case their location

within tested molecule is known. Thus, we see that two collections of fragments are created. Each

fragment is represented by its length. For further mathematical considerations we will use the lengths as

specified parameters of fragments. Let D = {d1, . . . , dk} be a multiset of fragments (lengths) obtained

during the multi-labeled RNA degradation and let Z = {z1, . . . , zn} be a set of fragments (lengths)

coming from the single-labeled RNA degradation. Furthermore, we will distinguish between two types

of cleavage sites: primary and secondary. To classify any fragment as a product of the primary

cleavage we should observe it during a single-labeled RNA analysis. In addition, the same

fragment and its complement corresponding to the remaining portion of the full length

molecule have to be observed during multi-labeled RNA analysis (See Figure 3). Primary

cleavage sites occur only within input RNA molecule of the full length while secondary cleavage sites

only within lengths obtained as a result of primary cleavages. The lengths of the fragments define the

distances between cleavage sites. As the effect of primary cleavages, all distances between the primary

cleavage sites are acquired. In the case of secondary cleavages a pair of lengths will be obtained, which

sum is equal to one of the primary length. A primary fragment is assumed to cleave at most once. i.e.

it may produce two secondary fragments or none. It is easy to see that (in the ideal case) multiset

D is composed of all pairwise distances between the primary cleavage sites and ends of the molecule,

together with all fragment lengths obtained from secondary cleavages. Set Z contains (in the ideal case)

positions of all primary cleavage sites and also it contains these secondary fragments which 5’ end is

labeled. Our aim is to reconstruct the coordinates of primary and secondary cleavage sites within input

RNA molecule, basing on the data gathered from the biochemical experiment.

With respect to the above description of the problem, we propose its mathematical model that will

serve as a background for the complexity analysis and for the construction of the algorithm that solves

the problem.

The mathematical formulation of the RNA Partial Degradation Problem is presented below. P1

stands for the set of primary cleavage sites in the solution and P2 for the set of secondary ones.

Problem 1. RNA Partial Degradation Problem — decision version (ΠRNAPDP).
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Instance: Multiset D = {d1, ..., dk} and set Z = {z1, ..., zn} of positive integers, positive integer L,

constant C ∈ Z
+ ∪ {0}.

Question: Do there exist sets P1 and P2 such that:

P1 ∪ P2 = P = {p1, ..., pm}, ∀pi∈P 0 < pi < L,(1)

D ⊆ D′, D′ ⊇ R = {pi − pj : pi, pj ∈ P1 ∪ {0, L} ∧ pi > pj},(2)

D′ \R =
⋃|T |

i=1
D′

i,(3)

T = {ti = (pa, pb, pc) : pa, pc ∈ P1 ∪ {0, L} ∧ pb ∈ P2 ∧ pa < pb < pc(4)

∧ d′i1 = pb − pa ∧ d′i2 = pc − pb ∧ {d
′
i1, d

′
i2} = D′

i},

∀ti,tj∈T, ti=(pia,pib,pic), tj=(pja,pjb,pjc) i 6= j → {pia, pic} 6= {pja, pjc},(5)

Z ⊆ Z ′, Z ′ ⊆ P ∪ {L}, Z ′ ⊇ P1 ∪ {L},(6)

Z ′ \ [P1 ∪ {L}] = {pb : (pa, pb, pc) ∈ T ∧ pa = 0},(7)

P2 = {pb : (pa, pb, pc) ∈ T },(8)

|D′|+ |Z ′| ≤ k + n+ C ?(9)

Here, the general version of the problem is assumed, where missing elements, i.e. false negatives, in

D and Z are allowed. ΠRNAPDP is the decision version of the optimization problem, in which the total

number of false negatives is minimized. In the formulation, D′ and Z ′ are the complete counterparts of

the sets, and C is the error bound. Assigning C to 0 we get the ideal problem with no errors allowed.

In this section, we prove strong NP-completeness of problem ΠRNAPDP by a pseudo-polynomial

transformation from problem Numerical Matching With Target Sums, cited below (of course, the strong

NP-completness of ΠRNAPDP implies strong NP-hardness of the search version of the RNA PDP). This

guides a choice of the proper solution strategy for the latter: either an exact exhaustive search algorithm

or a polynomial-time heuristic strategy, not guaranteed to find an exact solution.)

