Intro 00	Definitions 00000	Amount of Info in SAT	Consequences	Practice? 00000	Finish O

SAT Information size and its implications for industrial optimization

Maciej Drozdowski

Institute of Computing Science, Poznań University of Technology, Poland

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

This talk is about:

- information size of combinatorial problems
- exponential amount of information in SAT
- information acquisition in algorithms for combinatorial optimization
- fairer comparison of AI/ML methods with randomized metaheuristics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

There is a connection between the combinatorial optimization **algorithm performance** and the **amount of information**:

- The No Free Lunch Theorems are proved using information theoretic arguments¹
- In graph coloring all greedy algorithms visiting nodes in a deterministic order and coloring nodes with the lowest feasible color, fail on some instance,

- but *random sequential algorithm* visiting nodes in a random sequence cannot deterministically fail because it is connected to a source of unlimited amount of information² ...

¹D.H.Wolpert, W.G. Macready, No Free Lunch Theorems for Optimization, IEEE Trans. on Evolutionary Computation 1(1), April 1997.

²M.Kubale (ed.), Graph Colorings, American Mathematical Society, Providence, Rhode Island, 2004.

00	000000	0000	00000	0
		Comparing on-/offline info algo.		Finish

Definition

SAT

INPUT *I*: sums k_j , j = 1, ..., m, of binary variables, or their negations, chosen over a set of *n* binary variables $x_1, ..., x_n$.

REQUEST: find an assignment of 0/1 values to x_1, \ldots, x_n , i.e. vector \overline{x} , such that the conjunction $F(I, \overline{x}) = \prod_{j=1}^m k_j$ is 1. If such a vector does not exist then signal \emptyset .

|I| – instance I size, i.e., length of the string encoding I

"yes" instance – if for instance I : $\exists \overline{x} : F(I, \overline{x}) = 1$

"no" instance - otherwise

Let:

 Σ – an alphabet

e – some reasonable encoding scheme over Σ ,

 Σ^+ – a set of strings encoding instances of SAT using scheme e over alphabet $\Sigma.$

SAT-search is an example of a string relation:

Definition

Search problem Π is a string relation

 $R[\Pi, e] = \begin{cases} a \in \Sigma^+ \text{ is the encoding of } I \text{ and} \\ (a, b) : b \in \Sigma^+ \text{ is the encoding of a solution} \\ \text{ under coding scheme } e \end{cases}$

Intro 00	Definitions 00€00	Amount of Info in SAT	Consequences	Comparing on-/offline info algo.	Practice? 00000	Finish O
Fixe	ed code	algorithm				

Definition

Fixed code algorithm is an algorithm which is encoded in limited number of immutable bits.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus, a fixed code algorithm:

- does not change its code during the runtime,
- is not a source of randomness.

|A| – the size of fixed code algorithm A in bits.

Truly random bit sequence

Definition

Truly random bit sequence (TRBS) is a sequence of bits, that has no shorter representation.

Thus:

• the only way to represent it is to store it in its whole entirety,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• an N-bit TRBS has information content N bits.

Intro 00	Definitions 0000●	Amount of Info in SAT	Consequences	Comparing on-/offline info algo. 0000	Practice? 00000	Finish O
Info	rmatio	n conservatio	n			

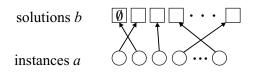
Postulate

Information is not created ex nihilo by fixed code algorithms.

Postulate

An algorithm to solve a problem must use at least the same amount of information as the amount of the information in the problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



SAT can be thought of as string relation R[SAT, e]:

• a mapping from strings *a* – instances, to strings *b* – solutions,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• set of arcs from instances a to solutions b,

How much information does such an object comprises?

