
Graph algorithms for DNA sequencing – origins, current
models and the future

Jacek Blazewicza,b,c, Marta Kasprzaka,b,c, Michal Kierzynkaa,c,d,∗,
Wojciech Frohmberga,c, Aleksandra Swiercza,b,c, Pawel Wojciechowskia,b,c,

Piotr Zurkowskia,c

aInstitute of Computing Science, Poznań University of Technology, Poznań, Poland
bInstitute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland

cEuropean Center for Bioinformatics and Genomics, Poznań, Poland
dPoznań Supercomputing and Networking Center, Poznań, Poland

Abstract

With the ubiquitous presence of next-generation sequencing in modern biological, ge-

netic, pharmaceutical and medical research, not everyone pays attention to the under-

lying computational methods. Even fewer researchers know what were the origins of

the current models for DNA assembly. We present original graph models used in DNA

sequencing by hybridization, discuss their properties and connections between them.

We also explain how these graph models evolved to adapt to the characteristics of next-

generation sequencing. Moreover, we present a practical comparison of state-of-the-art

DNA de novo assembly tools representing these transformed models, i.e. overlap and

decomposition-based graphs. Even though the competition is tough, some assemblers

perform better and certainly large differences may be observed in hardware resources

utilization. Finally, we outline the most important trends in the sequencing field, and

try to predict their impact on the computational models in the future.

Keywords: DNA de novo assembly, graph algorithms, whole genome sequencing

1. Introduction

Development of modern computational biology would not be possible without a

wide support of computer science. Over the years biology-related questions and prob-

∗Corresponding author
Email address: michal.kierzynka@cs.put.poznan.pl (Michal Kierzynka)

Preprint submitted to European Journal of Operational Research April 7, 2017



lems were increasingly often answered or solved by computer algorithms. On the other

hand, the same problems brought a fresh look at some areas of computer science, e.g.5

graph theory, stimulating new findings. As a result, computational biology may be

considered as a prime example of combination of two fields of science that create a

synergy effect. One specific example may be DNA sequencing, which is a fundamen-

tal problem in molecular biology. For decades both biochemical and computational

methods associated with this problem have evolved, allowing a tremendous progress in10

various aspects of the science. This paper is an attempt to review the history of DNA

sequencing models and how these influenced current approaches. A short discussion

regarding future trends is outlined as well.

Before we dive into the world of sequencing algorithms, let us introduce some ba-

sic notions. First of all, DNA stands for deoxyribonucleic acid and it is composed of15

two twisted strands of nucleotides forming a double helix. Such chains encode the

genetic information of living matter, including the human beings. There are four types

of nucleotides in DNA that are distinguished on the basis of their nitrogenous bases:

adenine (A), guanine (G), thymine (T) and cytosine (C). Individual bases from the op-

posite strands are linked by hydrogen bonds in such a way that adenine is always paired20

with thymine, and guanine is always paired with cytosine. As a result, given a fragment

of DNA from one strand, one can always determine the sequence of the corresponding

fragment in the opposite strand. Such property is referred to as complementarity. The

length of a DNA molecule is usually expressed in base pairs (bp), or in the number of

nucleotides for single-stranded chains.25

DNA sequencing is the process of determining the sequence of nucleotides in a

DNA. The story with DNA sequencing began in 1977 when Frederick Sanger with his

colleagues proposed a method based on chain-terminating inhibitors [1]. The method

was able to read DNA fragments, called reads, up to 700-900 bp in length. No compu-

tational algorithms were required, as the method was a pure wet laboratory approach.30

On the down side, such sequencing was pricey, prone to experimental errors and time

consuming. In 1988 Edwin Southern introduced a new approach, called sequencing by

hybridization (SBH) [2]. In SBH very short DNA fragments (usually 8–12 nucleotides)

were read and in order to reconstruct the original molecules (typically a few hundreds

2



of nucleotides) a computational part was needed. Among the pioneers of algorithmic35

approaches to SBH we can distinguish Y.P. Lysov with his colleagues [3] and P.A.

Pevzner [4], who formulated the problem as finding a Hamiltonian path and an Eule-

rian path, respectively. Yet, a real breakthrough in sequencing came with the advent

of so-called next-generation sequencing (NGS), starting from the beginning of the 21st

century [5]. The main difference is that NGS methods can produce large numbers of40

short DNA reads, typically between 35 and 500 bp, at relatively low cost. As a re-

sult, this technique has opened the possibility for an affordable sequencing of whole

genomes.

Although sequencing data are much larger now and contain different experimental

errors, the graph theory layer of the algorithmic solution is more or less the same. The45

common goal of the assembly algorithms (algorithms for sequencing on a large scale)

is to find a path in a labeled digraph (either overlap or decomposition-based graph),

a path representing the resulting DNA sequence reconstructed from unordered subse-

quences given at the input. If the reconstruction is done only with the information

coming from a sequencing experiment, we refer to this process as de novo assembly.50

Seemingly similar problem is when the reference genome is known. In this case, how-

ever, algorithms do not use graphs in the process of reconstruction and the problem is

called resequencing. This paper focuses on the computational methods associated with

de novo assembly, their origins and how they evolved in the context of NGS. More-

over, in order to investigate whether there are any substantial differences between the55

two graph classes, namely overlap and decomposition-based graphs, we carried out a

comparative study based on the best currently available implementations.

The rest of the paper is organized in the following way. Section 2 describes in more

detail the SBH method and the first algorithmic approaches based on graph theory.

Moreover, it classifies graph types depending on their properties and presents models60

developed for erroneous data sets. Section 3 focuses on the models currently used for

NGS data sets. It also describes a theoretical model for paired-end reads and concludes

with a short discussion. Section 4 presents a comparative study of state-of-the-art im-

plementations of de novo assemblers, representing the main graph families. Finally,

3



conclusions and future trends are presented in Section 5.65

2. Original models for DNA sequencing

2.1. Sequencing by hybridization

The DNA sequencing by hybridization consists of two phases: the hybridization,

which is a biochemical experiment, and the algorithmic part processing the experimen-

tal output. The hybridization is based on the tendency of single complementary DNA70

strands to form a double-stranded complex, and allows discovering one-strand parts of

the target DNA. The experiment is performed with the use of a microarray (a bio-chip)

containing a library of all possible short DNA chains of a given length l (usually 8–12

nucleotides), thus of cardinality 4l , and with many copies of the target DNA chain.

During the biochemical reaction elements of the library join the longer DNA, if they75

are complementary to fragments of the DNA, and this can be observed through a flu-

orescent tagging. At the output one gets a subset of the library, which is expected to

compose the target DNA [2].

From the computational point of view, the hybridization gives a set of strings of

an equal length l over the alphabet {A, C, G, T} (called a spectrum) and the goal is80

to use them to construct the resulting sequence of a known length n (a few hundred

nucleotides) on the basis of the relation of overlaps between neighboring strings. In

a theoretical case, when we assumed the spectrum is complete and with no error, it

would consist of n− l + 1 elements and in order to reconstruct the original sequence

one should find an order of the elements such that neighboring ones would always85

overlap on l−1 positions.

In this section, SBH is considered in its classical variant, where all input strings

have equal length. There were also other variants, whose aim was to better handle

experimental errors or ambiguity of final solution: interactive (multistage) DNA se-

quencing [6], isothermic DNA sequencing [7], or the sequencing with the use of uni-90

versal [8] or degenerate nucleotides [9]. Among them the isothermic sequencing can

be distinguished as the one which in its computational phase refers to a special graph,

mentioned in Subsection 2.3.

4



2.2. Lysov and Pevzner models

First approaches to the problem of SBH concentrated on the theoretical error-free95

version. The first algorithm, which refers to a problem known from graph theory was

proposed by Lysov and co-workers in [3]. They constructed a directed graph on the

basis of the spectrum, where every element corresponds to a vertex, and two vertices

are joined by an arc if their spectrum elements (labels) overlap on l− 1 nucleotides:

the suffix of length l− 1 of the predecessor covers the prefix of the successor. The100

solution in such a graph is a Hamiltonian path, and the reconstructed DNA sequence

is composed of the overlapping labels of the vertices read in the obtained order (see

Example 1).

Next year brought equally elegant solution, but of significantly lower computational

complexity. Pevzner proposed a graph model, in which an Eulerian path is looked105

for [4]. This time every element of the spectrum corresponds to an arc in a digraph. It

starts in a vertex labeled by the prefix of length l−1 of the element and ends in a vertex

labeled by its suffix of the same length. The sequence is reconstructed as before, by

overlapping labels of vertices from the path.

Example 1. Let the one-strand DNA fragment to be sequenced be CAGAGTCAGTA,110

where n = 11. If the hybridization experiment involves the complete library of probes

of length l = 4, of cardinality 44 = 256, in the error-free case at the output one will get

the set of all substrings of length 4 of the target DNA, i.e. {AGAG, AGTA, AGTC,

CAGA, CAGT, GAGT, GTCA, TCAG}. The computational part orders the words in

such a way, that neighboring words overlap on l− 1 = 3 letters, for example AGAG115

after CAGA.

