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Abstract

Labeled digraphs, thanks to their special properties, are widely used in modeling real-world problems. Starting
from de Bruijn graphs, they were used, among others, in modeling communication networks, architecture of parallel
computers, or — in the area of bioinformatics — DNA sequencing and assembly problems. One of their most
important property is polynomial-time solvability of the Hamiltonian cycle/path problem, which makes these graphs
especially useful as computational models. The classification presented here shows relations between subclasses of
labeled digraphs, such as de Bruijn graphs, DNA graphs and others, and their connection with adjoints and quasi-
adjoint graphs. The most recently defined class of quasi-adjoint graphs has a widest applicability, since it contains
as subclasses all the de Bruijn-based labeled digraphs considered in this paper. The current work can be treated as
a support in choosing an appropriate combinatorial model, resulting in polynomial time solution of problems related
to searching for the Hamiltonian cycle or path, which are strongly NP-hard in general.

Keywords: directed line graph, quasi-adjoint graph, DNA graph, alphabet overlap digraph, Hamiltonian cycle/path
problem, DNA sequence assembly

1. Introduction

Labels in graphs can take various forms, here the interest is focused on labels restricted to the form first defined by
de Bruijn in 1946 [17]. They are finite strings of equal lengths over an alphabet, attributed to vertices in such a manner
that labels of adjacent vertices overlap. Overlapping depends on edge directions — the suffix of length k − 1 of the
predecessor’s label is equal to the prefix of the successor’s label, where k is the label length — thus graphs examined5

in this context are directed. All occurrences of such overlaps of vertex labels are represented by arcs in these graphs.
The restriction on composition of labels in a neighborhood entails a special structure of such graphs. Sets of

immediate successors of any two vertices in the graph must be the same or disjoint. Further restrictions are present in
subclasses of the general class. De Bruijn graphs are one of the subclasses where all possible labels of a given length,
constructed over a given alphabet, are associated with vertices. A structure of the de Bruijn graphs has been useful, for10

example, in modeling communication networks. Other subclasses, DNA graphs and alphabet overlap digraphs, have
been used in bioinformatics as models of DNA sequencing and assembly problems. All the labeled graphs and, more
broadly, quasi-adjoint graphs are polynomial-time solvable instances of the problem of searching for the Hamiltonian
cycle or Hamiltonian path, while in general the problems are computationally hard (strongly NP-hard).

This polynomial time solvability of the Hamiltonian path problem made graphs of such a kind especially suitable15

for reconstructing linear structures of DNA and RNA. One of the former approaches, sequencing by hybridization,
became an inspiration for defining new graph classes and for research in this area. The process of sequencing by
hybridization, in its computational part, consists in linear ordering of short sequences of nucleotides (oligonucleotides,
k-mers) given at the input in such a way, that a longer sequence is obtained and each two input sequences neighboring
in the result overlap on k − 1 nucleotides. Two classical approaches proposed by Lysov et al. [24] and Pevzner [27]20

showed that, in the context of DNA sequencing, the problems of searching for the Hamiltonian path and for the
Eulerian path are equivalent. This fact generated an important question of computational complexity nature and
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resulted in a series of papers, e.g. [10, 26, 19, 22, 14, 23, 13]. The graphs used in these approaches were later assigned
to the classes of DNA graphs (Lysov graphs) and subgraphs of de Bruijn graphs (Pevzner graphs).

The algorithmic part of sequencing by hybridization is basically very similar to current algorithmic approaches25

solving the DNA assembly problem. Novel next-generation sequencing methods produce great volumes of reads
which can be treated somehow similarly as oligonucleotides in sequencing by hybridization (now on a much larger
scale). The reads being decomposed in assembly algorithms into series of shorter k-mers resemble oligonucleotides
even more. Therefore, the graph models from the computational part of the sequencing process are now widely
applied in sequence assembly. These DNA assembly methods which refer to models from graph theory can be roughly30

divided into two groups: one exploiting models “reads on vertices”, i.e. DNA graphs-like (more popular previously,
see e.g. [20]), the second one basing on the Pevzner graphs, with models of type “(decomposed) reads on arcs” (more
popular nowadays, see e.g. [25]). Due to the presence of sequencing errors in data and data incompleteness, these
models only approximately match the original problems of searching for the Hamiltonian path or the Eulerian path,
respectively, in an appropriate graph.35

The classification presented here shows relations between subclasses of labeled digraphs, such as de Bruijn graphs,
DNA graphs and others, and their connection with adjoints and quasi-adjoint graphs. Since it provides important
information about polynomial time solvability of the Hamiltonian path and cycle problems in these graphs, it is
especially useful as a support in the process of choosing an appropriate combinatorial model for a real-world problem.