Exponential Information Content of SAT

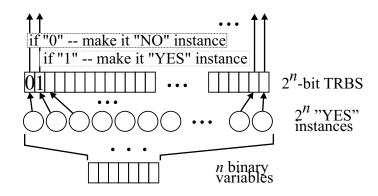
Theorem

The amount of information in SAT grows at least exponentially with instance size.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exponential Information Content of SAT

Proof: the idea



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Intro Definitions Amount of Info in SAT Consequences Comparing on-/offline info algo. Practice? Finish

Exponential Information Content of SAT

Proof: 2^n of "Yes" instances in n variables

- *n* number of variables,
- Let there be 4 clauses for i = 1, ..., n: $k_{i1} = x_a + x_b + \widetilde{x}_i, k_{i2} = \overline{x_a} + x_b + \widetilde{x}_i,$ $k_{i3} = x_a + \overline{x_b} + \widetilde{x}_i, k_{i4} = \overline{x_a} + \overline{x_b} + \widetilde{x}_i.$
- $\widetilde{x_i}$ a variable x_i with or without negation
- No valuing of x_a, x_b alone makes the four clauses simultaneously equal 1.
- The four clauses may simultaneously become equal 1 only if $\widetilde{x_i} = 1$ (i.e. either $x_i = 1$ or $\overline{x_i} = 1$).
- Satisfying formula $F = k_{11}k_{12}k_{13}k_{14}...k_{n4}$ depends on valuing of variables \tilde{x}_i for i = 1, ..., n.
- There are 2ⁿ different ways of constructing formula *F*, leading to 2ⁿ different "yes" instances with 2ⁿ different solutions.

Exponential Information Content of SAT

Proof: Injecting 2ⁿ-bit-long TRBS into SAT

- Consider a truly random bit sequence (TRBS) of length 2ⁿ.
- Consider $j = 0, ..., 2^n 1$ instances with clauses $k_{1i}, ..., k_{4i}$ and variables \tilde{x}_i as constructed above.
- If TRBS bit j = 0,..., 2ⁿ − 1 is 1, then the jth instance is constructed as "yes" instance by setting x_i in k_{1i},..., k_{4i} consistently with number j binary encoding, for i = 1,..., n.
- If TRBS bit $j = 0, ..., 2^n 1$ is 0, then the *j*th instance is **spoiled** to a "no" instance by setting some $\widetilde{x_i}$ variable(s) in $k_{1i}, ..., k_{4i}$ inconsistently with number *j* binary encoding.

Exponential Information Content of SAT

Proof: amount of information

• cross-entropy of "Yes" instances

$$H(I, "Yes") = -\sum_{l \in D} p(l) \times \log q(l)$$

$$\mathcal{D} - \text{set of instances constructed in the above way,}$$

$$p(I) = 1/|\mathcal{D}| - \text{probability of encountering instance } I,$$

$$q(I) - \text{probability that } I \text{ is a "Yes" instance;}$$

$$q(I) = 1/2^n * 1/(2^{2^n})$$

$$1/2^n - \text{because a "Yes" instance can be spoiled in 2^n - 1 \text{ ways}}$$

$$2^{2^n} - \text{because there are } 2^{2^n} \text{ TRBSes of length } 2^n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$H(I, "Yes") = n + 2^n$$
.

Exponential Information Content of SAT

Amount of Info in SAT

000000

Definitions

Proof: From the number of variables *n* to instance size |l|

Comparing on-/offline info algo

Practice?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Finish

- each number is limited from above by some constant K,
- \Rightarrow the length of the encoding of the instance data is $|I| = 4n \times 3 \log K + \log K = 12n \log K + \log K$

•
$$n = (|I| - \log K)/(12 \log K)$$

•
$$\Rightarrow$$
 cross-entropy of "Yes" instances:
 $H(I, "Yes") = n + 2^n =$
 $(|I| - \log K)/(12 \log K) + 2^{(|I| - \log K)/(12 \log K)}$
which is $\Omega(2^{d_1|I|})$, where $d_1 = 1/(12 \log K) > 0$ is constant. \Box

Knowing 1) the exponential lower bound on information size in SAT, and 2) by information conservation postulate, algorithms must acquire information to solve a problem like SAT.

