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Abstract. A process of computation in a two-dimensional mesh of processors is
analysed in this work. A computational task is assumed to be arbitrarily divisible
between processors. The load of the job is transferred from the originating processor
to other processors by a point to point communication network. Communication
delays are taken into consideration. The time costs of computation and communication
are assumed to be linear function of the data size. Simple formulae are found to
determine the distribution of the task's load and the equivalent speed of the whole
network of processors. The performance of the two-dimensional mesh architecture is
analysed. It turns out that in realistic situations the performance of this kind of the
network is limited.

1.Introduction

Parallel processing is a subject which has been intensively studied for many years.
Recently new contexts have been introduced by a rapid progress in technology. A
number of parallel architectures has been successfully implemented [9,10,13]. These
machines consist of processors with local memories, tied together by a point to point
interconnection network. Such an architecture has been considered in many works
[7,11,14]. Few researchers, however, while designing scheduling algorithms, took into
consideration the fact that a task can be executed by more than one processor at a time
[1, 2, 3, 4, 6, 8, 15]. In this work we allow any task not only to be processed by many
processors at a time, but we permit it also to be divided arbitrarily among these
processors. This is the case of distributed processing of large data files, signal or image
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processing, Kalman filtering, etc. [5]. In such applications and for such the architecture
communication delays cannot be neglected.

This work is based on similar assumptions as made in a series of papers [1, 5, 6]. A
wide range of interconnection architectures has been considered there: daisy chain of
processors, a tree of processors or processors working over a common bus. We extend
this model by analysing architecture of a regular two-dimensional mesh of processors
(Fig.1), i.e. interconnection network in which each processor is located in corners of
four rectangles and has four neighbours. We also use the methodology introduced in
[1, 5, 6] to analyse the problem considered.

Let us set up the subject more precisely. Processors form an infinite mesh, i.e. the
effects of its limited size will not be considered. The method of processing tasks can be
described as follows. At time 0 some processor receives a burst of data (equivalent to
one task) to be processed. This processor will be called originator. Some part α0 of
the data is processed in this processor while the rest (1-α0) is sent to the four
neighbouring processors. These processors take for local processing some part α1 of
all the data to be processed and retransmit the rest (1-α0-α1) of the data to the
neighbouring, but still idle, processors. The same process is repeated in the following
layers. The computation on all the processors starts immediately after receiving the
whole load from the preceding layer (cf. Fig.2). We assume that the network is not
limited and is homogenous, that is, all processors and communication channels have the
same speed. The task can be processed by a single processor in time equal to wTcp,
where w is proportional to the reciprocal of processor speed and Tcp is a processing
time of the task on the processor with the speed equal to 1. Transmission time can be
computed as a product zTcm,, where z is inversely proportional to the speed of
communication channel and Tcm is a time taken to transmit all the data between two
neighbouring processors using link with speed 1. Although the processors are identical
and communication links are identical we will still use w and z (instead of a '1' for
example) because explicit expression of the speeds will be useful later on. The aim of
the scheduling process is to find the shortest schedule. In the following we are going to
present performance analysis of the processor network working according to the above
paradigm. The performance will be measured either as a processing time of a task or as
an equivalent speed of the whole processor network. The main goal will be to establish
the optimistic estimate for the performance of the two-dimensional mesh of processors.
Let us note, that unlike in many other works [7,12], the results presented herein are
based on a deterministic approach.

2. Performance limit analysis

In this section an optimistic bound for the performance of a regular two-
dimensional network of processors will be established. The bound, as a result of the
computation model, will be expressed by several parameters such as the equivalent
speed of the whole network, the processing time of a standard task, speedup etc.

We start with the analysis of the minimum number of hops necessary to reach
certain processor (while jumping from one processor to another). The process of



disseminating the data is presented in Fig. 1. Let us call by a layer the set of processors
that can be accessed in the same number of hops. We see that the number of processors
in each layer is equal to the number of processors in the previous layer plus four. There
is, however, an exception of the layer 0 consisting of only one processor - the
processor from which the processing originates.

Fig. 1. The process of the data dissemination.

As it was described in Introduction, each layer receives data from the previous
layer and immediately after this starts computations and transmission of a part of the
data to the descending layers. This is possible for processors equipped with
independent communication co-processors (e.g. transputers). Observe, that
communication of the results back to the originator is an analogous, but reversed,
process. We assume, that the amount of the data returned from the consecutive layers
is proportional to the volume of data received for processing. Hence, it is possible to
include both broadcasting of the data and the back-propagation of the results in one
communication cost related to one transmission between two consecutive layers. For
example, it can be done by multiplying all the communication times by constant (1+β),
where 1 stands for the broadcasting of the data and β represents the volume of the
returned results as a fraction of the received data. In such a reduced case the time
consumed on communication to some layer plus the time of computing in this layer is
the same as in not reduced case where transferring data and results is separated in time.
Thus, we can restrict our considerations only to the case where the data is only
broadcasted, as it is depicted in Fig.2.

