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Summary

Contemporary computer systems are multiprocessor or multicomputer ma-
chines. Their efficiency depends on good methods of administering the exe-
cuted works. Fast processing of a parallel application is possible only when
its parts are appropriately ordered in time and space. This calls for efficient
scheduling policies in parallel computer systems.

In this work deterministic problems of scheduling are considered. The
classical scheduling theory assumed that the application in any moment of
time is executed by only one processor. This assumption has been weake-
ned recently, especially in the context of parallel and distributed computer
systems. This monograph is devoted to problems of deterministic scheduling
applications (or tasks according to the scheduling terminology) requiring
more than one processor simultaneously. We name such applications mul-
tiprocessor tasks. In this work the complexity of open multiprocessor task
scheduling problems has been established. Algorithms for scheduling mul-
tiprocessor tasks on parallel and dedicated processors are proposed. For a
special case of applications with regular structure which allow for dividing
it into parts of arbitrary size processed independently in parallel, a method
of finding optimal scattering of work in a distributed computer system is
proposed. The applications with such regular characteristics are called di-
visible tasks. The concept of a divisible task enables creation of tractable
computation models in a wide class of computer architectures such as cha-
ins, stars, meshes, hypercubes, multistage networks. Divisible task method
gives rise to the evaluation of computer system performance. Examples of
such performance evaluation are presented.

This presentation summarizes earlier works of the author as well as con-
tains new original results. The results are presented in a unified form in
the context of the current state-of-the-art in the analyzed field. The results
obtained point out further research directions.



Chapter 1

Introduction

1.1 Scheduling tasks in multiprocessor computer
systems

The increase of the computer speed and their ability to solve bigger and
bigger problems is an everlasting challenge for the designers. As computer
systems grow more complex and their speed increases the problems that must
be overcome to further increase the speed and the ”capacity” seem to grow
even faster. The difficulties follow physical phenomena at the foundations of
computer devices technology. For example consider a processor technology.
A limited yield of the current sources in the integrated circuits for the fixed
clock period limits the maximum length of buses and internal connections in
the circuit. And vice versa for the given size of the connections the frequency
of the clock is limited. Thus, to increase the speed the yield of the current
sources must be higher or the size of the devices must be smaller. Further-
more, in order to minimize the number of defected circuits in one piece of
silicon, the chips are reduced in size. This, and growing complexity of the
processors results in increasing density of power dissipation. Yet, it cannot
grow to infinity. Moreover, since the photolithography methods are limited
by the light wave length further miniaturization becomes slower and more
costly than in the recent years. Hence, it seems that unless new ways [197]
are found to overcome the existing technological problems the development
of processors will be slower and prohibitively expensive [123].

A solution to this problem can be in exploiting potential simultaneity in
execution of some independent program fragments. In other worlds, explo-
iting parallelism of computations can be the answer. It can be verified that
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even in commonly performed engineering and scientific computations there is
a great potential for parallel computations [140]. The idea of reducing com-
putation time by concurrent execution of some parts of a program is over a
hundred and fifty years old [139]. Despite that, concurrent computations are
not so common in contemporary programs. There can be at least two reasons
for this situation: limited technology and difficulties in creating correct and
efficient parallel applications. With the advent of relatively cheap and po-
werful microprocessors the first reason became easier to overcome and many
vendors started to offer multiprocessor systems. Furthermore, some paral-
lelizing methods have been implemented in contemporary microprocessors
[4, 115, 156] (multiple instruction issue, out of order instruction execution).
The second reason seems to be much more significant. It appears that de-
veloping an efficient and correct parallel application is not a trivial task.
An important issue is that parts of the application must be executed in a
proper sequence and should not wait for their data more than necessary.
Thus, feasible and efficient scheduling® parts of a parallel application is very
important. Consequently, the field of scheduling for multiprocessor systems
is significant in the design of libraries and compilers [11, 108, 170, 175]. Con-
temporary parallel computer systems are valuable assets shared by many
users. The access to the shared resources must by managed by the opera-
ting system. Hence, scheduling of tasks is important also for the designers
and administrators of operating systems [69, 185]. In hard-real-time envi-
ronment, where programs must be completed before deadlines, scheduling is
particularly important element of the system design [114, 179, 184, 192, 212].
Scheduling is also one of the main areas of contemporary mathematics [193]
as a branch of combinatorial optimization. The origin of scheduling lies in
the operations research [10, 30, 43, 68, 143] mainly in production and project
management. Only later were these results applied in the management and
control of computer systems.

When building a schedule it is an objective to build the one which is the
best possible in the sense of some criterion, e.g. the shortest schedule. On
the other hand, for practicality reasons the time spent on constructing such
a schedule cannot be long. In particular, the time should be polynomially
bounded - i.e. growing polynomially, not exponentially, with the growth of
the problem size. Satisfying these two requirements is sometimes difficult.
When the scheduling problem is computationally hard (precisely NP-hard)

'The notions used in this section in an intuitive sense will be defined more rigorously
in the following sections of this work
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then according to the current state of the knowledge polynomial optimiza-
tion algorithm should not be expected. Thus, it is a crucial problem to indi-
cate which problems are solvable "fast” (in polynomial time). Determining,
that a problem is not computationally hard is equivalent with demonstra-
ting a useful algorithm solving the problem. Proving that the problem is
computationally hard is a qualitative indication that it is hard to expect an
algorithm which is both polynomial and always builds optimal solutions. In
such a case it can be advantageous to use fast heuristic algorithm which gi-
ves feasible solution, but not necessarily an optimal one. The computational
complexity theory supplies methods for the analysis of the problems from
the point of view of the necessary computational costs as well as presents
the methods of dealing with special classes of problems. Analysis of the al-
gorithms results not only in the algorithms building schedules, but also in
the qualitative directions for the design of computer systems. For example,
in some architectures it is possible to determine when it is better to execute
an application on all available processors and when it is more efficient to use
only one processor [172] (without intermediate possibilities).

The deterministic scheduling originated as a branch of operations rese-
arch and as such has over fifty years of history, and a wide range of theoretical
and practical results. The domain is so immense that its systematic presen-
tation is beyond the size of this work. However, many important aspects of
scheduling in parallel computer systems were not considered by the classi-
cal scheduling theory. This work is devoted to the presentation and analysis
of such problems - the problems of scheduling in multiprocessor computer
systems.

1.2 The Goal and the Scope of This Work

In the sequel we consider the problems deterministically. This means that
all the parameters describing the tasks and the computer systems are fi-
xed values (uncertainty is not considered). This approach is justified in
many practical situations and in the worst-case analysis. For these reasons
it is widely applied when considering scheduling problems. The determini-
stic character of task parameters has been discussed in many earlier works
[10, 30, 43, 68, 143]. In the context of this work it is necessary to explain
deterministic character of such parameters of the task as the number of re-
quired processors or the set of required processors. Parallel applications are
often prepared for a precisely known number of processors. The choice of the



1.2. THE GOAL AND THE SCOPE OF THIS WORK 9

actual number of processors can be done by the programmer, by a compiler
or by the operating system at the loading time. If changing the number of
processors executing an application is possible at the run-time, then still
there exist a number of processors which can be most efficiently exploited.
In the case of dedicated processors not a number but a set of processors is
required. In such dedicated environment the application has a predetermined
set of processors necessary for its execution. Thus, the number of required
processors or the set of required processors can be considered as known de-
terministically. This issue is further analyzed in Sections 2.2, 3.1, and 5.1.
According to the taxonomy of [56] the scheduling we consider is global and
static. In other words, we assume that decisions on scheduling are centrali-
zed, the used policies remain constant, and all the required knowledge about
the workload is available.

The domain of scheduling in parallel computer systems cannot be con-
sidered independently from the architectural constraints and from the pro-
gramming environment. Hence, the features of contemporary multiprocessor
systems important for this work will be presented.

There are many alternative approaches to achieving efficiency of parallel
computer systems. Some of them concentrate on a particular element of the
system, other try to optimize the system as a whole. The examples can be
allocation, load balancing, routing etc. which often differ only very slightly
from the classical scheduling. It appears that such partial approaches separa-
ted from the issues of scheduling have a limited influence on the efficiency of
the computer system [133, 213]. Thus, it seems impossible to have an efficient
computer system without satisfactory scheduling algorithms. On the other
hand, from the practical viewpoint it is impossible to use only the scheduling
models. It is a consequence of intractability of design and implementation of
scheduling algorithms tackling every possible aspect of a parallel computer
system. Hence, in complex systems cooperation between scheduling and the
algorithms optimizing other elements of the computer system seems requ-
ired. Furthermore, a growing number of researchers attempt to incorporate
communication constraints in the scheduling models [42]. Consequently, the
related approaches and their links with scheduling will be presented.

The classical scheduling theory assumes that a task for its execution
requires only one processor at a time. This assumption is disregarded recen-
tly, especially in the context of parallel applications in the multiprocessor
computer systems. The tasks requiring more than one processor at the same
moment of time will be called multiprocessor tasks. This work is dedicated to
scheduling multiprocessor tasks. The problems of multiprocessor task sche-
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duling can be divided into two classes: scheduling on parallel processors and
scheduling on dedicated processors. The computational complexity analysis
of open multiprocessor scheduling problems will be conducted. For selected
problems polynomial-time algorithms will be presented.

There exists a class of computational tasks which have a very regular
linear structure, e.g. processing measurement data [60], some problems of
linear algebra [27]. Such computational tasks can be divided into parts of
(almost) arbitrary sizes. The parts can be solved independently in parallel by
different processors. The transmission times and the processing times for the
parts are proportional to the sizes of the parts. Tasks with such characteristic
will be called divisible. The concept of divisible tasks allows for a creation
of simple models of communication and computation processes for a wide
class of computer architectures. This enables finding an optimal distribution
of the computational task and evaluating the performance of a computer
system.

For analyzed problems the previously existing results will be shown using
a unified notation. The proposed notation is an attempt to unify communi-
cation aspects of computer system with the scheduling problems. This work
comprises the results obtained by the author, collected in the context of
the current state of research, which allows for pointing out further research
directions.

The organization of the work is the following. In Chapter 2 important
features of contemporary parallel computer systems will be described. In
Chapter 3 basic definitions of scheduling theory, computational complexity
analysis, parallel algorithm performance evaluation will be introduced. In
Chapter 4 an overview of the problems related to scheduling in multiproces-
sor computer system will be presented. Chapter 5 addresses scheduling of
multiprocessor tasks. Chapter 6 considers divisible task scheduling. Chapter
7 contains final remarks and conclusions.



Chapter 2

Parallel Computer Systems

2.1 Hardware

The field of parallel computing is immense. Thus, we introduce here only
basic concepts referred to in the further sections.

It is common to start a description of parallel systems with an attempt
of classifying types of parallelism and types of parallel machines. A useful
view on parallelism types is distinguishing between data parallelism and code
parallelism (cf. Fig 2.1). Data parallelism is a situation in which the same
operations are performed simultaneously on the data structures of the same
type, whereas in code parallelism different operations are performed in pa-
rallel. Another view of parallel processing classification considers granularity
of parallelism. Granularity is a measure of the synchronizations frequency
among independent threads of parallel execution [98]. Granularity can be
also viewed as a size of the units by which work is assigned to processing
elements [76]. When granularity is fine the synchronizations are frequent,
e.g. every instruction. When granularity is coarse the synchronizations are
rare, e.g. every 10° instructions.

Classical computers execute instructions in the order dictated by the
sequence in the program code. This approach is called control-driven or von
Neumann architecture. A different approach where instructions are executed
as soon as their operands become available is called data-driven or data flow.
Using this concept data flow machines were built like Manchester Dataflow
or LDF100 [76, 111].