Considering when an algorithm obtains information, types of algorithm are:

- **Off-line:** e.g. Machine Learning (AI), e.g. DRL, have large **static** amount of the information at the computation outset
- **On-line:** e.g. randomized metaheuristics increase the amount of information over the runtime by drawing random numbers
- **Hybrids:** e.g. hyper-heuristics, ML choosing branches and/or cuts in ILP, ML guiding MCTS

Observation

There always exists SAT instance I which size $\Omega(2^{d_1|I|})$ exceeds information size |A| of any off-line information source fixed-code algorithm.

- \Rightarrow ML are not a panacea, because:
- ⇒ any pretrained ML method on a combinatorial optimization problem loses on solution quality with the increasing size of the problem,
- \Rightarrow ML methods need re-training on new benchmarks with increasing instance sizes *I*.

Online information source algorithm

Proposition

Fixed code, online information source, algorithm with bounded bitrate v has less information than SAT.

Proof.

- assume the runtime is T (e.g. polynomially bounded),
- assuming limited random number acquisition speed v, the information acquired with the progress of time is $v \times T$,
- total amount of information in the instance *I*, the algorithm *A*, obtained in time *T* is $|I| + |A| + O(v \times T)$,
- which is less than $\Omega(2^{d_1|I|})$ bits of information in SAT.

How much information over time?

Comparing pretrained ML methods (static information gethered **offline**) with the randomized metaheuristics (information collected **online**) is biased because:

- while randomized metaheuristic collect information online,
- ML methods start with a lot of pre-computed information |A|,
 1) ML can amortize training cost,
 2) but the training cost is "magically" disappearing in the inference stage.

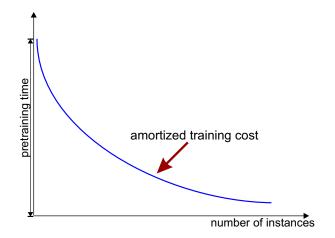
	Amount of Info in SAT	Consequences	Practice?	Finish O

Unbounded training time \Rightarrow unbounded algorithm information

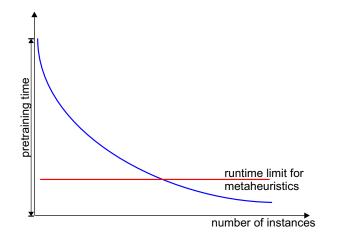
• \Rightarrow Is it fair to compare a metaheuristic with an ML method that has **unlimited training time?**

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 ⇒ How to compare pretrained ML methods with metaheuristics fairly?



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ



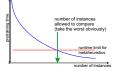
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

How to compare – a proposition

- the more training time given for the fixed training set
 - \Rightarrow the more time for a metaheuristic
- the less time for a metaheuristic
 - \Rightarrow the larger set of counterexamples for a ML methods
- the larger set of counterexamples for a ML methods
 ⇒ the worse is the worst counterexample ⇒
 ⇒ the more training time to deal with counterexamples for a ML methods . . .
- Only the worst-case performance really metters.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

S.Teck, T.San Pham, L.-M.Rousseau, P.Vansteenwegen, *Deep Reinforcement Learning for the Real-Time Inventory Rack Storage Assignment and Replenishment Problem*, EJOR 2025 in press.

