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Abstract

The goal of the Simplified Partial Digest Problem (SPDP) is motivated by the reconstruction

of the linear structure of a DNA chain with respect to a given nucleotide pattern, based on the

multiset of distances between the adjacent patterns (interpoint distances) and the multiset

of distances between each pattern and the two unlabeled endpoints of the DNA chain (end

distances). We consider optimization versions of the problem, called SPDP-Min and SPDP-

Max. The aim of SPDP-Min (SPDP-Max) is to find a DNA linear structure with the

same multiset of end distances and the minimum (maximum) number of incorrect (correct)

interpoint distances. Results are presented on the worst-case efficiency of approximation

algorithms for these problems. We suggest a graph-theoretic model for SPDP-Min and

SPDP-Max, which can be used to reduce the search space for an optimal solution in either

of these problems. We also present heuristic polynomial time algorithms based on this

model. In computational experiments with randomly generated and real-life input data,

our best algorithm delivered an optimal solution in 100% of the instances for a number of

restriction sites not greater than 50.
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1. Introduction to partial digesting in DNA mapping

Over the last sixty years or so, Operational Research techniques and methodologies have

facilitated important scientific and managerial advances across a broad spectrum of indus-

tries and application areas [24]. This inherently inter-disciplinary tradition is as evident

today as it was at the very beginning of Operational Research activity. Moreover, recent

years have seen the scope of this inter-disciplinarity expand into the life sciences as the avail-

ability of computational power increases and as our understanding of the strong potential

of Operational Research techniques in these areas expands. In particular, the last few years

have seen a significant level of Operational Research activity in bioinformatics and related

applications. For example, without understanding of Operational Research based techniques

it would have been impossible to have achieved the major breakthrough of deciphering the

human genome. Graph-theoretic based approaches were employed for the assembling stage

of genome reading [36, 21, 28]. Another example of the impact of Operational Research

on bioinformatics is the novel employment of genetic and tabu search algorithms, as well

as other metaheuristic schemes, to overcome the oligonucleotide repetition drawback of the

sequencing by hybridization approach [7, 38, 27, 8]. Also the problems arising around the

analysis of aminoacid sequences are solved with the use of Operational Research methods

[26, 1]. It is also worth noting that the EURO (European Association of Operational Re-

search Societies) distinguished Ph.D. prize was awarded in 2006 to Marta Szachniuk for

her thesis on the application of Operational Research techniques to the analysis of NMR

images of RNA chains. Furthermore, [2] employs dynamic programming to establish results

which deepened our understanding of the simplified partial digest problem. We build upon

these achievements in the current paper to present new results which not only impact upon

Operational Research but which also demonstrate the far reaching effect of Operational

Research methodologies across disciplinary boundaries and, in particular, in bioinformatics

and genome mapping.

An essential characteristic of a DNA molecule is its linear structure, which can be viewed

as a sequence of four nucleotide bases: adenine, cytosine, guanine and thymine. Modern
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measurement technologies are unable to determine the linear structure of a DNA molecule

directly. Mapping is one of three typical existing indirect methods [3]. Clones of a DNA

molecule, under mapping, are exposed to restriction enzymes that cut them at particular

patterns of nucleotides called restriction sites. The lengths of the cut fragments and appro-

priate information about the cutting technique represent inputs to restriction site analysis,

see [31], [37] or [29] for details. Typical cutting approaches in the literature are double digest,

where two restriction enzymes are employed [37, 29, 12], and partial digest, where the DNA

is cut by one enzyme but with different reaction times [15, 16].

The Partial Digest Problem (PDP) is the mathematical model for the partial digest. The

output of the partial digestion and the input for PDP is to be a multiset of lengths of all

possible DNA fragments, where the endpoints of a fragment are the restriction sites or the

ends of the DNA chain. For n restriction sites and 2 ends of the DNA chain, this multiset

should consist of
(

n+2
2

)
= (n+1)(n+2)

2
fragment lengths. As Pevzner [29] writes in his book,

the partial digestion has never been the favorite mapping method in biological laboratories

because of a difficulty in performing cuts for every pair of restriction sites. Although the

PDP approach is sometimes used in practice (cf. works of the Nobel Prize winner Christiane

Nuesslein-Volhard that reconstructed the genome of zebrafish [35]), experiments applying

this technique are usually quite small: i.e. for chains containing less than 20 restriction

sites [18, 20, 23, 25].

PDP has been studied in the ideal error-free case and in the case of experimental er-

rors [33, 34, 11, 10]. PDP was proved to be NP-hard in the cases of measurement errors [10]

and noisy data [11]. The NP-hardness of the original error-free PDP as well as a polynomial-

time solution algorithm for it is not known [17].

A simplified partial digest method and a corresponding mathematical model, called Sim-

plified Partial Digest Problem (SPDP), was proposed in [4], and it was later studied in [2,

3, 4, 5, 6].

2. Formulation and discussion of SPDP

The output of the simplified partial digestion and the input for SPDP consists of a

multiset B of distances between each two adjacent sites, which we call interpoint distances,

and a multiset A of distances between each site and the ends of the DNA chain, which we

call end distances. Each two adjacent sites produce one interpoint distance, which is the

length of the corresponding DNA fragment, and each single site produces two end distances,
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which are the lengths of the two DNA fragments, whose one endpoint is this site and the

other endpoint is the end of the DNA chain. Thus, for n restriction sites, |B| = n + 1 and

|A| = 2n. Since the size of the input for SPDP is much smaller than that for PDP, its

solution is less affected by the measurement errors.

In this paper, we study SPDP for the error-free case such that the multisets A and B

contain correct data about the end distances and the interpoint distances. SPDP can be

formulated as follows, see the graphical interpretation in Fig. 1.

0 a1 a2 a3 a
n

L
L/2

?

b1 b2 b3 · · ·

· · ·

b
n+1

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 1: Graphical interpretation of SPDP.

There is a sequence a = (a1, a2, . . . , an) of integer numbers and integer number L such

that 0 < a1 < a2 < . . . < an < L, where L is the length of the target DNA, and two

multisets of positive numbers, A(a) and B(a), associated with it, such that

A(a) = {aj, L − aj | j = 1, . . . , n},

B(a) = {bj | j = 1, . . . , n + 1},

where bj = aj − aj−1, j = 2, 3, . . . , n, b1 = a1, bn+1 = L − an. Observe that multiset A(a)

contains at most two identical pairs {aj, L−aj}. Identical pairs, if they exist, correspond to

the restriction sites that are symmetric with respect to the middle of the molecule. Given

multisets A := A(a) and B := B(a) for an unknown sequence a, SPDP is to find a sequence

of integer numbers p = (p1, p2, . . . , pn) such that 0 < p1 < p2 < . . . < pn < L and A(p) = A

and B(p) = B.

SPDP always has at least two solutions, one corresponding to the map of the original

DNA and its mirror image (congruent solution). Furthermore, SPDP may have more than

two solutions. An example with two non-congruent solutions and, hence, four solutions in

total, is given in Fig. 2.

The input of PDP for the above example is the multiset {3, 5, 10, 11, 2, 7, 8, 5, 6, 1} of all

fragment lengths.
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0 1 2 3 4 5 6 7 8 9 10 11

× ××××

× ××× ×
(original map)
Solution 1

Solution 2

Figure 2: Two non-congruent solutions for SPDP with n = 3, L = 11, A = {1, 3, 5, 6, 8, 10} and B =

{1, 2, 3, 5}.

2.1. SPDP vs. PDP via an example

The advantage of the simplified partial digest over the partial digest, and its potential to

solve practical problems of genome mapping can be demonstrated by the following example.

In [18], a biochemical experiment was considered, whose purpose was to reconstruct the

DNA map of the chromosome of the non-pathogenic bacterium Lactobacillus sakei 23K that

occurs naturally on meat and meat products. The experiment included full and partial

digestions by enzyme I-CeuI, see Fig. 3.

