SNH,

3  PARALLEL
5 | COMPUTING
ELSEVIER Parallel Computing 20 (1994) 15-28 e ——

Scheduling independent multiprocessor tasks on a uniform
k-processor system '

J. Btazewicz **, M. Drozdowski 2, G. Schmidt ®, D. de Werra ©

¢ Instytut Informatyki Politechniki Pornariskiej, Pozna#i, Poland
® Universitdt des Saarlandes, Wirtschaftsinformatik I, Saarbriicken, Germany
© Département de Mathématiques, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

{Received 2 September 1992; revised 12 February 1993)

Abstract

The problem to be addressed is one of scheduling multiprocessor tasks, some of which
require more than one processor at a time. We extend this model by introducing a uniform
k-processor system consisting of__&_t_u_glgs of processors having the same speeds. A low order
polynomial-time preemptive scheduling algorithms is proposed when schedule length is the
performance measure.

Key words: Deterministic scheduling; Muitiprocessor task systems; Uniform ProCessors;
Preemptive schedule; Scheduling on a hypercube; Complexity analysis; Polynomial-in-time
algorithms

1. Introduction

While classical scheduling models assume that each task requires one processor
at a time [2,5,7], it turns out that in systems of microprocessors one often has tasks
requiring several processors simultaneously [3,16). It is for instance the case of
self-testing multi-microprocessor systems in which one processor is used to test
others or in fault detection-systems in which test signals stimulate the elements to
be tested; then outputs are analyzed simultaneously [1,8]. New paraliel algorithms
and corresponding future task systems create another domain of application for
this kind of scheduling [9,14]. It is not difficult to give examples of the computa-

* Corresponding author.
¥ Research partially supported by grant KBN and by project CRIT.

0167-8191,/94/$07.00 © 1994 Elsevier Science B.V. All rights reserved
$SDI 0167-8191(93)E0064-3




16 I Blazewicz et al. / Paralle! Computing 20 (1994) 15-28

tional problems from mathematics, physics, electronics and computer graphics (e.g.
computations on matrices) which can be easily divided into subproblems solvable
‘almost’ independently in parallel. ‘Almost’ means that copies of the program
solving the problem must communicate from time to time. No matter what kind of
communication medium is used, whether it is a shared memory or packet switching
system, the advantage of parallelism can only be taken if copies are running in
parallel in real time. Otherwise one running module of the program may wait for
communication with a module which is temporarily idle. In such a situation the
- speed of execution depends mainly on the work of the scheduling algorithm
swapping tasks on the processor [9]. Thus, in general it is desirable to run in
parallel copies of the program requiring more than one processor simultaneously.

When modeling task sets for the above applications, the set of tasks 7 is
divided into subsets T, T2,...,T* with |T'|=n, (i=1,...,k) and n,+n,+

., +n, =n. Each task T/ e T' requires exactly i arbltrary processors (from
among m identical ones) simultaneously during a prespecified period. All the tasks
are md__pendcnt and each processor can be assigned only one task at a time. The
objective is to find a feasible schedule with the minimum length, Our definition of
task. processing follows [3] while another way of processing including the depen-
dence of a processing time on a number of processors executing a particular task
was given in [10] (the so-called parallel task system — PTS). Both models are
closely related and dependent on each other. The model considered here is called
multiprocessor task system (MTS) and is a special case of PTS. However, NP-hard-
ness results obtained for MTS are then extended to the PTS [10]. Our model
(MTS) is as useful as PTS both from theoretical and practical point of view.
Practically — it is often the case that it is difficult to change the number of
processors used by a task. This reflects for example the level of the scheduler in
the operating system. Theoretically - it is a useful model to derive complexity
results and devise scheduling algorithms.

In particular in [10] it has been shown that for nonpreemptive scheduling and
precedence constraints consisting of chains MTS problem is strongly NP-hard. For
independent tasks and nonpreemptive scheduling the problem is strongly NP-hard
for five processors ((10])). Some polynomial-time algorithms for special cases of
MTS are also known [3].