Problems:

- decision agent developed by Deep Reinforcement Learning
- Training: 10k episodes × 10k decision points = 4 days × 2 cores == 192hours → problem: incomparable time units;
- Mathematical programming formulation given, Gurobi \rightarrow problem: unknown Gurobi runtime;
- 5 competing (baseline) policies are greedy \rightarrow problem: they do not acquire information online;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

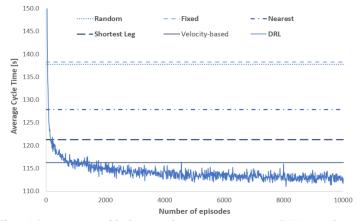


Figure 6: Learning process of the decision-maker on a training instance with 600 storage locations.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

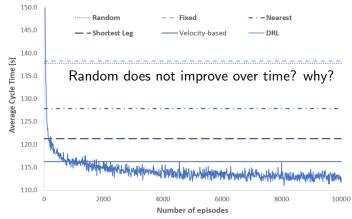


Figure 6: Learning process of the decision-maker on a training instance with 600 storage locations.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Existing research - example 2

W.Kool, H.van Hoof, M.Welling. *Attention, learn to solve routing problems!* International Conference on Learning Representations, 2019, arXiv:1803.08475.

	Method	Obj.	n=20 Gap	Time	Obj.	n = 50 Gap	Time	Obj.	$\begin{array}{c} n=100\\ \mathrm{Gap} \end{array}$	Time
	Concorde	3.84	0.00%	(1m)	5.70	0.00%	(2m)	7.76	0.00%	(3m)
	LKH3	3.84	0.00%	(18s)	5.70	0.00%	(5m)	7.76	0.00%	(21m)
	Gurobi	3.84	0.00%	(7s)	5.70	0.00%	(2m)	7.76	0.00%	(17m)
	Gurobi (1s)	3.84	0.00%	(8s)	5.70	0.00%	(2m)		-	
	Nearest Insertion	4.33	12.91%	(1s)	6.78	19.03%	(2s)	9.46	21.82%	(6s)
	Random Insertion	4.00	4.36%	(0s)	6.13	7.65%	(1s)	8.52	9.69%	(3s)
	Farthest Insertion	3.93	2.36%	(1s)	6.01	5.53%	(2s)	8.35	7.59%	(7s)
	Nearest Neighbor	4.50	17.23%	(0s)	7.00	22.94%	(0s)	9.68	24.73%	(0s)
TSP	Vinyals et al. (gr.)	3.88	1.15%		7.66	34.48%			-	
Ĥ	Bello et al. (gr.)	3.89	1.42%		5.95	4.46%		8.30	6.90%	
	Dai et al.	3.89	1.42%		5.99	5.16%		8.31	7.03%	
	Nowak et al.	3.93	2.46%			-			-	
	EAN (greedy)	3.86	0.66%	(2m)	5.92	3.98%	(5m)	8.42	8.41%	(8m)
	AM (greedy)	3.85	$\mathbf{0.34\%}$	(0s)	5.80	1.76 %	(2s)	8.12	4.53 %	(6s)
_	OR Tools	3.85	0.37%		5.80	1.83%		7.99	2.90%	
	Chr.f. + 2OPT	3.85	0.37%		5.79	1.65%			-	
	Bello et al. (s.)		-		5.75	0.95%		8.00	3.03%	
	EAN (gr. + 2OPT)	3.85	0.42%	(4m)	5.85	2.77%	(26m)	8.17	5.21%	(3h)
	EAN (sampling)	3.84	0.11%	(5m)	5.77	1.28%	(17m)	8.75	12.70%	(56m)
	EAN $(s. + 2OPT)$	3.84	0.09%	(6m)	5.75	1.00%	(32m)	8.12	4.64%	(5h)
	AM (sampling)	3.84	0.08 %	(5m)	5.73	0.52%	(24m)	7.94	2.26%	(1h)

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.