In this figure, column 1 indicates the lengths of fragments obtained after the full digestion

(C1 to C7), column 2 indicates the lengths of fragments obtained after the partial digestion

(Ca to Ch), and column 3 indicates the molecular mass markers (λ concatemers) with sizes

from 48500 to 727000 base pairs, which were used to determine the fragment lengths.

After the full digestion, the multiset B = {1104, 331, 170, 128, 98, 36, 5} of seven inter-

point distances C1, . . . , C7 was obtained. Partial digestion resulted in eight more fragment

lengths Ca = 1265, Cb = 590, Cc = 550, Cd = 485, Ce = 455, Cf = 420, Cg = 265 and

Ch = 164. The lengths were measured in kilo base pairs with some degree of error. Not

all fragment lengths were found. The absence of some fragment lengths prevented existing

PDP mathematical tools from being used in the mapping process. In [18], the genome map

was determined by a case specific analytical method, which cannot be extended to other

cases. However, because of the measurement errors, it was not clear that the constructed

DNA map is correct and unique, and how far it is from the correct map. Based on the

results of the above experiment and the solution found in [18], we were able to re-construct

the missing data required for the simplified partial digest method. The size of the data is

considerably smaller than that needed for any other digestion model, which decreases the

chance of an incorrect map construction. We obtained the following multiset of end dis-

tances: A = {1104, 750, 1265, 584, 485, 485, 1372, 1372, 1685, 164, 1815, 36}. These distances

correspond to the fragment lengths C1, Cg + Cd, Ca, Cf + Ch, Cd, Cd, C1 + C3 + C5,

C1 +C3 +C5, Ca +Cf , Ch, Ca +Cc and C6, respectively. Fragment lengths Cg +Cd, Cf +Ch,
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Figure 3: Digestion of Lactobacillus sakei 23K chromosome DNA by enzyme I-CeuI (from [18]).

C1 + C3 + C5, Ca + Cf and Ca + Cc were missing in the experiment. We assumed that the

relative measurement error r in the experiment was less than 2.5% and applied algorithm

Interval-ENUM for SPDP with measurement errors [2] to reconstruct the DNA map. The

unique solution p∗ = (5, 36, 100, 131, 172, 325, 1104) was obtained, which nearly matches the

solution found in [18]: p0 = (5, 36, 98, 128, 170, 331, 1104). Thus, SPDP and its mathematical

solution tools provide extra confirmation of the earlier discovered structure of the bacterium

Lactobacillus sakei 23K chromosome.

2.2. Foreword to SPDP complexity and tools

In [6], it was proved that SPDP is NP-hard in the strong sense, and an O(n log n) time

algorithm was developed for the case where bj ∈ {1, 2}, j = 1, . . . , n + 1. Enumerative

algorithms for SPDP were proposed in [2, 4, 5]. In [2], a dynamic programming algorithm
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with O(n2q) running time for SPDP with q distinct interpoint distances was presented. An

example of the problem was given, in which the maximum number of mutually non-congruent

solutions is equal to 2
n+2

3
−1, and a suite of computational experiments was provided with

3710 instances of SPDP generated using real DNA sequences taken from [19] to establish

the number of non-congruent solutions. It was equal to 1, 2 and 4 for 3641 (98.14%), 64

(1.725%) and 5 (0.135%) instances, respectively, and it was never equal to 3 or exceeded 4.

In the next section, we consider optimization versions of SPDP, denoted as SPDP-Min

and SPDP-Max. The goal of SPDP-Min (SPDP-Max) is to find the orderings of the pairs

from the multiset A such that the multiset of the corresponding interpoint distances B0

(being a result of this ordering) contains the minimum (maximum) number of interpoint

distances not from the multiset B (from the multiset B). In other words, the number of

mismatchings between the constructed multiset B0 and the original multiset B is minimized

in SPDP-Min, and the number of matchings between the multisets B0 and B is maximized in

SPDP-Max. Note that the exact multiset A is required to be constructed for these problems.

Furthermore, for the considered error-free case of the problem, the optimal solution value of

SPDP-Min is equal to zero and the optimal solution value of SPDP-Max is equal to n+1. It

is easy to see that an optimal solution for SPDP-Min or SPDP-Max is a solution for SPDP

and vice versa. As the basic version of SPDP (its search formulation) remains NP-hard, it

is worth considering its optimization versions and developing approximation algorithms for

the latter.

We are interested in the development of polynomial time approximation algorithms for

SPDP-Min and SPDP-Max. The approximation ratio of an algorithm is defined as the

number ρ such that max{F 0

F ∗
, F ∗

F 0} ≤ ρ for any problem instance, where F ∗ is the optimum

value (here we assume F ∗ > 0, F 0 > 0) and F 0 is the value of the solution delivered by

the algorithm. The corresponding algorithm is called the ρ-approximation algorithm. It

guarantees relative error ε = ρ − 1 in case of minimization, and ε = 1 − 1/ρ in case of

maximization. Clearly, ρ ≥ 1. Furthermore, the smaller ρ is, the better is the quality of the

corresponding solution.

In the next section, we show that SPDP-Min cannot be approximated in pseudo-polynomial

time with any finite ρ, unless P = NP . Therefore, SPDP-Min does not belong to the class

APX of optimization problems that allow polynomial time approximation algorithms with

approximation ratio bounded by a constant [14]. We also show that SPDP-Max cannot

be approximated in pseudo-polynomial time with ρ < 1 + 1
n
, unless P = NP , but it can
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be approximated in O(n log n) time with ρ = 1 + n
n+2

< 2. In Section 4, we suggest a

graph-theoretic model for SPDP and an algorithm based on this model, which reduces the

search space for solutions of SPDP. The aim is to find a path between two specified vertices

of a weighted directed graph (digraph). Section 5 presents three graph-theoretic algorithms

for finding an approximate solution of SPDP, in which all interpoint distances are from

the multiset B but their multiset does not necessarily coincide with the multiset B, and

all end distances are from the multiset A but their multiset does not necessarily coincide

with the multiset A. A suite of computational experiments, described in Section 6, demon-

strates that, for instances of SPDP generated using real DNA sequences taken from [19]

with 20 ≤ n ≤ 50, and for randomly generated instances with n = 50, two of the proposed

heuristic algorithms always delivered an exact solution. Section 7 contains a brief summary

of the results and suggestions for future research.

3. Worst-case analysis of approximation algorithms for SPDP-Min and SPDP-

Max

In this section, we discuss the worst-case efficiency of approximation algorithms for

SPDP-Min and SPDP-Max. We start with simple proofs and continue with an O(n log n)

time approximation algorithm and its worst-case analysis.

3.1. Simple approximability proofs

Proposition 1. There does not exist a pseudo-polynomial time ρ-approximation algorithm

with any finite ρ for SPDP-Min, unless P = NP .

Proof. Let Fmin = 0 denote the optimal solution value of SPDP-Min. Assume that there

exists a pseudo-polynomial algorithm H for this problem, which delivers a solution with value

FH ≤ ρ · Fmin, where 1 ≤ ρ < ∞. Apply algorithm H for any instance of SPDP. By the

definition, FH ≤ ρ ·Fmin = 0. Hence, algorithm H solves SPDP in pseudo-polynomial time,

which is impossible (unless P = NP) because SPDP is NP-hard in the strong sense.

Proposition 1 implies that SDPD-Min does not belong to the class APX of optimization

problems [14].

Proposition 2. There does not exist a pseudo-polynomial time ρ-approximation algorithm

with ρ < 1 + 1
n

for SPDP-Max, unless P = NP .
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Proof. Let Fmax = n + 1 denote the optimal solution value for SPDP-Max. Assume that

there exists a pseudo-polynomial algorithm G for this problem, which delivers a solution

with value FG such that FG ≥ Fmax

ρ
> n+1

1+1/n
= n. Since FG is an integer number, we

deduce FG ≥ n + 1. Hence, algorithm G solves SPDP in pseudo-polynomial time, which is

impossible, unless P = NP .