In [96] control-driven computers have been divided into four classes:
SISD (single instruction stream, single data stream), SIMD (single instruc-

11
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Figure 2.1: lllustration of a) data parallelism and b) code parallelism.

tion stream, multiple data streams), MISD (multiple instruction streams,
single data stream), MIMD (multiple instruction streams, multiple data stre-
ams). SIMD and MIMD are currently regarded as the classes of parallel
computer systems. A variation of SIMD is SPMD (single program multiple
data streams). MISD can be a model for machines with pipelined compu-
tations. The division into SIMD (resp. SPMD) and MIMD coincides with
distinguishing data and code parallelism. Another classification divides pa-
rallel computers into multiprocessors and multicomputers. A multiprocessor
is a computer with processors communicating via a shared memory (e.g.
CRAY X-MP, Y-MP, IBM 3090 [9]). A multicomputer consists of a set of
processors with local memories, interconnected by some kind of network.
We will name by processing element (PE) a processor with local memory
and a network interface. When a processor has a local memory which is
not accessible for other processors, then only by passing messages can some
other processor access the contents of nonlocal memory. Thus, the above
classification coincides with the division into message-passing architectures
(multicomputers) and shared-memory architectures (multiprocessors). The
message-passing computers can be divided into two classes: tightly-coupled
and distributed. Distributed systems are (usually) heterogeneous computers
with different operating systems, connected by (usually) heterogeneous to-
pology Local/ Metropolitan/ Wide Area Networks (LANS, MANs, WANSs).
This class provides a relatively low cost parallel computing environment
which recently became very popular and was successfully applied (e.g. [196]).
As the opposite, tightly-coupled systems can be characterized by: homogene-
ous PEs, uniform interconnection, uniform operating system, single vendor
and a single boxing.

Tightly-coupled computers can be further differentiated by the type of
PE interconnection. In this work we limit considered interconnection ty-
pes to: bus(es), point-to-point networks (called also single-stage networks),
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and multistage networks. Bus interconnection is a classical concept in which
processors (or PEs) communicate over a shared bus. Machines like C.mmp,
Cm*, Alliant FX/8, LDF100, Sequent Balance, SGI Power and Challenge
are based on the bus concept [9, 98, 186]. Furthermore, majority of con-
temporary microprocessors are able to use buses. Point-to-point networks
link pairs of processing elements (or switches to which PEs are attached).
A path between two arbitrary processors in the network may require several
hops at the intermediate processors or their network switches. In the class
of point-to-point interconnections we distinguish: hypercube (machines: Co-
smic Cube, nCUBE1, nCUBE2, CM-2, FPS T, Intel iPSC/2, iPSC/i860),
and mesh (possibly torus) (examples: MPP, AP1000, DASH, Alewife, J -
Machine, Paragon, Cray T3D) [9, 47, 55, 75, 76]. A hypercube ([180]) of di-
mension d consists of 2¢ PEs which can be labeled using d-bit long binary
string. Two PEs connected by a link have labels differing on exactly one bit.
Transputer interconnections are examples of point-to-point networks, but
the topology varies depending on the actual system.

In multistage networks PEs are connected by several layers of switches
while the internal layer switches have no PEs attached. Multistage networks
are divided here into: trees and multistage cube network [161]. In the tree
networks a message to reach the destination must go up and down the hie-
rarchy of switches. This kind of networks include fat-tree [146] (e.g. CM-5,
Meiko CS-2), and hierarchy of rings (KSR1, KSR2) [47] (cf. Fig. 2.2). The
fat-tree is a binary tree with PEs at the leaves and the number of links gro-
wing while moving down to the root of the tree. The root is connected to the
“external world”. The multistage cube network (MCN) is a representative
of a wider class of interconnections in which processors are linked by several
layers of switches where each layer has the same number of switches (e.g.:
BBN Butterfly, SP1 and SP2). When computations are performed by sys-
tems consisting of hundreds or more nodes we will say that this is massively
parallel processing (MPP). In this work when talking about MPP systems
we will mean mainly tightly-coupled systems.

The classification of point-to-point architectures is not full without de-
scribing the communication subsystem. When a PE has no specialized com-
munication hardware (e.g. bare T800 Transputers without external switches)
the processor must perform communication and routing functions. Hence, it
is not able to communicate and compute in parallel. PEs in majority of mo-
dern computers are equipped with communication hardware and the overlap
of computation by communication is possible. Another element of the archi-
tecture is the maximum number of active ports per PE. If communication
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EXTERNAL INTERFACE

Figure 2.2: [llustration of the interconnection types: a)bus, b)hypercube d =
4, ¢)2-dimensional torus mesh m = 9, d)fat-tree m = 8, e)hierarchy of rings,
f)multistage cube network m =8 (S - switch).

over only one link at a time is possible we call PEs I-port. In the opposite
case PEs are said to be p-port (where p stands for the maximum number of
links at a PE which can communicate simultaneously).

The next element of the architecture is the commutation mode. The
commutation mode is a physical protocol for message routing. We describe
commutation modes here because routing functions are increasingly executed
by dedicated hardware. The methods we refer to in this section are also
called switching or routing techniques. This should not be mixed with the
routing problems alluded to in Section 4.5. Among various commutation
(or routing) modes we distinguish store-and-forward, circuit-switched and
packet-switched [125, 163]. In the following, distance d is the number of links
between the sender and the receiver. For all the commutation modes the
communication time between two neighbors is equal to T.,, = S+ LC,
where S corresponds to the communication start-up time (message packing,
routing decision, circuit setting-up), C' represents the transmission rate (time
units per data unit), and L is the message length.

In the store-and-forward mode when a PE sends a message to another
PE located at distance d, the message (either as whole or in packet pieces)
is sent to the closest PE on the path and it is stored there. Then, this
intermediate node sends the message to the next node on the path, and so
on until the message reaches its destination. In this mode, the distance is a
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crucial parameter in the communication delay:
Teom = d(S + LC)

In the circuit-switched mode from the transmitter to the receiver a header
of the message is sent which reserves all the links of a communication path
to form a circuit between both PEs. Then, the remaining part of the message
is sent in one step. The message is not stored in any intermediate node along
the path. The communication delay is:

Toom = S +ds + LC,

where § represents the time needed to commute a switch. Parameter 6 < S
(0 ~ (0.1%...1%) of S), and can be neglected. Hence, for this mode, the
communication delay does not depend significantly on the distance. This
observation is confirmed by experiments [163].

In the packet-switched modes the message is split into packets which con-
sist of flits. Flits are also called flow of control digits. These are words passed
over a link in one control cycle (e.g. clock cycle, or hand-shake cycle). The
first flit plays the role of the header, the rest of flits follow it immediately, the
last one releases the communication ”pipe”. The model of the communica-
tion delay is the same as in the previous mode. Among the packet-switched
modes three sub-types can be identified: wormhole, virtual-cut-through and
buffered-wormhole modes. These modes differ in the behavior of flits and
packets when the packet cannot move forward (e.g. there is no free link).

e In the wormhole mode, the progressing of the message in the pipe is stop-
ped. All the flits remain in the intermediate buffers thus blocking the links.

e In the wvirtual-cut-through mode flits continue progressing on their way
until reaching the site where the first flit is stopped. There a whole packet is
waiting for release of the link. This mode assumes infinite capacity of buffers.

e In the buffered-wormhole mode, flits of some packets move until they reach
the stopped flit, then the whole packet is stored there. Yet, the number of
packets that can be stored is limited by buffers capacity.

Since the communication delay time can be described in the same way
for packet-switched and circuit-switched modes, in this work we distinguish
only store-and-forward and circuit-switched modes (circuit-switched includes
packet-switched and circuit-switched modes). In Table 2.1 we give examples
of the timing parameters for some existing machines [52, 118]. Though a
detailed analysis of communication delay time shows that T,,, is a more
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Table 2.1: Example communication parameters

Machine Name | Interconnection | Commutation | S us | C A

byte
Intel iPSC/2 Hypercube Circuit-Switched 136 0.384
Intel iPSC/i860 Hypercube Circuit-Switched 350 0.2
Meiko CS-1 Mesh Store-and-Forward 250 1.000
Think. Mach. CM-5 | Fat-tree Wormbhole 73 0.1
Intel Paragon 2D-mesh Wormhole 100 0.005
Meiko CS-2 Fat-tree Wormbhole 12 0.02
Cray T3D 3D-torus-mesh | Wormhole 8.57 | 0.0033
IBM SP-1/SP-2 Multistage (Buffered)Wormbhole | 39 0.0125
Parastation Mesh Wormbhole 3083 | 1.04
Cray C-90 Shared memory | - 0.108 | 0.0001

complex function [88, 117], in this work we adopt the above models of Te.p,
for their simplicity and satisfactory accuracy.

The introduced classification is summarized in Fig. 2.3. Note that the
upper and the bottom parts of the figure present exclusive differentiation,
while the division of message passing branch is not exclusive, e.g. some
hypercube-interconnected computer can use both store-and-forward, 1-port
and overlapped communication. The classification we use is not intended to
be ultimate, rather than that we wanted to show basic ways of differentiating
among the parallel computers. It is not difficult to point out its limitations.
The division into control-driven and data-driven computers is not so obvious
when considering out-of-order instruction execution by modern microproces-
sors [115]. Superscalar processors are internally MIMD but for the ”outside
world” are SISD. Division into shared-memory and message-passing compu-
ters also becomes fuzzy when we realize that the memory can be logically
shared but physically distributed. Because of the software-hardware dualism
the hardware support for distributed shared memory will probably grow in
the future and the two classes can converge. Moreover, the same computer
system may include several different interconnections at different levels of
hardware (e.g. CS-2 has omega network (a kind of multistage network) in
the switch and fat-tree of switches) or used for different purposes (e.g. CM-5
has fat-tree as the data network and binary-tree as the control network).
Finally, the performance is the ultimate goal for building parallel systems.
Hence, the above classes can converge in the future to some yet unpredictable
efficient blend of different ideas.
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Figure 2.3: The classification of parallel computers.

2.2 Software

In many common applications (programs) great potential parallelism can
be found [140]. Thus, programs can be executed via many concurrent thre-
ads (mutual relations between the notions of an application, a thread and
a task, are precisely defined in Section 3.1). Computer systems should pro-
vide support for implementing parallelism of an application including the
issues posed by scheduling. In this section we introduce some aspects of pro-
gramming models. Then, we consider operating system support for parallel
applications. We pay special attention to the methods of scheduling parallel
computations.

Shared memory parallel systems are mature programming platforms. For
such architectures extensions handling parallelism have been proposed in po-
pular programming languages [9], especially, in the parallelism of loops (cf.
Section 4.4). Unfortunately, it seems that shared-memory architecture does
not offer good scalability perspectives (here scalability means potential for
increasing the number of cooperating processors - cf. Section 3.3). On the
other hand, distributed memory systems offer almost unbounded scalability
opportunities. Though many message-passing environments were offered and
successfully applied (e.g. PVM [196], Express[165], NX /2, Parmacs[47], MPI
[204] etc.), the underlying message-passing architecture is difficult to pro-
gram. Thus, a concept of distributed memory which is logically shared has
been coined to hide the hardware from the view of the programmer. Imple-
menting distributed shared memory rises many issues like data consistency,
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performance, scalability etc. Several approaches to the implementation of
distributed shared memory in tightly-coupled message-passing systems have
been applied including, for example, virtual shared memory, latency hiding
by use of multiple threads, cache-based distributed shared memory [101].
Also in loosely-coupled distributed systems the concept of logically shared
memory has been realized in the form of associative memory offered by
Linda environment [54]. Observe that since the underlying communication
architecture is based on message-passing, for the programmer there is little
difference between tightly-coupled system and distributed system.

Parallel processing imposes different requirements on operating systems
to the standard general-purpose single-processor machines. The performance
is a prerequisite of parallel systems existence. For that reason performance
should not be sacrificed for the functionality of the operating system [178].
Thus, the parallel application must not be punished by unnecessary sys-
tem functions which are not used but still contribute to memory occu-
pation and latencies. For example, it was pointed out in [118], (cf. Table
2.1) that even tightly-coupled message-passing systems are outperformed by
shared-memory systems as far as communication parameters are considered.
It is observed in [178] that the communication startup time consists in up to
74% of the processing by the micro-kernel of the operating system. Thus, the
functionality of the operating system, and scheduling in particular, should be
tightly tailored to the needs of the application (as it is, for example, in QNX
operating system [173]). Now, we put to the scrutiny the way applications
are scheduled.

