Multiple Criteria Decision Aiding in action
Decision Deck & diviz

Miłosz Kadziński
milosz.kadzinski@cs.put.poznan.pl
1: Institute of Computing Science, Poznan University of Technology, Poznań, Poland
2: Decision Deck Consortium
3: EURO Working Group on MCDA & International MCDM Society
4: Participant of MCDA/M Summer School in Paris (2010)
How does software situation look in MCDA?
- many methods / software
- great need for unified software framework

Decision Deck – **Decision what?**
- XMCDA, MCDA web services, diviz
- **diviz**: design, execution and deployment tool
- live demo and ”**hands on training**”

A bit of methodological summary for illustrative purpose
- focus on value- and outranking based methods
- ”reinvent” methods on your own

www.cs.put.poznan.pl/mkadzinski/MCDASummerSchool/
Alternatives are evaluated on multiple preference dimensions (criteria, attributes)

Help to work out the recommendation, i.e. to determine the best alternatives, rank them or assign to ordered classes

By taking into account the preferences of the decision maker

INPUT

\[A = \text{set of alternatives} \]

\[G = \text{set of criteria} \]

OUTPUT

\[g_1, g_2, g_3, g_4 \]

ranking

\[w \quad u \quad a \]

\[v \quad y \quad d \quad o \quad e \]

\[h \quad b \quad t \quad p \]
Software situation in MCDA

- many different methods
- many **separate** software products
 - heterogeneous user interfaces
- no standard data format and unified software to test the same problem on various methods
- many algorithms **not easily available**
- often **not free** (financial and open source)
- existing MCDA methods cannot communicate
MCDA software overview

UTA
- UTA+, Visual UTA, Right Choice, DECERNS, UTADIS

ELECTRE
- Electre Is, Electre III-IV, Electre Tri, IRIS, MCDA-ULaval

AHP/ANP
- Make It Rational, Web HIPRE, Expert Choice, Decision Lens, Super Decision

PROMETHEE
- Decision Lab, D-Sight, Smart Picker Pro, Visual Promethee, DECERNS

JSMAA
- VIP (MAVT)
- M-MACBETH
- jMAF (DRSA)
- 1000 minds Quantum-GIS plugins

Check software sections at the websites of EWG-MCDA and MCDM society:

- http://www.mcdmsociety.org/

Decision Deck project
aims at collaboratively developing open source software tools implementing
Multiple Criteria Decision Aiding methods and concepts

Its **purpose** is to provide effective tools to three types of users:

- **practitioners** (consultants / analysts) who use MCDA tools to support actual decision makers
- **researchers** who want to test, compare or develop methods
- **teachers and students** who present / use MCDA methods in courses

Promote MCDA research and make it more visible to the ”outside” world
How are MCDA methods designed?

- MCDA methods are **sequences** of *elementary* algorithms
- MCDA methods *share* a lot of *similarities*
- MCDA methods need to be *adaptable* to the given practical case

Decision
Recommendation
Focus on three initiatives from Decision Deck project

XMCDA – to make algorithms interoperable
- a data standard for MCDA
- standardized format to represent objects and data structures issued from MCDA

XMCDA web services –
- to make algorithms easily available
 - algorithmic components or complete MCDA methods accessible online
 - reuse of existing implementations

diviz – to create complex algorithmic workflows
- open source Java client and server
- web services compositions, workflow management and deployment
Just download it and run - www.diviz.org/download

- no need to install (although possible, for different operating systems)
- **platform independent jar**
- requirement for the **Internet access** and Java installed (=commonplace)
Lecture aims

- **diviz**
 - open source Java client and server
 - a tool for designing complex MCDA workflows via the XMCDA web-services

- study a *classical* multiple criteria decision problem: **Thierry’s car choice problem**
- **learn** how to use the **diviz software**
- **use** diviz as a decision support tool
The data = Thierry’s choice problem

- In 1993, Thierry, a student aged 21, is passionate about sports cars and wishes to buy a middle range 4 years old car with a powerful engine.

- He selects three viewpoints related to cost (criterion g_1), performance of the engine (criteria g_2 and g_3) and safety (criteria g_4 and g_5).

- The cost criterion g_1 (€) and the performance criteria acceleration g_2 (seconds) and pick up g_3 (seconds) have to be minimized, whereas the safety criteria brakes g_4 and road-hold g_5 have to be maximized.