Problem 2. Numerical Matching With Target Sums (ΠNM) — decision version.

Instance: Disjoint sets X and Y , each containing q elements, sizes s(xi) and s(yi) for every xi ∈ X

and yi ∈ Y , and a target vector [u1, ..., uq]; s(xi), s(yi), and ui being positive integers, 1 ≤ i ≤ q.

Question: Can X∪Y be partitioned into q disjoint sets W1, ...,Wq, each containing exactly one element

from X and one element from Y , such that
∑

w∈Wi
s(w) = ui, 1 ≤ i ≤ q ?

This problem is strongly NP-complete (Garey et al. 1979).

The transformation proposed below in its first step (modification of ΠNM) uses some ideas of our

former proof for a distinct problem of the Simplified Partial Digest (SPDP) of DNA molecules (Blazewicz

et al. 2005) (cf. also Waterman 1995, Blazewicz et al. 2001, Blazewicz et al. 2007). For the moment,

the dependence between somewhat similar problems: RNA PDP and PDP as well as SPDP, is not yet
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found out, being an interesting question for further studies.

The first stage of proving strong NP-completeness of problem ΠRNAPDP consists in a simple modifi-

cation of problem ΠNM. We are interested in a variant with the ranges of variables shifted by some added

values. The modified ranges will have several properties, in particular, they will be disjoint. Initially,

the ranges of values of variables s(xi), s(yi), and ui, 1 ≤ i ≤ q, can be written as follows:

s(xi) ∈ 〈xL, xR〉,

s(yi) ∈ 〈yL, yR〉,

ui ∈ 〈uL, uR〉,

where the variables with index L mean the smallest values and the ones with index R mean the largest

values in the respective collections. These ranges are arbitrary, however, we assume here that they satisfy

few obvious conditions:

uR ≤ xR + yR,

uL ≥ xL + yL,

uR > xR,

uR > yR.

The above assumptions do not change the computational complexity of problem ΠNM — if one of them

is not satisfied, the problem becomes easy because the answer is obviously “no”.

We modify the initial ranges of the variables in the following way (where “←” assigns the right-hand

side value to the left-hand side variable):

s(xi) ← s(xi) + uR, 1 ≤ i ≤ q,

s(yi) ← s(yi) + 2xR + 2uR, 1 ≤ i ≤ q,

ui ← ui + 2xR + 3uR, 1 ≤ i ≤ q.

The new ranges have the following form (1 ≤ i ≤ q):

s(xi) ∈ 〈xL + uR, xR + uR〉,

s(yi) ∈ 〈yL + 2xR + 2uR, yR + 2xR + 2uR〉,

ui ∈ 〈uL + 2xR + 3uR, 4uR + 2xR〉.

They are visualized in Figure 1.

As a result we have:

Lemma 1. (Blazewicz et al. 2005) Problem ΠNM and its version with the ranges of variable values

shifted as above, are equivalent.

The variables from problem ΠNM increased by the proposed values have the following useful proper-
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Figure 1: The ranges of values of variables s(xi), s(yi), and ui, 1 ≤ i ≤ q, after the modification.

ties.

Lemma 2. (Blazewicz et al. 2005) None of the modified ui, 1 ≤ i ≤ q, can be equal to some s(xj) or to

a sum of any s(xj) and s(xk).

Lemma 3. (Blazewicz et al. 2005) None of the modified ui, 1 ≤ i ≤ q, can be equal to some s(yj) or to

a sum of any s(yj) and s(yk).

Now, we can define the transformation from problem ΠNM to problem ΠRNAPDP, which is given

below.

The transformation

Given an instance of problem ΠNM, the corresponding instance of ΠRNAPDP is constructed as

follows.

(1) Shift the ranges of numbers in problem ΠNM as specified above, i.e.

s(xi) ← s(xi) + uR, 1 ≤ i ≤ q,

s(yi) ← s(yi) + 2xR + 2uR, 1 ≤ i ≤ q,

ui ← ui + 2xR + 3uR, 1 ≤ i ≤ q.

From now on all the variables have these modified values, if not stated otherwise.

