Reduced-by-matching graphs:
toward simplifying Hamiltonian circuit problem

Jacek Blazewicz Marta Kasprzak*

Institute of Computing Science, Poznan University of Technology,
Piotrowo 2, 60-965 Poznan, Poland
and Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland

Abstract

The results presented in the paper are threefold. Firstly, a new class of
reduced-by-matching directed graphs is defined and its properties studied.
The graphs are output from the algorithm which, for a given 1-graph, re-
moves arcs which are unnecessary from the point of view of searching for
a Hamiltonian circuit. In the best case, the graph is reduced to a quasi-
adjoint graph, what results in polynomial-time solution of the Hamilto-
nian circuit problem. Secondly, the systematization of several classes of
digraphs, known from the literature and referring to directed line graphs,
is provided together with the proof of its correctness. Finally, computa-
tional experiments are presented in order to verify the effectiveness of the
reduction algorithm.

Keywords: Hamiltonian circuit problem, directed line graphs, quasi-
adjoint graphs, graph reduction, digraphs

1 Introduction

The Hamiltonian circuit problem (HCP) is frequently studied in the scientific
literature for its significance in both theoretical and practical branches of com-
puter science. It is one of the most well known combinatorial problems, com-
monly used for modeling more complex and real-life problems. In light of this,
its strong NP-completeness is an ongoing motivation for developing better and
faster algorithms. Researchers have put a lot of effort in defining wider and
wider classes of graphs being “easy” for the problem, together with dedicated
polynomial-time exact algorithms. This research is often done autonomously
for directed and undirected graphs, since polynomial-time solvability of HCP
for one kind of graph does not imply that it is suitable for the other one. As
an example we can give directed line graphs and line graphs: while the former

*The corresponding author: marta@cs.put.poznan.pl.

have polynomial-time exact algorithm solving HCP [8], HCP for the latter is
strongly NP-complete [6]. Our work is focused on directed graphs and their
classes containing or intersecting directed line graphs.

While many papers are concerned with classes of undirected graphs which
are easy from the point of view of searching for HCP (see e.g. [21] for interval
graphs, [15] for co-comparability graphs, [20] for distance-hereditary graphs,
or [1] for some partly claw-free graphs), analogous classes of directed graphs
have not been so widely studied. An example is the class of adjoints of other
directed graphs, which strictly contains directed line graphs (e.g. see [5, 24]).
HCP is easily solved in an adjoint by transforming the adjoint into its original
graph and then by searching for an Eulerian circuit within it. The existence of
an Eulerian circuit in the original directed graph is a necessary and sufficient
condition of the existence of a Hamiltonian circuit in its adjoint [8]. Other
papers on the topic define HCP as an easy problem for the classes of strongly
connected tournaments [12], semicomplete multipartite digraphs [4] and other
related graphs [3].

The paper by Blais and Laporte [7] deals with a transformation for directed,
undirected, and mixed graphs, related to the generalized routing problem. The
transformation replaces vertices, arcs and edges of the initial graph by vertices in
a new complete weighted digraph, and then the (generalized) traveling salesman
problem is solved. However, this approach preserves computational hardness of
the problems before and after the transformation. This transformation is carried
out inversely to the transformation for adjoints, where (in the latter) vertices
are replaced by arcs.

In a recent paper by Blazewicz et al. [11] a new class of quasi-adjoint graphs
was defined, which extends the set of known graph classes, for which HCP
is polynomially solvable. The class of quasi-adjoint graphs is a generalization
of, among others, adjoints and the graphs modeling the problem of isothermic
DNA sequencing by hybridization without errors in experimental data [9]. The
algorithm proposed in [11] tends to reduce a digraph into a quasi-adjoint graph
by removing some arcs unnecessary from the point of view of searching for a
Hamiltonian circuit. Even if the graph does not become a quasi-adjoint graph, it
gets simpler and looking for a solution takes less time. None of feasible solutions
of the Hamiltonian circuit problem is lost after this reduction.

In this paper, this theoretical algorithm is studied and the contribution is
threefold. Firstly, the algorithm is slightly modified, the class of graphs on
the output of the algorithm is defined and its properties studied. Secondly,
the systematization of several classes of digraphs, known from the literature
and referring to directed line graphs, is provided together with the proof of its
correctness. Finally, the algorithm has been implemented and verified on a wide
set of instances. The graphs reduced by the algorithm have been compared
with their initial forms, for demonstrating the effectiveness of the algorithm.
Two algorithms solving HCP known from the literature [23, 13] and two other
simple algorithms have been used in the experiment in order to compare their
performance for the graphs before and after the reduction.

The organization of the paper is as follows. Section 2 contains the descrip-

tion of the algorithm for graph reduction that simplifies the Hamiltonian circuit
problem, and presents the resulting class of graphs. In Section 3 the system-
atization of digraph classes is presented. In Section 4 computational results are
discussed. We conclude the paper in Section 5.

2 Reduction of graphs toward simplifying HCP

Throughout the paper we use a standard terminology from graph theory, see
e.g. [5, 14]. We are dealing with directed graphs (digraphs), for which notions
of interest are recalled below.

The Hamiltonian circuit is a circuit in a graph including every vertex exactly
once. The Fulerian circuit is a circuit including every arc of a graph exactly
once. The I-graph is a graph having, for all ordered pairs of vertices (z,v),
at most one arc from vertex z to vertex y. A l-graph can be represented as
0-1 adjacency matriz M, where M [z, y] = 1 means the existence of the arc from
vertex x to vertex y. The indegree of vertex x (being the number of arcs entering
x) is denoted by d~(x), the outdegree of x (being the number of arcs leaving
x) by d*(z). In the following, using the term “successor” or “predecessor” we
always mean the immediate one.