For the preemptive MTS case and identical processors already some results
have been obtained. For general independent multi-processor task sets with m
fixed (whete m is the number of processors) the problem can be solved in
polynomnzial time using a linear programming formulation [3]. If there are T -tasks
and T*-tasks in a system only, an optimal schedule can be constructed in O(n)
time {3]. The special case of the preemptive MTS is scheduling on a hypercube of
processors [6,15]. An O(m?2n?) algorithm was proposed in [15] to schedule preemp-
tively tasks requiring a number of processors which is a power of two.

In this paper, we extend the MTS model by considering a uniform k-processor
system. A system of uniform processors can be a model for a computer system
consisting of heterogeneous processors or a system in which some processors have
to do additional work ‘in the background’ (e.g. passing a massage in the node-to-

.—



J. Blaiewicz et al. / Parallel Computing 20 (1994) 15-28 17

node communication network). A k-processor system consists of disjoint %-tuples
of processors. All k processors in the same k-tuple have the same speed s, ,, =
seees =Sipen 1=0,...,(m/k)— 1. This assumption is justified in practice because
of necessary synchromzatlon of parts of the same task running snmultaneously
Thus, the slowest processor speed is the speed of the tuple. We give a low order
polynomial algorithm for preemptive scheduling T'- and T*-tasks. For snmphcnty
these tasks will be called T-tasks and W-tasks, respectively. This algorithm can be
extended [4] to cover also the case of the task sets T',..., T*, where for every pair
T¢, T/, i Z* (when j>i). It is worth mentioning that this algorithm covers also
the problem of scheduling on the hypercube described in [6,15] but the methods
used here are different.

To set up the subject more precisely let us denote processing requirements of
T'-tasks by a vector of standard processing times 1'= [tt, - J Thus, the
time needed to process 7;' on a processor of speed s, is ! /s,, J—l n;.
Similarly, tasks from sets T2 .,T* are characterized by vectors of standard
processing times £, ..., t¥, respecnvely, and by requirements of 2,. .., k processors,
respectively, at th_e same—time by any task of the respective set. A real processing
time of task T}, i=2,...,k, depends on a processing speed s, of the i-tuple of
processors assigned to the task, and it is calculated in the same way as above. All
tasks are assumed to be preemptable, i.e. their processing may be interrupted at
any moment and restarted later (perhaps on another processor) at no cost. The
objective of scheduling is to find the shortest possible schedule, i.e. one for which
Coax = max, (Cj} is at its minimum, where C} is a completion time of task
T,,t—l .. k; 1=1,...,n, in the schedule.

The next section describes the algorithm for two types of tasks (T and W).

2. An algorithm for 7- and W-tasks

In this section, the problem of scheduling tasks from sets 7! and T* will be
considered. As we mentioned, for simplicity reasons these sets will be denoted by
T and W, respectively, and their processing requirements by vectors ¢ and w,
respectively. Now we describe briefly an idea which lies behind an approach which
will be described below. Firstly a lower bound on the schedule length is proposed,
and tasks are scheduled using rules that follow a standard uni-processor approach,
so that this bound is observed. It appears, that sometimes this bound is exceeded
and an infeasible schedule is obtained. It may be proved however, that in such a
case no better (shorter) schedule exists. Then, depending on the reason for
infeasibility, 'a new schedule length is calculated and an optimal schedule is
constructed. The details of this approach are described below.

When preemptively scheduling independent W- and T-tasks on a uniform
k-processor system, a lower bound on the schedule length can be calculated by
considering two relaxed versions of the problem:

(1) W-tasks only and

S an <t . | AR |



18 J. Blazewicz et al. / Parallel Compuring 20 (1994) 15-28

(2) W- and T-tasks where each W-task will be treated as k independent T-tasks

with identical processing requirements for each of them.,

Let the set of k-processors be ordered by nonincreasing speed factors with
SI= 0 EmE RS =S 2 28, =" =5, and (m/k)eZ*,
Let the sets of tasks for problems (1) and (2), respectively, be ordered according to
nonincreasing processing requirements. The schedule lengths for problems (1) and
(2) are given by the following formulae:

4

ny m sk
C(l)=max{max1<x<m/k{zwj/iski}! ij Eski};
i=1 i=1

j=1 i=1

1

C(2)=max{maxlsg<m{zfj f:%}:f:’j isi};

j=1 [ i=1 ) j=1[ i=1
where N=n, +kn,.