Parallel operating systems are evolving from previously existing systems
and many ideas have been "naturally” inherited. Based on acceptable re-
sponse time two load types have been distinguished in single-processor sys-
tems [185]: terminal (or interactive) and batch load. Since batch tasks are
submitted to the computer system far earlier than their actual execution
begins, deterministic scheduling algorithms can be applied. For the terminal
load which requires immediate response, access to processors is granted on
the basis of FCFS, Round-Robin, multi-level priority queues etc. The con-
cept of a ”single” queue has been inherited by the parallel systems: ready
processors are assigned work from a system-wide queue. This approach has
been applied e.g. in Cray X-MP [9]. Unfortunately, actual parallel execution
of application threads depends on the machine loading and there is no gu-
arantee of simultaneous execution on several processors. It is explained in
Section 5.1 that such a situation can lead to a significant performance de-
terioration. To enable simultaneous execution of the application threads, an
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idea of coscheduling (sometimes called gang scheduling) has been applied in
Medusa operating system of Cm* [98]. The coscheduled threads are assigned
to processors in the same time quantum. Coscheduling is often implemented
in shared-memory systems (e.g. Alliant FX/8, SGI Challenge). For example,
in the IRIX 5.1 operating system running on SGI Challenge multiprocessors
coscheduling of threads is possible when requested by a parallel application.
IRIX 5.1 insures parallel running of the threads by increasing the priority of
the threads when the first thread of the application is scheduled. All threads
of the application are expected to be running in at most 10ms (60ms is the
time quantum). IRIX 5.1 ensures that even in the heavy load conditions 72%
of the coscheduled application run time is truly parallel.

A different approach is based on the concept of partitions. All the proces-
sors of the computer are divided into separated partitions. The application
is granted simultaneous access to all the processors in a partition. Partitions
provide means of restricting access to portions of the processor set for parti-
cular users, types of jobs and a way to specify various scheduling characteri-
stics on different parts of the computer. For example, there are often different
partitions for batch and interactive load. Partitions have been applied e.g.
in Paragon, Cray T3D, KSR2, CM-5. In Paragon, Cray T3D, KSR-2 the
user can specify the size of the required partition. In Cray T3D two kinds of
partitions are distinguished: hardware and software partitions. In the former
special hardware protects boundaries of the partition, while in the latter the
microkernel of operating system ensures isolation of applications in different
partitions. In CM-5 size of the partition is managed by control processor to
which the user has interactive access. Time sharing of a partition by different
applications is possible e.g. in Paragon and CM-5, but is not e.g. in Cray
T3D. Since the application startup is time-consuming, the time quanta are
very long (minutes to hours).

Existing computer resources are often not fully exploited [160]. Idle cyc-
les of workstations and personal computers can be a cheap source of com-
puting power. For such systems software is developed which identifies idle
workstations, manages access to them, schedules tasks on such resources,
supports process migration etc. [80, 104, 107, 162]. Furthermore, computers
are often connected into clusters controlled by one scheduler. In such systems
programs can be submitted for batch processing. Usually while submitting
a task, a user can specify (among other features) the number of required
computers, their architecture, maximum processing time. Network Queuing
System (Cray), Load Sharing Facility (Convex), Load Leveler (IBM), Pro-
spero Resource Manager [162], Condor [104] are examples of such systems.
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Most of them claim support for parallel tasks, i.e. tasks requiring many ma-
chines simultaneously. Probably a final form could be called a metasystem
or metacomputer [107, 194] - a single computing resource composed of hete-
rogeneous distributed computers.

To this end let us remark on some analogies between processor scheduling
and memory management. The simplest form of memory management is a
situation in which one program uses all the available memory. Analogously,
a single application on all processors gives the most of possible flexibility
and performance. To allow for multiprogramming memory has been par-
titioned and the parts were used by different programs. In contemporary
computers processor partitions are introduced. This rises similar problems
as in the optimization of memory utilization: internal and external partition,
recognizing and compacting idle processor partitions. Finally, a virtual me-
mory allowed for almost unlimited size of program memory which is mapped
into real memory by operating system. Currently parallel applications must
gear to the available number of processors which is usually constant thro-
ughout application lifetime. Yet, it is not inconceivable to allow for using as
many processors as the application needs and to change this number in the
run-time. For this purpose wvirtual processors have been introduced which
are mapped by operating system into real processors (e.g. by time sharing).
Furthermore, the idea of processor working set [98, 99] is almost immediate
analogy between virtual memory and processor allocation. The processor
working set is the number of processors which must be granted simultane-
ously to the application to enable acceptable progress in computation. Still,
it is disputable if the idea of virtual processors will be widely accepted be-
cause it is conceptually close to processes (possibly with allowing for process
migration to idle processors). Moreover, this increase in functionality must
be paid for in reduction of performance. There are also significant differences
between memory and processor allocation. The processor allocation strategy
must take into account the interconnection topology and the communication
pattern of the application. Processors may be equipped with differing hard-
ware and software. Thus, processors are not as uniform as memory units.
Moreover, processors are not as easily partitionable as memory space. Some
architectures are well partitionable (e.g. meshes, hypercubes) some other are
not well suited for partitioning (e.g. multistage cubes). Finally, these days
the number of processors is much smaller than the number of page units (yet,
this may change in the future). Thus, although there are analogies between
memory and processor management, different algorithms must be used for
these problems.



Chapter 3

Notions and Definitions

3.1 Deterministic Scheduling Theory

In this section basic notions of scheduling theory will be defined. Extensions
necessary to deal with multiprocessor and divisible tasks will be introduced.
We will propose a notation to describe considered scheduling problems.
When analyzing scheduling problems three elements must be determi-
ned: (i) computing environment comprising processor set P, communication
system and other resources R, (ii) task system 7, (iii) optimality criterion.
We assume that processor set P={Py,..., P,} consists of m elements.
Two classes of processors can be distinguished. Dedicated processors and
parallel processors. Dedicated processors are specialized devices performing
differing functions. For example, we often say that specialized processors
such as I/0, arithmetic, vector, graphic, signal processors are dedicated.
Moreover, even identical processors can be considered as dedicated in cer-
tain situations. A multiprocessor task can be considered as executed by a
dedicated processor also for the preallocation reasons. For a certain commu-
nication pattern among the parts of the parallel application and for a given
communication network it can be advantageous to map tasks to processors in
some fixed way. Changing the preallocation may increase the communication
overhead (due to dilatation, congestion etc., we say more about allocation
in Section 4.1). Since the costs of filling a pipeline, vector registers or a ca-
che are high it is disadvantageous to transfer tasks to new sites frequently.
Hence, there is a kind of affinity between tasks and processors [155] and
parallel processors may behave as dedicated devices. In production systems
machines are regarded as dedicated rather than as parallel. In dedicated
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environment a multiprocessor task requires certain processors not just some
number of them. Hence, a set of processors is required simultaneously in this
case. Alternatively, a task may be executed by some family of alternative
processor sets. As it is in the classical scheduling theory [43, 68] multipro-
cessor tasks may consist of operations. In such a case we distinguish three
types of dedicated processor systems: flow-shop, open-shop and job-shop. In
the flow-shop all tasks have the same number of operations which are perfor-
med sequentially and require the same sets of processors. In the open-shop
the order among the operations is immaterial. For the job-shop, the sequence
of operations and the sets of required processors are defined for each task
separately.

In the case of parallel processors each processor can execute any task.
Hence, a task requires some number of arbitrary processors. As in the classi-
cal scheduling theory parallel processors are divided into three classes: iden-
tical processors - provided that all tasks are executed on all processors with
the same speed, uniform processors - if the execution speed differs from pro-
cessor to processor, and unrelated processors - for which execution speed
depends on the processor and on the task. In each of the above cases speed
of the processor can be determined. However, for the purposes of this work
it is more convenient to use processing rate which is reciprocal of the speed.
Processing rate is expressed in the units of time per unit of work. The rate of
identical processors will be denoted A, of uniform processor F;: A;, and in the
case of unrelated processors A;; for processor P; processing task number j.
When processors are uniform or unrelated the slowest processor determines
speed of processing the whole multiprocessor task.

An important element of the multiprocessor computer is its communi-
cation system. The classical scheduling theory originated in the time when
multiprocessor systems with few tightly coupled processors dominated. In
such systems processors could be considered as fully connected and the com-
munication time was negligible. Nowadays, parallel systems are often multi-
computers (cf. Section 2.1) comprising many processing elements connected
via some kind of network. To be precise we should talk about processing
elements rather than about processors. Yet, in this work these two names
are equivalent. There is also a great variety of interconnection architectu-
res. Each processing element is characterized by its ability (or inability) to
communicate and compute simultaneously. If simultaneous computing and
communication is possible then there must be some specialized network pro-
cessor in each PE which performs all network communication functions and
off-loads the computing processor. In such a case we say that the commu-



3.1. DETERMINISTIC SCHEDULING THEORY 23

nication can overlap computation (a system with overlap in short). In the
opposite case the communication system is without overlap. Another cha-
racteristic is ability (or inability) of a processing element to simultaneously
communicate by several ports. If it is possible to communicate by p ports
simultaneously we say that the system is p-port. In the opposite case only
one port can communicate at a time and the system is 1-port. According
to Section 2.1 we distinguish two basic ways of transferring the messages:
store-&-forward and circuit-switched routing. Furthermore, the communica-
tion links between processors will be described by communication startup
time S and transmission rate C' (cf. Section 2.1) when the links are identical,
if the links differ we will denote for link ¢ startup and transmission rate \5;,
C}, respectively.

Apart from the processors there can be also a set R = {Ry,..., Ri} of
additional resources, each available in | R; | units (i =1, ..., k).

The second element of the scheduling problem is the task system. We will
explain now the relations between the notions of an application, a thread and
a task. An application (or a program) can be executed (at least potentially)
by many processors working concurrently. A thread is the basic unit of proces-
sor utilization [125, 185]. Thus, any thread is executed by a single processor.
A thread is equivalent to a program stream with independent instruction
counter running within the environment of an application. Hence, threads
within the application are not isolated from each other. In this work, any
activity inherently running on a single processor will be considered as equ-
ivalent, from the scheduling viewpoint, to a thread. Analogously, activities
which can be performed on many processors (even only potentially) will be
considered as applications. A task is the basic scheduling unit. Depending
on the scheduling model, the task can be equivalent either to an application
or to a thread. In the classical scheduling models the application consists
of some (potentially) concurrent activities which are subject to scheduling.
Thus, in this case tasks correspond to threads. In the case of multiprocessor
tasks, where the application is considered without its internal structure, the
task corresponds to the application.

We assume that the set of tasks T consists of n tasks Ty,...,T,. For
the whole task system it is possible to determine such features as preemp-
tability (or nonpreemptability) and existence (or unexistence) of precedence
constraints. These characteristics are defined as in the classical scheduling
theory [43, 68]. Tasks are preemptable when each task can be interrupted
and restarted later without incurring additional costs. In such a case the
schedules are called to be preemptive. Otherwise, tasks are nonpreemptable
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and schedules nonpreemptive. Tasks are dependent if some task 7; must be
completed before starting some other task 7;, which we denote T; < T;.
Precedence constraints are represented as directed acyclic graphs (DAGs).
In the opposite case tasks are independent. New features are variable profile
and divisibility of tasks. A profile of the multiprocessor task is fixed when
the number (for parallel processors) or the set (for dedicated processors) of
used processors does not change during the execution of a task. A profile is
variable if it is possible to change within the schedule the number (of pa-
rallel) or the set (of dedicated) processors used by a task. Unless otherwise
stated, for variable profile tasks we assume that the cost of expanding a task
to a new (different) processor is negligible and that not granting a processor
to a task does not increase total amount of work. A task is divisible when
it is possible to divide it into parts of arbitrary size and execute these parts
independently in parallel on different processors. Note that divisibility and
changing task profile resemble preemption. A preemptable task can be inter-
rupted at any moment, hence it can be also divided into chunks of arbitrary
size. However, divisibility requires additionally that there are no precedence
constraints (and thus no communication) among the copies of the task run-
ning in parallel, which is not necessarily the case of preemptable tasks. When
a task profile is changing it means that the task appears and disappears on
some processor(s), this is thinkable when it is possible to interrupt proces-
sing and restart a task. While considering allocation problem (cf. Section
4.1) dependencies among tasks are often represented as task graphs. These
are weighted graphs representing communications among tasks (nodes) by
weights of the edges and processing times of the tasks by weights of the
nodes.