Definition 1. [5] The adjoint G = (V, A) of a graph H = (U,V) is a 1-graph
whose vertices represent arcs of H, and which has an arc from z to y if the
terminal endpoint of the arc in H corresponding to z is the initial endpoint of
the arc corresponding to y.

The directed line graph is defined as an adjoint G of a 1-graph H.

Theorem 1. [5] A I-graph G = (V, A) is an adjoint if and only if the following
property is satisfied for all pairs x,y € V:

NT(@)NNT(y) #0= N"(z) = N"(y),
where NT(x) is the set of successors of vertex x.

Theorem 2. [8] Let G be the adjoint of graph H. Then, there is an Fulerian
path/circuit in H if and only if there is a Hamiltonian path/circuit in G.

From Theorem 2 it follows that the problem of searching for a Hamiltonian
circuit in a digraph, which is in general strongly NP-hard, becomes easy for
adjoints. In [11] a wider class of graphs, for which the solution of HCP is
polynomially solvable, was defined.

Theorem 3. [11] A graph is a quasi-adjoint graph if, for any two vertices x
and y, the following property holds:

Nt@)NN*t(y)#0 = Nt(z)=N*t(y) V
Nt(@)c Nty V
N*(y) € N*(z),

where NT(x) is the set of successors of vertex x.

For the class of quasi-adjoint graphs a polynomial-time exact algorithm solv-
ing HCP was proposed in [11], which also used the rule of transforming an
adjoint into its original graph.

The motivation of our work is to apply this rule to an enlarged class of
graphs, which could be reduced into quasi-adjoint graphs by removing some
superfluous arcs. The proposed algorithm (Algorithm 1) accepts as an input
any 1l-graph and attempts to reduce it through a series of arc removals, which
are guaranteed not to belong to any feasible solution of the Hamiltonian circuit

problem. It uses the concept of a cluster in an adjacency matrix of a 1-graph,
defined below.

Definition 2. A cluster in an adjacency matrix M is a collection of rows and
columns of M tied by 1s, both rows and columns of non-zero cardinality. In
other words, a cluster can be identified in M by the successive addition to a
selected non-zero row, alternately, these columns and rows of M which have 1s
on the intersection with the rows/columns already belonging to the cluster.

A cluster can be interpreted as a bipartite graph C = (Vio1, Voo, Ac) with
Vo1 corresponding to the cluster’s rows, Vo corresponding to the cluster’s
columns, and Ag corresponding to the set of 1s at their intersection. One
vertex may be present both in Viz1 (as the tail of an arc) and Vg (as the head
of the same or another arc).

Algorithm 1

Input: An adjacency matrix M of 1-graph G.

Output: A modified M corresponding to the reduced 1-graph G.

(1) Vz, M[z,z] < 0;

(2) if there is any row or column of M containing only Os then exit;

(3) for every cluster identified in M do
{
solve the problem of perfect matching in the bipartite graph C
corresponding to the cluster;
if there is no solution to this problem then exit;

else
{
mark all arcs of C composing the solution as "N"
(Necessary) ;
for every not yet marked arc (z,y) of C do

{

solve the problem of perfect matching in the bipartite
graph C minus z, y, and minus all arcs incident
to x or y;

if there is no solution to this problem then Mz, y] < 0
(the corresponding arc of (' disappears);

else mark (z,y) and all not yet marked arcs composing

the solution as "N";

Later, when we refer to “a perfect matching in a cluster” we mean a perfect
matching in the bipartite graph corresponding to the cluster. Similarly, we
denote cluster C like a bipartite graph, i.e. C = (Voi, Vi, Ac)-

Proposition 1. If the instruction “exit” is performed in the algorithm, then no
solution of HCP exists in the graph.

Proof. The instruction “exit” in step (2) of Algorithm 1 is executed for graphs
having at least one vertex without incoming/outgoing arcs. In step (3) it is
executed for graphs having a cluster without any perfect matching. The latter
means that there exists at least one vertex without a predecessor/successor in
a circuit. From the definition of the Hamiltonian circuit it follows that such
graphs have no feasible solution to this problem. O

Proposition 2. Algorithm 1 reduces a 1-graph G without loss of any feasible
solutions of the Hamiltonian circuit problem in this graph.

Proof. The correctness of the previous version of this algorithm was proven in
[11]. The current version, despite distinct notation, is logically the same except
step (2) which does not remove any arcs. Recalling the arguments, the reduced
arcs are either self-loops (in step (1)) or do not belong to any perfect matching
in clusters (step (3)), thus they are not parts of any feasible solution of the
Hamiltonian circuit problem. O

At the end of the algorithm if graph G becomes a quasi-adjoint graph, the
solution for HCP can be found in polynomial time. Otherwise, the reduced
graph becomes an easier instance for some (exact or heuristic) algorithm. The
following example visualizes the former case when the reduced graph becomes
an adjoint.

Example 1. Let graph G be defined as in Fig. 1A (it is not a quasi-adjoint
graph). In the graph two clusters can be distinguished: the one composed only
of arc (b, g) and the second one involving the remaining arcs. After applying
Algorithm 1, the arcs unnecessary from the point of view of searching for a
Hamiltonian circuit in the graph are removed (here 8 of the 20 arcs are removed).
The algorithm will output the reduced graph shown in Fig. 1B (it is an adjoint).
Now, HCP can be solved for this graph in polynomial time.

Let us now define the class of non-trivial graphs reduced by Algorithm 1.
“Non-trivial” means here that it is not obvious whether the graph has a Hamil-
tonian circuit, i.e. instruction “exit” in Algorithm 1 has not been used for the
graph.