The graph from the algorithm of Lysov et al. is shown in Fig. 1 (A), and the graph

from the Pevzner algorithm in Fig. 1 (B). There are two solutions of this problem, i.e.

two Hamiltonian or Eulerian paths, respectively, in each graph. Resulting sequences,

composed of labels of successive vertices on the paths are: CAGAGTCAGTA and120

CAGTCAGAGTA.

5



CAG AGT

GTA

AGA

GAG

GTC

TCA

(A) (B)
CAGT AGTC

AGAG CAGA

AGTA

GAGT

GTCA

TCAG

Figure 1: The reconstruction of an original sequence from an error-free spectrum. (A) The Lysov graph [3],

where a Hamiltonian path is looked for. (B) The Pevzner graph [4], where an Eulerian path is looked for.

2.3. DNA graphs and others

Both Lysov and Pevzner algorithms are exact, but till 1999 no one explained, what

is the relation between graphs proposed there. Why was it possible to replace searching

for a Hamiltonian path, which is in general a strongly NP-hard combinatorial problem,125

by the Eulerian path problem, polynomially solvable?

The question was answered in [10]. The graphs from the method of Lysov et al.,

so-called the DNA graphs, belong to the class of labeled digraphs. One of properties

of the labeled digraphs is that they are directed line graphs, thus the Hamiltonian path

problem is polynomially solvable for them. It is done by a transformation of a directed130

line graph to its original graph and by searching for an Eulerian path in the latter

graph. A directed line graph G is connected with its original (directed) graph H by the

following rules: vertices of G correspond to arcs of H and there is arc (x,y) in G if and

only if the terminal endpoint of arc x is the initial endpoint of arc y in H. The existence

of an Eulerian path in H is a necessary and sufficient condition of the existence of a135

Hamiltonian path in G (not valid for undirected graphs). The original graph for a DNA

graph is a Pevzner graph constructed for the same spectrum.

De Bruijn graphs, essential also in the context of the subject of the next section,

are labeled digraphs, which are constructed with all possible labels of a given length,

over a given alphabet. For an alphabet of size a and labels of length k, a de Bruijn140

6



graph has ak vertices, every one labeled by a different word over the alphabet. An arc

joins two vertices if the suffix of length k−1 of the predecessor covers the prefix of the

successor [11].

DNA graphs are vertex-induced subgraphs of de Bruijn graphs with a = 4. Pevzner

graphs are neither DNA graphs, nor other vertex-induced subgraphs of de Bruijn graphs.145

They are subgraphs of DNA graphs, thus in consequence, subgraphs of de Bruijn

graphs. They are not, in general, labeled/DNA graphs, because they have not 1–1

correspondence between the presence of arcs and the overlaps of vertex labels.

A series of papers on this subject explored further properties of labeled graphs, see

for example [12, 13, 14, 15, 16]. On the other hand, there were also works aiming at150

discovering relations of several digraph classes — directed line graphs and related —

having a polynomial-time solution of the Hamiltonian cycle/path problem [17, 18]. A

reader may be especially interested in the systematization presented in Fig. 2.

directed 1-graphs

quasi-adjoint graphs

exponential-time
algorithms for HCP

adjoints DLG

DNA
graphs

de Bruijn
graphs

polynomial-time
algorithms for HCP

PDLG

Figure 2: The relationship between a few digraph classes with reference to HCP solvability [18]. DLG stands

for directed line graphs (the grey area), PDLG for partial directed line graphs, and HCP for the Hamiltonian

cycle/path problem.

The relationship includes the above-mentioned graphs, but also classes whose de-

scription goes beyond the matter of this paper. Directed line graphs (DLG) lie at the155

intersection of adjoints [19] and partial directed line graphs (PDLG, see [20]). Quasi-

adjoint graphs (see [17]) are, in addition to the scheme, a superclass of graphs model-

7



ing the problem of isothermic DNA sequencing by hybridization (the graphs defined

in [21], the problem introduced in [7]). The latter graphs can be either directed line

graphs, adjoints not being directed line graphs, or outside adjoints. However, they al-160

ways are directed 1-graphs, i.e. digraphs having no multiple arcs between any given

pair of vertices.

2.4. Sequencing with erroneous data

The hybridization, as other biological experiments, usually ends with several errors

in the output data. We distinguish two main kinds of error: false negatives and false165

positives. The false negative is a missing element in a spectrum — when a substring

of length l of an original sequence does not appear in the spectrum. False positives

are incorrect elements of a spectrum — words, that in fact are not parts of an original

sequence. Presence of errors in the spectrum makes the combinatorial problem of

DNA sequencing strongly NP-hard, even if we restrict the errors to only one kind: only170

false negatives or only false positives [22]. It is a usual situation in bioinformatics, as

discussed in [23].

The paper of Pevzner, which brought the aforementioned algorithm, contained also

a proposition of a second algorithm for the case of SBH with false negatives only [4].

Each false negative causes the lack of one arc in the graph. The method looks for175

these missing arcs, transforming the problem to the searching for a flow in a network

built upon a directed bipartite graph Km,m. Firstly, vertices in the Pevzner graph having

different in- and outdegree are identified. They will constitute the two partite sets

of the bipartite graph Km,m: one of vertices with greater indegree and the other with

greater outdegree. The vertices are replicated in Km,m the number of times equal to180

the difference between in- and outdegree. Next, arcs are added to make the bipartite

graph complete, starting from vertices with greater indegree, with weights equal to the

shift of vertex labels in their maximal possible overlap. The weight corresponds to the

number of arcs in a path which should be introduced into the Pevzner graph in order

to realize such a connection. Supplementing Km,m with source and sink together with185

associated arcs and assigning to all arcs capacity 1 finalizes the network construction,

see Fig. 3. In this network the flow of value m− 1 and of the minimum total weight

8



is looked for, and the chosen connections between vertices of Km,m are to be added to

the Pevzner graph in the form of paths joining the vertices, according to the Pevzner’s

manner. Example 2 illustrates the procedure.190

Example 2. Figure 3 (A) presents the Pevzner graph constructed for the spectrum from

Example 1 with one false negative, TCAG: {AGAG, AGTA, AGTC, CAGA, CAGT,

GAGT, GTCA}. The network built upon directed K2,2 is shown in Fig. 3 (B). The

weight equal to 3 means that the labels GTA and CAG (in this order) do not overlap at

all and three new arcs would be introduced for such connection: (GTA, TAC), (TAC,195

ACA) and (ACA, CAG). Fortunately, there is a much better flow of value 1, which

involves the arc (TCA, CAG), i.e. our missing element TCAG. After completing the

Pevzner graph (the left part of the figure) one gets the graph as in Fig. 1 (B) and can

look for an Eulerian path in it.

TCA

(A) (B)
CAG AGT

GTA

AGA

GAG

GTC

TCA

GTA

s

CAG

CAG

t
1

3

1

3

Figure 3: Graphs from the Pevzner algorithm for a spectrum with false negatives [4]. (A) The graph with

missing arcs (here 1 missing arc). (B) The network constructed for identification of missing arcs.

The algorithm has a polynomial-time complexity, but actually it can be treated only200

as a heuristic. It does not find a solution in a few cases: when the minimum-cost flow

does not have the value equal to the difference between n− l + 1 and the spectrum

cardinality, when a vertex with missing arcs has the same in- and outdegree, or when

a completed Pevzner graph is not connected. If, in Example 2, the spectrum had one

additional false negative CAGT, vertex CAG would be identified only as belonging205

9



(once) to the right part of Km,m and it would have no chance to be considered as the

starting vertex of a missing arc. Then, the flow of minimum total weight would point

to arc (TCA, CAG) and the reconstruction would end with a sequence shorter than

required (AGTCAGAGTA).

The first algorithm accepting any kinds of error at the input was proposed by210

Blazewicz et al., where the sequencing problem was modeled as a variant of the Selec-

tive Traveling Salesman Problem (STSP) in a complete directed graph [24]. In STSP

vertices have assigned profits, arcs are weighted by costs, and the solution is a simple

cycle on a subset of vertices with a maximum total profit, constrained by a given limit

on the total cost. In the algorithm, instead of a cycle a simple path is searched for and215

all vertices have the same profit 1. Every element of a spectrum is represented by a

vertex, arcs have costs equal to values of shifts in the maximum possible overlap be-

tween corresponding vertex labels, and the limit for the total cost is set to n− l. The

path is equivalent to a sequence of a length not greater than n, composed of as many

spectrum elements as possible. Vertices not included in a solution represent false posi-220

tives, and shifts between labels greater than 1 are considered as false negatives. Apart

from this, other works addressing the problem of erroneous data have been published,

e.g. [25, 26, 27], but their detailed analysis is out of the scope of this article.