Proposition 3. SPDP-Max can be approximated in O(2cn) time with the worst-case per-

formance guarantee ρ = n+1
c+1

, where c is a given positive integer number.

Proof. We prove this proposition by describing an O(2cn) time approximation algorithm

with the indicated value of ρ. The algorithm can be outlined as follows.

In O(cn) time, select c+1 smallest values aj in the multiset A and construct 2c+1 partial

solutions to SPDP by assigning each selected value aj as the point aj (to the left hand part

of the interval [0, L]) or as the point L − aj (to the right hand part of the interval [0, L]).

One of these partial solutions can be extended to be a complete feasible solution of SPDP.

Such a partial solution has at least c + 1 interpoint distances from the original multiset B.

By assigning the remaining values in the multiset A arbitrarily to the left hand part or the

right hand part of the interval [0, L], in O(n) time extend every constructed partial solution

to a complete solution of SPDP. Such a complete solution is feasible with regard to the

original multiset A but it can be infeasible with regard to the original multiset B. Among

2c+1 constructed complete solutions, select the one with the largest number of the interpoint

distances from the original multiset B. It is clear that this number is at least c + 1. Hence,

we have found in O(2cn) time a solution to SPDP-Max with the objective value F 0 such

that Fmax/F 0 ≤ n+1
c+1

.

3.2. An O(n log n) time approximation algorithm

We now describe an O(n log n) time (1 + n
n+2

)-approximation algorithm, denoted as

SWITCH, for SPDP-Max. This algorithm is a modification of the exact O(n log n) time

algorithm in [6], which was developed for the case of interpoint distances bj ∈ {1, 2}. Ob-

serve that {aj, L − aj} ⊂ A implies that point aj or symmetric point L − aj is present in

each optimal solution of SPDP-Max. Thus, there are two potential symmetric locations (left

and right ones) of a point associated with each pair {aj, L − aj} ⊂ A, j = 1, . . . , n. In the

algorithm SWITCH, these potential locations are denoted by labels “◦”, and the locations

chosen by the algorithm are denoted by labels “×”. Assume that a1 ≤ · · · ≤ a2n. Algorithm
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SWITCH considers n smallest end distances a1, . . . , an in this order and constructs a se-

quence of labels S = (l0 = ×, l1, . . . , ln, rn, . . . , r1, r0 = ×), where labels lj and rj correspond

to the left and right potential locations, respectively, of the point associated with the pair

of end distances {aj, L − aj} ⊂ A. Labels × in the beginning and the end of the sequence

correspond to the points 0 and L, respectively. In the sequel, we will not distinguish between

labels × and the corresponding points in the interval [0, L].

Let D(A) be a subset of the multiset A such that aj ∈ D(A) if and only if number aj,

j ≤ n, appears twice in A, i.e., if symmetric points aj and L − aj (or one point aj = L/2)

are present in any optimal solution of SPDP-Max. Algorithm SWITCH initializes sequence

S such that lj = rj = × if aj ∈ D(A) and lj = rj = ◦ otherwise. Thus, it determines the

obligatory symmetric points in the interval [0, L]. Then, it iteratively modifies the initial

sequence by replacing one of the two labels lj = ◦ and rj = ◦ by label × for j = 1, . . . , n, i.e.,

it determines asymmetric points in the interval [0, L]. Consider iteration j. Let Tl denote

the distance between point 0 and the point × to the left of lj closest to it, and let Tr denote

the distance between point L and the point × to the right of rj closest to it. If aj ∈ D(A),

then lj = rj = ×. In this case, if any of the generated interpoint distances aj − Tl and

aj − Tr is from B, then the algorithm removes it from the multiset B in order not to use it

twice in the solution under construction and passes to iteration j + 1. Assume aj 6∈ D(A).

Notice that Tl = aj−1 or Tr = aj−1 or Tl = Tr = aj−1. Let Tl = aj−1, which implies lj−1 = ×.

If aj − Tl ∈ B, then the algorithm re-sets lj = × and removes distance aj − Tl from the

multiset B. If aj − Tl 6∈ B, then it re-sets rj = ×, and if aj − Tr ∈ B, removes distance

aj − Tr from the multiset B. The case Tr = aj−1 is handled similarly. A formal description

of the algorithm is given below.

Algorithm SWITCH

Step 1. Represent multiset B as a self-balancing binary search tree of numbers bj ∈ B. Sort

numbers in the multiset A in non-increasing order such that a1 ≤ a2 ≤ . . . ≤ a2n. Calculate

the set D(A). Initialize sequence S = (×, l1, . . . , ln, rn, . . . , r1,×) such that lj = rj = × if

aj ∈ D(A) and lj = rj = ◦ otherwise, j = 1, . . . , n. Set Tl = Tr = 0, Side = Left and j = 1.

Step 2. If aj ∈ D(A), perform the following computations. If aj − Tl ∈ B, then remove

aj − Tl from B. The removal can be done in O(log n) time. If aj − Tr ∈ B, then remove

aj − Tr from B. Re-set Tl = Tr = aj and go to Step 3. If aj 6∈ D(A), perform the following
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computations.

If Side = Left and aj − Tl ∈ B, then re-set lj := × and remove aj − Tl from B. Re-set

Tl := aj. Do not re-set Side. Go to Step 3.

If Side = Left and aj − Tl 6∈ B, then verify whether aj − Tr ∈ B. If aj − Tr ∈ B, then

remove aj − Tr from B. Irrespectively of the latter inclusion, re-set rj := ×, Side := Right

and Tr := aj. Go to Step 3.

If Side = Right and aj −Tr ∈ B, then re-set rj := × and remove aj −Tr from B. Re-set

Tr := aj. Do not re-set Side. Go to Step 3.

If Side = Right and aj − Tr 6∈ B, then verify whether aj − Tl ∈ B. If aj − Tl ∈ B, then

remove aj − Tl from B. Irrespectively of the latter inclusion, re-set lj := ×, Side := Left

and Tl := aj.

Step 3. If L/2 6∈ A and j = n or L/2 ∈ A and j = n − 1, then output sequence S and stop.

Otherwise, re-set j := j + 1 and go to Step 2.

Since the number of iterations of Step 2 does not exceed n, the running time of algorithm

SWITCH is O(n log n).

An application of algorithm SWITCH for the example in Fig. 2 is illustrated in Fig. 4.

× ××× ×Original map

0 1 2 3 4 5 6 7 8 9 10 11

× ×× ◦ ◦ ◦ ◦◦

× ××× ◦ ◦ ◦◦

× ×× × ×◦ ◦◦j = 3 (final)

j = 2

j = 1

Figure 4: Application of SWITCH for SPDP-Max with n = 3, L = 11, A = {1, 3, 5, 6, 8, 10} and B =

{1, 2, 3, 5}.

For the considered example, algorithm SWITCH finds an optimal solution, which is not

the original DNA map.

Theorem 1. Algorithm SWITCH is a (1 + n
n+2

)-approximation algorithm for SPDP-Max.

Proof. We will consider the case L/2 6∈ A. The case L/2 ∈ A can be handled similarly. Let

sequence of labels S∗ := (×, l∗1, . . . , l
∗

n, r∗n, . . . , r∗1,×) represent an arbitrary optimal solution
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to SPDP-Max or its mirror image, which is also optimal and in which (symmetric) labels l∗j

and r∗j are interchanged for each j = 1, . . . , n.

Consider an arbitrary iteration j of algorithm SWITCH. Denote by T ∗

l the distance

between point 0 and the point × to the left of l∗j closest to it in S∗. Denote by T ∗

r the

distance between point L and and the point × to the right of r∗j closest to it in S∗. Consider

the following two cases with regard to the values Tl, Tr determined with regard to the

sequence S constructed by the algorithm, and T ∗

l , T ∗

r :

Case C1: Tl = T ∗

l and Tr = T ∗

r .