Figure 1: Graph G from Example 1. (A) The initial graph. (B) The graph after
applying Algorithm 1.

Definition 3. The reduced-by-matching graph (RBM graph) is a 1-graph after
the reduction done by Algorithm 1, i.e. a simple digraph with every vertex
of non-zero indegree and outdegree, and with every arc belonging to a perfect
matching in a cluster.

The reduced-by-matching graphs have the following properties.

Theorem 4. If graph G is reduced-by-matching, then the following properties
hold:

(A) For every cluster C = (Vo1, Ve, Ac) of G, |Vei| = |Veal.

(B) For every cluster C = (Vor, Voo, Ac) with |[Ver| > 1, 2 € Vo = dF (z) > 1
and x € Voo = d~ (z) > 1.

(C) If, for every cluster C = (Vo1, Ve, Ac) of G, |Ver| < 2, then G is an
adjoint.

(D) Cluster C = (Vo1, Ve, Ac) has exactly two perfect matchings if and only
if Ve eVer, dt(x) =2 or Va € Voo, d” (x) = 2.

Proof. (A) The property follows from the definition of RBM graphs, because
every cluster of G possesses a perfect matching.

(B) If cluster C with |Vo1| > 1 had a vertex with only one outgoing (incoming)
arc a, then a would be a part of every possible perfect matching in C. Then, the
second vertex incident to a would have no other incident arc (no other matching
of this vertex would be possible). Therefore, arc a together with the two incident
vertices would compose a separate cluster, which is a contradiction.

(C) All clusters with |Vi1| < 2 are complete bipartite graphs (see (B)), thus G
satisfies the condition for being an adjoint, i.e. the sets of successors for each
pair of its vertices are either disjoint or the same.

(D) One should note that if one of the components in the “or” condition is true
then the second one is also true. This is because neither in V1 nor in Vs a
vertex with one outgoing/incoming arc can appear (see (B)). If every vertex has
degree equal to 2, then the choice of one arc in a matching determines the choice
of all other arcs as the ones not incident to vertices matched till now. The choice
of the other arc at some vertex at the beginning similarly implies the choice of
all other arcs. Thus, we obtain exactly two perfect matchings. Considering
the “only if” part of the statement, having an RBM graph possessing exactly
two perfect matchings we know from (B) that vertices must have degrees at
least 2. Also none of the vertices can have degree equal to 3, because it would
imply three possible matchings of this vertex to other ones and then at least
three perfect matchings since in RBM graphs there are only arcs participating
in feasible solutions. O

Part (D) of Theorem 4 allows for some restriction on the estimation of a
number of possible HCP solutions in a graph. For RBM graphs with outdegrees
equal to 2 the upper bound is equal to 2¢, where ¢ is the number of clusters in
the graph.

3 Systematization of graph classes

In [2] numerous results concerning partial directed line graphs (PDLG) were
presented, the graphs being subgraphs of directed line graphs. A recognition
algorithm as well as an algorithm for a minimum completion of a PDLG to a
directed line graph were proposed, both of polynomial-time complexity. Also de-
tailed characterization of partial directed line graphs was provided. The graphs
are partitioned into structures named kernels, which are similar to our clus-
ters. Both kernels and clusters are bipartite graphs, but kernels have more
restricted structure: for every pair K;, K; of kernels (with ¢ = j possible)
Vo1 (Ki) N Veo(K;)| < 1 is satisfied. Our clusters are not restricted in this
manner.

The minimum completion of a PDLG to a directed line graph does not
preserve the property of the existence of a Hamiltonian circuit in the graph
before and after the completion. Although the new PDLG class does not have
a special meaning from the point of view of the solvability of HCP, we mention
the class as an interesting piece of work in this area and place it in the following
classification scheme.

In Fig. 2 the relationship between graph classes, which were mentioned in
the paper, is shown. For most of the classes there exist algorithms solving HCP
in polynomial time.

Theorem 5. The relationships among the digraph classes: directed line graphs
(DLG), partial directed line graphs (PDLG), adjoints, quasi-adjoint graphs,
reduced-by-matching graphs (RBM graphs), and 1-graphs, together with their
reference to HCP solvability, are characterized by the following properties (pre-
sented together in Fig. 2).

(1-graphs TR |
(RBM graphs) exponential-time
algorithms for HCP
polynomial-time
algorithms for HCP
\[J
adjoints L DLGJ
. J

Lquasi—adjoint graphs

Figure 2: The relationship between digraph classes mentioned in the paper, with
reference to HCP solvability. DLG stands for directed line graphs, PDLG for
partial directed line graphs, and RBM graphs for reduced-by-matching graphs.

(A) 1-graphs strictly include all the classes with the exception of quasi-adjoint
graphs.

(B) Both PDLG and adjoints strictly include DLG, and quasi-adjoint graphs
stricly include adjoints.

(C) Subclasses PDLGNDLG and adjoints~DLG are disjoint.

(D) The class of RBM graphs has non-empty intersections with PDLG, DLG,
and adjoints.

(E) The subclass of quasi-adjoint graphs not being adjoints has non-empty in-
tersections with PDLG and RBM graphs.

(F) HCP involving quasi-adjoint graphs is solvable in polynomial time; the
classes outside quasi-adjoint graphs contain non-empty subclasses with
polynomial-time solution of HCP.

Proof. (A) The relations between the class of 1-graphs and the other classes
follow from the respective definitions.

(B) The relations between PDLG and DLG, adjoints and DLG, adjoints and
quasi-adjoint graphs, follow from the respective definitions.

(C) Every adjoint not being DLG contains at least one structure, which results
in parallel arcs in its original graph H [8]. Therefore, it does not belong to
PDLG class, since it cannot be extended to DLG.