Example 3. This time let the spectrum produced for the original sequence CAGAGTCAGTA

be {ACCA, AGAG, AGTA, AGTC, CAGA, GAGT, GTCA}, with two false negatives225

TCAG, CAGT, and one false positive ACCA. The matrix of costs of the complete graph

from the method of Blazewicz et al. is shown in Fig. 4. There is no path of cost up to

n− l = 11−4 = 7 including all 7 vertices, but there exist a few paths with 6 vertices,

one of them corresponds to the original sequence.

3. Current models for NGS data230

3.1. Next-generation sequencing

The practical limitation of SBH, which is the lack of scalability to longer DNA

targets, has driven the development of next-generation sequencing methods. How-

ever, with the advent of NGS characteristics of the data sets have changed significantly

10



- 3 3 3

4 - 2 2

3 3 - 3

4 4 4 -

3 1 3 3

4 4 1 1

3 3 3 3

2 4 4

4 1 3

4 4 4

3 4 1

- 2 4

4 - 2

2 4 -

ACCA

AGAG

AGTA

AGTC

CAGA

GAGT

GTCA

A
C
C
A

A
G
A
G

A
G
T
A

A
G
T
C

C
A
G
A

G
A
G
T

G
T
C
A

Figure 4: Matrix of costs assigned to arcs of the graph from [24] for the spectrum from Example 3

and the assembly algorithms had to adjust accordingly. In contrast to SBH, the in-235

put sequences are now much longer (typically 75-500 nucleotides), may have different

lengths and contain misreadings, i.e. single or multiple nucleotide insertions, deletions

or substitutions. Moreover, the reads come from either of the two strands of the se-

quenced DNA, but no information is given from which one. The reads may also come

in a form of so-called paired-end or mate-pair reads. These are pairs of reads for which240

an approximate separation distance is known. Furthermore, depth of the genome cover-

age, i.e. the average number of reads that align to, or ,,cover” each nucleotide of a given

genome, is usually variable, even within the same experiment. In addition, repetitive

genome regions (i.e. transposable elements, short tandem repeats and large segmental

duplications) became a major problem as the target length of a genome to assemble245

had increased tremendously. This was achieved at the expense of huge amount of data

generated in NGS experiments. All these properties make the DNA assembly problem

well known for its high computational complexity. Even in the case of error-free data

coming from a single DNA strand the problem is strongly NP-hard (cf. a similar prob-

lem of the Shortest Common Superstring [28]). Finally, unlike in the SBH error-free250

model of Lysov et al., graphs created here do not have in general the useful property of

being directed line graphs. This is because of the error types present in NGS data, and

more precisely, because of the inexact matching allowed between reads. As a result,

the models presented in the previous section have evolved and are presented below.

11



3.2. Overlap graphs255

Overlap graphs may be seen as a modified version of Lysov’s model, only adapted

to the standards of NGS data. Each read is represented as a vertex of directed graph

G and the overlapping sequences are connected by arcs that indicate the overlapping

direction, like in the original model. One of the major differences is how the overlaps

between individual reads are defined. Since the reads are much longer, as compared260

to SBH, the overlapping regions typically cover only a small fraction. Moreover, the

overlapping sections do not have to match perfectly, because of the misreadings. As

a result, there are some arcs that are more confident than others. Hence, they are

usually weighted, with the weight corresponding e.g. to alignment score and its length

(alignment refers to an arrangement of two sequences in which similar regions are265

matched together; for a detailed definition see [29]). An example of the overlap graph

is illustrated in Figure 5.

Additionally, since reads come from both strands of the DNA double helix, each

vertex usually has also a dual vertex corresponding to the reverse complement version

of a given read. This would not be necessary, assuming an algorithm could determine270

the original strand for each read. However, this is hard to achieve in practice. There-

fore, the traversing algorithms usually apply the dual vertex approach, and mark both

vertices as visited any time either of them is actually reached.

Likewise in the original model, finding a result in such defined graph G could be,

at least in theory, done by finding a Hamiltonian path. This time, since the graph is275

weighted, the path ideally should satisfy the condition of the highest possible profit or

the lowest possible cost, which is a variation of the Traveling Salesman Problem. There

are, however, some practical problems associated with such attitude. First, due to errors

in data and variations in the coverage depth it cannot be guaranteed that a Hamiltonian

path exists at all. Graph G may be simply disconnected, e.g. due to sequencing gaps280

along the genome. In this case, a Hamiltonian path could be sought for each connected

component of graph G, resulting in a set of disjoint contigs, i.e. continuous parts of a

genome. Yet, the second problem is the size of the graph structure, which definitely

prohibits any exponential algorithms. Therefore, only heuristic algorithms that try to

cover the graph structure with relatively long paths are considered in practice. An285

12



a

b

c

d

e

4

6

5
5

6

AGATGTATTATTATTCTACGAGTGG
AGATGTATTA
      ATTATTATTC
        TATTGTTCTA
           TATTCTACGA
               CTACGAGTGG

target DNA sequence:
read a:
read b:
read c:
read d:
read e:

Figure 5: An example of the overlap graph constructed for five reads. Each arc connects the reads overlap-

ping on a number of nucleotides (not lower than a predefined bound, here 4) and is labeled with a number

corresponding to alignment score (here 1 point per 1 matched nucleotide). The scores that are affected by a

mismatch (penalty −1 for a single mismatch) are underlined. For clarity, the reverse complement reads are

not shown.

interesting exception is the work presented in [30], where authors propose to apply an

exact algorithm solving the Minimum Path Covering Problem, which in general is NP-

hard too, but easy for acyclic digraphs [31]. The main problem was to transform the

overlap graph into an acyclic one, which was done by a heuristic method. However,

the overlap graphs are usually far from being acyclic, which constitutes a real obstacle290

in this approach.

3.3. Decomposition-based graphs

The second type of graph model that is nowadays widely exploited in the context

of NGS evolved from the concept presented by Pevzner, cf. Section 2.2. Even though

it is commonly referred to as the de Bruijn graph model, such naming convention is not295

quite correct as we explained in Section 2.3.

In this model, the input reads are decomposed into a series of shorter fragments, all

of the same length. These subsequences are often called k-mers, where k is a parameter

for the length of each subsequence. Each k-mer is represented as an arc outgoing from a

vertex labeled by its prefix of length k−1 and incoming to a vertex labeled by its suffix300

13



of length k−1. Thus, only exact matchings are allowed, like in the Pevzner’s approach.

Additionally, the reverse complement versions of the reads are considered here as well,

for the same reason like in the overlap graphs. The decomposition technique used in

this model is needed, because the original reads would be too long to overlap in an ideal

way with any other read. Furthermore, a great portion of errors present in the NGS data305

set (e.g. single nucleotide misreadings) may be corrected with statistical models based

on k-mer frequencies or by procedures for repairing the graph structure. An example

of the decomposition-based graph is presented in Figure 6.

AGATGTATTATTATTCTACGAGTtarget DNA sequence:

AGAT
GATG

ATGT

TGTA

GTAT

TATT

ATTA

TTAT
ATTC

TTCT

TCTA

CTAC

TACG

ACGA

CGAG

GAGT

2

2

2

Figure 6: An example decomposition-based graph for a given sequence and k = 5. The underlined fragment

of the sequence is a repetitive fragment that causes a cycle in the graph. The affected arcs are marked with a

value representing their multiplicities (here 2).

In the decomposition-based graph approach, an arc may be thought of as a frag-

ment of a read of length k, and a vertex – as a common subsequence of all the incident310

arcs. With such model, the DNA de novo assembly problem may be naively defined as

finding an Eulerian path. However, one needs to remember that the graph may have no

such a path due to the already described properties of NGS data. Moreover, since the

k-mers are not unique within a given data set (because of the coverage depth and repet-

itive genomes) the problem is more often defined as finding a set of paths containing all315

the edges (or, more realistically, a vast majority) at least once. Interestingly, Pevzner et

14



al. [32] noticed that any graph walk that contains all the reads as subwalks represents a

valid assembly. Consequently, they formulated the DNA de novo assembly problem as

finding the shortest superwalk. Medvedev et al. proved that such formulated problem is

NP-hard [33]. Additionally, in order to address the problem of multiple occurrences of320

the same k-mers more precisely, the arcs in the described model should be labeled with

the number representing the desired number of walks through each arc. This leads to

the multiplicity of the arcs, and hence the original graph becomes a multigraph. Such

defined problem is referred to in literature as de Bruijn Superwalk with Multiplicities

and was proved to be NP-hard by Kapun and Tsarev in [34].325

3.4. Models for paired-end reads

Most of the NGS data are produced now with the use of the paired-end sequencing

protocol, as it was proven to be much more efficient for de novo sequencing than the

standard single-read protocol. In the paired-end sequencing, instead of a set of single

reads, one gets a set of paired reads placed close to each other in the target DNA, but in330

opposite strands. The distance between two reads from a pair (called the inner distance

or the gap distance, usually of length of several hundred or thousand nucleotides) is a

parameter of the protocol, but it can be set only approximately. The total length of a

paired-end read, including the inner distance, is often referred to as insert size.