W.Kool, H.van Hoof, M.Welling. *Attention, learn to solve routing problems!* International Conference on Learning Representations, 2019, arXiv:1803.08475.

rain	ing [sec]:	3	${}^{3k}_{n=20}$		<u> </u>	$\frac{98k}{n = 50}$	1		165k n = 100	
	Method	Obj.	Gap ⁿ = 20	Time	Obj.	Gap	Time	Obj.	n = 100 Gap	Time
	Concorde	3.84	0.00%	(1m)	5.70	0.00%	(2m)	7.76	0.00%	(3m)
	LKH3	3.84	0.00%	(18s)	5.70	0.00%	(5m)	7.76	0.00%	(21m)
	Gurobi	3.84	0.00%	(7s)	5.70	0.00%	(2m)	7.76	0.00%	(17m)
	Gurobi (1s)	3.84	0.00%	(8s)	5.70	0.00%	(2m)		-	
	Nearest Insertion	4.33	12.91%	(1s)	6.78	19.03%	(2s)	9.46	21.82%	(6s)
	Random Insertion	4.00	4.36%	(0s)	6.13	7.65%	(1s)	8.52	9.69%	(3s)
	Farthest Insertion	3.93	2.36%	(1s)	6.01	5.53%	(2s)	8.35	7.59%	(7s)
	Nearest Neighbor	4.50	17.23%	(0s)	7.00	22.94%	(0s)	9.68	24.73%	(0s)
TSP	Vinyals et al. (gr.)	3.88	1.15%		7.66	34.48%			-	
E	Bello et al. (gr.)	3.89	1.42%		5.95	4.46%		8.30	6.90%	
	Dai et al.	3.89	1.42%		5.99	5.16%		8.31	7.03%	
	Nowak et al.	3.93	2.46%			-			-	
	EAN (greedy)	3.86	0.66%	(2m)	5.92	3.98%	(5m)	8.42	8.41%	(8m)
	AM (greedy)	3.85	0.34 %	(0s)	5.80	$\mathbf{1.76\%}$	(2s)	8.12	4.53 %	(6s)
	OR Tools	3.85	0.37%		5.80	1.83%		7.99	2.90%	
	Chr.f. + 2OPT	3.85	0.37%		5.79	1.65%			-	
	Bello et al. (s.)		-		5.75	0.95%		8.00	3.03%	
	EAN(gr. + 2OPT)	3.85	0.42%	(4m)	5.85	2.77%	(26m)	8.17	5.21%	(3h)
	EAN (sampling)	3.84	0.11%	(5m)	5.77	1.28%	(17m)	8.75	12.70%	(56m)
	EAN $(s. + 2OPT)$	3.84	0.09%	(6m)	5.75	1.00%	(32m)	8.12	4.64%	(5h)
	AM (sampling)	3.84	0.08 %	(5m)	5.73	$\mathbf{0.52\%}$	(24m)	7.94	2.26 %	(1h)
								3 H F	A LIP P - A	

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods. training [sec]: 33k 98k 165k

W.Kool, H.van Hoof, M.Welling. *Attention, learn to solve routing problems!* International Conference on Learning Representations, 2019, arXiv:1803.08475.