(D) See Fig. 3 for example elements of every subset produced by the intersection
of RBM graphs with PDLG, DLG, and adjoints.

(E) See Fig. 4 for example elements of every subset produced by the intersection

ATTTIN RN B
PDLG i‘

(RBM graphs)

®) -
adjoints ® DLG
. \ J

Figure 3: The relationship between DLG, PDLG, adjoints, and RBM graphs,
with example elements of every subset produced by the intersection.

of quasi-adjoint graphs with PDLG and RBM graphs.

(F) In all quasi-adjoint graphs HCP can be solved in polynomial time [11].
The membership in PDLG or RBM graphs does not have such implication. It
remains to show that subsets under the line in Fig. 2 and outside quasi-adjoint
graphs are not empty. Assume that the subsets are composed, among others,
of graphs constructed in the following manner. Take any quasi-adjoint graph
from the intersection with the considered subset (PDLG, RBM graphs, both,
or none of them, respectively). Replace one (or any number) of its vertices by a
subgraph such as that shown in Fig. 5. Now the graph is no longer quasi-adjoint
graph, but still PDLG, or RBM graph, etc. In such graphs a solution of HCP
can be always found in polynomial time. Namely, all appearances of the inserted
subgraphs change back to vertices, solve HCP in the quasi-adjoint graph using
the algorithm from [11], and every of the vertices replace in the solution by the
corresponding subpath (see the caption of Fig. 5 for an example). If no solution
of HCP exists, also no solution in its extended counterpart exists. O

4 Computational experiments

Since the Hamiltonian circuit problem is both widely used for modeling real-life
problems and computationally hard, there is the need to look for approaches
reducing its complexity. (For our previous approach to simplify HCP with the
application to DNA sequence assembly see [10].) One of these approaches may
be the use of Algorithm 1, which can either reduce a directed 1-graph into a
quasi-adjoint graph (making HCP polynomially solvable) or reduce the set of
arcs of the graph (making the instance easier for an exact or heuristic algorithm).

In this section the usefulness of Algorithm 1 in simplifying the problem of
searching for Hamiltonian circuits is checked and the results are presented. The

*r—>e

Ch—>e

(RBM graphs _) Q
if [0 C ij
\[J
L adjoints DLG
\ J
quasi-adjoint graphs y,

Figure 4: The relationship between DLG, PDLG, adjoints, RBM graphs, and
quasi-adjoint graphs.

other <j>.

Figure 5: The transformation of a quasi-adjoint graph into other graph with
polynomial-time solution of HCP (see the proof of Theorem 5). (A) A part of
a quasi-adjoint graph. (B) Vertex z is replaced by two vertices z; and z, all
arcs entering x now enter z;, all arcs leaving & now leave x;. (C) The inserted
subgraphs, respectively, for the RBM graphs, PDLG, the intersection of PDLG
and RBM graphs, and for none of them. (D) After the insertion the initial graph
is no longer the quasi-adjoint graph, but the HCP solution can be still found in
polynomial time. Vertex z in a circuit found for the quasi-adjoint graph should
be replaced in the example by subpath (xg, x1, o, 2¢).

10

aim of these tests is to measure, for random and benchmark instances, both
the effectiveness of the reduction (i.e. the number of the reduced arcs) and the
effectiveness of algorithms gained by the reduction (i.e. the computational time
and the quality of the solutions).

The benchmark instances for the problem are of two kinds. Instances of
the first kind come from the TSPLIB page [25], the section “HCP” (the same
instances are pointed to on the Hamiltonian page [19]). The graphs are placed
in files “albX.hcp”, where X € (1000, 5000) stands for the number of vertices.
For every instance its solution is provided (files “albX .opt.tour”). Because the
graphs originally were undirected, we have adapted them by simple modification:
all edges have been replaced by arcs with their direction based on the order of
vertices within pairs in the file, and next the directions of the arcs constituting
the given solution have been corrected to guarantee the Hamiltonicity. Instances
of the second kind were derived from largest asymmetric TSP instances from
the TSPLIB page (they are also available via the page of the 8th DIMACS
Implementation Challenge for TSP [16]). Files “rbgX .atsp” with X € (323, 443)
encode complete graphs with weights on arcs. The derived HCP instances have
taken from them only arcs with weights less than a given bound, and have been
supplemented by arcs guaranteeing their Hamiltonicity.

Four algorithms solving HCP have been used in the computational experi-
ments, two heuristics and two exact algorithms. Two methods are known from
the literature: the heuristic randomized algorithm of Gopal Pandurangan [23]
and the exact backtracking algorithm invented by William Kocay and improved
by Andrew Chalaturnyk [22, 13]. The Pandurangan’s algorithm was imple-
mented by us while the implementation of the Chalaturnyk’s algorithm comes
from the Groups & Graphs page [18]. Although Pandurangan’s algorithm is
guaranteed to find only a 2-factor, in sparse graphs (which are of main interest
here) it often finds long cycles and even Hamiltonian ones. The Chalaturnyk’s
algorithm was designed for undirected graphs, but has appeared to be suitable
for our purposes. In addition, two simple algorithms were implemented by us:
Algorithm 2 is an exact, enumerative method and Algorithm 3 is a heuristic.
Both algorithms are not sophisticated, but it is of little significance here because
mainly the relative improvement of their outcomes is of interest. As they are
rather intuitive, their results can somehow predict how other algorithms incor-
porating similar rules could respond for the reduction.

Algorithm 2
Input: A digraph GG with n vertices.
Output: A Hamiltonian circuit in G saved in table solution, if exists.

(1) Initialize variables: index < 1, solution [index] <+ 1.
Execute the following recurrent procedure.