- The values of the safety criteria are average evaluations obtained from multiple qualitative evaluations which have been re-coded as integers between 0 and 4.

Table: Which car should Thierry buy?

five criteria

<table>
<thead>
<tr>
<th>car ID</th>
<th>car name</th>
<th>cost ((g1, \text{ €}))</th>
<th>accel. ((g2, \text{ s}))</th>
<th>pick up ((g3, \text{ s}))</th>
<th>brakes ((g4))</th>
<th>road-hold ((g5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>a01</td>
<td>Tipo</td>
<td>18342</td>
<td>30.7</td>
<td>37.2</td>
<td>2.33</td>
<td>3</td>
</tr>
<tr>
<td>a02</td>
<td>Alfa</td>
<td>15335</td>
<td>30.2</td>
<td>41.6</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>a03</td>
<td>Sunny</td>
<td>16973</td>
<td>29</td>
<td>34.9</td>
<td>2.66</td>
<td>2.5</td>
</tr>
<tr>
<td>a04</td>
<td>Mazda</td>
<td>15460</td>
<td>30.4</td>
<td>35.8</td>
<td>1.66</td>
<td>1.5</td>
</tr>
<tr>
<td>a05</td>
<td>Colt</td>
<td>15131</td>
<td>29.7</td>
<td>35.6</td>
<td>1.66</td>
<td>1.75</td>
</tr>
<tr>
<td>a06</td>
<td>Corolla</td>
<td>13841</td>
<td>30.8</td>
<td>36.5</td>
<td>1.33</td>
<td>2</td>
</tr>
<tr>
<td>a07</td>
<td>Civic</td>
<td>18971</td>
<td>28</td>
<td>35.6</td>
<td>2.33</td>
<td>2</td>
</tr>
<tr>
<td>a08</td>
<td>Astra</td>
<td>18319</td>
<td>28.9</td>
<td>35.3</td>
<td>1.66</td>
<td>2</td>
</tr>
<tr>
<td>a09</td>
<td>Escort</td>
<td>19800</td>
<td>29.4</td>
<td>34.7</td>
<td>2</td>
<td>1.75</td>
</tr>
<tr>
<td>a10</td>
<td>R19</td>
<td>16966</td>
<td>30</td>
<td>37.7</td>
<td>2.33</td>
<td>3.25</td>
</tr>
<tr>
<td>a11</td>
<td>P309-16</td>
<td>17537</td>
<td>28.3</td>
<td>34.8</td>
<td>2.33</td>
<td>2.75</td>
</tr>
<tr>
<td>a12</td>
<td>P309</td>
<td>15980</td>
<td>29.6</td>
<td>35.3</td>
<td>2.33</td>
<td>2.75</td>
</tr>
<tr>
<td>a13</td>
<td>Galant</td>
<td>17219</td>
<td>30.2</td>
<td>36.9</td>
<td>1.66</td>
<td>1.25</td>
</tr>
<tr>
<td>a14</td>
<td>R21t</td>
<td>21334</td>
<td>28.9</td>
<td>36.7</td>
<td>2</td>
<td>2.25</td>
</tr>
</tbody>
</table>
Multi-Attribute Value Theory

Natural **extension of the weighted sum** which takes into account the non-linearity of preferences:

\[a P b \leftrightarrow U(a) > U(b) \]
\[a I b \leftrightarrow U(a) = U(b) \]

where \(U(a) = f(u_1(g_1(a)), \ldots, u_n(g_n(a))) \)

Various possible aggregation models, but here:

\[U(a) = \sum_j w_j \cdot u_j(g_j(a)) = w_1 \cdot u_1(g_1(a)) + \ldots + w_n \cdot u_n(g_n(a)) \]

- weight associated with criterion \(g_j \)
- marginal value function associated with \(g_j \)
- performance of alternative \(a \) on \(g_j \)
MAVT - marginal (partial) value functions

Step 1:
- **Determine a value function** u_j for each criterion such that $u_j(g_j(a))$ represents the value of a on criterion g_j, and **read off** $u_j(g_j(a))$ for $g_j(a)$
- The u_j **represents the decision maker’s preferences** (and not a normalization of the data)