Each task separately T; (j = 1,...,n) is described by a number of para-
meters. We enumerate them in the following.

1. Number of operations n;. This parameter is given for tasks scheduled
on dedicated processors. n; > 1 implies that task 7’; consists of operations
{th ceey O]nj}

2. The set of simultaneously required processors fix; or the family of
alternative processors, set;. These parameters are defined only in the case
of dedicated processors. The multiprocessor task requires for its processing
a set fix; of dedicated processors simultaneously. It is also possible that
more than one set of processors can execute a task. Such a set of alternative
processor ensembles will be called a family of alternative processors set;.
We will use the concept of a family of alternative processors only when
| set; |> 1. Analogously, for flow-shop, open-shop, and job-shop set fiz;; or
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family set;; is defined for operation Oj;.

3. The number of simultaneously required processors size;, or the mawi-
mum number of usable processors é;, or the set of usable numbers of proces-
sors any;. These parameters are defined in the case of parallel processors.
When the first parameter is given (task size or task width in short) the
task can be executed only on size; processors required simultaneously. The
multiprocessor task can be executed by some number of processors from
the range [1,6;] if the second parameter is given. In the case of the third
parameter the task can be executed by various numbers of processors, enu-
merated in set any;. We assume that elements of any; are ordered accor-
ding to the increasing values. Note that in the case of uniprocessor tasks
size; = 0; = 1. When size; is given then | any; |= 1, when §; is defi-
ned then | any; |= 6;. When the number of processors executing a task is
not restricted, then any; includes all processor numbers from 1 till m. We
will denote A = maxr,e7{J;} (for tasks executed by only one number of
processors A = maxr,e7{s12€;}).

4. Ezecution time. In the case of scheduling the task on set fiz; of de-

dicated processors the execution time will be denoted t;m]. When task T}
can be executed by a family of alternative processors set; then for each
fixj; € set; the processing time is defined and denoted by t;m”
of preemptable tasks it is necessary to determine how long a task must be
processed in many intervals (possibly by different processor sets) to consider
it as finished. Analogously to the classical scheduling on uniform and unrela-

ted processors we assume that task 7T; executed in [ different time intervals

. In the case

of lengths 7;, by processors in various sets fiz; (i = 1,...,[), is finished
when 25:1 fﬁ], > 1. For a task consisting of n; operations the execution
[

time t;;x” is defined for each operation Oj; requiring processors in set fizj;.
Analogously, for operation Oj; with family set;; of alternative processors
execution time tfzxm is defined for each fiz;; € setj;.

Situation is different in the case of parallel processors. Let us examine

identical processors first. When task 7T’; can be executed only by size; proces-
sors, its execution time is t;we]. If it can be executed by various numbers of
processors, then for each feasible number & of processors execution time t;? is
defined. There is a number of models describing relation between execution
time and the number of used processors. This relation is called parallelism
signature (cf. Section 3.3). In the literature it is:

e an arbitrary discrete function [90],
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1
e an inversely proportional function (i.e. t? = %) [202],

e an inversely proportional function up to k = §; [205],
1
e a function inversely proportional to k% (i.e. t* = ,:—g) where 0 <a <1 [170].
e an arbitrary continuous function [208].
Analogously to the case of dedicated processors, we consider preemptable
task 7T executed in [ intervals of length 7; on k; processors (¢ = 1,...,() as
Ty

being finished when S¢_, "o > 1. To calculate execution time of a task on

uniform and unrelated procjessors one has to take into account speeds of the
processors. We assume here that the slowest processor determines processing
speed of the whole task.

For divisible tasks actual execution time depends not only on the proces-
sor speed but also on the speed of communication medium, and scattering
algorithm. Hence, it is more convenient to express the required amount of
work by the volume of data that must be processed. For the problems with
one task only symbol V' will denote this volume, and V; (j = 1,...,n) for
the problems with more than one task.

5. Ready time r;. A task can be executed only after r;.

6. Due-date or deadline d;. A task should be finished not later than by d;.
If the task must be finished before d; then this moment is called a deadline.

7. Weight or priority w;. It can be interpreted also as the cost of remaining
of T; in the computer system.

8. Resource requirements R ;. The task may additionally require R;; units
of resource R;.

Before describing the third element of a scheduling problem formulation
we define a schedule.

Definition 3.1 Schedule is an assignment in time of tasks to processors
(and resources) satisfying the following requirements:

- Fach processor executes at most one task at a time.

- In the case of dedicated processors, multiprocessor task T; requiring proces-
sors in set fix; is granted all these processors throughout all its execution
time. TaskT; with family set; of alternative processors is executed by exactly
those processors which are specified in the used set(s) fix;; € set;. Operation
Oj; receives all processors required in fix;; or when | set;; |> 1 all processors
included in the used set(s) fix;y € setj;.

- In the case of parallel processors, a multiprocessor task which can be exe-
cuted by only one number size; of processors is granted that number of pro-
cessors simultaneously throughout all its execution time. When mazimum
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number 0; of usable processors is specified, in no moment of time is the task
executed by more than §; processors simultaneously.

- Tasks with fized profile, when executed on parallel processors use always
the same number of processors, and when exvecuted on dedicated processors
use always the same set of processors.

- Task T} is not executed before r; (j=1,...,n).

- For each pair T; < T}, task T; is completed before T; starts.

- All tasks are executed.

- Nonpreemptable tasks are not interrupted, and preemptable tasks are inter-
rupted a limited number of times.

Given a schedule one can determine for task 7;:

- completion time c;,

- flow time f; = ¢; — rj,

- lateness [; = ¢; — d;,

- tardiness 7; = max{0,¢; — d;}

- whether it is late: U; = 1 if ¢; > d;, U; = 0 otherwise.
The optimality criteria constituting the third element of a scheduling pro-
blem are:

Schedule length (makespan) C, o, = maxi<j<nic;}.

Mazimum lateness Ly, = maxi<;<n{l;}.

Mean flow time F = %2?21 1 Note that it is equivalent to total com-
pletion time »7_; ¢;.

Mean weighted flow time F,, = ﬁ It is equivalent to total weighted

= J

completion time 3771 w;c;. -

Number of late tasks U =|{1; : U; = 1} |.

Weighted number of late tasks 77—y w;U;.

Mean tardiness %2?21 7j, which is equivalent to >, 7;.

Notation

To denote the analyzed scheduling problems we will use standard three -field
notation « | 5 | v proposed in [105] with extensions introduced in [44, 199].
a | f | v scheme in its three fields describes processor system («), task system
(8), optimality criterion (7). Since the modifications proposed in [199] are not
satisfactory to describe the variety of the considered scheduling problems, we
propose further expansion of the notation. In the sequel we concentrate on
the new elements of the notation. Symbol o will denote empty (nonprintable)
character which in the problem notation is skipped.
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The first field contains symbols «q, ..., a7. The first two symbols are the
standard ones:

a1 € {1,P,P,Q, R,O, F,J}- describes the type of processors (P - means
that the number of identical processors is not bounded).

ay € {k, o} - denotes the number of processors fixed to k or not fixed (o)
by the definition of the problem.

The third symbol ag € {win,o} - denotes, respectively, that processors
are available in time windows or always available.

Symbol a4 describes the processor interconnection architecture oy €
{0, conn, chain, star,tree, bus, mesh, hypercube, multistage} (cf. Section 2).
The following values of a4 denote:

- oy = o interconnection is irrelevant because communication delays

(i) are negligible, or

(ii) for the considered communication system have been included into the
execution time of multiprocessor tasks, or

(iii) for the considered communication system have been included in the
communication time required to transfer data/results among two dependent
tasks allocated to different processors (cf. f7).

- oy = conn interconnection of an arbitrary type;

- aqg = chawn chain of processors;

- g = star star of processors (i.e. single-level tree);

- oiq = tree tree-type interconnection;

- oy = bus bus interconnection;

- oy = mesh regular rectangular mesh (possibly 3D—mesh,2D—mesh for
three- and two-dimensional meshes);

- oy = hypercube hypercube;

- ay = multistage multistage interconnect.

Symbols as, ag, 7 are defined only when interconnection is explicitly
considered, i.e. when a4 # o. Symbol a5 € {no — overlap, o} denotes:
- a5 = no—overlap on no PE can computation overlap communication;
- a5 = o simultaneous communication and computation is possible.

Symbol ag € {s& f, csw} denotes two basic types of routing:
- ag = s& f - store-and-forward;
- ag = csw - all types of routing for which the communication delay can be re-
duced to a single startup time and a term linearly dependent on the volume of
transferred data, i.e. wormhole routing, circuit switching, virtual-cut-through
etc.

Symbol a7 € {p — port,o} denotes:
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-y = p—port - simultaneous communication by at most p ports of a PE is
possible;
-ay = o - all ports of a PE can communicate simultaneously.
The second field 3 = 4, ..., f1p defines the task system.
B1 € {spdp—lin, spdp—lin—4§;, spdp—any, size;, cube;, fix;, fiz;;, set;,
set;;, o} - describes the type of the multiprocessor task.
- 1 = spdp—Ilin - denotes that t;? is inversely proportional to k, in other
words, speedup is linear (cf. Section 3.3).
- 31 = spdp—lin—6; - describes a situation similar to the previous one, but
the task cannot use more than §; processors simultaneously.
- 1 = spdp—any - execution time t? is an arbitrary function of k.
- b1 = size; - a task can be executed by only one number size; of processors.
- 1 = cube; - is a special case of size; demanding that tasks be executed by
numbers of processors being powers of 2 (1, 2, 4, 8,... etc. processors). This
situation refers to scheduling on hypercubes.
- B1 = fiz; - denotes that tasks can be executed by only one set fiz; of
simultaneously required dedicated processors. In the case of a multiprocessor
task comprising a number of operations we use 8; = fiz;;.
- B1 = set; - means that tasks have families of alternative dedicated proces-
sors which can execute them. In the case of tasks with operations we will
use [3; = set;;.
- }1 = o - stands for standard uniprocessor tasks.
According to the current value of 3; we will say that tasks require processors
according to model spdp—lin, spdp—lin—; etc.
B2 € {div,pmin,var,o} - denotes divisibility, preemptability, variable
profile or their absence.
- F9 = div - tasks are divisible.
- B3 = wvar - denotes variable profile. Note that 8y = wvar implies §; €
{spdp—lin, spdp—lin—;, spdp—any, set;, set;;}.
- 35 = pmtn - tasks are preemptable, but the profile is fixed.
- B3 = o - denotes that tasks are nonpreemptable and their profiles are fixed.
The rest of the notation for the task system is classical:
B3 € {prec,tree, chain,o} - describes the type of precedence constraints.
Ba € {p; = 1,pi; = 1,0} - means, respectively, that processing times of
tasks are equal, processing times of operations are equal, processing times
are arbitrary.
Bs € {r;,o} - tasks have different (r;) or identical (o) ready times.
B6 € {resiop,o}, where Aop € {k,-} - denotes the type of additional
resource requirements (resAop) or absence of such requirements (o).
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A € {k,-} - denotes the number of resource types fixed to k or arbitrary (-);
o € {k,-} - means that each resource has either fixed number of k£ units or
() the numbers of resources’ units are given in the instance of the problem;
p € {k,-} - implies that for any resource the maximum number of its units
required by any task is fixed to k or (-) that it is arbitrary.

B7 € {com, cjk, Cjx, Cxj, ¢, ¢ = 1,0} - denotes communication delays appe-
aring when two dependent tasks are executed by different processors.