tra	iin	ing [sec]:	3	${}^{3k}_{n=20}$		<u> </u>	$\frac{98k}{n = 50}$			$\frac{165k}{n = 100}$				
		Method	Obj.	n = 20 Gap	Time	Obj.	n = 50 Gap	Time	Obj.	n = 100 Gap	Time			
		Concorde	3.84	0.00%	(1m)	5.70	0.00%	(2m)	7.76	0.00%	(3m)			
		LKH3	3.84	0.00%	(18s)	5.70	0.00%	(5m)	7.76	0.00%	(21m)			
		Gurobi	3.84	0.00%	(7s)	5.70	0.00%	(2m)	7.76	0.00%	(17m)			
		Gurobi (1s)	3.84	0.00%	(8s)	5.70	0.00%	(2m)		-				
		Nearest Insertion	4.33	12.91%	(1s)	6.78	19.03%	(2s)	9.46	21.82%	(6s)			
		Random Insertion	4.00	4.36%	(0s)	6.13	7.65%	(1s)	8.52	9.69%	(3s)			
		Farthest Insertion	3.93	2.36%	(1s)	6.01	5.53%	(2s)	8.35	7.59%	(7s)			
		Nearest Neighbor	4.50	17.23%	(0s)	7.00	22.94%	(0s)	9.68	24.73%	(0s)			
	TSP	Vinyals et al. (gr.)	3.88	1.15%		7.66	34.48%			-		ocal	search	
	E	Bello et al. (gr.)	3.89	1.42%		5.95	4.46%		8.30	6.90%		ocui	Scuren	
		Dai et al.	3.89	1.42%		5.99	5.16%		8.31	7.03%				
		Nowak et al.	3.93	2.46%			-			-				
		EAN (greedy)	3.86	0.66%	(2m)	5.92	3.98%	(5m)	8.42	8.41%	(8m)			
		AM (greedy)	3.85	0.34 %	(0s)	5.80	1.76 %	(2s)	8.12	4.53 %	(6s)			
		OR Tools	3.85	0.37%		5.80	1.83%		7.99	2.90%		ocal	search	
		Chr.f. + 2OPT	3.85	0.37%		5.79	1.65%			-		ocar	Scarch	
		Bello et al. (s.)		-		5.75	0.95%		8.00	3.03%				
		EAN(gr. + 2OPT)	3.85	0.42%	(4m)	5.85	2.77%	(26m)	8.17	5.21%	(3h)			
		EAN (sampling)	3.84	0.11%	(5m)	5.77	1.28%	(17m)	8.75	12.70%	(56m)			
		EAN $(s. + 2OPT)$	3.84	0.09%	(6m)	5.75	1.00%	(32m)	8.12	4.64%	(5h)			
		AM (sampling)	3.84	0.08 %	(5m)	5.73	0.52 %	(24m)	7.94	2.26 %	(1h)		_	
									× • •	A LIFE A ST	11 1 1	· 🖃 🕨 👘	三 のの	21

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods. training [sec]: 33k 98k 165k W.Kool, H.van Hoof, M.Welling. *Attention, learn to solve routing problems!* International Conference on Learning Representations, 2019, arXiv:1803.08475.

- at TSP size n = 100, training time 165k sec, Concorde time limit 3min ⇒ test set size: 165k sec/180 sec≈ 916.
- Their test set size: 10000 \rightarrow problem: regression to the mean, no worst cases known.
- problem: local search methods stop by themselves.³
- problem: specific dataset "n node locations are sampled uniformly at random in the unit square"
 do these methods learn space filling surves?

 \rightarrow do these methods learn space-filling curves?

 $^{^{3}}$ discovered at the end of a chain of citations

I.Echeverria, M.Murua, R.Santana, Solving the flexible job-shop scheduling problem through an enhanced deep reinforcement learning approach, 2024, arXiv:2310.15706

- Flexible job-shop, DRL, Markov Decision Process, Graph Neural Networks
- problem: no training time given, only "the maximum number of episodes . . . ∈ [10000, 15000]",
- they primarily compared to 6 greedy dispatching rules, but also implicitly OR-Tools CP solver.
- good: results on particular instances given:
- vdata benchmark 6 instances out of 40 match the known upper bound (i.e. ML not a panacea)
- Behnke benchmark 17 instances out of 45 better than OR-tools CP-SAT solver (ML inference time 61s, OR-Tools 1800s).

Intro 00	Definitions 00000	Amount of Info in SAT	Consequences	Comparing on-/offline info algo.	Practice? 00000	Finish ●
Fini	ish					

- **NP**-hard problems (like SAT) have exponential amount of information
- Algorithms obtain this information offline (ML) or online (randomized metheuristics)
- Comparing ML with randomized metaheuristics unfair if training cost ignored
- \bullet A fairer ML vs metaheuristic comparison proposed \rightarrow amortized number of the worst cases
- Further work needed to compare metaheuristics and ML methods fairly and in unified way

Thank you for listening

details on SAT information size at https://arxiv.org/abs/2401.00947

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00