(2) Procedure(index, solution)

{

if indexr =n then
if arc(solution [indez],1) exists then

11

print solution;
exit;
else for i =1..n do
if ¢ is not in current path and arc(solution [index],i) exists then

{
solution [index + 1] « i;
Procedure (index + 1, solution) ;

Algorithm 3
Input: A digraph G with n vertices.

Output: A simple circuit in G (optimally being the Hamiltonian circuit)
saved in table solution.

(1) Initialize variables: index + 1, solution [index] + 1.

(2) for index = 2..n do

{

find ¢ ¢ solution such that arc(solution [index — 1],i) exists and
number of immediate successors of ¢ not being in solution
is minimal;

if there is no such ¢ then

{

index < index — 1;
go to step (3);

}

solution [index] < i;
}

(3) while arc(solution [index],1) does not exists and index >0 do
index < index — 1;

(4) print solution of length index.

We started the experiment with random instances. The computations were
done on a PC with an Intel T2300 1.7 GHz processor with 1 GB RAM. The
instances were generated randomly with a uniform distribution. For a given
number n of vertices of the graph and a given average outdegree d, arcs were
added according to the following rule. Firstly, a random Hamiltonian circuit
was built on the vertices to ensure at least one feasible solution. Next, the
remaining n(d — 1) arcs were added randomly provided that the graph must be
a l-graph.

Table 1 contains results of reduction of random initial graphs from Algorithm
1. The graphs were generated with the use of two parameters: the number of
vertices n and the initial average outdegree d, and for every pair of their values
100 instances were produced. The initial numbers of arcs in the graphs are

12

Table 1: The initial numbers of arcs in the graphs (the left half of the table)
and the average numbers of arcs after the reduction done by Algorithm 1 (the
right half) as functions of changing parameters n (the number of vertices in the
graphs) and d (the initial average outdegree).

before the reduction after the reduction
d d
2 3 4 5 2 3 4 5

10 20 30 40 50 11.5 21.3 33.1 44.7
20 40 60 80 100 22.5 41.9 68.7 93.5
30 60 90 120 150 33.4 62.9 106.1 140.9
40 80 120 160 200 43.4 86.0 143.5 189.6
n 50 100 150 200 250 54.6 110.2 179.9 237.3
60 120 180 240 300 64.9 132.4 216.3 287.3
70 140 210 280 350 75.2 153.8 252.4 335.7
80 160 240 320 400 85.5 179.0 287.5 384.0
90 180 270 360 450 94.8 199.9 324.2 431.2
100 200 300 400 500 105.9 226.8 362.5 479.6

present in the left half of the table. The right half shows the average numbers
of arcs after the reduction.

We see in Table 1 that the number of reduced arcs in the graphs reaches
almost 50% of their initial cardinality in column d = 2. In other words, after
the reduction vertices have usually only one outgoing arc in the graphs. It
means that thanks to Algorithm 1 the detection of the Hamiltonian circuit in
these graphs has become easy (on average).

Figures 6 and 7 visualize the results from Table 1 in the form of two func-
tions: the average number of reduced arcs and the effectiveness of the reduction,
respectively. The first function is defined as the difference between the numbers
of arcs in graphs before and after the reduction done by Algorithm 1. The sec-
ond function is the first one taken as the percentage of the maximum number
of reduced arcs, i.e. it is the ratio of the average number of reduced arcs to the
difference between the initial number of arcs and the number of vertices.

Figure 7 shows that the fewer the initial outdegree is, the greater the effec-
tiveness of the reduction of arcs is. It is almost independent of the instance size.
The value of 100% means that all arcs not composing a solution were removed
by Algorithm 1. The graphs with vertices having two outgoing arcs on average
result in the mean effectiveness equal to 91%. The graphs with vertices having
the average number of outgoing arcs equal to 3 result in the mean effectiveness
equal to 41%.

Even if the reduction from Algorithm 1 does not transform a graph into a
quasi-adjoint, the solution can be found much more effectively in the reduced
graph by some exact or heuristic algorithms. In Tables 2 and 3 the gain is
shown to be significant — the computation time in the case of exact Algorithm
2 (see Table 2) and the quality of the generated solutions in the case of heuristic

13

Average number of reduced arcs
100 ~
90
80 - Initial
average
70 A outdegree
60 - ——2
-3
50 1 ——4
40 - -5
30
20
10 A
0 T T T T T T T T T |
0 10 20 30 40 50 60 70 80 90 100
Number of vertices

Figure 6: The average number of reduced arcs as the function of the number of
vertices (X-axis) and the initial average outdegree in the graphs (the key on the
right). The function is defined as the difference between the numbers of arcs in
the graphs before and after the reduction done by Algorithm 1.

Effectiveness of the reduction [%]

100 ~
90 - W
80 Initial
average
70 A outdegree
60 - ——2
=3
501 ——4
40 1 l’/.—-\-\'__.—"'\./-\- a5
30
20 | \\G\A
101 B\H\B—B& —— &
= = & —a
0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Number of vertices

Figure 7: The effectiveness of the reduction as the function of the number of
vertices (X-axis) and the initial average outdegree in the graphs (the key on
the right). The effectiveness is defined as the ratio of the average number of
reduced arcs to the difference between the initial number of arcs and the number
of vertices.