The above formulae follow standard uni-processor task scheduling approach
[11]. Clearly C =max{C(1), C(2)} is a lower bound for our original problem and
thus CX > C.

Let the processing capacity of each processor in the interval [0, C] before
scheduling any task be defined by PC; =s,C. First we schedule the set of W-tasks
according to nonincreasing order of standard processing times by considering only
the processor set P’ = (P, |i=1,...,(m/k)). After the assignment of the first task
set we schedule the set of T-tasks again in a nonincreasing order of standard
processing times on the processor set P={P,|i=1,..., m) taking into account the
assignment pattern resulting from scheduling all W-tasks.

The algorithm will use three rules {(cf. [13]) which will be given below. It will be
applied first to scheduling W-tasks and then T-tasks. For simplicity of notations
the processing requirement of each task (T or W) will be denoted by ¢; when
scheduling W-tasks they will be treated as T-tasks to be scheduled on (m /k)
processors. At each stage of the algorithm, the processors will be ordered accord-
ing to nonincreasing values PC; (note, that initially this order coincides with the
order of nonincreasing processing speeds).

The first phase of the algorithm consists in applying as long as possible the
following rules 1 and 2. (We schedule one task after the other according to the
order of nonincreasing standard processing times by applying appropriate rule.)
Then rule 3 is used. Suppose we have to schedule T. and we are considering the
first P, for which PC, > ¢,.

If t;,=PC, then apply Rule I:

Rule 1. Schedule task T; on the processor P, in such a way that the interval
[0, C] is completely filled with T.. Set PC;~0 and renumber the processor set
according to nonincreasing processing capacities.



J. Blazewicz et al, / Parallel Computing 20 (1994) [5-28 19

If PC,> t; > PC, ., then apply Rule 2:

Rule 2. Calculate the time u such that 7; is completcly processed in the intervals
[0, u] on processor P, and [, C1on processor P, respectively. Combine proces-
sors P, and P,,, to a composite P, with PC,:=PC,+ PC, —1t; Set PC;, =0
and renumber the processor set according to nonincreasing processing capacities.

When rules 1 and 2 can no longer be applied, then we are necessarily in one of

the following cases:

(a) t; < PC, with either I=m or PC,,,= --- =PC,, =0 (ie. the processing
requirements of 7; will not entirely fill the smallest positive remaining
capacity of a single processor);

(b) PC,_, >t;> PC, and no « (as in Rule 2) can be found. This case can occur
only if Rule 3 has already been applied: processors are then foaded in some
time intervals in [0, C].

Then we apply the following:

Rule 3. Schedule task T; and the remaining tasks in any order in the remaining
free processing intervals from left to right starting with processor P, and use a
processor P, i <l, only if P,,, is completely filled.

As C = C(1) we know that a feasible schedule for the set of W-tasks must exist.
It remains to show that T-tasks can be scheduled in the remaining processing
intervals and if not, that no feasible schedule for the given problem instance with
schedule length C will exist, '

Let us consider the following example first.

Example 1. k=3,n,=4,n;=2,1t=[16,16,16,2], w =[16,7], s, =5, =5, =5, =
Ss=8,=2, 5;=853=53=1. C(1)=8 C(2)=8 C=8. We obtain the schedule of
Fig. 1 with rules 1, 2, 3. We see that 7, cannot be scheduled.

81=2 T].

s3=2 T3

8 4=2

85=2 Wl

86=2

8.=1

88=1 W,
2

sg=1

0

Fig. 1. A partial schedule for Example 1.