Case C2: Tl = T ∗

l and Tr 6= T ∗

r , or Tr = T ∗

r and Tl 6= T ∗

l .

Since at least one of the two symmetric potential locations of each point × is occupied

in S∗ and S, and since we do not distinguish between the considered optimal sequence

and its mirror image, it is easy to notice that, in each iteration j of algorithm SWITCH,

case C1 or case C2 takes place. Furthermore, in either case, we have lj−1 = l∗j−1 = × or

rj−1 = r∗j−1 = ×. We will analyze transitions between these cases in the course of algorithm

SWITCH with regard to the number of the generated interpoint distances from B and not

from B in S. Consider j = 1. We have S = (×, . . . ,×) and S∗ = (×, . . . ,×). Thus, case C1

takes place. Now consider iteration j ≥ 2 and assume that case C1 or case C2 takes place

in iteration j − 1.

If case C1 takes place in iteration j − 1, then only the following three cases can happen

in iteration j of algorithm SWITCH:

C1.1 (C1 → C1 transition): aj ∈ D(A), see Fig. 5 for an illustration. Case C1 is

r∗j−1

rj−1

l∗j−1

lj−1

l∗j r∗j

lj rj

Tl =T ∗

l

︸ ︷︷ ︸

aj L−aj Tr =T ∗

r

︸︷︷︸

L/2

|

|× ×× × × ×◦

◦× ×××× ×S

S∗

Figure 5: Case C1.1.

maintained for the pair of sequences (S∗, S) in iteration j. The two generated interpoint

distances for S are from the multiset B.

C1.2 (C1 → C1 transition): aj 6∈ D(A) and a) (l∗j , r
∗

j ) = (lj, rj) 6= (×,×), or b) l∗j−1 =

r∗j−1 = lj−1 = rj−1 = ×, see Fig. 6 and 7.

Under condition a), case C1 is maintained for the pair of sequences (S∗, S). Under

condition b), case C1 is maintained for the pair of sequences (S∗, S) or (Mirror(S∗), S),
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r∗j−1

rj−1

l∗j−1

lj−1

l∗j r∗j
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Figure 6: Case C1.2,a).
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Figure 7: Case C1.2,b).

where Mirror(S∗) is the mirror image of S∗. The only generated interpoint distance for S

is from B.

C1.3 (C1 → C2 transition): aj 6∈ D(A) and (l∗j , r
∗

j ) 6= (lj, rj), see Fig. 8. Case C2 appears

r∗j−1

rj−1

l∗j−1

lj−1

l∗j r∗j

lj rj

Tl =T ∗

l

︸ ︷︷ ︸
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r

︸︷︷︸

L/2

|

|× ×× × ◦ ×◦

◦× ××◦× ×S

S∗

Figure 8: Case C1.3.

for the pair of sequences (Mirror(S∗), S) in iteration j. The only generated interpoint

distance might be or might be not from B. If interpoint distance aj −T ∗

l ∈ B or aj −T ∗

r ∈ B

is not generated in S, then all copies of this distance should have been generated earlier. As

we will see below, this generation can only happen in C2 → C1 transition.

If case C2 takes place in iteration j − 1, then again there are only the following three

cases to consider in iteration j of algorithm SWITCH:

C2.1 (C2 → C1 transition): aj ∈ D(A), see Fig. 9. In this case, (l∗j , r
∗

j ) = (lj, rj) =

(×,×). Case C1 appears for the pair of sequences (S∗, S) in iteration j. One of the two

generated interpoint distances for S is from the multiset B and the other distance may or

may not be from B.

C2.2 (C2 → C2 transition): aj 6∈ D(A) and a) lj−1 = l∗j−1 = ×, (l∗j , r
∗

j ) = (lj, rj) = (×, ◦),
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Figure 9: Case C2.1.

or b) rj−1 = r∗j−1 = ×, (l∗j , r
∗

j ) = (lj, rj) = (◦,×), see Fig 10 and 11. Case C2 is maintained
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Figure 10: Case C2.2,a).
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Figure 11: Case C2.2,b).

for the pair of sequences (S∗, S) in iteration j. The only generated interpoint distance for

S is from B.

C2.3 (C2 → C1 transition): aj 6∈ D(A) and a) lj−1 = l∗j−1 = ×, (l∗j , r
∗

j ) = (lj, rj) = (◦,×),

or b) rj−1 = r∗j−1 = ×, (l∗j , r
∗

j ) = (lj, rj) = (×, ◦), see Fig 12 and 13.

Case C1 appears for the pair of sequences (S∗, S) in iteration j. The only generated

interpoint distance may or may not be from B.

Thus, for the transitions C1 → C1 and C2 → C2, only interpoint distances from B can be

generated. For the transition C1 → C2, the worst case is C1.3, in which the only generated

interpoint distance is not from B, and one of the earlier transitions is C2 → C1 which

generates interpoint distance from B. Furthermore, each such transition C2 → C1 implies

at most one transition C1 → C2 which generates interpoint distance not from B. For the

transition C2 → C1, the worst case is C2.1, in which the only generated interpoint distance

is not from B. The first transition is obligatorily C1 → C1 because l∗0 = r∗0 = l0 = r0 = ×.
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Figure 12: Case C2.3,a).
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Figure 13: Case C2.3,b).

We deduce that the worst chain of transitions between cases C1 and C2 in the course

of algorithm SWITCH is C1 → C1 → (C2 → C1) → (C2 → C1) · · · (C2 → C1), where

the first two transitions C1 → C1 → C2 generate two interpoint distances from B, and

the last transition C2 → C1 generates one interpoint distance not from B. Let k be the

number of the remaining transitions in the above chain. They have the property that each

transition, which generates an interpoint distance not from B, has a counterpart transition,

which generates an interpoint distance from B. Then, in the worst case, algorithm SWITCH

will generate at least k/2+2 interpoint distances from B among all k +3 = n+1 generated

interpoint distances. Thus, its approximation ratio is ρ = k+3
k/2+2

= 1 + n
n+2

.

Since ρ < 2, Theorem 3 implies that SPDP-Max belongs to the class APX of optimization

problems.

An open research issue is whether there exists a polynomial time ρ-approximation algo-

rithm for SPDP-Max such that 1 + 1
n
≤ ρ < 1 + n

n+2
. The existence of a Polynomial Time

Approximation Scheme (PTAS) (i.e., an approximation algorithm that delivers a solution

with any given relative error ε in time polynomial in n) is an open question as well. Notice

that the strong NP-hardness of SPDP and the fact that the optimum value of SPDP-Max is

a polynomial of n imply that SPDP-Max cannot have a Fully Polynomial Time Approxima-

tion Scheme (FPTAS), unless P = NP . An FPTAS differs from a PTAS in that its running

time must be polynomial in n and 1/ε.
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4. A graph-theoretic model for SPDP

In this section, we present a graph-theoretic model for SPDP and describe its size reduc-

tion.

4.1. Notations and definitions

Given an instance of SPDP, let us construct a weighted digraph G = (V, U), where V is

a set of vertices and U ⊂ {(i, j)|i ∈ V, j ∈ V } is a set of arcs. An example of digraph G is

given in Fig. 14.
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Figure 14: Digraph G = (V,U) for SPDP with L = 12, n = 4, A = {1, 11, 3, 9, 5, 7, 5, 7} and

B = {1, 2, 2, 2, 7}.