In order to achieve optimality of the schedule, all processors in all layers must stop
computations simultaneously. This assumption can be supported by an intuitive
argument that when processors are not finishing at the same moment, then some data
can be moved from the processor working longer to the processor working shorter and



therefore, the completion time can be reduced. Since the computation process is very
regular the processing time of some part of the task is proportional to the volume of
data constituting it. Thus, the processor working shorter receives all its load earlier and
also finishes computations earlier. Hence, it is always feasible to reduce, by some
amount, the load transferred to the processor working longer and send it to the
processor working in a shorter time. The time diagram illustrating the process of
computation and communication between the layers is presented in Fig. 2.

We relax the problem by assuming that in a given layer all the processors start
computations at the same moment and that their loads are equal. This is not true in fact.
One can easily realize that a layer is not symmetric and it is not possible to transmit the
same amount of data in the same time to the processor on the "edge" (accessible via
two channels) and to the processor "in the corner" of the layer (accessible via one link
only). Thus, from this point of view, results presented further in this paper are
optimistic bounds for the performance of the network.

Fig. 2. Computation - communication diagram.

Now, we give the formulae describing the division of the load between layers. The
whole layer of processors will be substituted for by one type of equivalent processor.
Such equivalent processors will be identical both from the viewpoint of the processing
and communication ability. Assuming that the number of layers is limited to N and the
last layer processes all the data it receives, the part of the load taken by the previous
(N-1)st layer is calculated. Then, recursively the share of the load for all the layers up
to the first one (composed of four processors) can be computed. Finally, the speed of a
processor equivalent to the whole network will be calculated.



Let $α i denote a part of the data received from the layer i-1 which is processed
locally by layer i, i.e.
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The processing time TN-1 of the processors in the layer N-1 is equal to the
communication time from layer N-1 to N (denoted TN-1,N) plus the processing time of
processors in layer N (denoted TN) (cf. Fig.2), i.e.:
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where w
N
eq is a reciprocal of the equivalent speeds for one processor in the layer N. The

notion of the equivalent speed (or its reciprocal) will be used to reduce recursively all
the layers in the mesh to a one (the first) layer. For the case of the last and the last but

one layers, w
N
eq is equal to w. Note, that 4(N-1) processors of layer N-1 are linked to

4N processors of layer N through 8(N-1)+4 links. From equation (3) we can derive that
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The above value may not be greater than 1 because no layer can accept more than it
receives. A reciprocal of the equivalent speed for the processors in layer N-1
representing both layers N and N-1 is equal to the ratio of the real processing time of
processors in layer N-1, and the processing time of the same load by the same number
of processors as in layer N-1, with a standard speed 1. Hence (from (2)),
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In this way we have reduced layers N-1 and N, to a one equivalent layer with the
number of processors equal to the number of processors in layer N-1. Similarly, by a
successive substitution of N with values N-2,...,2, in equations (4), (5), one can
calculate equivalent speeds of processors in layers N-2 through 1. Now, we will
calculate the speed of the whole network from the point of view of the processor at
level 0 (originator). Its working time T0 is equal to the working time T1 of the first
layer plus the communication time T0,1 (cf. Fig.2):

T a w T
cp

a w T
cp0 0 0 0 0

= =$

T T
a

zT
cm

w
eq

T
cp1 0 1

1
0

4 1
+ =

−
+

,

$

( )

Hence, $α α0 0= is equal to



$a
wT

cp

w
eq

T
cp

zT
cm

0
1

1
4

1

=

+
+

and analogously to (5) w weq
0 0= $α .

Thus, we have presented a recursive method of finding $α i. In order to find α i one
has to apply equation (1) for i=1,...N-1. As a result, we have calculated the distribution
of the load and equivalent speed of the network from the originator's point of view.

From the model presented above we can derive also such parameters of the
network as speedup (S) and average utilization of processors (U) when layers 0
through j take part in computation:
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Now, we are going to comment on the case of infinite mesh of processors.
Assuming that the number of layers is infinite, $α
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Solving the above expression for $α
∞

, we obtain the equation:
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. We see from the above equation that the part of the load intercepted

by a layer of processors in a big mesh stabilizes around some fixed value which depends
on the amount of computing and communication necessary for a computational task.
One can verify, that the value of $α

∞
, in the above equation is never greater or equal to

1. This means that in the infinite mesh no layer intercepts all the load and that the load
is processed by all layers.



In the next Section we will present results of modeling the above equations for
various values of parameters describing the mesh.

3. Performance modeling

In this section we present results obtained from the model for different values of its
parameters. Unless stated otherwise, z=1, w=1, Tcm=Tcp=1.