(2) Create set Z = {
∑i

j=0 uj : 0 ≤ i ≤ q}, where u0 is a new variable of value 1. Add values s(xi)

and s(yi), 1 ≤ i ≤ q, to (initially empty) multiset D. Also add to D multiset {z+i − z+j : z+i , z
+
j ∈

Z ∪ {0} ∧ z+i > z+j }. Now n = q + 1, k = 2q +
(

q+2
2

)

.

(3) Assign values to L and C: L = max(Z), C = 0.

Lemma 4. The proposed transformation can be computed in time bounded by a polynomial in the length

of the instance of ΠNM (LenNM) and the maximal number appearing in this instance (MaxNM).

Proof. LenNM is O(qdlogMaxNMe). In the first step of the transformation we make O(LenNM) opera-

tions. New values of the variables do not change LenNM and MaxNM substantially: q is not changed,
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new MaxNM is up to 6 times larger than previously. Filling set Z requires O(LenNM
2) operations.

Filling multiset D requires O(LenNM
2dlog LenNMe) operations. Step (3) is O(LenNMdlog LenNMe).

Taking the above functions together, we have O(LenNM
2dlog LenNMe) as the complexity of the proposed

transformation. �

Because the instance size does not decrease exponentially and the greatest number in the instance does

not increase exponentially, this transformation is pseudo-polynomial. We can now prove the following

main theorem.

Theorem 1. RNA Partial Degradation Problem (ΠRNAPDP) is strongly NP-complete.

Proof. Lemma 4 proves that the proposed transformation is pseudo-polynomial. It remains to prove that

the transformation is correct, i.e. that for every instance I of problem ΠNM, I ∈ YΠNM
if and only if

τ(I) ∈ YΠRNAPDP
, where Y means the set of instances of a problem with answer “yes” and τ means the

transformation. The first step of the transformation slightly modifies problem ΠNM, but both versions

are equivalent (see Lemma 1). In the following, the shifted ranges of values of the variables are used.

Let us assume, that an instance of problem ΠNM gives a positive answer. It means, that there is

a partition of X ∪ Y such that every disjoint subset Wi, 1 ≤ i ≤ q, contains one xj and one yl, and

s(xj)+s(yl) = ui, for some j, l ∈ 〈1, q〉. Then, the solution of problem ΠRNAPDP in the instance after the

transformation can be constructed by assigning to sets P1 and P2 the following values: P1 ← Z \ {L},

P2 ← {s(xj) + 1 +
∑i−1

l=1 ul : 1 ≤ i ≤ q ∧ xj ∈ Wi}. Such solution always satisfies all 9 constraints

from the definition of problem ΠRNAPDP. Set P will be composed of elements being in the range (0, L)

(constraint 1). The construction of multiset D in the second step of the transformation first adds all

elements of D′ \R and next all elements of R. Elements of multiset R can be ordered to cover P1, what

follows from the construction of R (all interpoint distances between pairs of values from P1 ∪ {0, L}).

Elements of multiset D′ \R can be paired into {d′i1, d
′
i2} on the base of the solution of ΠNM: d′i1 = s(xj),

d′i2 = s(yl), where xj , yl ∈ Wi, what follows from the construction of D and P2 (constraints 2-5).

All secondary cleavage sites in these pairs from D′ \ R are different and cover P2 (constraint 8). Set

Z, constructed by the transformation is equal to P1 ∪ {L} and does not contain any element of P2,

and because no element of P2 comes from a cleavage of a primary segment beginning in 0, Z = Z ′

(constraints 6-7). Constructed multiset D is also complete with reference to the corresponding solution

P (i.e. D = D′), thus finally, constraint 9 from the definition of ΠRNAPDP is also satisfied.

Now let us assume, that an instance of problem ΠRNAPDP (after the transformation) has answer

“yes”. In such a case we have sets P1 and P2 satisfying all 9 constraints from the definition of ΠRNAPDP.

We know, that constructed sets Z and D do not contain errors (because C = 0), so Z = Z ′ and D = D′.

Set Z \ {L} indicates q cleavage sites of a molecule of length L, which define segments of lengths ui,

0 ≤ i ≤ q. The instance of ΠRNAPDP contains in multiset D 2q values less than any ui, i > 0, among
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them q values from the range of s(x) and q values from the range of s(y) (see Fig. 1). The addition

of any of these “segments” to the set of cleavage sites produced by Z \ {L} would cause the addition

of at least one new cleavage site. We know, that they can be only secondary cleavage sites of primary

segments not beginning in 0, because otherwise they would increase the error pool (constraints 6-7).