- 7 = com - the communication delays depend on the volume of transferred
data, the function binding time and volume is arbitrary;

- 7 = cji - the communication delay is defined for each pair of dependent
tasks;

- B7 = ¢jx - the communication delay depends on the transmitter only;

- B7 = ¢4 - the communication delay depends on the receiver only;

- 7 = ¢ - all the communication delays last ¢ units of time;

- B7 = ¢ =1 - all the communication delays last one unit of time;

- 7 = o - no communication delay takes place.

By € {dup, o}

- Bs = dup - tasks can be duplicated (to avoid communication delays) i.e.
multiple copies of the same task can be executed independently,
- 3s = o - duplication is not allowed.

B9 € {n = 1,0} - denotes that only one task is considered (n = 1) or the
number of tasks is arbitrary (o).

B1o0 € {d;, 0} - marks either that deadlines are imposed on the tasks (d;),
or (o) that no deadlines are considered (still, due-dates can be defined for a
due-date involving optimality criterion).

The third field v = v; where v1 € {Chazs Linaas U, > €5, 2 wjc, > w;Us,
> 7;,—, X } denotes the optimality criterion. Symbol 7" indicates testing
for existence of a feasible schedule. When a non-standard optimality criterion
is considered we denoted such a case by X.

3.2 Complexity Theory

In this section we present basic concepts of computational complexity ana-
lysis for combinatorial problems. The description is only a rough outline of
the complexity theory. More comprehensive treatment of this subject can be
found in [28, 97, 137]. The complexity analysis enables the determination
of the computational complexity class of a considered problem, and gives
directions for dealing with problems in certain classes.
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Among the combinatorial problems we can distinguish decision problems
and optimization ones. Decision problems consist in answering ”yes” or ”no”
to some question. Optimization problems require extremalization of some
objective function. Each optimization problem has its decision version (but
not vice versa) which is not computationally harder than the original ver-
sion. Hence, it is possible to analyze computational hardness of optimization
problems, such as scheduling problems, by considering only their decision
counterparts (the links between decision and optimization versions are even
tighter [28, 97]). To classify inherent computational complexity of various
problems two reliable measures are necessary: a measure of the problem
size, and a measure of the execution time which is the considered computa-
tional expense. As a measure of size of problem instance I, the length N (/)
of a string encoding its data is used. All encoding schemes are equivalent for
purposes of complexity analysis provided that:

(i) numbers are encoded using counting system with base greater than 1,
(ii) encoding is not redundant,

(iii) the encoded string can be decoded.

As a measure of the execution time for algorithm A and problem size n
the maximum number of elementary steps taken by a computer for any in-
stance I € D, is used, where D, is the domain of problem 7 and N([) = n.
Such a measure of execution time is called algorithm complexity function (in
short: algorithm complexity). When the number of steps can be bounded from
above by a polynomial in the problem size we say that the algorithm is poly-
nomial time (or polynomial in short). When the complexity function cannot
be bounded in this way the algorithm is called exponential time (exponen-
tial in short). Observe that this definition of exponential algorithms includes
also complexity functions which are not considered exponential and name
nonpolynomial seems more precise. Yet, we stick to a traditional term in-
troduced in [28, 97]. We will say that algorithm A has complexity O(f(n))
when the complexity function g4(n) satisfies: 3C such that for almost all
Ie€D;:ga(NI)) < Cf(N(I)).Still, the execution time cannot be reliably
measured without establishing a model of the computer system. We distin-
guish two types of computer system models: realistic and unrealistic. The
class of realistic models comprise such models of computers as: Deterministic
Turing Machine (DTM), k-tape Deterministic Turing Machine, Random Ac-
cess Machine. All the above models are equivalent for the task of classifying
the complexity of considered problems because algorithms polynomial on one
of the three models remain polynomial on any other realistic machine. The
class of unrealistic models includes e.g.: Nondeterministic Turing Machine
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(NDTM), Oracle Turing Machine (OTM). Unrealistic models are capable of
performing computations nondeterministically, which can be interpreted as
ability of executing unbounded number of computations in a unit of time.

A crucial element of computational complexity analysis is establishing
the complexity class which the considered problem belongs to. In this pre-
sentation we use only three basic classes of computational complexity (for
decision problems): P, a class of NP-complete problems (NPc in short),
and a class of problems NP-complete in the strong sense (sNPc).

Definition 3.2 Class P includes all problems solvable in polynomial time
on DTM.

To define the remaining two classes we have to introduce additional notions.

Definition 3.3 Class NP includes all problems solvable in polynomial time
on NDTM.

From these definitions (and definitions of DTM, NDTM [28, 97]) it can be
concluded that PCINP. Yet, it has neither been proved that PZNP nor that
P=NP. It is only known that DTM can simulate NDTM in exponential time.

Definition 3.4 By a polynomial transformation of problem wo to problem
71 (which is denoted w3 o 71) we call a function f: Dy, — D, such that:
(i) Vi,eD,, the answer is "yes” if and only if it is "yes” for Iy = f(12),

(i) Vi,eD,, function f can be calculated in time polynomial in N (I3).

Definition 3.5 Decision problem m; is NP-complete if m;y € NP and
v7r2eNP g X 71,

Hence, if there existed a polynomial algorithm for any NP-complete problem
then any problem in NP would be solvable in polynomial time. Though it
has not been shown that P # NP for years, no polynomial time algorithm
is known for any NPc problem. Furthermore, this class includes many com-
putationally difficult combinatorial problems. From the definition it can be
concluded, that to prove NP-completeness of some problem it is enough to
show that some NPc problem polynomially transforms to the analyzed pro-
blem. The first problem proved to be NPc is SATISFIABILITY. Nowadays, it
is known that class NPc includes thousands of problems and subproblems
from many fields of combinatorial optimization. For example, in [143] it is
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Figure 3.1: Relation between complexity classes provided that PZNP.

said that (decision versions of) 417 scheduling problems are in P, 3821 in
NPc, and for 298 problems complexity is not known.

Although no polynomial algorithms were found for problems in NPc, for
some of them algorithms have been found with complexity bounded by poly-
nomial in the instance size N (/) and the maximum numerical value Maz(I).
Such algorithms are called pseudopolynomial. Mind that these are not poly-
nomial algorithms. On the other hand, for some problems pseudopolynomial
time algorithms were hard to be found. Strongly NP-complete problems are
the ones for which no pseudopolynomial algorithms exist (unless P=NP).
This class is defined as follows.

Definition 3.6 Let m, for problem m and some polynomial p denote sub-
problem of ™ obtained by restricting D, to instances such that Max(I) <
p(N(I)). Problem 7 is strongly NP-complete when # € NP and 7, € NPc.

Showing strong NP-completeness using this definition is not very convenient.
The following definition and theorem give a simpler way of doing this.

Definition 3.7 By a pseudopolynomial transformation of problem my to m;
we call function f: Dy, = Dy such that:

(i) Vi,eD,, the answer is "yes” if and only if it is "yes” for f(I2),

(i) Viep,, function f can be calculated in time polynomial in N2(I2) and
Ma$2(12),

(iii) there exists polynomial q1 such that Vi,ep.,qi(N1(f(12))) > N2(12),
(iiii) there ewists polynomial gy such that Vep, Mazi(f(l2)) <
QQ(MQ$2(IQ)7 NQ(IQ))

Theorem 3.1 [97] If 7y € sNP¢, my € NP, and wy can be transformed
pseudopolynomially to m then w1 € sNPc.

The relations between the defined classes are presented in Fig. 3.1.

Now, we show how to apply the above notions to analyze optimization
problems. For optimization problems an equivalent of the class of NPc pro-
blems is the class of NP-hard problems and for the class of sSNPc problems



34 CHAPTER 3. NOTIONS AND DEFINITIONS

is the class of strongly NP-hard problems (in short NPh and sNPh, respec-
tively). The optimization problems can be represented as search problems

consisting of the domain D, and the set of feasible solutions Z, (/) for each
Ie€ D,

Definition 3.8 R(w,e) = {(z,y) : « is a string encoding I € D, according
to coding rule e, y is a string encoding Z (1) using rule e}.

The search problem 7 for encoding rule e is solvable in polynomial time when
there exists some program for DTM solving relation R(w,e€), i.e. for a string
encoding instance I € D, the program finds a string encoding a solution
from Z.(I) if such a solution exists (if Z.(I) = ) empty string is returned
as a solution).

Definition 3.9 By a polynomial Turing transformation of problem my to
(denoted 71 oxr w3 ) we mean algorithm A solving problem m on DTM by use
of some hypothetical procedure P solving problem w5, A is polynomial-time
provided that P can be executed in polynomial time by DTM.

Definition 3.10 R(w,e) is NPh when there exists some NPc¢ language L
such that L <7 R(m,e). The search problem m is NPh when R(r,e) is NPh.

More informally, the above definitions can be summarized in the following
way. Language L is equivalent to decision problem my: for the given string
encoding I € D, does I belong to L7 Hence, there exists some NPc decision
problem 71 which can be solved in polynomial time provided that R(w,€) can
be solved in polynomial time. Furthermore, NPc problem 7y can be solved in
polynomial time when the optimization problem 7 (represented by R(w,e€))
is solvable in polynomial time. Thus, 7 is NPh when there exists some
NPc problem 7y such that m; ocp 7. Note that formulating decision version
71 of optimization problem 7 is immediately a proof of 71 o7 #. Hence,
NP-completeness of a decision version of some problem implies NP-hardness
of its optimization version. Analogously to strong NP-completeness, strong
NP-hardness is defined. To prove sNPh of some problem it is enough to
prove sNPc of the decision version. Observe that an NPh problem cannot be
solved in polynomial time unless P=NP. For many optimization problems it
can be also shown [28, 97] that if P=NP these problems would be solvable
in polynomial time. Thus, the complexity classes introduced for decision
problems are useful in the analysis of optimization problems.
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There are practical consequences of determining the complexity class
of a considered problem. When the problem belongs to class P then it is
solvable in polynomial time which in practice means that it can be solved
"fast” (i.e. in reasonable time). Further analysis of such problem complexity
consists in the search for the lowest complexity algorithm. On the contrary,
NP-hardness of some problem (or NP-completeness of its decision version)
results in the combinatorial explosion when the optimal solution is searched
for. Thus, only exponential optimization algorithms (i.e. the ones finding
the optimal solutions) have been proposed for NPh problems. For NPh
problems which are not sSNPh, pseudopolynomial algorithms, like dynamic
programming, can be proposed. When the optimality of the solution is not
as important as the time in which the solution is obtained, heuristics can
be used. A heuristic is an algorithm which finds a feasible solution of the
problem. However, there is no guarantee of optimality. A prerequisite of
using some method as a heuristic is its low-order polynomial execution time.
Heuristics which give solutions close to the optimum (on average, in the worst
case) are obviously preferred. To evaluate the worst-case performance of some
heuristic H we will use the worst-case performance ratio (performance ratio
in short): Sy = inf{r > 1: VIeDofgij({)) < r}, where I - the instance, D
- the problem domain, fi(I) - the value of solution generated by H on I,
OPT(I) - the optimal value of the criterion for /. The way of proceeding with
analysis of the problem complexity and the resulting solution methods are
summarized in Fig. 3.2. The the running lines show ways of establishing the
complexity class of the problem, while dashed lines indicate possible ways of
proceeding with construction of an algorithm solving the problem.

3.3 Performance of Parallel Applications

Many factors contribute to the efficiency of a parallel application (task).
Among them are scheduling policies assumed while mapping an algorithm
(in its pure mathematical sense) to a real application in a particular com-
puter architecture. In this section we introduce basic notions of the parallel
application performance description.