The set of vertices V comprises two specified vertices 0 and L, which correspond to the

two ends 0 and L, respectively, of the interval [0, L], and two vertices aj and L − aj, which

correspond to the pair {aj, L− aj} ∈ A for each j = 1, . . . , n. We do not make copies of the

vertices aj and L− aj if there are two identical pairs {aj, L− aj} ∈ A. Thus, set V contains

at most 2n + 2 vertices. It can be computed in O(n) time. We call vertices aj ∈ V and

L − aj ∈ V symmetric. In order to avoid using multilevel indices, we shall skip indices in

the vertex notations. Introduce a set of vertices

VDouble := {i, L − i| two copies of i (and L − i) are present in the multiset A}.

We define the set of arcs U as follows. There exists an arc (i, j) ∈ U if and only if i ∈ V,

j ∈ V, i < j, and one of the following two conditions is satisfied: a) j 6= L − i, j − i ∈ B,

or b) j = L − i, i ∈ VDouble. Thus, there is no arc (i, L − i) if i 6∈ VDouble. In Fig. 14, there
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are no arcs (1, 11) and (3, 9) because VDouble = {5, 7}. We determine the weight of each arc

(i, j) ∈ U as di,j = j − i. Given a set of arcs X, denote the multiset of all its arc weights as

D(X). Thus,

D(U) = {di,j|(i, j) ∈ U}.

Since |U | ≤ |V |2, |V | ≤ 2n + 2 and |B| = n + 1, the set U and the multiset D(U) can be

computed in O(n3) time. We define a path P between vertices 0 and L in digraph G as a

sequence of vertices

P = (0, i1, i2, . . . , ik, L)

such that (0, i1) ∈ U, (ik, L) ∈ U and (ir, ir+1) ∈ U for r = 1, . . . , k − 1. We denote by

{P} the set of vertices in path P. With the above path, we associate the multiset of its arc

weights,

D(P ) = {d0,i1 , di1,i2 , . . . , dik−1,ik , dik,L},

and the multiset of the distances between internal vertices from the set {P}\{0, L} and

vertices 0 and L,

A(P ) = {ij, L − ij|j = 1, . . . , k}.

We call a path P feasible if A(P ) = A and D(P ) = B. It is easy to see that each feasible path

P = (0, i1, i2, . . . , in, L) corresponds to a feasible solution of SPDP, in which ir is the distance

between the end of the molecule corresponding to the point 0 and the r-th restriction site,

r = 1, . . . , n. Thus, SPDP reduces to finding feasible paths in digraph G.

It is convenient to use the following definition of a feasible path. A path P = (0, i1, i2, . . . , ik, L)

is feasible if and only if it satisfies properties (a)-(d) given below:

(a) k = n;

(b) VDouble ∪ {0, L} ⊆ {P};

(c) D(P ) = B;

(d) for any i ∈ V \(VDouble ∪ {0, L}) either i ∈ {P} or L − i ∈ {P}.

Property (d) says that a feasible path should include exactly one vertex of each pair of

symmetric vertices {aj, L − aj} ⊆ V \(VDouble ∪ {0, L}).

A similar graph can be used to represent the results of tandem mass spectrometry exper-

iments for the de novo peptide sequencing problem, see [9]. Although the graphs in [9] and
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in this paper have the same structure, problems formulated on these graphs are different.

Specifically, a path in our problem is feasible if and only if the multiset of arc weights is

equal to the multiset B, while a path in the problem in [9] is feasible if arc weights are from

the multiset B. Another difference is that we allow some symmetric vertices to be both

present in a feasible path, while the model in [9] allows at most one of them to be present in

a feasible path. The approach in [9] can be modified to be a heuristic for SPDP. However,

the required modifications will lead to the approaches presented in this paper.

4.2. Reducing graph G

Observe that if path P = (0, i1, i2, . . . , in, L) is feasible, then its symmetric path P ′ =

(0, L − in, L − in−1, . . . , L − i1, L) is feasible as well. In order to avoid constructing feasible

symmetric paths, it is sufficient to remove from the set V \(VDouble ∪ {0, L}) an arbitrary

vertex i, thus leaving its symmetric vertex L − i as a member. Let imin = min{i|i ∈

V \(VDouble ∪ {0, L})}. We remove vertex L− imin from the set V and all its incident arcs of

the form (i, L− imin) or (L− imin, j) from the set U. In the sequel, the removal of any vertex

will automatically imply the removal of all its incident arcs. In Fig. 14, vertex 11 and arcs

(9, 11) and (11, 12) will be removed. Now, due to property (d), every feasible path should

include vertex imin.

Along with the sets V and U, we shall use the adjacency list representation of digraph G

[13]. More specifically, with each vertex i ∈ V, we shall associate the set of immediate

successors, After(i) = {j|(i, j) ∈ U}, the set of immediate predecessors, Before(i) =

{j|(j, i) ∈ U}, and their cardinalities CardA(i) = |After(i)| and CardB(i) = |Before(i)|.

All the sets After(i) and Before(i) and numbers CardA(i) and CardB(i), i ∈ V, can be

computed in O(n3) time.

In digraph G, there can exist redundant vertices and arcs that do not belong to any

path connecting vertices 0 and L, and preventing arcs that, if included into a path, prevent

vertices of the set VDouble ∪ {imin} from being included into the same path. An arc (i, j) is a

preventing one if there exists vertex iD ∈ VDouble ∪ {imin} such that i < iD < j. Notice that

redundant vertices and arcs may appear after the vertex L− imin has been removed from G.

We now describe an algorithm, called REMOVE, which removes redundant vertices and

arcs and preventing arcs from the digraph G. The algorithm consists of Steps 1-4. Preventing

arcs are removed in Step 1. Redundant vertices and arcs that do not connect to vertex L or

to vertex 0 are taken away in Steps 3 and 4.
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Algorithm REMOVE

Step 1. Let VDouble ∪ {imin} = {iDr |r = 1, . . . , q}, where 0 < iD1 < iD2 < . . . < iDq < L. For

each (i, j) ∈ U, perform the following computations.

If min{iDr |i
D
r > i, r = 1, . . . , q} < j, remove preventing arc (i, j) from the set U, vertex i

from the set Before(j) and vertex j from the set After(i). Update the cardinalities of these

sets CardA(i) and CardB(j) accordingly.

Step 2. Let V = {ij|j = 1, . . . , k}, where i1 = 0, i2 < i3 < . . . < ik−1, ik = L. For each

ij ∈ V, j = 2, . . . , k, perform the following computations. If CardB(ij) = 0 then for all

t ∈ After(ij), remove ij from Before(t) and re-set CardB(t) := CardB(t) − 1.

Step 3. For each ij ∈ V, j = k−1, . . . , 1, perform the following computations. If CardA(ij) =

0 then for all t ∈ Before(ij), remove ij from After(t) and re-set CardA(t) := CardA(t)− 1.

Step 4. For each ij ∈ V, j = 2, . . . , k − 1, remove ij if CardA(ij) = 0 and CardB(ij) = 0.

The running time of algorithm REMOVE is O(n2 log |VDouble|). This algorithm reduces

the search space for a (feasible) solution of SPDP.

From now on, we assume that there is no preventing arc in digraph G, and that every

vertex and arc belongs to at least one path from 0 to L. It follows that every path from 0 to

L contains all vertices of the set VDouble ∪ {imin}, i.e., property (b) is satisfied for all paths

from 0 to L and all paths are mutually asymmetric.

5. Finding paths in digraph G

This section describes three approximation algorithms for SPDP-Max. The algorithms

search for a path in digraph G, which is close to a feasible path. They are presented in

increasing order of their complexity. Assume that the set of vertices is V = {i1, . . . , iv},

where i1 = 0, iv = L and ij < ij+1, j = 1, . . . , v − 1.

5.1. A single path algorithm with no dominance

Our first algorithm, called PATH, constructs a path from vertex 0 to vertex L in digraph

G, which satisfies property (a), i.e., it contains exactly n + 1 arcs. Property (b) is auto-

matically satisfied for such a path. The algorithm does not guarantee the feasibility of this

path because properties (c) and (d) can be violated. However, if there is exactly one path
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in digraph G satisfying properties (a) and (b), like in Fig. 14 with vertex 11 removed (to

avoid symmetric paths), then algorithm PATH solves the corresponding SPDP.