L S d T ¥



20 J. Blazewicz et al. / Parallel Computing 20 (1994) 15-28

From the calculation of C(2) we know that there is enough processing capacity
in the interval [0, C] to schedule all the tasks on the given sct of processors. In
case of infeasibility it might happen that the length of some T-task will prevent the
construction of a feasible schedule. To check this, we calculate the processing
capacities in the interval [0, C] for the remaining processor system after scheduling
the set of W-tasks. Let PC be the remaining processing capacity of an original or
composite processor P, in the interval [0, C] after the assignment of all W-tasks
following the above rules. Remember that these processors are ordered according
to nonincreasing remaining processing capacities.

From [13] we know that a feasible schedule for the remaining set of T-tasks
exists if and only if

g g m n
YPCr2 Yy forg=1,...m—1land L PC’= Yt (1)
i=1 i=1 i=1 i=1
and that we can construct it by applying Rules 1-3 to the set of T-tasks using the
processor systemn resulting from the assignment of the W-tasks. Now, assume that
no feasible schedule can be found in this way. First, we will show that no other
assignment of the set of W-tasks than the one generated by Rules 1-3 can achieve
feasibility for the set of T-tasks. Let pc)’ be the remaining processing capacity of
processor P, in any feasible W-task schedule.

Claim 1. Using Rules 1-3 we can always guarantee that

q q
YPCr= Y pcf forg=1,....,m

i=1 i=1

Proof. Using the above rules we schedule the set of W-tasks one by one. Having
selected the first task W), assume we are using rules 1 or 2. Let ! be the index such
that PC,>w; > PC,,,; then the composite processor has a remaining processing
capacity whlch satisfies PC,;,, < PC,+PC,, 1~ W < PC,_, and no reordering of
the processors is necessary.

On the other hand, if we combine P, and P, (i < gq) we will have PC; + PC, — w;
<PC, since PC, <w;. Let r be the new mdex of the composite processor after
reordermg then we will have L5 pcy <Li_,PC, (and r>i). In general, P, or P,
could be any feasible composition of processors other than P, and P, ,. Important
is that some PC; has been used. From rule 3, the conclusion is immediate.

After scheduling #; we have the problem to schedule # —1 W-tasks on m — 1
processors (W was scheduled by applying rules 1 or 2) or on m processors (W was
scheduled by applying Rule 3). For the next W-task to be scheduled the same
argument applies. Induction on the number of tasks proves the claim. O

From Claim 1 it can be concluded that if there is no feasible schedule for the set
of T-tasks after scheduling all W-tasks according to Rules 1-3, then also no other



J. Blazewicz et al. / Parallel Computing 20 (1994) 15-28 21

assignment of the set of W-tasks could result in a feasible schedule in {0, C] for
both task types. Assume, that the original set of processors is now transformed into
a set where composite processors created in the assignment of W-tasks also
appear. Parfially filled and empty processors have been combined to composite
totally filled and totally empty ones. Let the transformed processor system now be
numbered by 1,...,m according to nonincreasing processing capacities. In the
following discussion by the index of a composite processor we mean index of
processor for time r=0.

There exists a feasible schedule for the ordered set of T-tasks, if and only if (1)
holds. In case of infeasibility there will be at least one task T; which causes dead
processing capacity (DP). Dead capacity for T; means that in order to process this
task it should be assigned to more than one processor at a time (which is
forbidden), because there is enough processing capacity in the whole system but
not enough on any available processor (precise definition of DP is given in Eq. (2)
below). Suppose inequalities (1) are not satisfied for / tasks. For the ease of
notation we name tasks 1},...,7}+,_, that cause dead processing capacity by
Ty*,..., T/*, respectively. Let for some j (T =T)) I{_ ,PC’—ZTi !t~ 17 <0,
Dead processing capacity for T* is, thus, DP, =YL/ ,t,— Li_ PC¥ and for
TF,...,T;* respectively

j+1 i+l j+i-1 i+i-1 I—1
DP,= ¥ t;— Y PCY-DP,,..., DP;= ¥ 4~ ¥ PC’'— Y. DP. (2)
i=1 i=1 i=1 im] i=1

There are two cases of infeasibility.