The graphs systematized in the paper were used in applications in their labeled form, but some of the classes are40

defined without referring to labels. In fact, these graphs do not need to be labeled and they can be viewed as labelable
as well.

The organization of the paper is as follows. In Section 2 all the graph classes are defined. Section 3 contains the
systematization together with a proof of its correctness. In Section 4 the solvability of the Hamiltonian cycle problem
in the mentioned graphs is discussed. A conclusion is given in Section 5.45

2. Definitions

The following statements refer to directed graphs and 1-graphs (graphs having no multiple arcs), unless stated
otherwise. Throughout the paper a standard terminology from graph theory is used, see e.g. [5, 15]. Let V stands for
the set of vertices of a graph G = (V, A) and A for its set of arcs, l(v) for the label of vertex v, sufi(s) for the suffix of
length i of string s, and prei(s) for the prefix of length i of s.50

De Bruijn graphs are labeled digraphs, which are complete with respect to the size of an alphabet and the length
of labels [17]. For an alphabet of size α and labels of constant length k (k > 1, α > 0), de Bruijn graph B(α, k) has αk

vertices, every one labeled by a different word over the alphabet. For all u, v ∈ V , where |V | = αk, (u , v⇒ l(u) , l(v))
and

(
(u, v) ∈ A⇔ sufk−1(l(u)) = prek−1(l(v))

)
.

DNA graphs (Lysov graphs) are graphs used in modeling the problem of DNA sequencing by hybridization. The55

alphabet is restricted to four letters standing for four nucleotides encoding, within a DNA, genetic information of
an organism. Labels of vertices represent short DNA sequences of equal length k and there is the assumption that
all sequences are different. The set of input DNA sequences is denoted by S . Arcs show possible overlaps on k − 1
letters of the sequences from S and paths in a DNA graph correspond to longer DNA chains. A proper solution to the
DNA sequencing problem, if no experimental error is assumed to be present in the instance, is the Hamiltonian path in60

the graph [24]. In a DNA graph, for all u, v ∈ V , (u , v⇒ l(u) , l(v)) and
(
(u, v) ∈ A⇔ sufk−1(l(u)) = prek−1(l(v))

)
.

DNA graphs are vertex-induced subgraphs of de Bruijn graphs with α = 4 [10].
Pevzner graphs realize a different model of DNA sequencing by hybridization. There, each k-mer from the input

set S is associated with an arc which goes from a vertex labeled by its prefix to a vertex labeled by its suffix, the
vertex labels having length k − 1. A solution to the problem is the Eulerian path in the graph [27]. In a Pevzner graph,65

V = {prek−1(s), sufk−1(s) | s ∈ S } and A = {(prek−1(s), sufk−1(s)) | s ∈ S }. Pevzner graphs are subgraphs of DNA graphs,
thus in consequence, subgraphs of de Bruijn graphs (edge-induced). The class of Pevzner graphs does not belong as
a whole to the class of labeled/DNA graphs, because there is not 1–1 correspondence between the presence of arcs in
such a graph and the overlaps of vertex labels.

As defined in [5] in the context of directed graphs, adjoint G = (V, A) of a graph H = (U,V) is a 1-graph whose70

vertices represent arcs of H, and which has arc (u, v) if and only if the head of arc u in H is the tail of arc v. H is not
necessarily a 1-graph. If H is a 1-graph, its adjoint G is a directed line graph [10].
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1-graph G is an adjoint if and only if the following property is satisfied for all u, v ∈ V:

N+(u) ∩ N+(v) , ∅ ⇒ N+(u) = N+(v),

where N+(u) is the set of immediate successors of vertex u [5]. 1-graph G is a directed line graph if and only if, for75

all u, v ∈ V , the following property is satisfied:

N+(u) ∩ N+(v) , ∅ ⇒ N+(u) = N+(v) ∧

N−(u) ∩ N−(v) = ∅,

where N−(u) is the set of immediate predecessors of vertex u [10].
A directed line graph is such an adjoint which does not contain as a subgraph any of the structures present in the

left part of Fig. 1 [10]. These structures, after the transformation to an original graph H, are represented by multiple80

arcs. Therefore, H would be then a multigraph.