14

Table 2: Average computation times of Algorithm 2 for the initial graphs (the
left half of the table) and for the reduced graphs (the right half) as functions of
changing parameters n (the number of vertices in the graphs) and d (the initial
average outdegree). The times given in seconds.

before the reduction after the reduction
d d
2 3 4 5 2 3 4 5
10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
20 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 0.02
30 <0.01 0.08 3.12 16.35 <0.01 <0.01 0.11 0.79
40 0.01 5.86 — — <0.01 0.04 13.79 —
n 50 0.09 619.61 — — <0.01 0.83 — —
60 1.12 — — — <0.01 16.56 — —
70 9.87 — — — <0.01 — — —
80 124.99 — — — <0.01 — — —
90 — — — — <0.01 — — —
100 — — — — <0.01 — — —

Algorithm 3 (Table 3).

The missing results in Table 2 represent cases when acceptable computation
time was exceeded. The improvement in computational time after the graph
reduction is significant. For example, for n = 50 and d = 3 the speedup is 746-
fold, and more than 12499-fold for n = 80 and d = 2. For n = 90 or n = 100
and d = 2 the speedup is even greater — the empty entries versus less than 10
milliseconds are meaningful.

Table 3 shows the improvement in quality of solutions generated by Algo-
rithm 3. It can be observed that the data series in the right of Table 3 have
their local minima. After very good results for sparse graphs, Algorithm 3 was
returning worse circuits, reaching the minima on average at 3 outgoing arcs per
a vertex. After that, solution quality gradually increases. The average quality
for graphs with d = 2 is equal to 15.04 for the initial graphs and to 43.92 for the
reduced graphs. For d = 3 the average quality is equal to 16.92 for the initial
graphs and to 21.03 for the reduced graphs.

Figure 8 presents the improvement of the quality of the results produced by
Algorithm 3. This function is defined as the ratio of the difference of the qualities
for the graphs before and after the reduction, to the maximum possible difference
(the latter being the number of vertices in the graph minus the quality in the
initial graph). Thus, the quality improvement equal to 100% means that the
quality in the reduced graphs could not be improved. The quality improvement
for the graphs with vertices having two outgoing arcs on average is 73%, and
16% for three outgoing arcs.

It is worth noting how many initial graphs were transformed into quasi-
adjoint graphs by applying Algorithm 1. Table 4 presents this information.
The results for graphs with d = 2 are very good, on average 51% of instances

15

Table 3: Average quality of solutions of Algorithm 3 for the initial graphs (the
left half of the table) and for the reduced graphs (the right half) as functions of
changing parameters n (the number of vertices in the graphs) and d (the initial
average outdegree). The quality is defined as the number of vertices in a simple
circuit returned by Algorithm 3.

IUNII before the reduction [after the Fediiction]
d

d
2 3 4 5 2 3 4 5
10 775 778 77l 891 924 869 807 904
20 1093 1055 1226 14.65 1827 12.83 1371 15.84
30 1484 13.09 1648 2013 27.33 1531 17.95 21.09
40 1356 1326 20.64 2263 3154 20.33 21.97 23.99
1 1416 1856 2176 2957 37.87 21.84 2523 30.46
60 18.66 18.28 2285 3175 46.96 2326 2622 34.90
70 1743 1745 2427 3573 56.05 23.09 28.07 3875
80 1740 2314 2817 3641 63.96 2615 3459 41.67
90 19.05 24.33 3108 3822 7134 2873 37.02 45.35
100 1657 2275 2951 4214 76.65 30.05 40.88 48.37
| -

Quality improvement [%]
100 ~
90 -
80 - Initial
average
70 - outdegree
60 - ——2
—a—3
50 1 ——4
40 -5
30
20
10 A
0 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Number of vertices

Figure 8: The improvement of the quality as the function of the number of
vertices (X-axis) and the initial average outdegree in the graphs (the key on the
right). The improvement is defined as the ratio of the difference between the
qualities for the graphs after and before the reduction, to the maximum possible
difference.

16

Table 4: The number of quasi-adjoint graphs among 100 random instances, for
the initial graphs (the left half of the table) and for the reduced graphs (the
right half) as functions of changing parameters n (the number of vertices in the
graphs) and d (the initial average outdegree).

IUNII before the reduction [after Hhe Fediiction]
d d

2 3 4 5 2 3 4 5

10 0 0 0 0 76 9 0 0

20 0 0 0 0 63 2 0 0

30 0 0 0 0 58 0 0 0

40 0 0 0 0 57 0 0 0

n 50 0 0 0 0 46 0 0 0

60 0 0 0 0 42 0 0 0

70 0 0 0 0 41 0 0 0

80 0 0 0 0 41 0 0 0

90 0 0 0 0 51 0 0 0

100 0 0 0 0 38 0 0 0
— [——

Table 5: The results of Algorithm 1 for HCP-descended instances from TSPLIB.

FUI before the reduction [affer the reduction
Farcs avg dt g-adj. #arcs avg d dj

g-adj.
alb1000.hcp 1998 2.00 N 1000 1.00 Y
alb2000.hcp 3996 2.00 N 2013 1.01 N
alb3000a.hcp 5999 2.00 N 3000 1.00 Y
alb3000b.hcp 5997 2.00 N 3015 1.00 N
alb3000c.hcp 5996 2.00 N 3005 1.00 N
alb3000d.hcp 5993 2.00 N 3007 1.00 N
alb3000e.hcp 5996 2.00 N 3002 1.00 Y
alb4000.hcp 7997 2.00 N 4000 1.00 Y
alb5000.hcp 9999 2.00 N 5033 1.01 N

I I —

passed to the class of graphs of polynomial-time solvability of HCP. Although
more dense graphs did not become quasi-adjoint graphs, yet they lost a number
of arcs and they became simpler from the point of view of solvability of HCP.