The positive answer of problem ΠRNAPDP forces such pairing of the segments that they cover all (except

the one beginning in 0) primary segments of the lowest level, i.e. the segments of lengths ui, 1 ≤ i ≤ q.

These segments cannot cover primary segments of a higher level (i.e. primary segments containing

other primary segments), because no two lengths from the ranges of s(x) and s(y) sum up to such big

value. The properties of the shifted ranges of s(x) and s(y) guarantee, as the only possible assignment,

always one element belonging to s(x) and one to s(y) in every segment ui, 1 ≤ i ≤ q (see Lemmas 2-3).

The solution of problem ΠNM is the set of pairs Wi = {xj , yl} such that s(xj) and s(yl) fill up the ith

segment of length ui, 1 ≤ i ≤ q. In such a case P1 = Z \ {L}, P2 equals to all newly added cleavage sites

and all not yet used elements of D cover (following the construction) all interpoint distances between

pairs of values from P1 ∪ {0, L}. This ends the proof. �

The proposed transformation of an instance of problem ΠNM to an instance of problem ΠRNAPDP is

illustrated by the following example.

Example 1. Let the example instance of problem ΠNM be:

q = 3,

X = {x1, x2, x3},

Y = {y1, y2, y3},

s(x1) = 2, s(x2) = 3, s(x3) = 5,

s(y1) = 4, s(y2) = 5, s(y3) = 6,

u1 = 7, u2 = 9, u3 = 9.

After shifting the ranges of the variables we get the values:

s(x1) = 11, s(x2) = 12, s(x3) = 14,

s(y1) = 32, s(y2) = 33, s(y3) = 34,

u1 = 44, u2 = 46, u3 = 46.

The construction of the instance of problem ΠRNAPDP ends with the following result:

Z = {1, 45, 91, 137},

D = {11, 12, 14, 32, 33, 34, 1, 45, 91, 137, 44, 90, 136, 46, 92, 46},

n = 4, k = 16, L = 137, C = 0.
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The feasible solution for the instance after the transformation (i.e. of problem ΠRNAPDP) is shown

in Figure 2, with P1 = {1, 45, 91} and P2 = {12, 57, 105}.

 
 

0 1 12 45 57 91 105 137 

– 32 – – 14 – – 34 – – 12 – – 33 – – 11 – 

Figure 2: A solution of problem ΠRNAPDP for the example instance.

This solution can be easily translated to a feasible solution of problem ΠNM:

W1 = {x1 + y2} (11 + 33 = 44 → 2 + 5 = 7),

W2 = {x2 + y3} (12 + 34 = 46 → 3 + 6 = 9),

W3 = {x3 + y1} (14 + 32 = 46 → 5 + 4 = 9). �

Corollary 1. RNA Partial Degradation Problem in its decision version without any errors allowed (i.e.

with C = 0) is strongly NP-complete.

Corollary 2. RNA Partial Degradation Problem in its search version is strongly NP-hard.

Following this result, we will propose in the next section an exhaustive search algorithm which finds

first cleavage sites, however, at the expense of the computational time.

10



3 The exact algorithm

In this section, we introduce the branch-and-cut algorithm that works for the case of RNA PDP problem

(search version) with false negatives (i.e. missing fragments inD and Z). Its aim is to find the coordinates

of primary and secondary cleavage sites in a given RNAmolecule, taking into account false negatives. The

proposed algorithm builds and searches through the solution tree with leaves corresponding to elements

of the solution space of the problem. The algorithm is implemented in C programming language and

runs in Unix environment.

The algorithm takes as an input the data containing fragment lengths obtained via the biochemical

experiments, i.e. multiset D of k positive integers and set Z of n positive integers, and also maximum

permissible number of errors (maxErr = C). In addition, the following structures are defined: multiset

R of all pairwise distances between points in P1 ∪ {0, L}, where each distance is described by a pair of

points, and sorted (in non-increasing order) list B of all secondary fragment lengths. These structures

do not contain any element at the beginning of the algorithm. The output of the algorithm is set P1∪P2

which will contain reconstructed primary and secondary cleavage sites in RNA molecule.