Figure 1: Subgraphs which can be a part of an adjoint but are not present in directed line graphs (on the left) and corresponding structures with
parallel arcs in an original graph (on the right)

The graph constructed in the method of Lysov et al. is a directed line graph of the Pevzner graph for the same set
of input sequences S .

According to definitions in [10], a directed 1-graph G belongs to class L α
k (can be (α, k)-labeled) if, for all u, v ∈ V ,

(u , v⇒ l(u) , l(v)) and
(
(u, v) ∈ A⇔ sufk−1(l(u)) = prek−1(l(v))

)
, where k > 1 is the length of labels and α > 0 is85

the alphabet size. Labeled graphs (uniquely labeled graphs) are these graphs which belong to a class L α
k for some

α and k. Graphs satisfying the above requirements except the condition that labels must be different are called non-
uniquely labeled graphs. Graphs from classes L 4

k are DNA graphs. De Bruijn graphs B(α, k) are ‘complete’ labeled
graphs from L α

k , for any k and α (‘complete’ in the sense of containing all possible labels of given parameters).
Properties of graphs from classes L α

k (k > 1, α > 0) were studied in a series of papers, see e.g. [10, 8, 26, 19, 22,90

23]. The most interesting one from the current point of view is the theorem from [10], that a graph is a directed line
graph if and only if it belongs to class L ∞

2 (i.e. it can be labeled over an alphabet of unbounded size with labels of
length 2). Completed with another theorem from that paper, it leads to the conclusion that the classes of directed line
graphs and graphs that can be (α, k)-labeled (for all α > 0 and k > 1) are the same.

In [19] a self-adjoint was defined, as a graph isomorphic to its adjoint. In [18] the idea of alphabet overlap graphs95

was introduced. They are undirected graphs similar to de Bruijn graphs in the sense of completeness of their vertex set
and overlapping of labels, but undirected edges replace arcs and edges corresponding to shifts of labels greater than
one position are allowed. On the basis of this definition, alphabet overlap digraphs were proposed as a generalization
of de Bruijn graphs [23]. Given three integers, α ≥ 1, k ≥ 2 and 1 ≤ i < k, alphabet overlap digraph O(α, k; i) is defined
as a graph labeled with all possible words of length k over an alphabet of size α, where i is a fixed shift in overlaps100

of vertex labels. For all u, v ∈ V , where |V | = αk, (u , v⇒ l(u) , l(v)) and
(
(u, v) ∈ A⇔ sufk−i(l(u)) = prek−i(l(v))

)
.

In [21] the same graphs but with 1 ≤ i ≤ k were defined as lexical graphs and their vertex-induced subgraphs as
base-labeled graphs.

In Section 3 the relationship between the above digraphs is shown. The relations described in Section 4 need two
additional definitions.105

Digraph G is a quasi-adjoint graph if and only if, for all u, v ∈ V , the following property holds [14]:

N+(u) ∩ N+(v) , ∅ ⇒ N+(u) = N+(v) ∨

N+(u) ⊂ N+(v) ∨

N+(v) ⊂ N+(u).
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Quasi-adjoint graphs, unlike adjoints, can be multigraphs.
A set of vertex labels of digraph G constitutes the injective overlap labeling if and only if they have the same

length k and, for all u, v ∈ V , (u , v⇒ l(u) , l(v)) and
(
(u, v) ∈ A⇔ sufk−i(l(u)) = prek−i(l(v))

)
, where 1 ≤ i < k and110

i is not fixed within a graph [16].