Till 2011 such kind of information was included into assembly methods as a sec-335

ondary hint allowing to solve ambiguous walks or to order disjoint contigs, see e.g. [35,

36]. With reference to a graph model, the pairs of reads were represented as some

bridges connecting corresponding vertices or greater parts of a graph. They did not

influence the graph construction fundamentally.

Medvedev and co-workers proposed a new concept of so-called paired “de Bruijn”340

graphs which are graphs based on the decomposition of reads into k-mers, incorporat-

ing information about paired fragments [37]. Let us recall that these graphs, similarly

as usual decomposition-based graphs, are actually not de Bruijn graphs, because they

have incomplete sets of both vertices and arcs. The authors assume that the input pairs

of reads come from the same DNA strand, i.e. are partially translated to their comple-345

mentary counterparts. As it is not to be done in practice, they proposed duplicating the

15



input data and building a double graph. The graphs of Medvedev et al. are constructed

as follows. Pairs of reads are decomposed into pairs of k-mers: “left” k-mer in a given

pair comes from the decomposition of the “left” read, and the “right” k-mer lies at the

same position as the “left” one but within the corresponding “right” read. Arcs in the350

graph represent pairs of k-mers and vertices – pairs of their prefixes and suffixes, see

Fig. 7 (A). The solution is an Eulerian path in the graph.

In the paper two types of such a graph were distinguished: when the inner dis-

tance d between reads is assumed to be exact (the same for all pairs of reads in the

instance) or approximate, from a range d±∆. The exact graph is defined as in the355

above paragraph; the approximate graph is constructed from the exact one by gluing

vertices whose “left” labels are the same and “right” labels overlap with the allowed

shift ±∆, see Fig. 7 (B). If ∆≥ 1
2 l, instead of overlapping labels one must compute the

shortest paths in the graphs between the vertices to be glued.

Such graphs are less tangled, in general, than the decomposition-based graphs for360

single reads, because of the requirement of overlapping both “left” and “right” k-mers

from the pairs. Even if we allow for a big deviation ∆, which we expect in reality, the

approximate graph will contain a number of Eulerian paths not greater than the usual

decomposition-based graph build for the same original sequence and error-free data.

The following example visualizes the models.365

Example 4. For the original sequence TATTTATTACGTACG and for the inner dis-

tance between reads equal to 1, the pairs of reads (after translation into the same DNA

strand) are: TATTT+TTACG, ATTTA+TACGT, TTTAT+ACGTA, TTATT+CGTAC,

TATTA+GTACG. After their decomposition into pairs of 4-mers we get TATT+TTAC,

ATTT+TACG, TTTA+ACGT, TTAT+CGTA, TATT+GTAC, and ATTA+TACG. The370

exact graph from [37] is shown in Fig. 7 (A). It has one Eulerian path correspond-

ing to the original sequence. In order to obtain the approximate graph for ∆ = 1

one glues the vertices TTA+ACG and TTA+CGT, as they have the same “left” la-

bels and “right” labels overlapping with the shift 1, see Fig. 7 (B). The approxi-

mate graph has two Eulerian paths corresponding to sequences TATTTATTACGTACG375

and TATTATTTACGTACG. For the comparison, the decomposition-based graph con-

16



structed without the information about pairing is shown in Fig. 7 (C). This time it

enables reconstruction of the same DNA sequences as the approximate graph.

TAT
TTA ATT

TAC

TTA
ACG

TAT
GTA

TTT
ACG

TTA
CGT

TAT
TTA ATT

TAC

TTA
ACG

TAT
GTA

TTT
ACG

TTA
CGT

(A) (B)

ATT

TAT

TTT

TTA

ACG

TAC

CGT

GTA

(C)

Figure 7: Graphs constructed for the data from Example 4. (A) The exact graph incorporating the information

about pairing reads [37]. (B) The approximate graph with ∆ = 1 [37]. (C) The decomposition-based graph

constructed for single reads

3.5. Discussion

Let us now shortly deliberate on some of the properties of the two most common380

graph types used in modern DNA de novo assembly. A careful reader observed that

finding a solution in both models for the real NGS data is NP-hard. Nevertheless, in

general both representations have very different properties that are worth mentioning

here.

The number of nodes in the overlap graph increases linearly with the number of385

reads and therefore with the depth of coverage. The depth of coverage also has a direct

impact on the number or arcs, which may increase proportionally to the squared cover-

age depth, and therefore can be very high. This can be especially noticeable for highly

17



repetitive genomes, as multiple repetitions of the same fragment are in general seen as

one fragment with increased coverage. All this usually results in high memory require-390

ments. To give an example, a non-repetitive genome of length 50 Mbp sequenced with

100 bp long reads and 10× coverage may result in an overlap graph with around 10

million nodes (including reverse complement) and 100 million arcs, whereas with cov-

erage increased to 100× – around 100 million nodes and 10 billion (10 ·109) arcs. This

could translate to memory requirements of around 800 MB and 75 GB for 10× and395

100× coverage, respectively. However, it should be stressed that these numbers can

vary depending on a given software implementation and applied optimizations, and as

such should not be taken for granted.

On the other hand, the number of nodes in the decomposition-based graph does

not depend so much on the number of reads or coverage depth since k-mer repeats400

are collapsed into a single node. As a result, it is mainly genome size that influences

the size of the decomposition-based graph. This brings substantial memory savings,

which are crucial for NGS large data sets. Again, to give an example, for a non-

repetitive genome composed of 50 Mbp, the decomposition-based graph would consist

of around 100 million arcs and roughly the same number of nodes. This could translate405

to memory requirements of around 1150 MB. One should keep in mind that these

numbers already take into account the reverse complement sequences. A somewhat

broader comparison of memory footprint of both graph models is presented in Figure 8.

Another disadvantage of the overlap graphs is their construction complexity. In or-

der to detect the overlapping sequences, most of the methods perform sequence align-410

ment. Whether or not this is done for all possible pairs of sequences, the alignment

process is usually very time consuming. To some extent, this has been addressed by

development of efficient alignment tools, e.g. [38, 39, 40, 41, 42], speeding up the

whole process by a few tens to a few hundred times. To give an example, in order

to determine 10 · 109 arcs in the aforementioned overlap graph, one would need to415

spend 2 hours, assuming 100 bp reads, very fast aligning algorithm running at sustained

140 GCUPS (Giga Cell Updates Per Second), and that only 10 candidates were con-

sidered for each resulting arc. To put this in context, the same computations performed

in a serial manner on a CPU would take over 110 hours [38]. Even though parallel and

18



Figure 8: Estimated amount of memory needed for different graph models depending on genome size and

sequencing coverage depth. A single node was calculated as 4 bytes representing an ID of a given read, and

a single arc as 8 bytes: 4 bytes for the ID of an incident node and 4 bytes either for weight or multiplicity

value for overlap and decomposition-based graphs, respectively. Reads are assumed to be 100 bp long. Note

that the presented numbers may vary depending on implementation and optimizations used.

accelerated techniques have made a huge contribution in this area, the construction of420

overlap graphs still requires a considerable computational effort, which is not needed

in the case of the decomposition-based graphs. Note that methods for alignment-free

sequence comparison have also been investigated in literature, e.g. those based mainly

on word frequencies [43]. In this context one can also apply methods based on prob-

lems related to string similarity, such as e.g. some variant of the minimum common425

string partition problem [44]. However, as heuristics, they cannot guarantee such a

high precision as the alignment process.

The overlap graphs are typically used in algorithms based on the overlap-layout-

consensus strategy. As the name suggests, once the overlaps between individual reads

are detected and their layout is established by a traversing method, consensus contig430

sequences still need to be found. This is usually done by performing a sort of mul-

tiple sequence alignment guided by the traversing order and deciding about correct

nucleotides in the case of ambiguity. In contrast, methods based on the decomposition-

based graphs do not require the consensus step as the final contig sequences are inferred

directly from the traversing order.435

In return, the overlap graphs tend to deal well with sequencing errors and small

19



heterozygous differences. This is achieved by allowing a few mismatches in the align-

ment process. The sequencing error correction and heterozygosity interpretation can be

done in the consensus step. In contrast, the sequencing errors tend to introduce a lot of

bias to the decomposition-based graphs as only identically matching k-mer overlaps are440

considered in this model. As a result, additional methods for reads error correction are

indispensable here. Moreover, the heterozygous differences lead to multiple separate

paths, which increase the complexity of the decomposition-based graph structure.

One of the major disadvantages of the decomposition-based graphs is that the in-

formation about the original reads is lost. Although the input reads are sometimes445

remembered and somehow referred to during a traversing procedure, such a process

is heuristic and it does not restore the whole initial information, but significantly in-

creases the complexity of an algorithm. This implies several limitations of this model.