In Fig.3 through Fig. 5 the execution time as a function of the number of layers
processing a task (or hops in the network, in other words) is depicted. In Fig. 3 one can
find a diagram illustrating execution time changes according to changes of z - the
reciprocal of the communication channels speed. There are four curves: for z equal to
10, 1, 0.1, 0 (slow, medium, high speed, ideal channels - upper, medium, lower, the
lowest curve, respectively). The value z=0 can be achieved only in an ideal (unrealistic)
network introducing no communication delay. It is presented in the figure as a
reference. We see that the curves very quickly level off and three or four layers are
almost as effective as twenty or more. What is more Fig. 3 supports the intuitive
opinion that the faster the medium is, the shorter the execution time is and the greater
the benefit from distributed processing. It can be observed in Fig.3 that for z≠0
execution time stabilizes around some fixed value which is not the case of an ideal
network (z=0). This is also illustrated in Fig.8 further in this section. Hence, further
improving of the network speed may have great impact on performance of the mesh.
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Fig. 3. Execution time vs. the number of layers for different speeds of the
communication links.



Fig. 4 illustrates changes of execution time imposed by changes of processor
speeds. Three curves illustrate execution time for w=10, 1, 0.1 respectively (slow,
medium speed, fast processors -upper, medium, lower curve, respectively). Of course,
the faster the processors are, the faster the whole task can be completed. However, for
fast processors (w=0.1) reduction of the execution time with the growing number of
layers is minimal. For example, adding first layer to the originator reduces execution
time by 67% in the case of w=1, but only by 26% in the case of w=0.1. Thus, meshes
with more than 5 layers (for the chosen parameters) seem unjustified.
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Fig. 4. Execution time vs. the number of layers for different processor speeds.
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Fig. 5 shows the relative execution time of the task as a function of the parameter
T
cp

(i.e. execution time of the task on a single standard speed processor). Relative

execution time is the ratio of the real execution time to T
cp

. Three curves depict

relative execution time for T
cp

=0.1, 1, 10, respectively (upper, medium, lower curves,

respectively). It can be found that the longer the task is, the greater advantage can be
taken from the distributed processing.

In the next chart (Fig. 6) we demonstrate the decreasing contribution of
consecutive layers in processing the task for different values of w. The curves present
distribution of the load of the first ten layers in the network with total twenty layers of
processors. As it can be seen the slower the processors are (the bigger w) the bigger is
the part of the load processed by deeper layers. This means that the maximum of the
load moves to the deeper layers with the decrease of the processor speed. The bulk of
the data, however, is processed in some intermediate layers. A curve for z=0 (perfect
network) has been added in Fig.6 for reference. In the perfect network the load in a
layer is proportional to the number of the layer's processors. Dependence of the load
distribution on z parameter has a very similar form.

0

0.2

0.4

0.6

0.8

lo
ad

0 1 2 3 4 5 6 7 8 9 10
layer number

w=0.1 w=1 w=10 z=0

Load distribution coefficients
vs. processors speed

Fig. 6. Values of αi for different processor speeds.
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In Fig. 7 we have presented values $α i, for a task processed by a mesh consisting of
twenty layers, for three example values of w and z. It can be found that $α i stabilizes
around some constant value in the intermediate layers. According to theoretical
expectations (equation (6)) $α

∞
takes values 0.854, 0.5, 0.2 for (w=0.1,z=1),

(w=1,z=1), (w=1,z=0.1), respectively. Thus, we can say that $α
∞

is quite well

approximated by equation (6).
Finally, in Fig.8 and Fig.9 we present the speedup achieved in the network and the

utilization of the processors. As it can be seen, speedup very quickly levels off and at
about 40 processors (layer number 4) stops its increase. Only when the system has a
perfect communication network (curve z=0), can the linear speedup be achieved. The
dependence of the speedup on z has a very similar form.
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According to the diagram in Fig. 2 processor in layer 0 is always working (i.e. has
utilization 1), while some processors may be idle in some time interval. Fig. 9 illustrates
average utilization of all the processors taking part in the process of computation. Only
when the communication medium is perfect (z=0), can the utilization be equal to 1. In
other (realistic) cases the utilization decreases with the speed of processors (i.e. for w
decreasing) and the number of layers taking part in computation. This means that with
the growing speed of processors communication delays are becoming more significant.
Distant processors are mainly waiting for their share of the data, while the bulk of
computation takes place in the vicinity of the originator.

4. Conclusions

In this work we have presented a simple analytical deterministic model of a
distributed computation.

Taking into account the formulae and charts presented in the previous section one
can conclude that small numbers of processors are sometimes as efficient as massively
parallel systems, of the architecture considered. This leads to a conclusion that very big
meshes of processors or massively parallel systems can be efficient only when the
locality of the process of computations is exploited. It can be, for example, the case of
systolic algorithms exploiting locality in each step of systolic algorithm while the data
flows through the network. Intuitive expectations of the dependence of the efficiency of
the architecture on the speeds of the processors and the communication medium are
justified. The better these two parameters are, the more efficient the network can be. A
new observation is that the longer the task is, the bigger are the gains from parallel
processing. Another observation is that the speed of the network is a crucial parameter
influencing the performance.

Future research in this area may be concerned with other architectures of the
network as well as with more than one task present in the network at the same time.
The method of finding the distribution of the load among processors of the mesh
without allowing for the simplifications present in this work seems to be a challenging
task, for future research.
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