3. Classification

The classes of labeled digraphs are aggregated in Fig. 2.

self-adjoints

alphabet overlap digraphs

labeled graphs = directed line graphs

non-uniquely labeled graphs = adjoints

DNA graphs

de Bruijn graphs

Figure 2: Classes of de Bruijn-based labeled digraphs

Theorem. The relations between the digraph classes: de Bruijn graphs B, DNA graphs Gd, labeled graphs L , directed115

line graphs Gl, non-uniquely labeled graphs L̃ , adjoints Ga, self-adjoints Gs, and alphabet overlap digraphs O , are
characterized by the following properties (presented together in Fig. 2).
(A) B ∩ Gd , ∅,

B ∩ Gs , ∅,
Gd ∩ Gs , ∅,
B ∩ Gd ∩ Gs , ∅,
B ∩ Gs ⊂ B ∩ Gd,
B ∩ Gs ⊂ Gd ∩ Gs.

(B) L = Gl,
B ⊂ Gl,
Gd ⊂ Gl,
Gs ⊂ Gl.

(C) L̃ = Ga,
Gl ⊂ Ga,
O ⊂ Ga.

120

(D) B ⊂ O ,
O ∩ (Gd \B) = ∅,
O ∩ (Gs \B) = ∅.

(E) (O \B) ∩ Gl , ∅,
(O \B) ∩ (Ga \ Gl) , ∅,
(Ga \ Gl) \ O , ∅,
((Gl \B) \ Gd) \ Gs , ∅.
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Proof. (A) The common part of the classes of de Bruijn graphs and DNA graphs contains ‘complete’ (in the de Bruijn
sense) labeled graphs with labels over an alphabet of size at most 4. The alphabet size can be less than 4, because
a graph belonging to L α

k belongs also to L β
k , α < β [10]. A de Bruijn graph rarely is a self-adjoint, if and only125

if α = 1 (thus, it is also a DNA graph). It is then a single vertex with a self-loop, where the value of k is arbitrary. In
other cases the de Bruijn graph contains (from the definition) more arcs than vertices, therefore, its adjoint cannot be
isomorphic to it. An example graph from the intersection of the classes of DNA graphs and self-adjoints, which is not
a de Bruijn graph, is shown in Fig. 3, where also other example graphs are visualized.

self-adjoints

DNA graphsde Bruijn graphs

B(5,2)

Figure 3: Example graphs from subclasses analyzed in part A of the theorem. De Bruijn graphs outside DNA graphs are the ones built with α > 4,
with the example B(5, 2) put symbolically due to its size

(B) The equivalence of the classes of directed line graphs and labeled graphs was proven in [10] and quoted in130

Section 2. Self-adjoints are adjoints, according to the definition. Furthermore, they all must be line graphs; otherwise,
they would have multiple arcs and that is inadmissible in adjoints (original graphs of adjoints not being directed line
graphs are multigraphs). As de Bruijn graphs and DNA graphs can be uniquely labeled (see definitions), these classes
also belong to directed line graphs. An example of a directed line graph outside the classes of de Bruijn graphs, DNA
graphs and self-adjoints, is shown in Fig. 4. It cannot be a DNA graph, because it must be labeled over, at least,135

5-letter alphabet (it has 5 self-loops). It cannot be a de Bruijn graph, because for the 5-letter alphabet we would expect
at least 25 vertices. And it cannot be a self-adjoint, because it has more arcs than vertices. On the other hand, a set of
its labels presented in the example below the proof shows that it can be uniquely labeled.
(C) The equivalence of the classes of adjoints and non-uniquely labeled graphs was proven in [10]. An adjoint not
being a directed line graph cannot be uniquely labeled, since every one such a graph contains at least one structure140

resulting in multiple arcs in its original graph H, see Fig. 1. Vertices in these structures will have duplicated labels
corresponding to parallel arcs in an original graph. An alphabet overlap digraph always is an adjoint, because with the
same value of its parameter i all pairs of vertices in the graph have sets of their immediate successors either disjoint or
the same. An example of an adjoint not being an alphabet overlap digraph nor a directed line graph is shown in Fig. 4.
Because of a subgraph presented in Fig. 1, it cannot be a directed line graph, and cannot be an alphabet overlap digraph145

due to too small number of vertices. For a smallest alphabet of size 2, we would expect at least 4 vertices. On the
other hand, a set of example labels showing that the graph can be non-uniquely labeled is presented below the proof.
(D) From the respective definitions we see, that de Bruijn graphs B(α, k) constitute subclass O(α, k; 1) of alphabet
overlap digraphs. (Let us note that the same graph can be characterized by different parameters as an alphabet overlap
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self-adjoints

alphabet overlap digraphs

labeled graphs = directed line graphs

non-uniquely labeled graphs = adjoints

DNA graphs

de Bruijn graphs

O(2,3;2)
O(2,5;2)