First, the relatively short k-mers seriously reduce the potential of using long reads in

order to resolve genome repetition problems. In contrast, the information about reads450

is preserved in the overlap graphs and therefore they work much better with longer

reads. This property may be extremely desirable while working on highly repetitive

genomes. Second, in the scaffolding phase (where contigs are joined to create even

longer assemblies) in the decomposition-based model it is necessary to map the reads

to contigs in order to utilize the paired-end information. This is not necessary in the455

case of the overlap graphs, as such contigs already contain information about reads.

As a result, it is hard to conclude which of the two models suits best the require-

ments of NGS. In order to find out, we have prepared a practical comparison which is

presented in the next section.

4. A practical comparison of modern de novo assemblers460

In this section we juxtapose outcomes of the most popular implementations of de

novo assemblers representing both methodologies, namely using the overlap graphs

and the decomposition-based graphs. The main goal of this practical comparison is to

see whether there are any substantial differences in the quality of the assembly results

between these two theoretical models.465

20



4.1. The assemblers of choice

The three software tools representing the decomposition-based graph model are:

Velvet 1.2.10 [35], SOAPdenovo 2.04 [45] and Platanus 1.2.1 [46]. These packages

seem to be extremely popular among the scientific community as of 2015. Velvet, de-

spite being quite old (it dates back to 2007), is regularly updated and therefore it is rec-470

ognized as a reference implementation among the community. SOAPdenovo, in turn,

has gained attention due to its speed, memory efficiency and high quality assemblies.

It was used, among others, to assemble the genome of the giant panda [47]. Finally, the

newest algorithm – Platanus was published only in 2014 but interestingly was designed

to assemble highly heterozygous genomes. All these tools were optimized to work well475

with the high-throughput NGS data. Additionally, one assembler that is not tested but

deserves a special attention is ALLPATHS-LG [48]. This high quality assembler is also

based on the decomposition-based graph model and is recognized across the world for

its accuracy. However, it is not able to assemble paired-end data sets without additional

long-fragment read library, and therefore is not considered in our comparison.480

On the other hand, the implementations based on the idea of overlap graphs are

less popular nowadays, mainly due to memory consumption that became especially

high with the NGS data. Nevertheless, this model is still valued in many laborato-

ries for putting the quality of the assembly first, when computational resources are

not a limiting factor. A prime example of this family is Celera Whole-Genome Shot-485

gun (WGS) Assembler, originally developed in 1999 and used to assemble the first

whole genome shotgun sequence of a multi-cellular organism [49]. Over the years

it was updated to support 454, Illumina and even PacBio/Oxford reads. In our test

it is used in version 8.1. The second software from this class is String Graph As-

sembler (SGA) 0.10.13 [50]. In this case, the overlaps are calculated with the use of490

FM-index [51] which is a compressed full-text substring index based on the Burrows-

Wheeler transform and can be used to efficiently find the number and locations of a

pattern within the compressed text. Therefore the method itself is very efficient, in

terms of both memory and time. Additionally, the authors transform the graph into a

so-called string graph by removing transitive edges. In spite of that, the main idea of495

the overlap graphs is preserved and this application also represents the opposite front

21



Table 1: Basic information about the two data sets that were used to compare the algorithms for DNA

assembly. ∗ refers to reads before preprocessing, ∗∗refers to reads after preprocessing

Data set 1 2

species
Homo sapiens Caenorhabditis elegans

(human) (nematode)

considered chromosomes 14 all (7)

sequence length 107,043,718 bp 100,267,633 bp

reference genome in pieces one continuous sequence yes: 7

sequencing technology Illumina HiSeq 2000 Illumina GA IIx

paired-end yes yes

avg. read length ∗ 101 bp 107 bp

avg. read length ∗∗ 99.7 bp 108.9 bp

reads� ∗∗ 2 x 12,015,343 2 x 30,436,661

avg. depth of coverage ∗∗ 26 66

insert size 159 bp 232 bp

σ of insert size 18 bp 56 bp

in our comparative study.

4.2. Testing methodology

All the algorithms were tested on two data sets: human chromosome 14 from the

Genome Assembly Gold-Standard Evaluations [52] and Caenorhabditis elegans strain500

N2 (accession number DRA0009671). For these data sets the reference assemblies are

well known and we use them to assess the quality of contigs and scaffolds produced by

individual tools. This is a standard way of evaluating de novo assemblers. The main

properties of both data sets are listed in Table 1. Although the lengths of the sequences

to reconstruct are almost the same, these data sets are very different with respect to505

their repetitiveness and coverage depth, which makes them a good benchmark.

1DRASearch available at https://trace.ddbj.nig.ac.jp/DRASearch

22



Before the assembly process, the reads from both data sets were preprocessed in a

standard way. Adapters that are specific to Illumina sequencers were removed from the

reads. Reads containing unknown nucleotides (N) were completely removed. More-

over, C. elegans reads were trimmed and filtered to a minimum average quality value510

of 30 over the length of 60 consecutive nucleotides. These values for chromosome

14 reads were 20 and 30, for quality and length, respectively. Additionally, low qual-

ity bases were cut from the beginning and from the end of all reads. The average

depth of coverage for chromosome 14 was calculated excluding the leading and trail-

ing unknown nucleotides in the reference sequence. Hence, the value is a bit higher515

than would result just from the chromosome length and the number and length of pre-

processed reads. This was not the case for C. elegans, whose reference genome is

complete.

Each assembly software was run several times to adjust parameters. The resulting

contigs and scaffolds were mapped to the reference genome using the gold-standard520

Bowtie [53]. This mapping tool was chosen since it offers an exact scoring scheme

and semi-global alignment, which is exactly what was needed. The mapping infor-

mation from the standard SAM files was used to calculate and present different statis-

tics for each assembly method, separately for contigs and scaffolds. First, we present

the information about the length and the quality of 10 longest contigs/scaffolds pro-525

duced by each algorithm. The quality is calculated as percentage of identity between

a contig/scaffold and its best mapping. Then, we present the percentage of genome

length covered by contigs/scaffolds, the cumulative length of contigs/scaffolds wrt. the

genome length, and the standard NG50 metric. The latter represents the length of a con-

tig/scaffold that crosses the 50% of genome length, given that all the contigs/scaffolds530

are placed one after another and sorted from the longest to the shortest one. Moreover,

we present the percentage of cumulative contigs/scaffolds length correctly mapped to

the genome. This measurement strongly depends on the quality of the longest con-

tigs/scaffolds. It is worth noting that extremely short contigs/scaffolds (shorter than

250 bp) are not considered in this section at all.535

Finally, the amount of time and memory needed by each method is compared and

discussed. The time represents the overall run time of a given method, i.e. the elapsed

23



real (wall clock) time used by the process. The amount of memory was measured using

the V mRSS (resident set size) information available in Linux in the /proc/PID/status

file associated with a given process.540

The computational tests were done in Poznań Supercomputing and Networking

Center on a cluster named moss. All the methods were run on the same hardware: a

single node with double Intel Xeon CPU (E5-2670, 2.60GHz), 16 physical cores in

total, and 512 GB of DDR3-1333 memory. Where possible, methods were run on all

cores.545

4.3. Comparative study results

First of all, we compare the length of the longest contigs and scaffolds produced by

each method for both data sets, see Figure 9. It is plain to see that the longest contigs

are produced by Velvet, but also WGS and SGA have very long contigs. On the other

hand, by a large margin the shortest contigs were constructed by Platanus for the human550

chromosome. This could be because of the low coverage in this particular data set.

Other assemblers seem to deal well with this type of input data. In the case of scaffolds,

almost all methods succeeded to considerably extend their outputs. One exception

is SGA that produced almost the same sequences for scaffolds and for contigs. We

suspect that the scaffolding part of the SGA method in the tested version is not mature555

enough. It is also worth noting that whereas contigs/scaffolds constructed by some

methods, e.g. SOAPdenovo, are more or less of the same length, their length tends to

drop rather quickly for some other methods, e.g. Velvet.

Tables 2 and 3 present the quality of ten longest contigs and scaffolds produced

by each method for H. sapiens and C. elegans data sets. Interestingly, almost every560

method produced contigs of very high quality, usually above 99% of identity. The only

contig that could not be mapped was constructed by SOAPdenovo. In contrast, on

the scaffolding side not all the methods performed so well. In the case of the human

chromosome, eight out of ten scaffolds constructed by Velvet could not be mapped,

which is a very poor result. This method also failed to construct one scaffold in the565

second data set. On the other hand, one assembler that deserves a special attention is

SGA. Although it did not extend the length of its contigs during scaffolding phase, it

24



(a) H. sapiens contigs (b) H. sapiens scaffolds

(c) C. elegans contigs (d) C. elegans scaffolds

Figure 9: Length of 10 longest contigs/scaffolds for each method.

Table 2: Percentage of identity calculated for ten longest contigs and scaffolds produced by each method for

the H. sapiens data set. n/m indicates that a given sequence could not be mapped to the reference genome,

most probably because of its poor quality.