Case 1 (Fig. 2). Here the dead processing capacity follows from the fact that in
bound C(2) splitting of W-task is assumed and tasks assigned according to Rule 2
are assumed to share a processor capacity fairly. Let P; be a processor on which

P,

1

0
Px- 1 b } P
Px

R

Py Wl wi

5

L=

Byik

Fig. 2. A partial schedule after assignment of W-tasks in Case 1. Dotted lines show partial layout of
W-task neighboring T, treated as k independent T-tasks as in O(2).




22 J. Blazewicz et al. / Parallel Computing 20 (1994) 15-28

Pl } i
By T P
Py WL
Py
P wl Tt % oL
DP,

Bk

WL

Fig. 3. Partial assignment in Case 2 of infeasibility.

the first task with DP, i.e. T|* = 7; has appeared. In this case there is at least one
processor below P; completely free in the interval [0, C]. We denote by P, the first
processor from the k-processor to which P; belongs. P, _, is the slowest processor
completely free in the interval [0, C] after the assignment of W-tasks, and x — 1 <j.
P,...,P,_, are filled by W-tasks scheduled according to rules 1,2. The processor
system may be now divided into two parts: an upper part PU where processors P,
through P,__, are located and a lower part PL which all other processors belong
to. ..

Case 2 (Fig. 3). Dead processing capacity follows here from the nose’ created
by the non-splitted W-task assigned according to Rule 3. Let 7, P,_,, P,, P, be
defined as above, but there is no completely free processor below P, Agam the
processor system can be separated into two (possibly empty) parts of PIOCEssors.:
PY and P*. The upper part PY consists of processors P,,..., P,_, such that all
W-tasks which are scheduled on PY, now denoted by WY, are assigned according
torules 1 or 2 and P,_,,..., P,_, do not process W-tasks at all. The lower part
P consists of processors P,,..., P,,. W-tasks in the latter part of the schedule will
now be denoted by W<,

If no feasible schedule exists we must lengthen the current schedule. A lower
bound for lengthening it is

15;51{ 2. DP, ):s]

i=1 i=1

This follows from the fact that all processing capacities of processor system are
shared fairly. On the other hand, we would have an upper bound by lengthening
the schedule by

ZD i/ 51

i=]

4



J. Blaiewicz et al. / Parallel Computing 20 (1993) 15-28 23

where s, is the speed of the fastest processor. If we would lengthen the schedule
each time by 8, we had to do it at most O(L¥_,s;) times to reach §,. Without loss
of generality we can divide all processor speeds and all processing times of tasks by
max, _; . Is;) =s, and with this O(Lf_;s,) becomes O(m). So we know that we
have to lengthen our schedule at most O(m) times. A more detailed analysis of the
procedure to lengthen the schedule is given by Claim 2 and Theorem 1.

Claim 2. If there is no feasible schedule for the set of T-tasks after scheduling
W-tasks according to Rules 1-3, i.e. DP;> 0, then one has to lengthen our schedule

by at least

8= max {)E;Da/(x)ils,. + i’;’_”c_iﬁ is,-)}

l<gxli;n i=1 i=x

wherea={‘V+k_1 case 1

case 2

Proof. Consider any schedule of W-tasks which gives a certain dead processing
capacity DP. In such a case there exists a schedule of the type constructed by rules
1, 2, 3 for which the dead processing is not larger then DP according to Claim 1.
Let € be the minimum amount of time by which we have to lengthen the schedule
to find a feasible assignment for our task set. Two cases of infeasibility are
considered separately.