Figure 4: Example graphs from subclasses analyzed in parts B–E of the theorem. Alphabet overlap digraphs O(2, 3; 2) and O(2, 5; 2) are put
symbolically due to their size

digraph. One of the examples is a single loop, which can be seen as any of the graphs O(1, k; i), for all k and i.150

Another example is the pair O(4, 2; 1) and O(2, 4; 2) resulting in the same structure. Therefore, a de Bruijn graph can
be formally written also as an alphabet overlap digraph with parameter i > 1.) All graphs O(α, k; i) with α > 1 contain
more arcs than vertices, thus they cannot be self-adjoints. All alphabet overlap digraphs which can be labeled as DNA
graphs (i.e. with labels of adjacent vertices overlapping on k − 1 positions) are also de Bruijn graphs.
(E) One of the alphabet overlap digraphs not being a de Bruijn graph but belonging to directed line graphs is O(2, 5; 2).155

As an alphabet overlap digraph it is an adjoint and does not contain any of the structures from the left part of Fig. 1.
One of the alphabet overlap digraphs being an adjoint but not a directed line graph is O(2, 3; 2). It contains as
a subgraph the first structure from the left part of Fig. 1. In Fig. 4 there are shown example elements of other
subclasses mentioned in part E of the theorem.

An example assignment of labels to vertices of graphs presented in Fig. 3 is as follows. The self-loop can be160

labeled with AA, the set of five loops with AA, BB, CC, DD, and EE. The DNA graph being also a de Bruijn graph can
have AA, AC, CC, and CA as labels (with AA and CC at self-loops). The DNA graph being also a self-adjoint can have
labels AC, CG, GT, and TC, where AC is assigned to the vertex with zero indegree. The DNA graph being outside the
classes of de Bruijn graphs and self-adjoints can be labeled with AA, AC, CT, and TA. The graph containing self-loops
in Fig. 4 may have assigned the labels AA, BB, CC, DD, EE, and DE. The remaining graph in Fig. 4 can be labeled165

with AB, AB, and BA.
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4. Solvability of HCP

The Hamiltonian cycle problem (HCP) is frequently studied for its significance in both theoretical and practical
branches of computer science. It is one of the best known combinatorial problems, commonly used for modeling
more complex and real-life problems. The same concerns the Hamiltonian path problem. Both are strongly NP-170

complete and it is a strong motivation for discovering classes of graphs being polynomial-time solvable instances of
these problems. While many papers were dedicated to classes of undirected graphs easy from the point of view of
searching for HCP, analogous classes of directed graphs have not been so widely studied (see e.g. [4, 3]).

For directed graphs, the Hamiltonian cycle/path problem is easily solvable in an adjoint by transforming it into its
original graph (H) and then by searching for the Eulerian cycle/path within it. The existence of the Eulerian cycle/path175

in the original directed graph is the necessary and sufficient condition of the existence of the Hamiltonian cycle/path in
its adjoint [10]. What is interesting, this transformation does not work for undirected graphs [6], thus works utilizing
this transformation must be restricted to directed graphs.

The widest class of digraphs, found so far, ‘easy’ for HCP and containing the labeled graphs, is the class of quasi-
adjoint graphs [14]. It is a superclass of, among others, adjoints and graphs modeling the problem of isothermic DNA180

sequencing by hybridization. (For description of the latter problem and model see [11], the problem introduced in [9].
Such graphs can be either directed line graphs, adjoints not being directed line graphs, or can be outside adjoints;
however, they always are 1-graphs.) The quasi-adjoint graphs are no longer labeled (in the de Bruijn sense) because
of lack of the property that, for any pair of vertices, sets of their immediate successors are the same or disjoint (see
the definition in Section 2). The recognition whether a graph is a quasi-adjoint graph can be done in O(n3) time185

and an exact algorithm solving the Hamiltonian cycle problem within it works in O(n2 + m2) time, where n is the
number of its vertices, m the number of arcs. The algorithm also utilizes a transformation of a graph G into its original
graph H, but this time it is more complicated and includes inserting extra structures (the numbers of vertices before
the transformation and arcs after the transformation differ) [14].