The expected outcome of parallelization is reduction of the execution
time. Hence, application ezecution time is the base for majority of efficiency
descriptions. The other counterpart of efficiency measures are costs at which
the low execution time can be achieved. The most important resource which
we must pay with for the reduction of execution time are processors. From
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Figure 3.2: An outline of problem = complexity analysis.

these two parameters speedup is calculated [125]:
nl
tk

where k is the actual number of processors assigned to execute a task, ¢! is

Sk =

sequential execution time (i.e. on one processor), t* is execution time on k
processors. Two famous theoretical laws link speedup with the number of
processors used: Amdahl’s law [5]

1
Sk =

s+ (1—s)/k
and Gustafson’s law [112]

Sp=5+k(1-5)
where s is the ratio of time spent in immanently sequential part of the
code to the whole sequential execution time, s’ is the ratio of time spent in
sequential part to a total parallel execution time. In the Amdahl’s law it is
assumed that the size of the problem is fixed, while in the Gustafson’s law
it is assumed that the size of the problem grows linearly with the number
of used processors. It was pointed out by other researchers (e.g. [82]) that
this two views do not exploit the whole variety of possible situations. The
required behavior of an application is that the speedup be linear, which
means that increasing the number of processors reduces the execution time
(inversely) proportionally. In most situations speedup is less than linear,
but in certain cases speedup greater than linear can be obtained [98]. More
precisely the parallel execution time in relation to the number of assigned
processors is characterized by a function named parallelism signature [99].
The parallelism signature is often modeled by the function:
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t(k) =a+ % + c(k)

where a is the time spent in the sequential part of the program, b is the
amount of work which is unboundedly parallelizable, ¢(k) is the overhead
(e.g. communication) introduced by adding more processors; ¢(k) is a func-
tion increasing with k (linearly in the simplest case). Observe that the above
measures (speedup, parallelism signature) are equivalent as based on t*.

The number of processors used by an application can change over time
while for measuring speedup the number of used processors is bounded from
above. Hence, speedup may not represent parallelism in the application per-
fectly. A parameter which does not have such limitations is execution profile
[99, 140, 181]. Execution profile is a function of the number of processors used
vs. time, measured on a computer with unbounded number of processors. In
other words, execution profile represents parallelism of the application in
time when the number of available processors does not limit the applica-
tion. From execution profile parameters like average parallelism, maximum
parallelism can be derived.

The above measures determine application scalability, i.e. its ability to
effectively utilize processors [141]. The application has good scalability when
increasing the number of processors reduces proportionately the execution
time. When increasing the number of processors returns diminishing reduc-
tions of execution time the application scalability is bad. Thus, a good sca-
lability means that speedup is linear in a wide range of circumstances [215].



Chapter 4

Overview of Related
Problems

The field of scheduling in parallel computer systems is very diverse. In this
chapter we describe main approaches related to the problems considered in
this work. Since in Chapter 6 we analyze some communication aspects in
scheduling, a subsection on communication optimization is included here.
Though the methods presented in this chapter are not directly applicable
further in the work, we describe them for the completeness of the presenta-
tion in the work on scheduling in parallel computer systems. Some methods
described here and in the further sections are based on similar assumptions.
Some other methods are based on different assumptions and thus are hard
to compare. Hence, in the last part of this chapter we point out differences
in foundations of the scheduling concepts considered in this work.

4.1 Allocation

Some researchers consider scheduling as comprising two components: allo-
cation and sequencing. In some situations sequencing of activities is not
so important. For example, consider an application with clearly separated
computation and communication phases. In such a program all processors
interchange data, then compute, interchange data again, etc. If all commu-
nications can be performed in parallel (e.g. only the neighboring processors
have to communicate, buffers have sufficient capacity) then detailed ana-
lysis of sequencing each operation in relation to other operations may be
unnecessary. The allocation problem in itself consists in determining where

38
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to execute a task while disregarding the sequencing of the tasks. An allo-
cator (i.e. an algorithm solving the allocation problem) can be a part of a
two-level scheduling system in which modules are allocated to processors
first, and then tasks are sequenced on the processors. Hence, the allocation
problem can be considered as a relaxed version of the scheduling problem.

Now, we describe the allocation problem more precisely. Consider a paral-
lel application whose modules are communicating with each other. The ap-
plication is to be executed on a set of processors connected by some network.
For fast execution of the computations processors should work in parallel.
On the other hand, physical distribution of modules causes communication
delays. Thus, to minimize communication overhead it can be advantageous
to allocate frequently communicating modules close to each other (possibly
on the same processor). Since the actual sequencing of the activities is not
taken into account, the precedence constraint graph is reduced to an acyclic
graph representing interactions among the tasks "integrated” over run-time.
Such a graph is called a task graph.

The task allocation problem can be formulated as follows. Define:

x;r = 1 when task ¢ is executed on processor k, otherwise x;. = 0;

¢i; - the number of data units transferred from task 7 to task j;

dy; - is an interconnection-related communication cost of moving one
unit of data between processors k and [ (for example, by setting di; = oo
it is possible to forbid allocating communicating tasks to processors k and [
which are not directly connected);

t;r - cost of executing task ¢ on processor k.

The problem is to minimize:

>

k=11

(tewin + Y Y cijduzirz ;i) (4.1)

n

subject to

m
inkzl for 1=1,...,n
k=1

The above formulation (with minor variations) was used in e.g. [57, 62, 152,
153, 158]. Observe tight links to quadratic assignment problem [187]. The
above objective function is reasonable for unrelated processors. It can be
observed that for identical and uniform processors its minimum is achieved
when all the work is performed on the fastest processor. Thus, in [73, 182,
210] instead of function (4.1) the working time of the most loaded processor
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was used as the objective function to be minimized, i.e.:

m}?X{Z(tik%k 3 cijduzine;)}
i=1 I=1 j=1
The allocation problem was solved using enumerative search (e.g. branch-
and-bound) [62, 152, 153, 182], heuristics tailored to the problem [73, 57, 210]
and metaheuristics [158]. Observe that matrix of z;; binary variables defines
a mapping of processes to processors.

The mapping of a task graph into the processors and interconnection
network is also called embedding. However, when talking about embedding a
slightly different problem is considered in the literature than the allocation
problem defined above. Let G = (V, E) be a task graph and let H = (P, N)
be a graph consisting of nodes representing processors, and set of edges N
representing interconnection network. More precisely the embedding < f, b >
of GG into H is one-to-one mapping f of the nodes from G to processors of
H with mapping b of every edge e = (u,v) € E onto path b(e) connecting
f(u) and f(v). There are three main embedding cost functions considered
in the literature [92, 110, 129]: dilatation which is the maximum length of

[P

any b(e), expansion equal to v and congestion which is the maximum over

eeNof|{ec E:e¢ €ble)}| (ie. the number of different paths b(e) using
the same edge €’). Embedding is a computationally hard problem in general.
As one may note embedding a cycle graph G (a ring) into a graph H with
| V |=| P | and congestion 1 is equivalent to HaMILTONIAN CIRCUIT [97]
(cf. also [129]).

4.2 Load Balancing

Allocation of computations to processors described in the previous section
is done off-line assuming knowledge of computation and communication co-
sts. Load balancing is an approach which attempts to minimize application
execution time by distributing the computations evenly among the proces-
sors. Furthermore, load balancing inherently considers on-line case in which
full knowledge of the incoming task cannot be assumed. A task appearing
(i.e. created) during the computation produces additional load which must
be distributed to the processors. Note that there exists no on-line method
producing a solution which is optimal off-line (i.e. with the full knowledge of
tasks parameters) [192]. A first step to load balancing is load sharing whose
goal is supplying each processor with at least some load.



4.2. LOAD BALANCING 41

Before implementing any load balancing method several problem areas
must be addressed. A reliable and accurate measure of the processor load is
required. For example, it can be the number of branch-and-bound tree nodes
to be processed by the processor. It can be some estimate of the expected
number of search tree nodes (or time) which can emerge from the nodes
already assigned to the processor [151]. In [211] CPU utilization, memory
utilization or average response time are suggested as load measures. On the
other hand, it is demonstrated in [142] that sophisticated load measures are
not more useful than the simple ones. Thus, in the following we assume that
the number of data units assigned to a PE for processing is its load. Another
problem are data dependencies. When there is little dependency between
load elements it is possible to move them in an arbitrary fashion. However,
in many practical applications such dependencies exist, for instance, while
solving partial differential equations [209]. In such cases provisions must be
made to avoid sparsely distributing related (e.g. mutually communicating)
load elements.

Load balancing methods can be differentiated by the initiator of load
balancing [104, 106]. It can be initiated by a processor which ran out of
work (this is demand-driven approach) or it can be initiated by a processor
on which a new load appeared (supply-driven method). Next, the decision
about moving the load can be done globally using information about the
whole system status [211], or this decision can be done locally in a distributed
manner based on the locally available information [151]. Also intermediate
forms are possible [122, 211]. The global approach has bad scalability and
the central "load balancer” can easily become a bottleneck. On the other
hand, due to the lack of information distributed approaches can result in
imbalance. Finally, the amount of load to be transferred must be determined.
As far as distributed methods are considered, there are two dominant ways of
calculating this value: nearest neighbor averaging and diffusion. Let [; denote
a load of processor P; before load balancing, I after load balancing, and A;
the set of its neighbors. The nearest neighbor averaging intends to change the
load such that it is equal to the mean load of the processor and its neighbors,

lit+ N . .
le Il = %. To achieve this goal processor P; transfers to processor
P;j amount of data equal to (I; — l!) <2—, where ¢; = max{0,; — {;}. In
Z]GAl‘ 95

the diffusion approach processor P; sends to P; amount «(l; — [;) of data
units, where o € (0, 1). Thus, after a load balancing step processor P; has
li=1;+ a3 en,(l; = 1;) data units.
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4.3 Scheduling with Communication Delays

The class of problems we will call scheduling with communication delays can
be denoted P | prec,ci; | Cpuap or P | prec, c;j, dup | Chrap. The considered
problems can be described as follows. Given is a task set 7 with precedence
constraints among its elements. Two tasks 7%, 7T linked by precedences com-
municate (e.g. the successor uses results of the predecessor). When both tasks
are allocated to the same processor the communication time (data transfer
time) can be neglected. Otherwise, the successor can be started only after
communication delay ¢;; following the completion of the predecessor. The
optimality criterion is the schedule length. It can be allowed to duplicate
tasks, i.e. to execute more than one instance of the same task on different
processors. When duplication is allowed it is possible to avoid communica-
tion delays by producing data for the successors on multiple processors. For
example, when the number of processors is not bounded, duplication allows
building schedules without communication delays in O(n) time for problem
P | out —tree, c;;, dup | Cpiax [66]. A special form of scheduling with commu-
nication delays is P | prec,p; = 1,¢ =1 | Cpae called UETUCT scheduling
which stands for Unit Execution Time, Unit Communication Time.

Unfortunately, even for very restricted cases scheduling with commu-
nication delays is computationally hard. Not many polynomially solvable
cases have been identified. This directs the research to efficient approxi-
mation algorithms. To our knowledge, there is no approximation algorithm
with performance ratio better than 2 in the general case. Furthermore, it
has been shown in [198] that no polynomial approximation scheme exi-
sts (unless P=NP) neither for P | prec,p; = 1,¢ = 1 | Cpqy nor for
P | prec,pj = 1,¢ = 1 | Cpup. The majority of works on scheduling with
communication delays considered idealistic fully connected computer system
which can transfer unlimited number of messages simultaneously. A particu-
lar interconnection type is considered in [94], but even here the scheduling
problems are computationally hard. In Table 4.1 we present some impor-
tant results in scheduling with communication delays. Yet, this branch of
scheduling is rapidly evolving and the contents of the table can be found
rather limited by an expert. More comprehensive study of the problem can
be found in [67, 108].
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Table 4.1: Results in scheduling with communication delays
| Problem | Result | Reference |

P|prec,pj=1,c=1]|Crao sNPh [175]

P|p7“66,pj: 1,6: 1 |Cma@‘ Cg@ax §(3_%) ;;’Lax_(l_%) [175]

Plpmin,e=1|Cpay O(n) [174]

Plpmitn,e> 2| Crayp sNPh [174]

P | prec,com | Cpax CETE <(2—= 1)) 1o+ Com [124]

P |in—tree, ¢ik | Crmae

¢jk < min; p; O(n) [64]

P | prec,pj = 1,¢,dup| Cpas sNPh [164]

P | prec,cje, dup | Cragp S<2 [164]

P | pree,cij, dup | Crar

”short” communication times O(n?) [72]

Plin—tree,pj = 1,¢| Crax sNPh [127]