The aim of the preliminary step of the algorithm is to check whether Z is consistent with D. If not,

D is increased by elements of Z missing there. The output of this step is an updated multiset D and

the current number of corrected errors (currErr). If currErr ≤ maxErr is not satisfied, the solution

does not exist.

The main algorithm consists of two parts. First part was designed to find the coordinates of primary

cleavage sites including false negatives (see Algorithm 1 and 2). In this part P1 is recognized. If a given

cleavage site cannot be assigned due to high currErr, the current branch is cut off and the algorithm

backtracks. First, each of the elements of Z is checked whether it can be classified as a primary cleavage

site as shown in pseudo-code below (Algorithm 1). The number of immediate successors of the node is

equal to two, because the element of Z can be added to set P1 as a primary cleavage site or denoted as

a secondary cleavage site and added to list B. Next, the algorithm attempts to reconstruct the missing

primary cleavage sites basing on D in a very similar way as for Z (Algorithm 2). Each element of

D \ {L} which is not equal to any of the distances between reconstructed so far primary cleavage sites

in P1 including ends of the molecule and does not belong to list B is considered as a potential primary

cleavage site. Every such element can be placed either on the left or right side of the RNA molecule and

inserted into P1 or added to the list of secondary fragments B. Finally, P1 will contain reconstructed

primary cleavage sites. The main procedures of the first part, given in pseudo-code are shown below as

Algorithm 1 and 2, respectively. The presented pseudo-code works for the case of ideal data and gives an

overview of the algorithm. The notation ∆(zmax, P1 ∪ {0, L}) denotes the multiset of distances between

point zmax and all points in set P1∪{0, L}. The procedure stops when the stopping criterion is satisfied,

defined as follows. If set Z \ {L} becomes empty, then the procedure ends with reconstructed primary
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cleavage sites in P1.

Algorithm 1 Reconstruction of primary cleavage sites basing on set Z (the case of data without errors).

1: procedure ReconstructFromZ(Z,D, P1, B)
2: if Z \ {L} is empty then
3: return
4: end if
5: zmax ← Maximum element in Z \ {L}
6: if ∆(zmax, P1 ∪ {0, L}) ⊆ D then
7: RECONSTRUCTFROMZ(Z \ {zmax}, D \∆(zmax, P1 ∪ {0, L}),

P1 ∪ {zmax}, B)
8: else
9: RECONSTRUCTFROMZ(Z \ {zmax}, D \ {zmax}, P1, B ∪ {zmax})

10: end if
11: return
12: end procedure

Algorithm 2 Reconstruction of primary cleavage sites basing on set D (the case of data without errors).

1: procedure ReconstructFromD(D,P1, B)
2: if D \ {L} is empty then
3: return
4: end if
5: dmax ← Maximum element in D \ {L}
6: if ∆(dmax, P1 ∪ {0, L}) ⊆ D then
7: RECONSTRUCTFROMD(D \∆(dmax, P1 ∪ {0, L}), P1 ∪ {dmax}, B)
8: else if ∆(L − dmax, P1 ∪ {0, L}) ⊆ D then
9: RECONSTRUCTFROMD(D \∆(L− dmax, P1 ∪ {0, L}),

P1 ∪ {L− dmax}, B)
10: else
11: RECONSTRUCTFROMD(D \ {dmax}, P1, B ∪ {dmax})
12: end if
13: return
14: end procedure

As a result of the first part of the algorithm the solution set P1 will contain all reconstructed primary

cleavage sites.

The second part of the algorithm was designed to reconstruct the coordinates of the secondary

cleavage sites including false negatives. In this part it is checked whether there exists the pair of

elements in list B of secondary fragment lengths, which sum is equal to one of the primary fragment

lengths. The secondary cleavage site can also be reconstructed when one of the elements of the pair is

missing, but only if currErr < maxErr. Additionally, only one of the elements in the pair and only

within primary fragment starting with the first nucleotide of the RNA of length L, can correspond to a

secondary cleavage site obtained during experiment with labeled 5’ termini of the RNA molecule. If a

pair could not be found, then the current branch is cut off and the algorithm backtracks. The number

of immediate successors of the node is equal to a number of pairs which can be composed of the first
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(i.e. the longest) element of the current list B and any other element of B (including possible missing

fragment if currErr < maxErr) in such way that these two elements sum up to a length of a primary

fragment within current P1. The main procedure of the second part consists of the presented steps in

pseudo-code shown as Algorithm 3. The presented pseudo-code works for the case of ideal data and gives

an overview of the algorithm. The procedure stops when the stopping criterion is satisfied, defined as

follows. If list B becomes empty then the procedure ends with reconstructed secondary cleavage sites in

P2. If a solution is not found because of the higher number of errors than assumed, then the algorithm

backtracks to Part I. A new reconstruction of primary cleavage sites is searched for.