For example: **bisection method**
- Define the performances that correspond to values 0 and 1
- Indicate a performance x such that changing from the 0-value performance to x increases the value as much as changing from x to the 1-value performance - the **selected midpoint** corresponds to value 0.5
- Use **the same process** to bisect the interval of $[0,0.5]$ and/or $[0.5,1]$, etc.
Step 2: determine the weights (scale coefficients) w_j

For example: Rank Order Centroid (ROC) method

- Order the criteria from the most to the least important

 $w_1 > w_2 > w_3 > w_4 > w_5$

- Compute the weight for criterion with rank r_k as follows:

 $w(r_k) = \frac{1}{n} \sum_{j=k}^{n} \frac{1}{j}$

 $w(r_1) = \frac{1}{5} \sum_{j=1}^{5} \frac{1}{j} = \frac{1}{5} (1/1 + 1/2 + 1/3 + 1/4 + 1/5) = 0.457$

 $w(r_2) = \frac{1}{5} \sum_{j=2}^{5} \frac{1}{j} = \frac{1}{5} (1/2 + 1/3 + 1/4 + 1/5) = 0.257$

 $w(r_3) = 0.157$, $w(r_4) = 0.09$, $w(r_5) = 0.04$

- Weights reflect the centroid (centre of mass) of the simplex defined by the ranking of the criteria; they are normalized to sum up to 1

Step 3: compute the comprehensive value of each alternative

$U(a) = \sum_j w_j \cdot u_j(g_j(a)) = w_1 \cdot u_1(g_1(a)) + \ldots + w_n \cdot u_n(g_n(a))$
XMCDA

- a data standard for MCDA

- A unique communication **language** with and between MCDA algorithms

- **Standarization** and **unification** of multiple schools of thought

- Representation of MCDA data elements in XML according to a grammar (the XMCDA XML schema)
EXEMPLARY INPUTS

- **MCDA concept = the list of alternatives**

  ```xml
  <alternatives>
    <alternative id="a01" name="TIPO">
      <type> real </type>
    </alternative>
    ...
    <alternative id="fictiveBest" name="IDEAL ALTERNATIVE">
      <type> fictive </type>
    </alternative>
  </alternatives>
  ```

- **MCDA concept = criteria weights**

  ```xml
  <criteriaValues mcdaConcept="Importance" name="significance">
    <criterionValue>
      <criterionID> g1 </criterionID>
      <value>
        <real> 0.457 </real>
      </value>
    </criterionValue>
    ...
  </criteriaValues>
  ```

XMCDA types = structures created to represent MCDA concepts
How are MCDA outputs represented in XMCDA?

EXEMPLARY OUTPUTS

- MCDA concept = ranks of the alternatives

  ```xml
  <alternativesValues mcdaConcept="alternativesRanks">
    <alternativeValue>
      <alternativeID> a01 </alternativeID>
      <value>
        <real> 3 </real>
      </value>
    </alternativeValue>
    ...
  </alternativesValues>
  ```

- MCDA concept = pair-wise (preference, outranking) relations

  ```xml
  <alternativesComparisons>
    <pairs>
      <pair>
        <initial> <alternativeID> a01 </alternativeID> </initial>
        <terminal> <alternativeID> a02 </alternativeID> </terminal>
      </pair>
      ...
    </pairs>
  </alternativesComparisons>
  ```

XMCDA types = structures created to represent MCDA concepts
Quick guide to XMCDA

- Possible to store advanced preference information on alternatives, criteria, and classes as well as results typical for MCDA applications.
- For details, see http://www.decision-deck.org/xmcda
- In particular, have a look at the *Quick guide to XMCDA*.
- Work with **examples available on-line** (whenever anyone is using XMCDA, (s)he is obliged to make the examples available for testing purposes).
- In order to avoid the writing of XMCDA, **csvToXMCDA-* converters** are available (see practical work hereafter).
Help Thierry to choose the car which is "best" for him

TIME FOR DEMO
MAVT
Motivation for XMCDA web services

XMCDA web-services

- MCDA algorithms which are made available for anybody over the Internet
- Reuse of existing implementations

MCDA researchers

- are often not computer scientists
- have programmed their algorithms in the programming language they know best

Idea

- allow researchers publishing their programs online
- require input / output in the XMCDA format

Maintained by the IMT Atlantique diviz team

Contributors: Poznań, Brest, Paris, Luxembourg, Tarragona, Mons, Rotterdam, Lyon, Coimbra, Brussels, you?
How to use XMCDA web services?