Plin—tree,pj = 1,¢| Crax

complete k-ary intree O(n?log n) [127]

P prec,cij | Crmar NPh [65]

P tree, cij | Conap unit depth tree | O(n?) [65]

P |prec,pj=1,c=1|Cpar=4

bipartite precedence graph sNPh [198]

P|prec,pj=1,c=1|Cpnac=3 polynomial [198]

Plprec,pj=1,c=1|Cpaz =6 sNPh [19§]

P|prec,pj=1,c=1| Cpaz =5 polynomial [198]

P|prec,pj=1,c=1]|Crao

fixed width of precedence graph polynomial [198]

P lin—tree,pj=1,c=1]| Cpae sNPh [198, 147]

P2 |in—tree,pj=1,¢=1]|Cnae | O(n) [109, 147]

P | out—tree, cij, dup | Cragp O(n) [66]

P prec,e < 1| Crmae sNPh [168§]

Pprec,e < 1| Cras Sscr=14+7r [168]

P | out—tree, cji | Crap NPh [67]

P bus|prec,pj =1,¢=1|Cpar | sSNPh [94]

Q2 |in—tree,pj=Le=1]| Cpae

complete k-ary intree O(n) [29]

Used notation:

4 - length of any greedy schedule, C'*

maxr

dule, C7 =
C/

max; je7{cij}

r = .
min; je7{t;}

maxr

- optimal length of the sche-
- length of the schedule without communication delays, Cepp <
— 1 - communication requirement over some chain of precedences,
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4.4 Loop Scheduling

The idea of a divisible task is tightly linked to parallelism of loops. Thus,
we present the most important concepts for the case of loop scheduling.
Moreover, loops are considered as the largest and most natural source of
parallelism in many applications [101, 139, 155]. In many cases loops can be
executed in parallel by different processors. The key problem is determining
of the chunk size, i.e. the size of the load portion assigned to a processor
in one step of data distribution. Two important factors must be taken into
account: unpredictability of the actual loop execution time, and overhead
related to the access to the work ”distributor” (i.e. loop scheduler, note that
loop index is a critical section). In the following we denote by t the total
number of loops and m the number of processors. Below we present the
most widely known ways of loop scheduling [128, 155].

Static Chunk

Each processor is assigned t/m loops to execute. This results in low overhead
in accessing the loop scheduler but in bad load-balance among processors.
Self-Scheduling

Each processor is assigned one loop at a time and fetches a new iteration
to perform when it becomes idle. This results in good load balance, but
the overhead due to accessing scheduler is significant (proportional to the
number of loops). A variation of self-scheduling is chunk self-scheduling in
which a processor is assigned k loops at a time.

Guided Self-Scheduling

A processor requesting for a work is assigned 1/m of the remaining unassi-
gned loops. This results in good balance and low overhead if the loops are
uniform. When the loops are not so uniform assigning t/m loops to the first
requesting processors may result in load imbalance. Furthermore, at the end
of the computation processors are assigned one loop at a time which may
result in contention while accessing the scheduler.

Trapezoid Self-Scheduling

The first assigned chunk of work has size N;. The following chunks are
decreasing linearly by some step d to the final size N;. Example values
of Ny and Ny can be N/(2m) and 1, respectively. A disadvantage of this
method is, that when m is big the difference between the chunks assigned
to the consecutive processors as the first ones can be as big as md.
Factoring

Factoring is intended to achieve balanced workload. For this purpose, at each
successive allocation the algorithm evenly distributes among the processors
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half of the remaining iterations. Thus, ¢; = [R;/(2m)] iterations are assigned
to each processor in step ¢, where Ry =t and R; 41 = R; — mg;.

Affinity scheduling [155]

Affinity scheduling tries to take advantage of using local memory or cache.
In contrast to the previous methods each processor has its own work queue.
Thus, the need for synchronization is minimized. Initially, loops are divided
into chunks of size [t/m]| and appended to each processor’s queue. A pro-
cessor executes 1/k (k can be m) of the loops remaining in its queue. When
the queue becomes empty, the processor finds the most loaded processor (i.e.
with the longest queue) removes 1/k of the iterations from that processor’s
queue and executes them.

Safe Self-Scheduling [128]

This scheme assigns statically the main portion of the loops and then balan-
ces the load by assigning the so-called smallest critical chores. More precisely,
the processors are assigned statically at/m (amount computed at the compile
time) loops in the first batch. At runtime, the ¢th processor fetching some
load is assigned max{k, (1 — &)["/"Ita/m} loops. o is a crucial allocation
factor. It is proposed to calculate it from the equation:

1+ pT‘Ob(Emaac) + prOb(Emzn)Emzn/Emaac
o=
2

where F,,;, - minimum execution time of a loop, F,,,, - maximum execution
time of a loop, prob(z) - probability of executing a loop with time x. Thus,
to use this method the execution time distribution must be known.

The methods of divisible task scheduling presented in Chapter 6 can be
viewed as scheduling loops in distributed environment.

4.5 Communication Optimization

The basic commutation methods such as store-&-forward, circuit-switched,
wormbhole, virtual-cut-through have been described in Section 2.1. The field
of communication optimization considers design of efficient algorithms of
message routing geared to the considered data exchange operations and com-
munication networks. A routing algorithm is a method of finding the way for
a message in the network. In the following we describe what are the common
data exchange operations and what is meant by efliciency of routing.

Most of commonly considered communications problems which are ty-

pical of many applications involve the following data exchange operations
[116, 145, 177]:
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One-to-one

There is at most one message to be sent from each processor and at most
one message to be sent to each processor.

Broadcasting

Moving the same data unit from one processor to all others.

Gossiping

Moving a data unit from each processor to every other processor.
Scattering/Gathering

Scattering involves moving data from one processor to all others. Gathering
consists in collecting data in one processor from all other processors. In
scattering (gathering) every recipient (seder) receives (sends) a different piece
of data.

Multiscattering/Multigathering

This operation consists in scattering (gathering) from (in) every node.

The routing algorithms should be best possible. Thus, an optimality cri-
terion must be defined. A natural criterion is the total time required to route
the messages to their destinations. A special form of this can be minimiza-
tion of the number of data transfers, especially in networks with big startup
times. Yet, there are also other criteria [145]. In communication network
a deadlock or a leavelock (starvation) may arise. A deadlock is a situation
in which some messages cannot move because they mutually block requ-
ired resources (e.g. buffers or channels). A leavelock is a situation in which
messages can move, but some messages cannot make progress toward their
destination (e.g. are repetitively blocked or discarded). Avoiding deadlocks
and leavelocks is a prerequisite to the routing algorithm feasibility. When
messages are blocked or can be dropped, one may want to maximize the
number of messages successfully transferred in a given period of time (maxi-
mizing throughput). In applications where hot spots (locations exceptionally
often visited) can arise, e.g. involving gathering, the impact of routing to hot
spots on messages with other destinations should be minimized. When mes-
sages are buffered one would minimize the size of the buffers used. Finally,
we may want to minimize the size of the network (number and capacity
of switches, wires etc.) and make the routing algorithm reliable enough to
respond to network faults.

The communication problems most often considered in Chapter 6 are
scattering and gathering.
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4.6 Problems in Implementing Scheduling Mo-
dels

The above approaches to scheduling in parallel computer systems, despite
many successful implementations, have some disadvantages. The drawbacks
are results of different assumptions made for each method. In a system not
satisfying the presupposed assumptions some approaches can be hardly ap-
plied or the results can be far from optimal. The assumptions are related to
the following issues:

- who is scheduling: the application or the operating system,

- when is scheduling done: in the pre-runtime or during the runtime,

- how much information is necessary for scheduling.

However, these differentiations have deeper origins. In our opinion, these
are assumptions on necessary data about the application. Two features are
related to data: availability, and complexity.

When availability of extensive knowledge about the application(s) (i.e.
task system) is assumed then only the programmer or compiler are able to
collect such data. Hence, the operating system has no necessary knowledge
and scheduling is made by the application itself. For example, allocation mo-
dels require extensive information about execution times and communication
patterns of the program modules. In the case of scheduling with communica-
tion delays the precedence DAG is highly data-dependent. Thus, the actual
DAG is known rather after execution than before. Hence, schedules or al-
locations based on the information collected in some previous experimental
runs can miss the optimum when the new data sets are very different. It can
be observed that the above two approaches are rather application-oriented
and give little help in scheduling by operating system.

Another problem related to available data is complexity. This has two
aspects: complexity of data structures and schedule optimization complexity
(cf. Section 3.2). For instance, task graphs and precedence DAGs for realistic
problems are huge and can comprise thousands of nodes. The operating
system scheduler cannot afford wasting its space and time for dealing with
so big and complex structures. Furthermore, detailed setting of the problem
often results in its NP-hardness. For such problems optimal solutions cannot
be expected in low-order polynomial time and only small size problems can
be solved in short time. Hence, such problem settings can be analyzed and
optimized rather off-line in the pre-runtime scheduling than during runtime.

The approaches to scheduling presented in this work are compared in
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Figure 4.1: Comparison of scheduling methods. The numbers denote:
l-allocation, 2-load balancing, 3-scheduling with communication delays,
4-loop scheduling, 5-multiprocessor task scheduling, 6-divisible task sche-
duling.

Fig. 4.1 with regard to the described data features. This qualitative compari-
son reflects only author’s opinion on general characteristics of these methods,
not all their possible settings. A method was considered as a high-knowledge
when precedence DAG or task graph of application is essential to applying it.
Complexity was considered low when low-order complexity algorithms (class
P) can be applied and data structures are small. Complexity was considered
high when the method is high-knowledge and the problem setting is NPh.

Finally, let us observe that required precision of data is a result of simpli-
fications made in viewing the scheduling problem. Of course, precision con-
tributes to the complexity and availability of data. Note that all the above
methods address (successfully) some restricted areas, while disregard other.
For instance, allocation models do not consider sequencing of tasks and com-
munications. Thus, a deadlock in communication system can be unpredicta-
ble with these models. Load balancing rarely considers restrictions imposed
by communication between the balanced elements of the computation. Sche-
duling loops, though addresses an important area of parallelism, is restricted
to a particular class of applications and architectures. The methods we pre-
sent in the following sections, undoubtfully, are not panacea. Yet, we hope
that they improve presentation and solvability of real problems.



Chapter 5

Multiprocessor Tasks

In this chapter we consider scheduling of multiprocessor tasks. Section 5.1
motivates the use of multiprocessor tasks. Section 5.2 is devoted to scheduling
multiprocessor tasks on parallel processors, and Section 5.3 to scheduling on
dedicated processors.

5.1 Why Multiprocessor Tasks?

A proper scheduling strategy is an indispensable element of an efficient pa-
rallel computer system. As it was observed in [133] it cannot be substituted
for. Many distributed and multiprocessor computer systems offer some kinds
of parallelism. It is not so evident, however, that the concurrency of the ap-
plication execution is guaranteed, especially in the extreme load conditions.
In this section we are going to explain that for many reasons real concurrency
should be provided.

Consider a general purpose computer system with time sharing. A paral-
lel application which consists of many concurrent threads is run on a number
of processors. The access to a critical section is guarded by a lock which must
be acquired by threads using the section. Imagine a situation in which one
of the threads captures the lock. It must compete for the processors with
an uncertain number of other threads. Soon it can lose its processor. Then,
other threads (of the same application) must busy-wait for the release of the
lock. This, however, will not happen as long as the thread which is in the
possession of the lock is not running. Thus, a bad decision about schedu-
ling such a critical thread results in a significant performance degradation.
One conclusion from this example is that busy-waiting threads should not
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be executed in time quanta when the thread holding a lock is not running.

Now, consider a different situation. The threads of the same application
communicate with each other but are run in different time quanta. One
thread tries to communicate with some other thread. It sends the data, but
since the other thread is descheduled, it must wait at least until the end of
the time quantum. Hence, big part of the first thread time quantum is lost
for busy-waiting. In one of the following time quanta the receiving thread
obtains the data, processes it and sends back the results. The results must
still wait for the first thread to start running in order to receive the data.