Case 1. Rescheduling T-tasks and the remaining W Y-tasks, if there are any, on
PY processors results in at most e 's; additional processing capacity. Assigning
€ to PL and rescheduling W’ results in additional processing capacity only from
processors FP,,..., P, ;. This comes from the fact that there is some completely
free processor below P, and that the k-processor P,,..., P,,, , has been com-
pletely free before scheduling 7}*. Following that fact processors i TN
(original ordering) have not been combined with any processor from among
Py,...,P, 41 and do not appear in inequalities Zf. | PC}" > L£_¢; before P; and
T,=T,*. From [11] we know that a schedule exists iff (1) holds. To guarantee the
existence of a feasible schedule we have to change directions of additional

inequalities (from (2)):
jtg—1 i—1 F 4
;‘2 PC,-'"—igt,-—igt,-*<0 forg=1,....,1 (T*=T).
From that we have
i+g-1 i-1 £ g g
Y PCr—Yt,— Yt¥+ Y. DP=0 forg=1,...,1. (3)
i=1 i=1 =1 i=1

After lengthening the schedule, the processing capacity of every original proces-
sors grows to {(PC*Y = PC! + es;. Thus, in our inequalities we should have:
j+g—1 i-1 £

Y (PC.'W)" 1t— Yt*=0 forg=1,...,1L (4)

i=1 i=1 i=1

Y T S |



24 1. Blaiewicz et al. / Parallel Computing 20 (1994} 15-28

If after lengthening the schedule, a division of the processor set to subsets PY and
P% is not changed we have
j+tg—1 j+g-1 y+k 1
‘ -y+g
Y (pcry= Y PC"'+e(Es+ )

i=1 i=1 i=1 imx

(5)

where T*"!s, comes from PY, and ((j —y +g)/k)):,”,:," !5, from PL. (For the
case where the structure of the division to PV and P~ has changcd see Theorem 1
below). From (4) and (5) we have

j+g-1 x-1 ji— y+gy+k -1 J-r o jtg-l
Y PCrt+e|lLs,+———— ¥ s |-Y6u- ¥ 120 (6)
i=1 i=1 i=x i=1 i=1
and then from (3) and (6)
gy+k 1
(): i+ — ) Z‘,DP,..
i=x i=]

Thus e > 6= maxl“s,{): _DP/(Er s+ (G —y + g) /KLY Y 1s,)} is the mini-
mal amount of time by which we have to lengthen the schedule.

Case 2. Because there is no completely free k-processor in the interval (0, C]
assigning € to P,,..., P, of P’ and rescheduling W’ results in involving these
processors in inequalities (1) in the composite processor Px,...,PHk_l. This
results in creating an additional processing capacity on FP,..., P ., of
(e/k)L™ . s; after rescheduling all W*-tasks. Thus, instead of (5) we have

imxi

jtg~1 i+tg—1 x=1 - m
' i—-y+g

L (PCr)'= L PCr+e| L+ ——Ls,

i=] i=1 i=1 =X

and the same argument applies (cf. (5,6)). O

Now, one of the following two cases will happen. We will find (a) a feasible
schedule -having length C,,, =C + 8 and we are done, or (b) that there is no
feasible schedule with length C + 3 and we have to lengthen the schedule at least
one more time. The necessary and sufficient conditions for the existence of a
feasible schedule of length equal C + § are given in the following Theorem 1.

Theorem 1. After lengthening the schedule by & (as defined in Claim 2) there exists a
feasible assignment for our task set, if and only if PU has at least the same number of
processors as before.

Proof. We will prove the theorem by cases. Before lengthening the schedule we
had ¢ ,PC¥ —Lf. ;=0 for g=1,...,j—1 and for some j (y<j<y+k-1)
E,_IPC —LE 5 <0for g=j,...,J +l— 1. After fengthening the schedule the
processing capacity of every orlgma[ processor grows to (PC}Y = PC, + 8s; and
PY={P,,..., P}). We will prove this theorem by contradiction.



J. BluZewicz et al. / Parallel Computing 20 (1994) 15-28 25

First, consider the situation in which PY has now less processors (z <x), Pt
has more and the schedule is feasible. We will prove that it is impossible. For we

have
4

£ g
Z(Pciw)'_ EPC',-"==528,-20 forg=1,...,z—1

i=1 i=1 i=1

and
£ , £
£ (pery'~ Erer -o{ Do+ £ £ 20
i=1 i=1 i=]1 k i=z
forg=z,...,z+k—1. (7

So, we gain processing capacity that is not big enough to satisfy our needs since
what we need is at least (Claim 2)

x—1
sr):s I- }l:: g): forg=1,...,1. (8)
=] i=x

|
The deficit of processing capacity is (from (7) and (8))

x—1 z—1
oLt T L - T T L

;-1 P=x fw] i=z

=5(x):1 i- y+1§="lr ‘] (1_qus20

i=z i=z
forg=1,...,1.