Algorithm PATH is a dynamic programming algorithm that constructs paths from vertex

0 to vertex L by scanning vertices of the set V in increasing order. With a path from vertex

0 to vertex ij, which we refer to as (0, ij)-path, we consider the number of arcs in this path,

denoted as k. We require k ≤ n + 1. If there are several (0, ij)-paths with the same number

of arcs k, only one of them is chosen for further expansion. It is clear that if there is a (0, ij)-

path with k arcs, which can be extended to a path including n+1 arcs, then any (0, ij)-path

with k arcs can be extended to such a path. Therefore, we associate a single dominating

(0, ij)-path with each number k. There is no specific rule for choosing dominating paths in

algorithm PATH.

Let Pred(ij, k) denote an immediate predecessor of vertex ij in the dominating (0, ij)-

path with k arcs. We set Pred(i1, 0) = 0 and Pred(ij, k) = −1 if there is no (0, ij)-path

with k arcs. Algorithm PATH calculates values Pred(ij, k) and outputs a (0, L)-path with

n + 1 arcs.

Algorithm PATH

Step 1. Set Pred(i1, 0) = 0 and Pred(ij, k) = −1, (ij, k) 6= (i1, 0), j = 1, . . . , v,

k = 0, 1, . . . , j − 1. Re-set j := 1.

Step 2. For all it ∈ Before(ij+1) and k ∈ {0, 1, . . . , t− 1} such that Pred(it, k) 6= −1, re-set

Pred(ij+1, k + 1) := it.

If j + 1 = v, go to Step 3. If j + 1 ≤ v − 1, re-set j := j + 1 and repeat Step 2.

Step 3. Construct a (0, L)-path P 0 = (i01, i
0
2, . . . , i

0
n+2), where i01 = 0, i0n+2 = L by the

following recursive computations: i0j = Pred(i0j+1, j), j = n + 1, n, . . . , 1.

Algorithm PATH runs in O(n3) time. The path P 0 delivered by this algorithm can be

checked for feasibility in O(n) time.

5.2. A single path algorithm with dominance

Our second algorithm, denoted by PATH-F, employs a specific rule for selecting domi-

nating (0, ij)-paths. It can be outlined as follows. With each (0, ij)-path P with k arcs, we

associate a digraph, denoted as G(P ), which is obtained from the original digraph by elimi-

nating vertices of the set {P}\{ij} and vertices L−i such that i ∈ {P} and i 6∈ VDouble∪{0}.
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A feasible path extended from P cannot include, in its extension, the eliminated vertices.

Then we apply algorithm PATH to verify whether, in digraph G(P ), there exists a path

(ij, L) including n + 1 − k arcs. If it does not exist, then path P cannot be extended to

a feasible path. We exclude it from further consideration. Let us assume that the above

mentioned path with n + 1 − k arcs exist. Denote it as PE. We verify whether the com-

plete path (P, PE) is feasible. If it is feasible, algorithm PATH-F outputs (P, PE) as a

feasible solution and stops. If it is not feasible, it is not known whether path P can be

extended to a feasible path or not. We include P in the set of candidates for a dominating

(0, ij)-path with k arcs, denoted as S(ij, k), and store its extension PE with it. After all

(0, ij)-paths with k arcs have been considered, a dominating path among them, denoted as

P ∗

(ij ,k), is selected from the set S(ij, k) such that its extension, denoted as PE∗, has the

minimum number of occurrences of symmetric vertices not from the set VDouble ∪ {L}. We

store complete path P 0
(ij ,k) := (P ∗

(ij ,k), PE∗) as a candidate solution. After the set S(iv, n+1)

has been constructed, algorithm PATH-F outputs a candidate solution with the maximum

number of arcs having weights from the set B among all available candidate solutions. For

initialization, we set S(i1, 0) = {P 0}, where P 0 is the output of algorithm PATH.

Algorithm PATH-F

Step 1. Set P ∗

(i1,0) = (i1), G(P ∗

(i1,0)) = G, P 0
(i1,0) = P 0 and P ∗

(ij ,k) = (−1), (ij, k) 6= (i1, 0),

j = 1, . . . , v, k = 0, 1, . . . , j − 1. Set S(ij, k) = φ, j = 2, . . . , v, k = 0, 1, . . . , j − 1. Re-set

j := 1.

Step 2. For all it ∈ Before(ij+1) and k ∈ {0, 1, . . . , t − 1} such that P ∗

(it,k) 6= (−1), re-

set S(ij+1, k + 1) := S(ij+1, k + 1) ∪ P ′, where P ′ = (P ∗

(it,k), ij+1). If ij+1 ∈ Vdouble, then

set G(P ′) = G(P ∗

(it,k)). Otherwise, construct digraph G(P ′) by eliminating from digraph

G(P ∗

(it,k)) vertex L − ij+1.

For k ∈ {0, 1, . . . , j−1} such that S(ij+1, k+1) 6= φ, perform the following computations.

For each P ∈ S(ij+1, k + 1), find in digraph G(P ) a (ij+1, L)-path with n + 1 − k arcs

by applying algorithm PATH. If such an extension path was not found, then eliminate P

from S(ij+1, k + 1). If such an extension path, denoted as PE, was found, then check path

(P, PE) for feasibility. If it is feasible, output this path and stop. If it is not feasible,

do not eliminate path P from S(ij+1, k + 1). Pass to consideration of another path from

S(ij+1, k + 1) as described above. After considering all paths from S(ij+1, k + 1), select a

path with the minimum number of occurrences of symmetric vertices not from VDouble ∪{L}
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in its extension as the dominating path P ∗

(ij+1,k+1). Store path P 0
(ij+1,k+1) := (P ∗

(ij+1,k+1), PE∗)

as a candidate solution, where PE∗ is the extension of P ∗

(ij+1,k+1).

If j + 1 = v, go to Step 3. If j + 1 ≤ v − 1, re-set j := j + 1 and repeat Step 2.

Step 3. Select from S(iv, n + 1) a path with the maximum number of arcs having weights

from the set B, output it and stop.

Algorithm PATH-F runs in O(n6) time because |S(ij, k)| ≤ |Before(ij)|, k = 1, . . . , n,
∑v

j=2 |Before(ij)| = |U | ≤ O(n2), and for each P ∈ S(ij, k), k = 1, . . . , j − 1, algorithm

PATH with running time O(n3) is applied once.

5.3. A multiple paths algorithm with dominance

Our third algorithm, denoted as PATH(x) where x is a positive integer number, is a

modification of algorithm PATH. It constructs at most x paths, where x is the number

of (0, L)-paths P (h) = (i
(h)
1 , . . . , i

(h)
n+2), h = 1, . . . , x, satisfying properties (a) and (b). It

then selects the best path among them. In the beginning, sets SetPred(ij, k), j = 1, . . . , v,

k = 0, 1, . . . , j − 1, are calculated, where SetPred(ij, k) is a set of immediate predecessors

of vertex ij in all (0, ij)-paths with k arcs. Path P (1) is constructed backwards by setting

i
(1)
n+2 = L and then by selecting i

(1)
j ∈ SetPred(i

(1)
j+1, j), j = n + 1, n, . . . , 1. Path P (h), h ≥ 2,

is obtained from path P (h−1) by replacing at least one vertex in the head of P (h−1) by an

appropriate new vertex. For each path P (h), we have i
(h)
n+2 = L and i

(h)
j ∈ SetPred(i

(h)
j+1, j),

j = n+1, n, . . . , 1. Vertices assigned to the paths are labeled to avoid constructing identical

paths. In the beginning, all vertices are unlabeled. We denote sij ,k = |SetPred(ij, k)|.