Algorithm 3 Reconstruction of secondary cleavage sites (the case of data without errors).

1: R = {rij = pj − pi : pi, pj ∈ P1 ∪ {0, L} ∧ pj > pi ∧ 0 ≤ i < j ≤ |P1|+ 1}

2: procedure ReconstructSecondarySites(B,R, P2)
3: if B is empty then
4: return
5: end if
6: for k := 2 to |B| do
7: if ∃rij ∈ R : {b1 + bk} = rij then
8: RECONSTRUCTSECONDARYSITES(B \ {b1, bk}, R \ {rij},

P2 ∪ {r0i + b1})
9: end if

10: end for
11: return
12: end procedure

The whole algorithm stops after finding a first feasible solution of the considered problem. The

algorithm was also extended to cover the case of errorneous data.

The example below illustrates the case with false negatives.

Example 2 presents in detail the action of the proposed algorithm.

Example 2. Let our instance of the considered problem ΠRNAPDP be: D =

{19, 21, 23, 24, 25, 26, 43, 45, 51, 66}, Z = {24, 43, 45, 66}, L = 66 and C = maxErr = 5 (because

the fragment of length 15 is missing in both Z and D, the corresponding error is counted twice).

Exemplary reconstruction of cleavage sites can be as follows. As a result of the reconstruction of

primary cleavage sites from Z in Part I of the algorithm we will obtain: P1 = {43, 45}, B = {24} and

currErr = 1. Next, elements of D \ {L} that do not belong to set P1 ∪ B and are not equal to any

distances between elements of P1 and endes of the molecule are selected as potential primary cleavage

sites. These elements are: 19, 25, 26, 51. The reconstruction of the primary cleavage sites from D \ {L}

will result in: P1 = {15, 43, 45}, B = {26, 25, 24, 19} and currErr = 5. In Part II of the algorithm the

secondary cleavage sites are reconstructed. The solution set will be P1 ∪ P2 = {15, 24, 41, 43, 45}.
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4 Experimental results

In this section results of the biochemical experiments and the tests of the algorithm solving the RNA

PDP problem in the case of erroneous data are presented. The algorithm has been tested on PC with

Pentium(R) 4, 2.40 GHz processor and 1 GB RAM in Unix environment. As a testing set, a group of

experimental and randomly generated data were prepared. The biochemical analysis of RNA degradation

was conducted using two artificial molecules RNA-A108 and RNA-B66. The secondary structures of both

molecules were designed on the base of earlier described rules of nonenzymatic degradation (Kierzek 1992,

Bibillo et al. 1999, Bibillo et al. 2000, Kierzek 2001) and the program mfold (See Figure 3).

RNA-A108 and RNA-B66 molecules were obtained and labeled as described in the literature

(Dutkiewicz et al. 2005). Briefly, both RNAs were synthesized by in vitro transcription involving

chemically synthesized DNA as templates. The resultant transcripts were labeled in two different ways;

either a single 32P atom was incorporated at their 5’ terminus (single-labeled RNA) or numerous 32P

atoms were introduced along the molecules (multi-labeled RNA). To prepare single-labeled RNA, a tran-

scription product was purified and subjected to reaction with [γ-32P]ATP and T4 polinucleotide kinase.

To obtain multi-labeled RNA, [α-32P]UTP was added to the in vitro transcription reaction mixture.

All reactions were conducted with the MEGAshortscriptTM kit (Ambion) and resultant transcripts were

purified as described earlier (Dutkiewicz et al. 2005).