From this fact we conclude, that for at least one task, the schedule is not

feasible.
Now, consider the case where PV and P are not changed (z = x) and there is

no feasible schedule. The processing capacity we gain is

£ £ g
Z(PC:")'— YPCr=8) 520 forg=1,...,x—1

im=] i=1 i=1

and
z=1 +] 2
E(PC“’) —ZPC“’-B(Z.:+8 = zs)
i=1 im=1 k imx
forg=x,...,x+k~1, (%)

Suppose there is no feasible schedule, then for some. glx+y—j<g<x+k-1)
we have LF_(PC!) —Lf 1, <0. We substitute Tf_(PC”) and the result is
(from (9))

x~1
g—x+1 2 £
Ir}::II='C"’+8 Y s+ —— Es) Yt <0. (10)
- i=1 i=x i=1




26 1. Blazewicz et al. / Parallel Computing 20 (1994) 15-28

From Claim 2 we have

5= max {iDP,-/(Tgsﬁ %is})} (11)

Ishzg! . f=x

Now, the schedule is lengthened and there is less dead processing capacity than
before. Following that fact inequality (10) may not be satisfied because by substitu-
tion of & we have (from (10} and (11))

g £ g—x—y+j

YePCcr— Y+ Y DP.<0O

f=1 i=1 i=1
and Lf_,PCY is less than before lengthening the schedule. This fact obviously
contradicts (3). We may conclude that if there is no change in division of £ into
PY and P* then schedule with C = C + & is feasible.

Finally, consider the case where PY has more processors than before reschedui-
ing (z > x) and schedule is not feasible.

Inequality z>x means that W!-tasks scheduled previously on processors
P,,...,P ., are now scheduled on slower processors (P, 4, ..., P, 4x-1). This
implies that:

-4 , g x—1 g—x+ 1 a
Y(PCr)Y =2 LPCr+38| Y5+ TES,- forg=x,...,x+k—-1
i=1 i=1 i=1 i=x
because we gain more from processors P,,..., P,_; than expected. Then the same
arguments as to Eqs. (10} and (11) are applied. We see that theorem is proved. O

Thus, at each time there is a change in PY and P’ after lengthening the
schedule by 8, we have to increase the schedule length once again. Since there are
at most (x — 1) /k <m W-tasks scheduied according to rules 1 and 2 after the first
task assignment a new ‘nose’ on PY does not occur more than m times.

Note that from inequalities (1) we cannot exclude simultaneous occurrence of
Case 1 {(even multiple)} and Case 2 of infeasibility. This does not change proof of
Claim 2 or Theorem 1. Every infeasibility occurrence is considered locally in these
proofs, while calculating § we have to keep in mind what kind of infeasibility
corresponds to which T and k-processor (defining respectively P,, P, a). Simulta-
neous handling of all groups of infeasibility (i.e. case 1 and 2) leads to an
improvement of algorithm’s complexity.

The algorithm to solve our scheduling problem can now be formulated as
follows.

Algorithm 1.
Step 1. Calculate C, and schedule all W-tasks in [0, C] using Rules 1-3;
Step 2. While no feasible schedule for T-tasks exists Do

Begin
Calculate §; C=C + §;

bedie S wa




1. Blazewicz et al. / Parallel Computing 20 (1994) 15-28 27

sl=2 T]_
= T
By= 2
83=2 T3

B 4=2
8g=2 Wl
86=2
87=1
88=l W2
89=1

0

Fig. 4. Example i — an optimal schedule,

Schedule W-tasks in [0, C] using Rules 1-3;
End;
Step 3. schedule T-tasks.