In order to verify the usefulness of Algorithm 1 on different kind of instances,
we selected to further tests much greater benchmark graphs (described at the
beginning of this section). Tables 5 and 6 show the results of the reduction made
for them by Algorithm 1. In the tables, “#arcs” is the number of arcs in the
graph, “avg dT” means the average outdegree, “q-adj.” means the quasi-adjoint
(“Yes” or “No”), and b stands for the bound for the ATSP graphs (i.e. the arcs
with weights less than b were accepted).

As we see, Algorithm 1 is still very useful, not only for sparse graphs with
average outdegree equal to 2, but also for instances with much greater average

17

Table 6: The results of Algorithm 1 for ATSP-descended instances from

TSPLIB.
CUSSIIIN before the reduction [after e reduction
b Farcs avg dt g-adj. F£arcs avg d g-adj.
rbg323.atsp 1 4923 15.24 N 1910 5.91 N
rbg323.atsp 2 5020 15.54 N 2746 8.50 N
rbg323.atsp 3 5089 15.76 N 3077 9.53 N
rbg323.atsp 4 5187 16.06 N 3286 10.17 N
rbg323.atsp 5 5299 16.41 N 3925 12.15 N
rbg358.atsp 1 8096 22.61 N 5170 14.44 N
rbg358.atsp 2 8176 22.84 N 6258 17.48 N
rbg358.atsp 3 8256 23.06 N 6897 19.27 N
rbg358.atsp 4 8368 23.37 N 7554 21.10 N
rbg358.atsp 5 8534 23.84 N 8041 22.46 N
rbg403.atsp 1 12087 29.99 N 8077 20.04 N
rbg403.atsp 2 12215 30.31 N 9344 23.19 N
rbg403.atsp 3 12325 30.58 N 9954 24.70 N
rbgd03.atsp 4 12450 30.89 N 10365 25.72 N
rbg403.atsp 5 12695 31.50 N 11653 28.92 N
rbgdd3.atsp 1 13857 31.28 N 10236 23.11 N
rbgd43.atsp 2 14137 31.91 N 11490 25.94 N
rbgd443.atsp 3 14390 32.48 N 12534 28.29 N
rbg443.atsp 4 14636 33.04 N 12807 28.91 N
rbgd43.atsp 5 14980 33.81 N 13500 30.47 N
I L

outdegree, up to 30. The reduction applied to the HCP-descended graphs re-
sulted in graphs close to simple cycles. Four instances have been turned into
Hamiltonian circuits, while the remaining ones have become much easier, even
for the time-consuming simple exact Algorithm 2 (see Table 7). The same
algorithm could not be used for these instances before the reduction, its com-
putations for the smallest instance with 1000 vertices had to be broken after
several hours. In the face of the time of its reduction consumed by Algorithm 1
(97 seconds), the gain is visible.

In Table 7, the values in columns “PA” are mean values for 100 runs of
this randomized algorithm. The results for “CA” have been obtained for undi-
rected graphs derived from their directed counterparts by replacing arcs with
edges. The difference between the performance of the algorithms for the initial
and reduced graphs is significant. Let us focus on algorithm CA. It immedi-
ately checked for Hamiltonicity of graphs before the reduction alb1000.hcp and
alb2000.hcp, however, for alb3000a.hcp we decided to stop its computations
after 5 hours. The same algorithm had no problems with the reduced instances.

The similar comparison for ATSP-descended instances has appeared to be
not such spectacular, especially because of very long computational time for
even the smallest graph. Both algorithms A2 and CA could not handle the
smallest graph (rbg323.atsp with b = 1) within reasonable time (5 hours). A
gain on the quality was also not impressive, for PA it was 203.7 (after the

18

Table 7: The results for HCP-descended instances achieved by Algorithm 2 (A2),
Algorithm 3 (A3), the Pandurangan’s algorithm (PA) and the Chalaturnyk’s
algorithm (CA). The results of exact algorithms given as computational time,
the results of heuristics represented by the number of vertices in longest found
simple cycles.

before the reduction after the reduction
A2 A3 PA CA A2 A3 PA CA
alb1000.hcp — 84 879.5 <1lsec. <1 sec. 1000 1000.0 <1 sec.
alb2000.hcp — 117 1422.6 <1 sec. <1 sec. 1615 1574.1 <1 sec.
alb3000a.hcp — 564 2090.5 — <1 sec. 3000 3000.0 <1 sec.
alb3000b.hcp — 211 2521.4 — 1 sec. 2200 2617.5 <1 sec.
alb3000c.hcp — 24 2903.0 — <1 sec. 2841 2934.8 1 sec.
alb3000d.hcp — 0 2467.1 — 1 sec. 1117 2547.8 <1 sec.
alb3000e.hcp — 177 2018.7 — <1 sec. 1997 2538.6 <1 sec.
alb4000.hcp — 36 4000.0 — <1 sec. 4000 4000.0 <1 sec.
alb5000.hcp — 0 2628.4 — 139 sec. 1588 3027.2 <1 sec.

reduction) vs. 193.1 (before the reduction). As we observed, even after the
reduction many vertices remained with a large number of incident arcs, what
made these instances intractable.

5 Conclusions

In this paper both theoretical and practical aspects of simplifying the Hamilto-
nian circuit problem in digraphs have been studied.

We have examined our algorithm from [11], carrying out a reduction of arcs
toward simplifying searching for a Hamiltonian circuit in a graph (Algorithm 1).
In the previous work the theoretical correctness of the algorithm was proved,
but till now we knew nothing about the practical significance of the reduction
proposed there. In the computational experiments from the preceding section,
the effectiveness of Algorithm 1 has been verified together with the performance
of four algorithms solving HCP, executed for initial and reduced graphs, for ran-
dom and benchmark instances. The tests demonstrate the effect of Algorithm
1, which reaches, for example, 91% of the effectiveness of the reduction for
random graphs having two outgoing arcs per a vertex on average. For bench-
mark graphs with mean outdegree equal to two, its effectiveness has appeared
to be very close to 100% (99.75% on average). Algorithm 2 and Algorithm
3 improved their efficiency for reduced random graphs, reaching even 12499-
fold speedup or 4.6-fold better quality, respectively, with even better results for
benchmark HCP-descended graphs. Also algorithms known from the literature
worked much better for the reduced instances.