RNA degradation experiments were carried out according to procedure proposed for studying nonen-

zymatic RNA hydrolysis (Kierzek 1992, Bibillo et al. 1999, Bibillo et al. 2000, Kierzek 2001). Reaction

mixture containing 0.1 pmol of labeled RNA, 50 mM Tris-HCl (pH 7.5), 2 mM EDTA, 1 mM spermidine,

50 mM NaCl and 0.1% PVP solution was incubated at 37◦C for 1, 2, 4 and 6 hours. The reaction prod-

ucts were separated in a 16% denaturating polyacrylamide gel and visualised by autoradiography. The

locations of cleavage sites were determined by applying standard biochemical methods, it

means by the comparison of the length of degradation products with the length of the

RNA markers. The RNA markers were generated using typical procedures. In order to

obtain the first set of RNA markers the examined RNA was single-labeled at the 5’ end

and subjected to random hydrolysis. As a result, we obtained so called ladder (marked

with L in Figure 3) i.e. a mixture of labeled RNA which lengths ranged between a single

nucleotide and a full length RNA. To produce the second set of markers, the examined

RNA was single-labeled at the 5’ end and subjected to cleavage by RNase T1. It cuts RNA

after G, thus we obtained a mixture of RNAs labeled at the 5’ end and having G at the

3’ end (marked with T1 in Figure 3). The results of the experiment are shown in Figure 3. Their

analysis revealed that primary and secondary cleavages occurred during the first hour of incubation. For

this reason we considered in further computational tests only those fragments that arose at T1. During

the degradation of single-labeled RNA-A108 the following 5’radiolabeled fragments were generated: 30,

14



Figure 3: Secondary structure models of two artificial RNA molecules: (A) RNA-A108, (D) RNA-B66.

Experimental results of RNA degradation: (B) RNA-A108 degradation with labeled 5’ termini of the

molecule (C) RNA-A108 degradation with labeled nucleotides (E) RNA-B66 degradation with labeled

5’ termini of the molecule (F) RNA-B66 degradation with labeled nucleotides. Lanes: T0 — reaction

control; T1–T4 — incubated after 1, 2, 4, 6 h respectively; L — formamide ladder, T — limited hydrolysis

by RNAse T1
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31, 61, 83 and 108 nucleotide long. The degradation of single-labeled RNA-B66 led to the formation of 4

radiolabeled fragments: 24, 43, 45 and 66 nucleotides long. In the second experiment with multi-labeled

RNA-A108 11 fragments were detected: 21, 22, 30, 31, 37, 40, 52, 61, 77, 83 and 108. During similar

experiment involving RNA-B66 we observed the formation of 10 products: 19, 21, 23, 24, 25, 26, 43, 45,

51 and 66.

The above data were used to perform computational tests. Although all of the instances gathered

in the biochemical experiments had a high number of missing primary and secondary fragments, the

algorithm was able to find the correct solution. It was able to determine the following primary cleavage

sites in a case of RNA-A108: 31, 83 and RNA-B66: 15, 43, 45. The reconstructed secondary cleavage

sites were as for RNA-A108: 30, 52, 61, 71 and for RNA-B66: 24, 41. Analyzing the obtained results,

we noticed that the algorithm performs very fast for the real data. Table 1 summarizes running time

results for the branch-and-cut algorithm tested on the above instances.

Since the real instances were solved very quickly, random instances with a higher number of primary

and secondary cleavage sites as well as a defined number of false negatives were generated. The random

erroneous data were obtained by generating sequences of random numbers, from a uniform distribution

over interval [1, 2500]. First the primary cleavage sites were generated. The test data have been divided

into four sets where secondary cleavage sites have occurred in respectively 25%, 50%, 75% and 100%

of primary fragments, the number of the latter being equal to (r+2
2 ), where r is the number of primary

cleavage sites in the instance. Additionally, each of the four input data sets was separately tested with

the number of missing fragment lengths ranging from 1 to 5. The fragments were randomly removed

from sets Z and D. The algorithm has been terminated after founding first feasible solution for the

instance. Tables 2 – 5 present average results for the random instances, where each entry corresponds to

100 instances of the same number of secondary and primary cleavage sites and number of false negatives,

i.e. to 100 runs of the algorithm.