�
Contigs Scaffolds

Velvet SOAPdenovo Platanus WGS SGA Velvet SOAPdenovo Platanus WGS SGA

1 99.60 99.98 99.99 99.86 100.00 n/m 99.62 97.10 99.82 100.00

2 99.50 99.94 99.92 99.93 99.88 85.40 99.80 98.42 99.93 99.88

3 99.66 99.93 99.87 99.98 99.87 n/m 99.98 98.09 n/m 100.00

4 99.90 99.99 99.97 99.96 99.99 n/m 99.99 98.09 99.91 99.99

5 99.96 99.97 99.80 99.91 100.00 n/m 99.94 98.74 99.98 100.00

6 99.83 n/m 100.00 99.98 99.86 n/m 100.00 97.93 98.51 99.86

7 99.22 99.97 99.75 99.93 99.87 n/m 99.94 97.62 99.79 99.87

8 99.84 99.99 99.82 99.98 99.99 n/m 99.73 98.53 99.89 99.99

9 99.41 99.82 99.89 99.96 99.83 n/m 99.74 96.86 99.80 99.83

10 99.89 99.98 99.97 99.89 99.80 97.63 99.42 98.08 99.96 99.80

25



Table 3: Percentage of identity calculated for ten longest contigs and scaffolds produced by each method for

the C. elegans data set.

�
Contigs Scaffolds

Velvet SOAPdenovo Platanus WGS SGA Velvet SOAPdenovo Platanus WGS SGA

1 99.75 100.00 100.00 99.99 100.00 90.34 99.86 99.94 99.87 100.00

2 99.96 100.00 100.00 100.00 100.00 99.69 99.78 99.95 99.98 100.00

3 99.97 100.00 100.00 100.00 100.00 n/m 99.89 99.98 99.88 100.00

4 99.97 99.99 100.00 99.99 100.00 99.66 99.90 99.88 91.95 100.00

5 99.97 98.45 100.00 99.74 100.00 99.50 100.00 99.97 99.99 100.00

6 99.74 100.00 99.99 99.97 100.00 99.67 99.61 99.96 99.94 100.00

7 99.97 100.00 100.00 100.00 100.00 99.77 99.94 99.99 99.99 100.00

8 99.95 100.00 100.00 99.98 100.00 99.87 100.00 99.89 99.99 100.00

9 99.97 100.00 99.30 100.00 100.00 99.86 99.83 99.86 99.93 100.00

10 99.92 99.99 99.99 99.99 100.00 99.60 99.97 99.96 99.99 100.00

has the highest rate of assemblies mapped to the reference genome in an ideal way. As

it turned out, the C. elegans data set was in general easier to reconstruct. We attribute

this to a better quality of its reads and a higher coverage depth.570

Charts presented in Figure 10 give some more insight into the quality of assemblies

produced by each method. This time, we try to plot differences between individual

methods based on the quality of all contigs/scaffolds, not only the longest ones. These

charts present the percentage of cumulative contigs/scaffolds length mapped to the ref-

erence genome with a given percentage of identity. The higher quality is required, the575

shorter length of correctly mapped sequences. The largest drop can be observed in the

case of Velvet and WGS assemblers. Interestingly, a huge drop was also reported for

Platanus scaffolds of H. sapiens. Almost 49% of their cumulative length was between

95% and 99% of identity. This could also be seen in Table 2, where all the longest scaf-

folds were between 96.86% and 98.74% of identity. Additionally, the above-mentioned580

table shed a bad light on Velvet, but according to the current test over 89% of the scaf-

folds length produced by Velvet for the human chromosome was successfully mapped

to the reference sequence. This indicates that Velvet has a problem mainly with the

longest scaffolds. Another interesting finding is that both Velvet and WGS have a rel-

atively low rate of total contigs/scaffolds length that map to the reference sequence at585

26



(a) H. sapiens contigs (b) C. elegans contigs

(c) H. sapiens scaffolds (d) C. elegans scaffolds

Figure 10: Percentage of total contigs/scaffolds length correctly mapped to the reference genome. Each

contig/scaffold was required to map with a given percentage of identity (horizontal axis). Each time 100%

on the vertical axis refers to the sum of all contig/scaffold lengths produced by a given assembler.

27



all. For example, in the case of H. sapiens contigs (Figure 10a), this is 95.61% and

95.65% for Velvet and WGS, respectively, whereas the other methods have between

99.81% and 99.98%. Similar results can be observed on the other charts. In contrast,

Platanus, SOAPdenovo and SGA contigs represent a very high quality, as almost all of

them map with more than 99% of identity. This trend is confirmed by the scaffolding590

results, with one exception – Platanus.

Figure 11: Percentage of the genome length covered by correctly mapped contigs/scaffolds.

An important characteristic of de novo assembly is the percentage of the recon-

structed genome in terms of its length. For the data sets considered in this test the

results are presented in Figure 11. In the case of the human chromosome, two methods

stand out, namely SOAPdenovo and SGA, while the other methods performed much595

worse. For C. elegans the competition was much more tight. Not only Platanus has

joined the best performing group, but both WGS and Velvet were able to cover much

more reference sequence as compared to the first data set. However, the undisputed

leader is SGA, covering 99% of the reference genome.

Another interesting property to look at is the total length of all contigs/scaffolds600

with respect to the genome size. This is presented in Figure 12. Not surprisingly, these

values correspond quite well to the genome coverage, presented above. However, one

can notice that for Velvet and WGS the genome coverage is always smaller than the

total length of contigs and scaffolds. This is due to misassembled sequences. On the

other hand, for SOAPdenovo and SGA this is the other way round, i.e. the genome605

coverage is always higher than the length of contigs/scaffolds. This is because some

assemblies may map to the reference sequence more than once. It is considered that

28



Figure 12: Total length of all contigs/scaffolds compared to the genome size.

the latter situation is more favorable for the assembly software. Ideally, however, the

output from the software should cover every part of the reference sequence exactly

once.610

Figure 13: NG50 values calculated for each individual assembly.

Figure 13 presents the standard NG50 metric, calculated for each method. Clearly,

much better values were obtained for the C. elegans data set. This is due to a better

quality of reads and a higher coverage depth. The method that outperformed all the

others when it comes to scaffold lengths is SOAPdenovo. Apparently, what it lacks

in contigs it makes up for in scaffolds. Note that this method has the lowest NG50615

value for C. elegans contigs, but it implements a very good scaffolding stage. Hence

the good results. Because only those contigs/scaffolds that were correctly mapped to

the reference sequence are considered here for NG50, it might be that this value is

smaller for scaffolds than for contigs, as is the case with Velvet and the H. sapiens data

set. Additionally, it is plain to see that for SGA the NG50 value remains the same for620

29



(a) Time (b) Memory

Figure 14: The amount of time and memory needed for each tested implementation to complete the whole

computational process leading to scaffolds. Note: scales on both charts are logarithmic.

scaffolds as it is for contigs. This is the consequence of not extending scaffolds over

the contig length, as discussed before.

Finally, we investigate the amount of time and memory needed to perform the cal-

culations, cf. Figure 14. Whereas the implementations are quite comparable when it

comes to the quality of results, they have very different consumption of resources. Both625

SOAPdenovo and Platanus might be considered as very fast implementations. For SGA

and Velvet it takes a bit longer to compute the results. However, a really long run time

was reported for WGS processing the C. elegans data set, nearly 38 hours. This is very

long compared to 33 minutes needed for SOAPdenovo. On the other front, the leader

of low memory consumption is SGA. However, SOAPdenovo, Platanus and Velvet are630

reasonable too. By far the highest amount of memory was used by WGS, up to 446

GB. Whereas some laboratories may sacrifice more time to finally obtain high quality

results, the memory issues may be much harder to overcome, due to lack of specific

hardware. This needs to be carefully considered, especially for large genomes.

4.4. Summary635

The results of our comparative study presented above include representatives of

both models: decomposition-based graphs and overlap graphs. Even though both mod-

els have their theoretical pros and cons, in practice their performance depends more

on details of a particular implementation. As we saw, regardless of the graph model,

we have both good and poor methods when it comes to the length and quality of as-640

semblies. Similarly, when it comes to resources, the overlap graphs were traditionally

30



considered more resource-hungry, which does not have to be true (cf. SGA). More-

over, the performance of the assembly software depends also on the properties of a

given data set. As a result, it is hard to decide which model better suits the require-

ments of modern sequencing. Consequently, one is always advised to combine results645

from multiple assemblers when doing de novo assembly.

5. Conclusions and future trends

As stated at the beginning of this paper, computational biology is an interesting

intersection of biology and computer science with a synergy effect. It was not only

the biology that became a beneficiary of research in that field. The new models and650

algorithms developed in this context brought also a fresh insight into some aspects of

computer science, especially graph theory. For example, a new class of graphs was

defined, namely DNA graphs, for which the Hamiltonian cycle/path problem can be

solved in a polynomial time. The properties of such graphs were further studied and the

polynomial solvability of HCP was extended to the quasi-adjoint graphs (cf. Figure 2).655

Likewise, a lot of research was done to study the computational complexity of problems

related to properties of the DNA graphs.