Calculating the lower bound needs O(n log n) time. The application of Rules

1-3 has time complexity O(n) and the inner loop of the algorithm (Step 2) will be

" carried out less than O(m) times because the situation described in Theorem 1
may not happen more than O(m) times. The calculation of § from inequalities (2)
and Claim 2 lasts O{m) since case 1 may happen O(m) times and Case 2 only once
for Claim 2. So, we have a total time complexity of O{nm + n log n) to solve our
problem and of O(nm) for constructing an optimal schedule.

Finally, let us go back to the example of Fig. 1. We have already gone through
Step 1 and come to Step 2; no feasible schedule could be found. We go to the
inner loop of Step 2. We have x=4, j=y=7,1=1, a=m, and compute: DP, =1
8 =1/9. Proceeding to Step 3 we get the schedule given in Fig. 4. It is feasible.

3. Conclusions

In the paper, a new model of deterministic scheduling, applicable in multimicro-
processor systems such as shared memory multiprocessors or hypercubes of proces-
sors, has been considered. It has been assumed that any task may require more
than one processor at a time. The presented O{smm + n log n) time algorithms find
a minimum length schedule cn uniform processors under the assumption that tasks
require one or k-processors simultancously for their processing. This algorithm can
be extended ([4]) to cover the case of tasks requiring certain numbers from one to
k processors (e.g. 1,2, 4, 8,...,m processors). A more general problem where

T T e




28 J. Blazewicz et al, / Parallel Computing 20 {1994} 15-28

tasks may require any fixed number of processors from the set {1,..., k} may be
solved via linear programming approach [4]. Further generalizations include,
among others, deadline scheduling problems which are very important from the
practical point of view. These problems arc now being studied.

References

[1] A. Avizienis, Fault tolerance: the survival attribute of digital systems, Proc. IEEE 66 (1978)
1109-1125.
(2] K. Baker, Introduction to Sequenching and Scheduling (Wiley, New York, 1974).
[3] 1. Blaiewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize schedule
length, JEEE Trans. Comput. C35 (1986} 389-393.
[4] J. Blazewicz, M. Drozdowski, G. Schmidt and D. de Werra, Scheduling independent multiproces-
) sor tasks on a uniform k-processor system, Report R-92/030, Institute of Computing Science,
Technical University of Poznah, Poland.
[5] J. Blazewicz, K. Ecker, G. Schmidt and ]. Weglarz, Scheduling in Computer and Manufacturing
Systems (Springer, New York, 1992).
[6) G.L Chen and T.H. Lai, Preemptive scheduling of independent jobs on a hypercube, IPL 28 (1988)
201--206.
(71 E.G. Coffman Jr., Computer and Job-Shop Scheduling Theory (Wiley, New York, 1976).
{8] M. Dal Cin and E. Dilger, On diagnosibility of sclf-testing multimicroprocessor systems, Micropro-
cessing and Microprogramuming 7 (1981) 177-184.
[S] E. Gehringer, D. Siewiorek and Z. Segall, Parallel Processing, The Cm* Experience (Digital Press,
1987).
(101 J. Du and ).Y-T. Leung, Complexity of scheduling parallel task systems, SL4M J. Discrete Math. 12
TTT{1989) 473-487.
[11] T. Gonzalez and S. Sahni, Presmptive scheduling of uniform processor systems, J. ACM 25 (1978)
92-101.
{12] E.L. Lawler, Recent results in theory of machine scheduling, in: Bachem et al. eds., Mathematical
Programming: The State of Art (Springer, Berlin, 1983) 200-234.
[13] G. Schmidt, Scheduling on semi-identical processors, Z. Oper. Res. Theory 28 (1984) 153-162.
[14] C. Seitz, The cosmic cube, Comm. ACM (1) (1985).
[15] X. Shen and E.M. Reingold, Scheduling on a hypercube, Informat. Processing Lett. 40 (6) {1991)
323-328.
(16} J.A. Stankovic and K. Ramamritham, Hard Real-Time Systems (IEEE Computer Soc., Washington,
1988).