Analyzing the obtained results we noticed, that algorithm performs quite efficiently and fast, despite

its computational complexity which equals O(r22o), where r is the number of primary cleavage sites and o

stands for the number of secondary fragment lengths (a pair of secondary fragment lengths corresponds to

one secondary cleavage site). The algorithm has been able to find a correct solution in all the considered

examples.
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5 Conclusions

In the paper, the new RNA Partial Degradation Problem has been formulated and solved. The math-

ematical formulation of the problem has been shown and its complexity has been analyzed. Since the

problem has been proved to be strongly NP-complete, a branch-and-cut algorithm has been proposed.

This algorithm gives very good results for erroneous data, especially for the real data obtained from the

RNA degradation, and may be very useful in practice as a tool that facilitates the analysis of the output

of the biochemical experiment.

In the RNA Partial Degradation Problem we have assumed that a primary fragment is

cleaved at most once. Certainly, there could be in general several secondary cleavage sites

in between when allowing for long enough RNA incubation. In fact, very long incubation

should lead to complete RNA degradation into single nucleotides. However, the problem

of the reconstruction of the whole history of an individual RNA from the full length

molecule to single nucleotides is too complex. Thus, we have decided to focus our analysis

on the preferred cleavage sites and this way simplify the general problem to make easier

the reconstruction of the original molecule. The proposed formulation of the simplified

problem is general enough to model the degradation of the analyzed RNA and at the same

time is still tractable for the reader.

As a continuation of the research reported in this paper, one may consider the analysis of not only

secondary but also further products of the spontaneous RNA degradation that occur after several hours.

Consequently, we should expect that adding next-order cleavage sites into the search space will complicate

the formulation of the problem and the searching algorithm.
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RNA molecule No. of reconstructed

primary cleavage

sites

No. of reconstructed

secondary cleavage

sites

No. of false negatives Average computational time

[s]

RNA-A108 2 4 3 0.01

RNA-B66 3 2 5 0.01

Table 1: Computational results for erroneous instances based on the real data.
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No. of reconstructed

primary cleavage sites

No. of reconstructed

secondary cleavage sites

Average computational time [s]

Number of false negatives

1 2 3 4 5

4 3 0.01 0.01 0.01 0.01 0.01

5 5 0.01 0.01 0.01 0.01 0.01

6 6 0.01 0.01 0.01 0.01 0.01

7 8 0.01 0.01 0.01 0.01 0.01

8 11 0.01 0.01 0.01 0.01 0.02

9 13 0.01 0.03 0.18 0.31 0.38

10 16 0.01 0.52 0.69 2.13 2.98

Table 2: Average computational times for randomly generated erroneous instances. Secondary cleavage

sites occur in 25% of all primary fragments.
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No. of reconstructed

primary cleavage sites

No. of reconstructed

secondary cleavage sites

Average computational time [s]

Number of false negatives

1 2 3 4 5

4 7 0.01 0.01 0.01 0.01 0.01

5 10 0.01 0.01 0.01 0.01 0.01

6 13 0.01 0.01 0.01 0.07 0.10

7 17 0.01 0.02 0.17 0.72 1.43

8 22 0.36 0.69 2.64 3.97 8.11

Table 3: Average computational times for randomly generated erroneous instances. Secondary cleavage

sites occur in 50% of all primary fragments.
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No. of reconstructed

primary cleavage sites

No. of reconstructed

secondary cleavage sites

Average computational time [s]

Number of false negatives

1 2 3 4 5

4 10 0.01 0.01 0.01 0.01 0.01

5 15 0.01 0.01 0.01 0.01 0.02

6 20 0.01 0.02 0.05 0.18 0.34

7 26 0.11 0.65 2.18 5.04 12.10

8 33 0.66 3.01 10.17 16.96 25.38

Table 4: Average computational times for randomly generated erroneous instances. Secondary cleavage

sites occur in 75% of all primary fragments.

25



No. of reconstructed

primary cleavage sites

No. of reconstructed

secondary cleavage sites

Average computational time [s]

Number of false negatives

1 2 3 4 5

4 14 0.01 0.01 0.01 0.01 0.01

5 20 0.01 0.01 0.02 0.03 0.07

6 27 0.03 0.16 0.45 0.76 2.26

7 35 0.30 1.87 6.80 12.07 18.62

8 44 7.37 19.64 31.03 41.51 47.48

Table 5: Average computational times for randomly generated erroneous instances. Secondary cleavage

sites occur in 100% of all primary fragments.

26