Nevertheless, we started our journey from the sequencing by hybridization prob-

lem, which was the first type of sequencing that involved an algorithmic approach,

back in 1988. We thoroughly described the properties of both Lysov and Pevzner660

graph models, including erroneous data, in which case the problem becomes strongly

NP-hard. We also presented how these models evolved to adapt to the next-generation

sequencing. Both overlap and decomposition-based graphs constitute nowadays a ro-

bust foundation for modern DNA assembly methods. In order to find out which of these

better suits the NGS data, we also carried out a practical comparative study. However,665

the presented results suggest that the quality of assemblies and even the resource re-

quirements depend more on a particular implementation than on the type of underlying

model. We also have concluded that with de novo assembly one is advised to use

multiple assemblers and combine the results rather than rely on a single tool.

Let us now have a glimpse into the future trends. First of all, based on the expo-670

31



nential decrease of sequencing costs over the last years2 we may expect the prices to

become even lower in the near future. As a result, we may continue to observe ex-

ponential increase in the amount of generated data sets that need to be processed and

analyzed. On the other hand, one may observe an exponential increase in the comput-

ing power of the world’s fastest supercomputers too 3. However, hardly any software675

can scale up to such large installations. They are not easily available for everyone ei-

ther. On contrary, the computing power and amount of memory in smaller servers tend

to increase much slower, more according to the Moore’s law. Therefore, we perceive

the stress for de novo assembly is more likely to be placed on highly time and memory

effective software implementations, to allow for large instances on relatively affordable680

hardware. Even though, the current hardware limits of assembly software may be to

some extent solved by future systems with more memory and computing power, algo-

rithmic improvements seem to be indispensable as future data sets will become larger

too.

Importantly, the current limitations of de novo assembly tools are not only associ-685

ated with the large size of data sets, but also with the sequencing error rate and target

genome repetitiveness. We anticipate that the latter may be overcome with the advent

of much longer reads. For example, methods like PacBio RS II feature reads length of

several thousands base pairs. Yet, this is achieved at the expense of high sequencing

cost and relatively poor quality of reads. The short read sequencers have a raw error690

rate below 1% (before a typical preprocessing), whereas in the case of long reads this

rate rises up to 10%. Fortunately, the error rate is being constantly reduced and the

prices of new sequencing methods tend to drop rather quickly. Therefore, in the future

we may expect to obtain data sets with both long reads and low error rate, which would

be perfect for DNA assembly. However, before this happen, the current algorithms are695

not likely to deal well with such highly erroneous data, as they were designed for good

quality reads.

Nevertheless, the above-mentioned high error rate of currently available long reads

2DNA sequencing costs: https://www.genome.gov/27541954/dna-sequencing-costs/
3The TOP500 project: http://www.top500.org/

32



does not necessarily mean that such data are useless. Several methods combining the

advantages of both long but noisy and short and accurate reads were described by700

Koren and Phillippy [54]. For example, short reads mapped to the long ones may help

to correct the sequencing errors. Obviously, such hybrid methods are costly, because

they require two sequencing experiments. Nevertheless, this may currently be one of

the best ways to go for difficult assemblies. Another option is to use a few additional

mate-pair libraries with different insert sizes [55].705

The high popularity of the decomposition-based graphs (as compared to overlap

graphs) observed in the past years was mainly due to its favorable computation time

and memory consumption. However, with longer reads becoming available this trend

may change. Increasing market share of sequencers offering such reads should lead

again to methods based on the overlap graphs. This is because the construction of710

the decomposition-based graphs basically results in a loss of the precious information

contained in the long reads. Moreover, with parallel computing virtually becoming

a commonplace and highly optimized software tools, the higher computational cost

associated with the overlap graph methods no longer needs to be a discouraging factor.

Another issue that is becoming increasingly important, though not only in the con-715

text of DNA assembly, is the energy efficiency of computational methods. As the

number of sequencing experiments is rapidly growing, the amount of corresponding

computations is raising as well. Nowadays, it is crucial to minimize the energy con-

sumption, because of both economical and environmental issues [56]. Although the en-

ergy efficient hardware architectures, e.g. GPUs, have been widely exploited over the720

past years in various research areas like video processing [57], medical imaging [58]

or physical simulations [59], they were not yet sufficiently explored in the problem

of DNA assembly. Therefore, we suspect that this will be one of the directions for

development of new computational tools.

Finally, obtaining sequences of unknown genomes is not the only application for725

DNA de novo assembly. The genome of every single individual within a given species

varies and it seems natural to test such unique arrangements, especially in the case of

rare diseases. Nowadays, the majority of methods are based on the resequencing. How-

ever, developing very accurate and fast de novo assembly methods could revolutionize

33



many NGS-based research areas such as: RNA-seq (transcriptome study) or structural730

variation of DNA, i.e. the variation in the structure of individual chromosomes. Sig-

nificant improvement in this area would have a high impact on medical diagnostics and

the medicine as a whole.

Acknowledgment

We are grateful to anonymous referees for their valuable remarks which signifi-735

cantly improved the presentation of the paper.

The research has been supported by grant No. 2012/05/B/ST6/03026 from the

National Science Centre, Poland, and also by the PL-Grid Infrastructure in Poland.

References

[1] F. Sanger, S. Nicklen, A. Coulson, DNA sequencing with chain-terminating in-740

hibitors, Proceedings of the National Academy of Sciences, U.S.A. 74 (1977)

5463–5467.

[2] E. Southern, Analyzing polynucleotide sequences, International patent applica-

tion PCT/GB89/00460.

[3] Y. Lysov, V. Florent’ev, A. Khorlin, K. Khrapko, V. Shik, A. Mirzabekov, Deter-745

mination of the nucleotide sequence of DNA using hybridization with oligonu-

cleotides. A new method., Doklady Akademii Nauk SSSR 303 (1988) 1508–

1511.

[4] P. Pevzner, l-Tuple DNA sequencing: computer analysis, Journal of Biomolecular

Structure and Dynamics 7 (1989) 63–73.750

[5] M. Margulies, M. Egholm, W. Altman, Genome sequencing in open microfabri-

cated high density picoliter reactors, Nature 7057 (437) (2005) 376–380.

[6] V. Phan, S. Skiena, Dealing with errors in interactive sequencing by hybridization,

Bioinformatics 17 (2001) 862–870.

34



[7] J. Blazewicz, P. Formanowicz, M. Kasprzak, W. Markiewicz, Sequencing by hy-755

bridization with isothermic oligonucleotide libraries, Discrete Applied Mathe-

matics 145 (2004) 40–51.

[8] F. Preparata, E. Upfal, Sequencing-by-hybridization at the information-theory

bound: an optimal algorithm, Journal of Computational Biology 7 (2000) 621–

630.760

[9] F. Preparata, J. Oliver, DNA Sequencing by hybridization using semi-degenerate

bases, Journal of Computational Biology 11 (2004) 753–765.

[10] J. Blazewicz, A. Hertz, D. Kobler, D. de Werra, On some properties of DNA

graphs, Discrete Applied Mathematics 98 (1999) 1–19.

[11] N. de Bruijn, A combinatorial problem, Proceedings of the Koninklijke Neder-765

landse Akademie van Wetenschappen 49 (1946) 758–764.

[12] J. Blazewicz, P. Formanowicz, M. Kasprzak, D. Kobler, On the recognition of

de Bruijn graphs and their induced subgraphs, Discrete Mathematics 245 (2002)

81–92.

[13] R. Pendavingh, P. Schuurman, G. Woeginger, Recognizing DNA graphs is diffi-770

cult, Discrete Applied Mathematics 127 (2003) 85–94.

[14] J. Hao, The adjoints of DNA graphs, Journal of Mathematical Chemistry 37

(2005) 333–346.

[15] X. Li, H. Zhang, Characterizations for some types of DNA graphs, Journal of

Mathematical Chemistry 42 (2007) 65–79.775

[16] X. Li, H. Zhang, Embedding on alphabet overlap digraphs, Journal of Mathemat-

ical Chemistry 47 (2010) 62–71.

[17] J. Blazewicz, M. Kasprzak, B. Leroy-Beaulieu, D. de Werra, Finding Hamiltonian

circuits in quasi-adjoint graphs, Discrete Applied Mathematics 156 (2008) 2573–

2580.780

35



[18] J. Blazewicz, M. Kasprzak, Reduced-by-matching graphs: toward simplifying

Hamiltonian circuit problem, Fundamenta Informaticae 118 (2012) 225–244.

[19] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company, Lon-

don, 1973.

[20] N. Apollonio, P. Franciosa, A characterization of partial directed line graphs, Dis-785

crete Mathematics 307 (2007) 2598–2614.

[21] J. Blazewicz, M. Kasprzak, Computational complexity of isothermic DNA se-

quencing by hybridization, Discrete Applied Mathematics 154 (2006) 718–729.