- Via various client softwares, in particular via *diviz*

What data is exchanged?

- XML files respecting the XMCDA standard

What are the main advantages?

- Heavy calculations on a distant server in France
- Output of a web service can be reinjected into another web service
Why XMCDA web services are useful?

MCDA web services
- MCDA algorithms which are made available for anybody over the Internet
- Reuse of existing implementations

- Elementary procedures/algorithms available as separate software pieces
- If properly chained, they would rebuild the original method
 - Remove the black box effect of certain software
 - Better understand the heart of the methods
 - Avoid repeated implementation of the same algorithms
UTA-like methods

Alternatives

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a01</td>
<td>Tipo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a02</td>
<td>Alfa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a03</td>
<td>Sunny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a04</td>
<td>Mazda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a05</td>
<td>Colt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a06</td>
<td>Corolla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a07</td>
<td>Civic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a08</td>
<td>Astra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a09</td>
<td>Escort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a10</td>
<td>R19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a11</td>
<td>P309-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a12</td>
<td>P309</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a13</td>
<td>Galant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a14</td>
<td>R21t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference ranking

1. a11
2. a10
3. a08
4. a01
5. a14

Compatible value functions

Select a single value function with a pre-defined rule

- ACUTA selects analytic centre of the polyhedron
UTA-like methods: step by step

Step 1: Provide preference information:
- **ranking** (pairwise comparisons) of reference alternatives
 (e.g., $a_{11} > a_{10} > a_{08} > a_{01} > a_{14}$)
- and **number of segments** for each marginal value function
 (e.g., all marginal functions are linear = 1 linear piece)

Step 2: Select a central value function according to a pre-defined rule
 for example, **ACUTA** selects an analytic centre (UTAMP, UTASTAR, ...)

Step 3: Compute **marginal values** for all alternatives
 for example, $u_1(a_{01}) = u_1(18323) = 0.16$, etc.

Step 4: Compute **comprehensive values**
 for example, $U(a_{01}) = u_1(a_{01}) + \ldots + u_5(a_{01}) = 0.16 + \ldots + 0.06 = 0.45$

Step 5: Rank alternatives w.r.t. their comprehensive values
 for example, 1. $a_{03} - 0.73$, 2. $a_{11} - 0.71$, ..., 12. $a_{01} - 0.45$, etc.
More advanced preference information in XMCDA

XMCDA

- modeling reference ranking
 - a11 > a10 > a08 > ...

- defining shape of marginal value functions
 - one segment for g₁ and g₂

<alternativesValues>
 ...
 <alternativeValue>
 <alternativeID>a11</alternativeID>
 <value>
 <integer>1</integer>
 </value>
 </alternativeValue>
 ...
 <alternativeValue>
 <alternativeID>a10</alternativeID>
 <value>
 <integer>2</integer>
 </value>
 </alternativeValue>
 ...
</alternativesValues>

<criteriaValues>
 mcdaConcept="numberOfSegments">
 <criterionValue>
 <criterionID>g1</criterionID>
 <value>
 <integer>1</integer>
 </value>
 </criterionValue>

 <criterionValue>
 <criterionID>g2</criterionID>
 <value>
 <integer>1</integer>
 </value>
 </criterionValue>
 ...
</criteriaValues>
TIME FOR DEMO
UTA & ACUTA
diviz

- open source Java client and server
- web services compositions, workflow management and deployment

Available components = algorithmic elements available via XMCDA web services

- Calculation components, e.g. aggregation operators, post-analysis elements, etc.
- Components with full MCDA methods
- Visualization components
- Reporting/comparison components
What is nice about diviz (so far)?

- Access to **multiple methods**
- **Interface and logic is the same**, although methods may differ a lot
- **Construction** of MCDA workflows (=methods) from elementary components

- **Comparing logic and outcomes of different approaches**
 - compare rankings obtained with different methods by **visual means**
 - or with **Kendall’s coefficient**
 - how many pairwise comparisons agreed/not?
 - 1 – full agreement, -1 – disagreement

- **Easy to prepare input and share output**
 - workflow: import / export options
TIME FOR DEMO
COMPARING RESULTS OF DIFFERENT METHODS
Threshold-based value driven sorting

marginal value functions

\[U(a) = \sum_{j=1}^{n} u_j(a) \]

class assignments
\[0 = b_0 < b_1 < b_2 < \ldots < b_{p-1} < 1 \]

for example

- The lower and upper threshold for class medium (C2) are 0.4 and 0.7.
- If \(U(a10) = 0.5 \), \((0.4 \leq 0.5 < 0.7)\), it would be assigned to class medium.