Algorithm PATH(x)

Step 1. Calculate si1,0 = 1 and sij ,k = 0, (ij, k) 6= (i1, 0), j = 1, . . . , v, k = 0, 1, . . . , j − 1.

Re-set j := 1.

Step 2. For all it ∈ Before(ij+1) and k = 0, 1, . . . , t − 1 such that sit,k 6= 0, add it to

SetPred(ij+1, k + 1) and re-set sij+1,k+1 := sij+1,k+1 + 1.

If j + 1 = v, go to Step 3. If j + 1 ≤ v − 1, re-set j := j + 1 and repeat Step 2.

Step 3. Construct (0, L)-paths P (h) = (i
(h)
1 , i

(h)
2 , . . . , i

(h)
n+2), where i

(h)
1 = 0, i

(h)
n+2 = L, 1 ≤ h ≤

x, by the recursive computations in Step 4. Initialize h := 1 and j := n + 1.
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Step 4. If all vertices in the set SetPred(i
(h)
j+1, j) are labeled and j = n + 1, then all (0, L)-

paths satisfying properties (a) and (b) have been constructed. Select a feasible path among

them, output it and stop.

If all vertices in the set SetPred(i
(h)
j+1, j) are labeled and j < n + 1, then remove labels

of all vertices in the set SetPred(i
(h)
j+1, j), re-set j := j + 1 and repeat Step 4.

If not all vertices in the set SetPred(i
(h)
j+1, j) are labeled, then select an unlabeled vertex

it ∈ SetPred(i
(h)
j+1, j) such that 1) it ∈ Vdouble ∪ {0, imin} or 2) it 6∈ Vdouble ∪ {0, imin} and

L − it 6∈ {i(h)
j+1, i

(h)
j+2, . . . , i

(h)
n+2}. If such a vertex does not exist, select an arbitrary unlabeled

vertex it ∈ SetPred(i
(h)
j+1, j). In the latter case, property (d) will be violated for path P (h).

The rule of selecting vertex it aims at satisfying property (d). Label selected vertex and set

i
(h)
j = it.

If j ≥ 2, then re-set j := j − 1 and repeat Step 4.

If j = 1, then (0, L)-path P (h) has been constructed. If h = x, go to Step 5. If h < x,

set P (h+1) = P (h), re-set h := h + 1 and repeat Step 4.

Step 5. Select (0, L)-path P (h), 1 ≤ h ≤ x, with the maximum number of arcs having weights

from the set B, output it and stop.

Since sij ,k ≤ 2n + 1 for all ij and k used in the algorithm PATH(x), Steps 1-3 and 5

require O(n3) time. Step 4 requires O(xn3) time. Therefore, the overall time complexity of

the algorithm is O(xn3).

Notice that the outputs of PATH, PATH-F and PATH(x) for the same digraph G can

be all different because ties in Step 2 of PATH and PATH-F and ties in Step 4 of PATH(x)

can be settled differently.

PATH, PATH-F and PATH(x) can be used to find an approximate solution of SPDP, for

which all interpoint distances are from the multiset B but the multiset of these distances

does not necessarily coincide with B, and all end distances are from the multiset A but

their multiset does not necessarily coincide with A. However, computational experiments

(described in Section 6) demonstrated that, for instances of SPDP generated using real

DNA sequences taken from [19] with 20 ≤ n ≤ 50, and for randomly generated instances

with n = 50, algorithms PATH-F and PATH(n2) always delivered an exact solution.

The algorithm PATH(x) can be modified to construct all non-congruent solutions of

SPDP. Only Step 4 of this algorithm needs to be modified for these purposes, while Step 5

should be removed. The key element for the modification is an observation that any feasible
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path from 0 to L in the digraph G is of the form

P = (i′1, . . . , i
′

n+2), where i′n+2 = L and i′j ∈ SetPred(i′j+1, j), j = n + 1, n, . . . , 1. (1)

The set of non-congruent solutions of SPDP corresponds to the set of feasible paths

P satisfying relations (1). The modification of PATH(x) is to construct the set of paths

satisfying these relations and then eliminate from this set paths that do not comply with

properties (c) and (d).

We have i′n+1 ∈ In+1 := SetPred(L, n + 1), i′n ∈ In := ∪i∈In+1
SetPred(i, n), i′n−1 ∈

In−1 := ∪i∈In
SetPred(i, n − 1), . . . , i′3 ∈ I3 := ∪i∈I4SetPred(i, 3), i′2 = imin, i′1 = 0.

The total number of paths satisfying (1) is equal to 2K , where K = 2 +
∑n+1

j=3 |Ij|.

Therefore, the total number of non-congruent solutions of SPDP does not exceed 2K .

6. Computational experiments

In this section we present the results of a set of computational experiments with the

algorithms SWITCH, PATH-F and PATH(x), and their comparison with the O(n2n) time

enumerative algorithm ENUM in [2]. We did not test algorithm PATH because it is a part

of algorithm PATH-F. Algorithm REMOVE was used as a part of either algorithm PATH-F

and PATH(x). All the considered algorithms were implemented in C++ with the use of the

STL library and The Boost Graph library [32]. The tests were run on a portable PC with

Intel Pentium M 2GHz processor and 480Mb of RAM under the Windows XP operational

system. All random numbers were generated by using uniform distribution.

The algorithms were compared against their average running times and average solution

quality (the latter makes sense for approximation algorithms only). The average solution

quality of the approximation algorithms was evaluated by three parameters: 1) the average

percentage of exact solutions found (entry %Exact in the tables below); 2) the average

percentage of correct interpoint distances from multiset B found (entry %Correct bj in the

tables below) and 3) the average percentage of correct end distances found from multiset A

(entry %Correct aj in the tables below). The best result in each experiment is indicated in

bold.

In the first set of experiments, algorithms ENUM, SWITCH, PATH-F, PATH(1) and

PATH(n2) were run for various values of n. Given n, we randomly generated interpoint

distances bj ∈ (100, 2000), j = 1, . . . , n+1, that formed the multiset B. We further assumed
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Table 1: Average run time on random data.

n Average run time, sec
ENUM SWITCH PATH-F PATH(1) PATH(n2)

50 < 0,001 < 0,001 0,002 0,001 0,004
100 0,002 < 0,001 0,012 0,011 0,128
200 0,005 < 0,001 0,48 0,084 4,21
300 0,014 < 0,001 7,23 0,25 15,4
400 0,05 < 0,001 47,7 0,5 32,9
500 0,42 < 0,001 219 0,87 58,4
600 17,22 0,001 > 10 min 1,56 126
700 > 10 min 0,001 > 10 min 2,04 174
800 > 10 min 0,001 > 10 min 3,17 328
900 > 10 min 0,001 > 10 min 4,23 494

Table 2: Percentage of exact solutions found on random data.

n Average %Exact
SWITCH PATH-F PATH(1) PATH(n2)

50 58% 100% 78% 100%
100 10% 100% 14% 96%
200 0% 56% 0% 0%
300 0% 14% 0% 0%
400 0% 0% 0% 0%
500 0% 0% 0% 0%
600 0% – 0% 0%

that oj =
∑j

i=1 bi represents the end distance between point 0 and a point corresponding to

the restriction site j in a DNA chain. The multiset A was generated accordingly. Algorithms

ENUM, SWITCH, PATH-F, PATH(1) and PATH(n2) were run for 50 instances for every

value of n. The results of the first set of experiments are given in Tables 1-4. Algorithm

PATH-F was not run for n ≥ 600 because it exceeded a 10 minute time limit.

Our second set of experiments was performed on data associated with real DNA chains

taken from the nucleotide database, [19]. In this experiment, we cut 43 DNA molecules

containing 2,000-200,000 base pairs by 168 enzymes. Then we divided distinct pairs (DNA

molecule, restriction enzyme) into groups depending on the size n of instances of SPDP

derived from these pairs. Given a sequence of nucleotides and a restriction enzyme, the

multisets A and B were determined as if we performed an ideal biochemical experiment.