The same algorithm can be used for solving the Hamiltonian path problem. If we do not know the first and last190

vertices of the path, we simply run the algorithm at most O(n2) times with successive pairs of vertices taken as the
ends of the path. In one such run, all arcs incoming to the first vertex are removed from the graph, as well as all arcs
outgoing from the last vertex, and the arc from the last vertex to the first one is added. If the initial graph is a quasi-
adjoint graph, after this modification it still belongs to that class. Sometimes a graph not being a quasi-adjoint graph
becomes such a graph due to the modification, but it does not change the answer to the Hamiltonian path problem195

(only these arcs are removed, which will never appear in any solution).
It should be noted that there are works somehow related to the graph transformation considered here. Blais and

Laporte dealed with a transformation for directed, undirected, and mixed graphs, related to the generalized routing
problem [7]. The transformation replaces vertices, arcs and edges of the initial graph by vertices in a new complete
weighted digraph, so it is carried out inversely to the one for adjoints or quasi-adjoint graphs. This approach preserves200

computational hardness of the problems before and after the transformation. Apollonio and Franciosa defined and
analyzed partial directed line graphs in [1]. These graphs are subgraphs of directed line graphs and constitute a su-
perclass of the latter. There, a minimum completion algorithm was proposed which transforms a partial directed line
graph to a directed line graph. However, it does not keep the property of the existence of the Hamiltonian cycle in the
graph before and after the completion. This concept was continued in path partial directed line graphs involved in205

the theory of directed path families [2].
Digraphs possessing the injective overlap labeling (the definition in Section 2) do not have such a relation of sets

of successors as adjoints and quasi-adjoint graphs have. There, overlaps are allowed to be variable in size within one
digraph. A vertex labeled, for example, with ABC can have arcs outgoing to BCD and CEF, while from BAC arcs
can go to CEF and ACD. Thus, the useful transformation vertex-arc, which changes the computational complexity210

of HCP, cannot be applied to such graphs. The length k of labels in the injective overlap labeling was investigated
by Chikhi and co-authors in [16], where they showed that the parameter readability (which is the smallest possible k)
for digraphs has the lower and upper bounds expressed by Ω(n) and O(2n), respectively. They posed open questions,
one of them being “given a digraph, is it NP-hard to compute its readability?”. Somewhat similar questions were
solved for graphs from classes L α

k . In [26] three problems were proven to be NP-hard: to decide whether a digraph215

belongs to L α
k for a given α and any fixed k ≥ 3; to decide whether a digraph belongs to L α

k for a given k and any
fixed α ≥ 3; to decide whether a digraph belongs to L α

∞ for any fixed α ≥ 3. A result on a maximum length of labels
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for unbounded alphabet was given in [8], where it was proven that G ∈ L ∞
2n ⇔ G ∈ L ∞

k for every k ≥ 2. That is, the
length of labels has no upper bound if the graph can be labeled with k = 2n, which is verified in polynomial time.

In [12] a systematization of several classes of digraphs with reference to HCP solvability was provided. The220

currently analyzed classes from Fig. 2, as subclasses of the quasi-adjoint graphs, are instances of HCP solvable in
polynomial time.

5. Conclusion

There are a number of classes of graphs labelable in the de Bruijn sense with a practical application, among
others, in bioinformatics. These graphs are not only nice theoretical models of real-world problems, but, first and225

foremost, they provide exact polynomial-time solutions of the problems recalling the Hamiltonian cycle or path.
The class of quasi-adjoint graphs, as the widest class considered in this context, is potentially most useful. The
classification presented here organizes subclasses of the quasi-adjoint graphs and helps researchers to choose an
appropriate combinatorial model.
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