C3: good
C2: medium
C1: bad
Preference information

Assignment examples
- \(a_{12}\) should be assigned to class \(good: a_{12} \rightarrow C_3\)
- \(a_{04}\) should not be assigned to class \(bad: a_{04} \rightarrow [C_2, C_3]\)

Preference model
- Set of all value functions and class thresholds compatible with DM’s preference

Results
- Assignments
 - Necessary assignment confirmed by all compatible models
 - Possible assignment confirmed by at least one compatible model
Different types of input preference information

assignment examples

- a_{12} should be assigned to class \textit{good}: $a_{12} \rightarrow C_3$

- a_{04} should not be assigned to class \textit{bad}: $a_{04} \rightarrow [C_2, C_3]$

assignment-based pairwise comparisons

- a_{03} is better than a_{05} by at least one \textit{class}

- The class difference between a_{07} and a_{01} is at most one

- a_{11} and a_{12} should be assigned to the same \textit{class}

desired class cardinalities

- At most 5 cars can be assigned to class \textit{good}

- At least 40\% of cars should be assigned to class \textit{bad}

- The number of cars assigned to class \textit{medium} should be between 3 and 7
Different types of output sorting results

- assignment examples
- assignment-based pair-wise comparisons
- desired class cardinalities

- set of all value functions and class thresholds compatible with DM’s preference

- recommendation
- exploitation with linear programming

- assignments
- assignment-based preference relations
- class cardinalities

- variety of results
- necessary = for all, possible = for at least one, extreme = the most and the least advantageous

for example:
- necessary assignment-based preference relation:
 a_{05} is necessarily assigned to a class at least as good as a_{06}
- extreme class cardinalities:
 the minimal/maximal number of cars assigned to class medium is 5
Preference information reflected in results

\[a_{12} \text{ should be assigned to class } \text{good: } a_{12} \rightarrow C_3 \]

\[a_{12} \text{ is necessarily assigned to class } \text{good: } a_{12} \rightarrow^N C_3 \]

\[a_{11} \text{ and } a_{12} \text{ should be assigned to the same class} \]

\[a_{11} \text{ is necessarily assigned to a class at least as good as } a_{12} \]
\[a_{12} \text{ is necessarily assigned to a class at least as good as } a_{11} \]

The number of cars assigned to medium should be between 3 and 7

The minimal number of cars assigned to class medium will be \(\geq 3 \)

The maximal number of cars assigned to class medium will be \(\leq 7 \)
Results motivate enrichment of preference information

Possible assignment too wide
Add more precise assignment example

Alternatives incomparable in terms of the necessary assignment-based relation
Add additional assignment-based pairwise comparison

Class cardinalities very imprecise
Add more precise requirements on desired class cardinalities

EVOLUTION OF RESULTS WITH GROWTH OF PREFERENCE INFORMATION

Possible assignments become more precise
Necessary assignment-based preference relation is enriched
Extreme class cardinalities get closer to each other
TIME FOR DEMO
ROR-UTADIS
Outranking preference model

a outranks b (aSb) if the arguments of a decision maker in favour of the statement "**a is at least as good as b**" are strong enough and there arguments opposite to this statements are weak.

- **These arguments are based on:**
 - The **evaluations** of a and b on the various criteria
 - **Information on the preference** of the decision maker: criteria weight \((w_j)\), indifference \((q_j)\), preference \((p_j)\), pre-veto (discordance) \((pv_j)\) and veto \((v_j)\) thresholds for each criterion, and cutting level \((\lambda)\)
 - **Remark:** if no argument can be found neither in favour of aSb nor in favour of bSa → **incomparability**
ELECTRE methods: step by step

Construction of an outranking relation

- Input parameters
- Concordance test
- Discordance test
- Credibility of outranking
- Crisp outranking

Exploitation of outranking relation in a way specific for ranking, choice or sorting

CHOICE
- ELECTRE I
- ELECTRE Iv
- ELECTRE Is
- ...

RANKING
- ELECTRE II
- ELECTRE III
- ELECTRE IV
- ...