Tables 5-8 present the results of our second set of experiments. Algorithm PATH-F was not
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Table 3: Average percentage of correct interpoint distances found on random data.

n Average %Correct bj

SWITCH PATH-F PATH(1) PATH(n2)
50 97,7% 100% 96,6% 100%
100 95,3% 100% 79,1% 99,9%
200 90,9% 98,4% 65% 83,2%
300 87,4% 97% 61,8% 71,2%
400 84,6% 94,3% 61,9% 67,3%
500 81,5% 92,7% 62,2% 67,9%
600 79,9% – 63,8% 66,7%
700 78,3% – 65% 67,3%
800 76,9% – 65,8% 69,7%
900 75,8% – 66,3% 69,3%

Table 4: Average percentage of correct end distances found on random data.

n Average %Correct aj

SWITCH PATH-F PATH(1) PATH(n2)
50 100% 100% 96,9% 100%
100 100% 100% 80,1% 99,9%
200 100% 99,1% 65,4% 85,2%
300 100% 98,8% 61,1% 72,6%
400 100% 97,6% 61,1% 68,1%
500 100% 97,4% 61,3% 68,7%
600 100% – 63,3% 67,5%
700 100% – 64,3% 68,2%
800 100% – 65,7% 71,7%
900 100% – 66,8% 72,3%
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Table 5: Average run time on data from GenBank.

Size of Number of Average run time, sec
instances instances ENUM SWITCH PATH-F PATH(1) PATH(n2)

20 ≤ n ≤ 50 1060 < 0,001 < 0,001 0,001 0,001 0,001
50 ≤ n ≤ 100 557 0,001 < 0,001 0,012 0,006 0,043
100 ≤ n ≤ 150 174 0,004 < 0,001 0,37 0,04 1,1
150 ≤ n ≤ 200 115 0,06 < 0,001 4,88 0,15 4,52
200 ≤ n ≤ 250 62 0,014 < 0,001 36 0,33 8,7
250 ≤ n ≤ 300 84 60,4 < 0,001 147 0,54 14,9
300 ≤ n ≤ 350 63 > 15 min < 0,001 667 0,92 26,7
350 ≤ n ≤ 400 91 > 15 min 0,001 > 15 min 1,63 34,4

Table 6: Percentage of exact solutions found on data from GenBank.

Size of Average %Exact
instances SWITCH PATH-F PATH(1) PATH(n2)

20 ≤ n ≤ 50 90% 100% 94,7% 100%
50 ≤ n ≤ 100 58,3% 98,7% 68,5% 93,3%
100 ≤ n ≤ 150 12,5% 84,5% 10,8% 51,3%
150 ≤ n ≤ 200 0% 49,6% 0% 0,32%
200 ≤ n ≤ 250 0% 13,8% 0% 0%
250 ≤ n ≤ 300 0% 0% 0% 0%
300 ≤ n ≤ 350 0% 0% 0% 0%
350 ≤ n ≤ 400 0% – 0% 0%

run for n ≥ 350 because it exceeded a 15 minute time limit.

Our experiments show that, as n grows, the quality of approximate solutions decreases.

However, for 20 ≤ n ≤ 50 and the data from GenBank and for n = 50 and random data,

algorithms PATH-F and PATH(n2) always delivered an exact solution. For n = 100 and

random data, algorithm PATH-F always delivered an exact solution. The fastest of our

approximation algorithms is SWITCH. For 20 ≤ n ≤ 50 and data from GenBank, it found

90% of exact solutions and the average percentage of correct interpoint distances was 99%.

In the experiments with larger n (600 ≤ n ≤ 900) and random instances, algorithm

SWITCH returned the best average results. Moreover, it did it with the shortest computa-

tional time. It always reached more than 75% of correct interpoint distances with 100% of

correct end distances. It seems that, for data coming from real DNA sequences, SWITCH

could be recognized as the best algorithm on average. It is still the fastest and produces ex-

act end distances. However, in terms of %Correct bj, algorithm PATH-F generated the best
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Table 7: Average percentage of correct interpoint distances found on data from GenBank.

Size of Average %Correct bj

instances SWITCH PATH-F PATH(1) PATH(n2)
20 ≤ n ≤ 50 99% 100% 99,1% 100%
50 ≤ n ≤ 100 97,5% 99,9% 93,9% 99,3%
100 ≤ n ≤ 150 94,6% 98,6% 77,8% 94%
150 ≤ n ≤ 200 90,1% 96,3% 68,6% 83,4%
200 ≤ n ≤ 250 88,2% 93,3% 67,9% 77,1%
250 ≤ n ≤ 300 83,5% 88,5% 66,9% 72%
300 ≤ n ≤ 350 80,9% 86,3% 67,8% 71,4%
350 ≤ n ≤ 400 79,7% – 69,8% 72,1%

Table 8: Average percentage of correct end distances found on data from GenBank.

Size of Average %Correct aj

instances SWITCH PATH-F PATH(1) PATH(n2)
20 ≤ n ≤ 50 100% 100% 99,2% 100%
50 ≤ n ≤ 100 100% 99,9% 94,5% 99,5%
100 ≤ n ≤ 150 100% 99,2% 78,5% 95%
150 ≤ n ≤ 200 100% 98% 68,8% 85,7%
200 ≤ n ≤ 250 100% 96,6% 68,6% 79,1%
250 ≤ n ≤ 300 100% 94,7% 67,9% 74%
300 ≤ n ≤ 350 100% 92,3% 69,3% 73,8%
350 ≤ n ≤ 400 100% – 72,8% 75,6%
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solutions. Therefore, the latter can also be considered as a good tool for solving real-world

SPDP instances.

Another observation from the experimental data is that algorithms PATH-F and PATH(1)

solve randomly generated instances of the same size n faster than instances based on real

data. It is also true for algorithm PATH(n2), but to a lesser extent. The reason might be

that interpoint distances in real data instances are not uniformly distributed. An analysis

of real data instances in our experiments shows that the interpoint distances follow an expo-

nential distribution rather than a uniform one, and most of the distances are relatively small.

This leads to larger graphs for real data instances because there are more chances that an

additional arc between any two vertices will appear, thus making the model more difficult

to solve. The difference in the running times on real data and randomly generated instances

of the algorithm PATH(n2) is smaller because the time needed for graph construction takes

a smaller part of its total running time.

7. Conclusions

In this paper, we have shown that SPDP-Min cannot be approximated in pseudo-

polynomial time with any finite approximation ratio ρ, and SPDP-Max cannot be approx-

imated in pseudo-polynomial time with ρ < 1 + 1
n
, unless P = NP . An approximation

algorithm, called SWITCH, for SPDP-Max has been presented, which provides ρ = 1+ n
n+2

,

and runs in O(n log n) time. A graph-theoretic model for SPDP has been suggested, and

an algorithm, called REMOVE, based on this model has been developed. This reduces the

search space for solutions of SPDP, and runs in O(n2 log n) time. Three graph-theoretic

polynomial time algorithms for finding an approximate solution of SPDP have been pre-

sented. Computational experiments demonstrated that, for instances of SPDP generated

using real DNA sequences from GenBank with 20 ≤ n ≤ 50, and for randomly generated

instances with n = 50, two of these algorithms always delivered an exact solution.

Two theoretical research issues related to the approximation of SPDP are left open:

the existence of a polynomial time ρ-approximation algorithm for SPDP-Max such that

1 + 1
n
≤ ρ < 1 + n

n+2
, and the existence of a PTAS for this problem. Resolving these issues

is of interest for future research. Furthermore, the development of heuristic algorithms for

SPDP that behave well on real-life data has a practical value. Here, one could use an

interesting evolutionary approach as discussed in [22]. In the general area of partial digest

29



models and methods, the computational complexity of the error-free Partial Digest Problem

is yet to be established [17].
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