Concerning the more theoretical aspects of this paper, the new class of
reduced-by-matching graphs has been defined and studied, the graphs being

19

output of Algorithm 1. Optimally, the graphs are reduced to quasi-adjoint
graphs, what results in polynomial-time solution of the Hamiltonian circuit
problem. Although among graphs generated randomly in the experiment no one
appeared to be a quasi-adjoint graph, the application of Algorithm 1 changed
this state a lot for sparse graphs. For mean initial outdegree equal to 2, 51% of
graphs on average became quasi-adjoint graphs and thus appeared to be easy for
the Hamiltonian circuit problem (similar proportion is satisfied for benchmark
graphs). From the practical point of view, Algorithm 1 identifies these graphs
(on average) as computationally easy instances, what follows the reduction of
the mean initial outdegree from 2 to almost 1. More dense random graphs also
became simpler from the point of view of solving HCP, the loss of arcs resulted in
much more effective searching for a solution by an exact or heuristic algorithm.

In addition to the above work, nevertheless being an important piece of work
never before presented in the literature, the relationship between reduced-by-
matching graphs, quasi-adjoint graphs and other related digraph classes has
been visualized here and its correctness proved.

6 Acknowledgements

The authors thank Graham Kendall and an anonymous referee for their valu-
able remarks. The research has been partially supported by grant No. DEC-
2011/01/B/ST6/07021 from the National Science Centre, Poland.

References

[1] M. Abbas and Z. Benmeziane, Hamiltonicity in partly claw-free graphs,
RAIRO Operations Research, 43 (2009), 103-113.

[2] N. Apollonio and P.G. Franciosa, A characterization of partial directed line
graphs, Discrete Mathematics, 307 (2007), 2598-2614.

[3] J. Bang-Jensen and G. Gutin, On the complexity of hamiltonian path and
cycle problems in certain classes of digraphs, Discrete Applied Mathematics,
95 (1999), 41-60.

[4] J. Bang-Jensen, G. Gutin, and A. Yeo, A polynomial algorithm for the
Hamiltonian cycle problem in semicomplete multipartite digraphs, Journal
of Graph Theory, 29 (1998), 111-132.

[5] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company,
London, 1973.

[6] A. A. Bertossi, The edge Hamiltonian path problem is NP-complete, In-
formation Processing Letters, 13 (1981), 157-159.

20

[7]

[10]

[11]

M. Blais and G. Laporte, Exact solution of the generalized routing prob-
lem through graph transformations, Journal of the Operational Research
Society, 54 (2003), 906-910.

J. Blazewicz, A. Hertz, D. Kobler, and D. de Werra, On some properties
of DNA graphs, Discrete Applied Mathematics, 98 (1999), 1-19.

J. Blazewicz and M. Kasprzak, Computational complexity of isothermic
DNA sequencing by hybridization, Discrete Applied Mathematics, 154
(2006), 718-729.

J. Blazewicz and M. Kasprzak, Graph reduction and its application to DNA
sequence assembly, Bulletin of the Polish Academy of Sciences. Technical
Sciences, 56 (2008), 65-70.

J. Blazewicz, M. Kasprzak, B. Leroy-Beaulieu, and D. de Werra, Finding
Hamiltonian circuits in quasi-adjoint graphs, Discrete Applied Mathemat-
ics, 156 (2008), 2573-2580.

P. Camion, Chemins et circuits hamiltoniens des graphes complets,
Comptes Rendus de l’Acadmie des Sciences de Paris, 249 (1959), 2151-
2152.

A. Chalaturnyk, A Fast Algorithm for Finding Hamilton Cycles, M.Sc.
Thesis at the University of Manitoba (2008).

G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth &
Brooks/Cole, Pacific Grove, 1986.

J.S. Deogun and G. Steiner, Polynomial algorithm for Hamiltonian cycle in
cocomparability graphs, STAM Journal on Computing, 23 (1994), 520-552.

8th DIMACS Implementation Challenge: The Traveling Salesman Prob-
lem, http://www2.research.att.com/~dsj/chtsp/.

M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to
the Theory of NP-Completeness, W.H. Freeman and Company, San Fran-
cisco, 1979.

Groups & Graphs page, http://www.combinatorialmath.ca/G&G/.

The Hamiltonian page, http://alife.ccpl4.ac.uk/memetic/www.densis.fee
.unicamp.br/ moscato/Hamilton.html.

R.W. Hung and M.S. Chang, Linear-time algorithms for the Hamiltonian
problems on distance-hereditary graphs, Theoretical Computer Science, 341
(2005), 411-440.

J.M. Keil, Finding Hamiltonian circuits in interval graphs, Information
Processing Letters, 20 (1985), 201-206.

21

[22] W. Kocay, An extension of the multi-path algorithm for Hamilton cycles,
Discrete Mathematics, 101 (1992), 171-188.

[23] G. Pandurangan, On a simple randomized algorithm for finding a 2-factor
in sparse graphs, Information Processing Letters, 95 (2005), 321-327.

[24] M. Preissmann, Detection of circuits and ordering in regular networks at
two dimensions, Report CRSI-IMAG-RR-004, 1985.

[25] TSPLIB page, http://comopt.ifi.uni-heidelberg.de/software/ TSPLIB95/.

22