SORTING
- ELECTRE TRI-B
- ELECTRE TRI-C
- ELECTRE TRI-rC
- MR-SORT
- THESEUS
Compute **partial concordance index** for each pair of alternatives

Indifference threshold on criterion g_1

for example, if $g_1(a^{04}) - g_1(a^{05}) \geq -q_1 \implies c_1(a^{04},a^{05}) = 1.0$

Preference threshold on criterion g_2

for example, if $g_2(a^{05}) - g_2(a^{04}) \leq -p_2 \implies c_2(a^{04},a^{05}) = 0.0$
Compute **comprehensive concordance index** for each pair of objects:

the contribution of all criteria to the proposition \(aSb\)

\[
C(a,b) = \sum_j w_j \cdot c_j(a,b) = w_1 \cdot c_1(a,b) + w_2 \cdot c_2(a,b) + \ldots + w_n \cdot c_n(a,b)
\]

weight associated with criterion \(g_j\)

\[
\sum_{j=1}^{n} w_j = 1
\]

More advanced options account for:

- **Interactions** between criteria
 (mutual strengthening, mutual weakening, antagonistic effect)

- **Reinforced preference** effect (very strong reasons for \(S\))
Partial discordance indices

- **Compute partial discordance**: measures the degree to which a criterion is discordant (i.e., express opposition) with the proposition aSb

 - **Veto threshold on criterion g_1**
 - **Partial discordsances**

 for example, if $g_1(a05) - g_1(a04) \geq v_1 \iff d_1(a04,a05) = 1.0$

 for example, if $g_2(a05) - g_2(a04) \leq p_2 \iff d_2(a04,a05) = 0.0$

 - **Preference threshold on criterion g_2**

 Other options:

 - this part can be **zeroed**

 instead of p_j one can use **pre-veto threshold** $p_v > p_j$
The (valued) outranking relation can be defined by a
credibility index \(\sigma(a,b) \):

- if no criterion is discordant: \(\sigma(a,b) = C(a,b) \)
- if at least one criterion is discordant: \(\sigma(a,b) < C(a,b) \)
- if \(d_j(a,b)=1 \) for at least one criterion: \(\sigma(a,b) = 0 \)

Formulation:

\[
\sigma(a,b) = C(a,b) \prod_{j \in F} \frac{1-d_j(a,b)}{1-C(a,b)}
\]

where \(F = \{ j : d_j(a,b) > C(a,b) \} \)

also computable without weights as in ELECTRE IV
Crisp outranking relation

Comparison of a credibility index with **cutting level** λ (is it high enough?)

$\sigma(a, b) \geq \lambda \implies aSb$

- a is indifferent with b ($a I b$)
- a is preferred to b ($a > b$)
- a is incomparable with b ($a R b$)
Net Flow Score procedure

\[
NFS(a) = \text{strength}(a) - \text{weakness}(a)
\]

- exploitation of a **valued** outranking relation

\[
NFS^\sigma(a) = \sum_{b \in A} \left[\sigma(a, b) - \sigma(b, a) \right]
\]

<table>
<thead>
<tr>
<th>(\sigma(a,b))</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>-</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>(b)</td>
<td>0.6</td>
<td>-</td>
<td>0.7</td>
</tr>
<tr>
<td>(c)</td>
<td>0.3</td>
<td>0.4</td>
<td>-</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
NFS^{Sval}(a) &= 1.2 - 0.9 = 0.3 \\
NFS^{Sval}(b) &= 1.3 - 1.2 = 0.1 \\
NFS^{Sval}(c) &= 0.7 - 1.1 = -0.4
\end{align*}
\]
- **distillation procedure** exploiting a valued outranking relation
- **downward** pre-order (constructed top-down)
 - identify alternatives A_1 with the greatest quality
 - put A_1 at the top, and continue with A/A_1, etc.
- **upward** pre-order (constructed bottom-up)
 - identify alternatives A_1 with the least quality
 - put A_1 at the bottom, and continue with A/A_1, etc.

```
downward          upward          final          ranks          median
a                   c                  a           1. a, c        a
b                  a                  b                 2. b
                                 b                  3. d
                                 d                 4. e
                                 e
                                 e
```

intersection
TIME FOR DEMO
RANKING WITH ELECTRE
boundary profiles used for modeling the frontiers between classes

two disjoint assignment rules for assignment of alternative a

- pessimistic rule
 - start from the best profile
 - find the first profile $b_h^b : a \ S b_h^b$
 - select C_{h+1}