[22] J. Blazewicz, M. Kasprzak, Complexity of DNA sequencing by hybridization,

Theoretical Computer Science 290 (2003) 1459–1473.790

[23] J. Blazewicz, M. Kasprzak, Complexity issues in computational biology, Funda-

menta Informaticae 118 (2012) 385–401.

[24] J. Blazewicz, P. Formanowicz, M. Kasprzak, W. Markiewicz, J. Weglarz, DNA

sequencing with positive and negative errors, Journal of Computational Biology

6 (1999) 113–123.795

[25] J. Błażewicz, P. Formanowicz, F. Guinand, M. Kasprzak, A heuristic managing

errors for DNA sequencing, Bioinformatics 18 (2002) 652–660.

[26] J. Blazewicz, E. Burke, G. Kendall, W. Mruczkiewicz, C. Oguz, A. Swiercz,

A hyper-heuristic approach to sequencing by hybridization of DNA sequences,

Annals of Operations Research 207 (2013) 27–41.800

[27] J. Blazewicz, C. Oguz, A. Swiercz, J. Weglarz, DNA sequencing by hybridization

via genetic search, Operations Research 54 (2006) 1185–1192.

[28] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, A series of books in the mathematical sciences, W.H. Free-

man, San Francisco, 1979.805

36



[29] J. Blazewicz, W. Frohmberg, M. Kierzynka, E. Pesch, P. Wojciechowski, Protein

alignment algorithms with an efficient backtracking routine on multiple GPUs,

BMC Bioinformatics 12 (1) (2011) 1–17.

[30] J. Blazewicz, W. Frohmberg, P. Gawron, M. Kasprzak, M. Kierzynka, A. Swiercz,

P. Wojciechowski, DNA sequence assembly involving an acyclic graph model,810

Foundations of Computing and Decision Sciences 38 (2013) 25–34.

[31] J. Bang-Jensen, G. Gutin, Digraphs. Theory, Algorithms and Applications,

Springer-Verlag, Berlin, 2007.

[32] P. Pevzner, H. Tang, M. Waterman, An Eulerian path approach to DNA fragment

assembly, Proceedings of the National Academy of Sciences 98 (2001) 9748–815

9753.

[33] P. Medvedev, K. Georgiou, G. Myers, M. Brudno, Computability of models for

sequence assembly, Lecture Notes in Computer Science 4645 (2007) 289–301.

[34] E. Kapun, F. Tsarev, De Bruijn superwalk with multiplicities problem is NP-hard,

BMC Bioinformatics 14 (5) (2013) 1–4.820

[35] D. Zerbino, E. Birney, Velvet: Algorithms for de novo short read assembly using

de Bruijn graphs, Genome Res. 18 (2008) 821–829.

[36] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kris-

tiansen, S. Li, H. Yang, J. Wang, J. Wang, De novo assembly of human genomes

with massively parallel short read sequencing, Genome Research 20 (2010) 265–825

272.

[37] P. Medvedev, S. Pham, M. Chaisson, G. Tesler, P. Pevzner, Paired de Bruijn

graphs: a novel approach for incorporating mate pair information into genome

assemblers, Lecture Notes in Computer Science 6577 (2011) 238–251.

[38] W. Frohmberg, M. Kierzynka, J. Blazewicz, P. Gawron, P. Wojciechowski, G-830

DNA – a highly efficient multi-GPU/MPI tool for aligning nucleotide reads, Bul-

letin of the Polish Academy of Sciences: Technical Sciences 61 (2013) 989–992.

37



[39] Y. Liu, A. Wirawan, B. Schmidt, CUDASW++ 3.0: accelerating Smith-Waterman

protein database search by coupling CPU and GPU SIMD instructions, BMC

Bioinformatics 14 (1) (2013) 1–10.835

[40] W. Frohmberg, M. Kierzynka, J. Blazewicz, P. Wojciechowski, G-PAS 2.0 – an

improved version of protein alignment tool with an efficient backtracking rou-

tine on multiple GPUs, Bulletin of the Polish Academy of Sciences: Technical

Sciences 60 (2012) 491–494.

[41] T. Rognes, Faster Smith-Waterman database searches with inter-sequence SIMD840

parallelisation, BMC Bioinformatics 12 (1) (2011) 1–11.

[42] J. Blazewicz, W. Frohmberg, M. Kierzynka, P. Wojciechowski, G-MSA – A

GPU-based, fast and accurate algorithm for multiple sequence alignment, J. Par-

allel. Distr. Com. 73 (2013) 32–41.

[43] S. Vinga, J. Almeida, Alignment-free sequence comparison – a review, Bioinfor-845

matics 19 (4) (2003) 513–523.

[44] C. Blum, J. Lozano, P. Davidson, Mathematical programming strategies for solv-

ing the minimum common string partition problem, European Journal of Opera-

tional Research 242 (2015) 769–777.

[45] R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu,850

J. Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. Che-

ung, S. Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang,

T. Lam, J. Wang, SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler, Giga Science 18 (1) (2012) 1–6.

[46] R. Kajitani, K. Toshimoto, H. Noguchi, A. Toyoda, Y. Ogura, M. Okuno,855

M. Yabana, M. Harada, E. Nagayasu, H. Maruyama, Y. Kohara, A. Fujiyama,

T. Hayashi, T. Itoh, Efficient de novo assembly of highly heterozygous genomes

from whole-genome shotgun short reads, Genome Res. 24 (2014) 1384–1395.

[47] L. Ruiqiang, F. Wei, T. Geng, The sequence and de novo assembly of the giant

panda genome, Nature 7279 (463) (2010) 311–317.860

38



[48] J. Butler, I. MacCallum, M. Kleber, I. Shlyakhter, M. Belmonte, E. Lander,

C. Nusbaum, D. Jaffe, ALLPATHS: de novo assembly of whole-genome shot-

gun microreads, Genome Research 18 (2008) 810–820.

[49] E. Myers, G. Sutton, A. Delcher, A whole-genome assembly of Drosophila, Sci-

ence 287 (5461) (2000) 2196–2204.865

[50] J. Simpson, R. Durbin, Efficient de novo assembly of large genomes using com-

pressed data structures, Genome Res. 22 (2012) 549–556.

[51] P. Ferragina, G. Manzini, Opportunistic Data Structures with Applications, Pro-

ceedings of the 41st Annual Symposium on Foundations of Computer Science

(2000) 390–398.870

[52] S. Salzberg, A. Phillippy, A. Zimin, GAGE: A critical evaluation of genome as-

semblies and assembly algorithms, Genome Research 22 (2012) 557–567.

[53] B. Langmead, S. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature

Methods 9 (2012) 357–359.

[54] S. Koren, A. Phillippy, One chromosome, one contig: complete microbial875

genomes from long-read sequencing and assembly, Current Opinion in Micro-

biology 23 (2015) 110 – 120.

[55] C. Albertin, O. Simakov, T. Mitros, Z. Wang, J. Pungor, E. Edsinger-Gonzales,

S. Brenner, C. Ragsdale, D. Rokhsar, The octopus genome and the evolution of

cephalopod neural and morphological novelties, Nature 7564 (524) (2015) 220–880

224.

[56] M. Kierzynka, L. Kosmann, M. vor dem Berge, S. Krupop, J. Hagemeyer,

R. Griessl, M. Peykanu, A. Oleksiak, Energy efficiency of sequence alignment

tools – software and hardware perspectives, Future Generation Computer Sys-

tems (2016)doi:doi:10.1016/j.future.2016.05.006.885

[57] S. Mahmoudi, M. Kierzynka, P. Manneback, K. Kurowski, Real-time motion

39

http://dx.doi.org/doi:10.1016/j.future.2016.05.006


tracking using optical flow on multiple GPUs, Bulletin of the Polish Academy

of Sciences: Technical Sciences 62 (2014) 139–150.

[58] M. Ciznicki, M. Kierzynka, K. Kurowski, B. Ludwiczak, K. Napierala, J. Pal-

czynski, Efficient isosurface extraction using marching tetrahedra and histogram890

pyramids on multiple GPUs, Lecture Notes in Computer Science 7204 (2012)

343–352.

[59] M. Blazewicz, I. Hinder, D. Koppelman, S. Brandt, M. Ciznicki, M. Kierzynka,

F. Loffler, S. E., J. Tao, From physics model to results: An optimizing framework

for cross-architecture code generation, Scientific Programming 21 (2013) 1–16.895

40


	Introduction
	Original models for DNA sequencing
	Sequencing by hybridization
	Lysov and Pevzner models
	DNA graphs and others
	Sequencing with erroneous data

	Current models for NGS data
	Next-generation sequencing
	Overlap graphs
	Decomposition-based graphs
	Models for paired-end reads
	Discussion

	A practical comparison of modern de novo assemblers
	The assemblers of choice
	Testing methodology
	Comparative study results
	Summary

	Conclusions and future trends