- optimistic rule
 - start from the worst profile
 - find the first profile $b_h^b : b_h^b > a$
 - select C_h
characteristic profiles formed from the class representative criteria values

two conjoint assignment rules for assignment of alternative a indicating:

the worst class of a
- start from the second best profile
- find the first profile \(b_h \):
 \[a > b_h \text{ and } \sigma(a, b_{h+1}) > \sigma(b_h, a) \]
- select \(C_{h+1} \)

the best class of a
- start from the second worst profile
- find the first profile \(b_h \):
 \[b_h > a \text{ and } \sigma(b_{h-1}, a) > \sigma(a, b_h) \]
- select \(C_{h-1} \)

indications of these two rules combined into a recommended class interval
TIME FOR DEMO
SORTING WITH ELECTRE
CONSTRUCTION OF AN OUTRANKING RELATION

CONCORDANCE

\(C^\text{C}(a,b) \) traditional

\(C^{\text{CRP}}(a,b) \) reinfor. pref.

\(C^{\text{CINT}}(a,b) \) interactions

\(d^{\text{CV}}(a,b) \) prefer.-veto

\(d^{\text{PV}}(a,b) \) counter-veto

\(d^{\text{PVV}}(a,b) \) counter-veto

\(d^\text{V}(a,b) \) veto only

\(\Delta(a,b) \) discordance

\(D^\text{V}(a,b) \) any veto?

VALUED OUTRANKING

\(S^{\text{CV}}(a,b) \) counter-veto

\(S^{\text{DC}}(a,b) \) suffic. strong

\(S^\text{D}(a,b) \) all against

\(S^{\text{DM}}(a,b) \) only max

CRISP OUTRANKING

\(S^{\text{CUT}} \) crisp outr.

\(S^{\text{COAL}} \) coalit. outr.

\(S^\text{V} \) as in Elec.Is

EXPLOITATION OF AN OUTRANKING RELATION

Net Flow Score using valued relation

Ranking procedures from Electre II

Net Flow Score using crisp relation

Graph kernel (ELECTRE I)

Distillation procedures from Electre III

ELECTRE TRI-B assignment procedures

ELECTRE TRI-C assignment procedures

ELECTRE TRI-rC assignment procedures
What diviz is?
- tool for MCDA component workflow
- simple data visualization tool
- platform independent and open source

UTA, UTASTAR, **ACUTA**, UTAMP, Robust Ordinal Regression (UTA-GMS), RUTA, Extreme Ranking Analysis, SMAA-2, Stochastic Ordinal Regression

ROR-UTADIS (including UTADIS-GMS)

"Construct your own Electre"
"Construct your own Promethee"

over 1000 variants of Electre and Promethee

Aggregation operators: **weighted sum**, OWA, Choquet integral, etc.

Data Envelopment Analysis: CCR and value-based model

robust and stochastic analysis

Visualisation, descriptive stats, reports, **comparison methods**, and many many more 😊
Make MCDA software publicly available
- "I like the procedure described in this paper, where can I test it?"
- Both the traditional methods and brand new ones

Decompose the MCDA methods into elementary components
- Give the possibility to create workflow of such components
- MCDA methods, algorithmic components and data visualization modules are available as web services
- Components can interoperate via the XMCDA standard

Have you ever wished what would happen if…?
How do the results of one methods differ from these of another one?

Expect more from us….
…on both visual and methodological sites
How you can help the project?
- Join the Decision Deck Consortium
- Test the software & send us your opinion
- Let us know what you need

Important websites
- http://www.decision-deck.org
- http://www.diviz.org, @divizMCDA, +diviz - all information on diviz
- getting help: http://www.diviz.org/contact

S. Bigaret, P. Meyer, M. Kadziński, V. Mousseau, M. Pirlot, ...

Hands on exercises

- **Construction** of some of the previously presented "method" in diviz
- Help Thierry to **choose the car** which is "best" for him
- 2 roles in each group:
 - The **analyst** constructs the MCDA algorithmic workflows
 - The **decision maker** (Thierry) is questioned by the analyst on his/her preferences

Practical work (see detailed instructions)

- **Multi-Attribute Value Theory** (steps V)
- **UTA** (steps U)
- **Electre III** (steps E)
- **Promethee** (steps P)
- Comparing results (steps C)