In both of the above examples the progress in computation depends on
the speed of context switching rather than on the raw speed of the processors
or the communication system. Coscheduling is a scheduling policy proposed
to avoid these difficulties [98]. Coscheduling consists in granting simultane-
ously (in the same time quantum) the processors to the threads of the same
application. It has been demonstrated in [213] that coscheduling performs
quite well in a wide range of conditions and for various models of parallel
applications. In [93] the performance of a parallel application using barrier
synchronization was studied. The coscheduling policy (called here gang sche-
duling) has been compared, both theoretically and in practice, with blocking.
In blocking the thread releases a processor as soon as it completes its share of
the work. For coarse-grain parallelism blocking performs well. For fine-grain
parallel application coscheduling is better. Thus, coscheduling is postulated
in parallel systems. Observe that coscheduled applications occupy several
processors at the same moment of time and as such are multiprocessor ta-
sks.

The parallel applications are very often represented by DAGs. Yet, this
kind of representation has a limited applicability for the operating system.
Contemporary parallel applications have DAGs with thousands of nodes. At
the current state of technology, it is hard to imagine a scheduler (one of the
most often executed parts of the operating system) able to handle, analyze
and optimize so big structures. Furthermore, threads of an application are
indistinguishable for the scheduler. Hence, without additional information
from the application the scheduler is not able to give a priority to impor-
tant threads (e.g. holding a lock) [213]. Note that since the DAG is highly
data-dependent it can be precisely known after the execution rather than
before. From the above we conclude that it would be reasonable for the ope-
rating system to control only the number of processors granted to a parallel
application and leave the control of the threads to the application (i.e. to
the compiler and the programmer).
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Following these propositions a number of massively parallel computer
systems divide their processors into partitions [47, 75] (cf. Section 2.2). The
main idea of a partition is to give an exclusive access to a number of pro-
cessors to one application only. The operating system is responsible for ma-
naging the partitions, granting the access to them etc. Note that from the
viewpoint of the partition manager the applications are multiprocessor ta-
sks because they occupy all the processors within the partition at the same
moment of time.

In computer control systems a high level of reliability is often achieved
by executing redundant copies of the program on different processors and
voting on the final control decision [8, 98, 121]. Applications of this kind
are multiprocessor tasks because more than one processor is simultaneously
occupied.

In the preceding discussion we concentrated on parallel processors. Now,
we are going to demonstrate that multiprocessor tasks scheduling is also ap-
plicable in the case of dedicated processors. The main idea behind dedication
of processors is their specialization. Hence, in massively parallel computers
there are processing nodes equipped with communication and other 1/0O
hardware (e.g. disks), while other processing nodes are not equipped with
such devices. There can be nodes with arithmetic, vector, graphic, signal
processing facilities, while there can be other nodes without them. It is not
inconceivable to present parallel applications requiring a little bit of all these
facilities. Thus, a multiprocessor task can be considered also in the case of
dedicated processors.

The multiprocessor task concept originated from scheduling tests in mul-
tiprocessor computer systems [130], testing VLSI chips [74] or other devices
[81]. Testing of processors by one another requires at least two processors
simultaneously. Due to the fact that the graph of mutual tests cannot be
arbitrary to guarantee testability of the system [113, 171] one may regard a
test as a dedicated task. A similar situation takes place in testing VLSI chips
where some functional units are required to test other units [74]. Another
application for multiprocessor task scheduling in dedicated environment can
be scheduling of file transfers [70]. A file transfer requires at least two ”pro-
cessing” elements simultaneously: the sender and the receiver. Simultaneous
transfers on multiple buses can be also considered as multiprocessor tasks
[126]. Finally, simultaneous execution of multiple instructions in a supersca-
lar processor requires matching instructions in such a way that the sets of
simultaneously required processor units do not intersect. Scheduling in this
case is performed by a compiler or by the hardware of the processor. Not



52 CHAPTER 5. MULTIPROCESSOR TASKS

only can the specialization of the processing elements justify considering pro-
cessors as dedicated. A multiprocessor task can be regarded as executed by
a dedicated processor also for the preallocation reasons. For a certain com-
munication pattern among the tasks of a parallel application and a given
communication network it can be advantageous to map tasks to processors
in some fixed way. Changing the preallocation may increase the communica-
tion overhead (due to dilatation, congestion etc.). In some cases even parallel
processors may behave as dedicated devices. For example, since the costs of
filling a pipeline, vector registers or a cache are high it is disadvantageous
to frequently transfer threads to new sites. Hence, there is a kind of affinity
between tasks and processors [155].

Though we introduced multiprocessor tasks in the computer context it is
not difficult to find application for this kind of scheduling in production sys-
tems. In fact, the first papers considering an idea of simultaneous execution
of a task by many processors dealt with scheduling operations in chemical
plants [48] and project scheduling [200].

5.2 Parallel Processors

In this section we first review the subject literature including earlier works
of the author. Then, we present new results especially for scheduling with
variable profile. Table 5.1 summarizes the results mentioned in this section.

5.2.1 Overview of Earlier Results

We survey here scheduling multiprocessor tasks on parallel processors (cf.
also [87, 199]). One of the first papers considering multiprocessor task sche-
duling was [149] in which Unit Execution Time (UET) tasks were consi-
dered. It was shown that problems P | size;,p; = 1 | Cj4p and problem
P3| sizej,p; = 1, prec| Cpqy with size; € {1,2} are sSNPh (reduction from
P || Crp and P | p; = 1, prec | Cypaq, respectively). The performance of any
list scheduling heuristic (LS in short) has been proved to be bounded from
above by (2m — A)/(m — A + 1) and the ratio of |(2m — A)/(m — A+ 1)]
has been achieved. For problem P2 | size;,p; = 1,prec | Cyqp an algori-
thm with complexity O(n!°827) has been proposed. It is based on building
the transitive closure of precedence constraints graph (hence the complexity
[95]) and Coffman-Graham algorithm [71].

Problem R | spdp—lin, pmtn,var,r;,d; | —, i.e. a decision problem con-
sisting in verifying existence of a feasible schedule, has been reduced in [200]
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to solving a linear program with O(n®) variables and O(n?) constraints.

In [203] problem P | spdp—lin, pmtn,var,r;, d; | X is analyzed. For each
task a deadline is given. All the tasks must be completed in time. To achieve
such goal any processor is capable of increasing its speed. The optimality
criterion is not standard. Firstly, the optimality criterion is minimizing the
maximum speed necessary for processing the tasks. Secondly, when proces-
sing at some speed is unavoidable then the period of processing at such a
speed is minimized. In [202] a similar problem is considered, but the opti-
mality criterion is the total intensity cost, where the cost function is convex.

Problem P | spdp—lin—6;, pmtn,var,r; | L., has been considered in
[201]. This problem can be solved by a reduction to a sequence of equivalent
maximum network flow problems which check the existence of a feasible
schedule for a given value of L,,,,. Let the events in the task system (i.e.
r; and d; + Lyqp for j = 1,...,n) be sorted such that event e; < e;41(¢ =
0,...,2n — 1). In the network a vertex representing the task is connected
with a vertex representing interval [e;, ¢;41] when the task can be executed
in this interval. The capacity of such an edge is (e;4+1 — €;)d;. The task
vertices are connected with the source vertex by an edge with capacity t},
and the interval vertices are connected to the sink vertex by edges of capacity
m(e;4+1 — €;). The network comprises O(n) vertices. It is shown in [202] that
O(Yi218;) < O(nm) calls to O(n®) network flow algorithm are required.
This results in a total complexity of O(n*m).

In [32] preemptive and nonpreemptive scheduling of multiprocessor ta-
sks is considered. This paper extends preliminary results of [46]. For problem
P |sizej,p; =1| Cpap and size; € {1, A} an O(n) algorithm has been pro-
posed. When the numbers of simultaneously required processors are in the
set {1,...,A} and A is fixed the above problem can be solved in O(n) time
by integer linear programming (ILP) with fixed number of variables. Problem
P | sizej,p; = 1| Cpae has been shown to be sSNPh in general (reduction
from 3-Partition). It has been shown in [32] that among the optimal schedu-
les for problem P | size;, pmin | Ciqp where size; € {1, A} there must be
a so-called A-schedule. In the A-schedule tasks with size; = A are assigned
in the interval [0,C},q,] using McNaughton’s wrap-around-rule [157], and
tasks with size; = 1 are assigned in the same way in the remaining part of
the schedule. Then, an algorithm with complexity O(n) building A-schedules
has been proposed for problem P | size;, pmin | Cp,p where size; € {1, A}.
When the numbers of simultaneously required processors are from larger
than two-element set, an algorithm based on linear programming and the
concept of a processor feasible set has been proposed. The processor feasible
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set is a set of tasks that can be executed in parallel on a given number of
processors. Note that for n tasks and m processors there are O(n") proces-
sor feasible sets. We can denote by z; the processing time of [—th processor
feasible set. Then, problem Pm | size;, pmtn | Cp,y boils down to solving
a linear program: minimize the sum of execution times of all processor fe-
asible sets, subject to the sum of processing times for processor feasible sets
containing 7'; being not smaller than t;we] (7 =1,...,n). Such a formulation
has O(n™) variables, n constraints, and can be formulated and solved in
polynomial time, provided m is fixed.

In [41] problem P | size;, pmtn,resl -1 | Cy,qp was considered. Additio-
nally, it was assumed that size; € {1,2}, all tasks with size; = 1 required
a unit of the resource, while only some tasks with size; = 2 required the
resource. It was shown that among the optimal schedules there must exist
an A-schedule (called here normalized). An O(nlogn) algorithm has been
proposed. This problem was further analyzed in [43] for A > 2 and tasks
with size; = 1 requiring a unit or no resource. An O(nm) algorithm was
given. For problem Pm |size;, pmtn,res---|Cyqr a method based on linear
programming and feasible sets of tasks was proposed.

The problem of preemptive scheduling multiprocessor tasks on hypercube
multicomputer, i.e. problem P | cube;, pmtn | Cy,qp, has been tackled in [58].
An O(n?) algorithm has been proposed to test whether a feasible schedule
of length T exists. The algorithm builds a stair-like schedules. A schedule is
stair-like when (i) each processor P; is busy before time f(F;) and idle after
f(F;), (ii) fis nonincreasing function of processor number. Thus, the highest
step is at processor 0 (the most loaded machine), the steps gradually decrease
till the lowest step at the least loaded processor(s). Tasks are scheduled in
the order of decreasing size;. A task is executed in such a way that it ends
at the common deadline T, steps of the stair-like schedule are consecutively
filled from left to right and no sooner is the new (less loaded) step used than
the current one is completely full. This results in O(n?) preemptions. The
testing algorithm can be applied in time O(n?*(logn + log man{t;ZZSJ 1)) to
find the optimal schedule. Note that in such a case C,,,; is calculated with
unit granularity.

In [90] the authors proved that problems P2 | size;,chain | Cpap,
P5 | sizej | Chpqp are SNPh. Each schedule for P2 | size; | Chpap, P3| size; |
Cinar can be transformed into a canonical schedule and dynamic program-
ming method can be used to obtain an optimal schedule. The complexity
of problem P4 | size; | Cpqy remains open. The preemptive scheduling has
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been shown in [90] to be NPh for P2 | spdp—any, pmin | Cpar and sSNPh
for P | spdp—any, pmtn | Cpan. For Pm | spdp—any, pmin | Cpqy, i.e. when
the number of processors is fixed, a dynamic program has been given.

In [119] an O(nlogn) algorithm testing the existence of a schedule for
problem P | cube;,pmtn | Cpqp has been proposed. The algorithm dif-
fers from the one from [58] in the use of pseudo-stairlike schedules. In the
pseudo-stairlike schedule a task is not filling ”steps” one by one, but fills at
most two subcubes ("steps”) one from the moment it becomes available till
the end of the schedule and possibly one more but only partially. This re-
sults in a lower number of O(n) preemptions. The algorithm can be applied

in time O(nlogn(logn + log man{t;ZZSJ })) to find the optimal schedule by
a binary search. A similar approach has been proposed independently in [2].

In [208] problem P | spdp—any, pmtn,r; | Ly,qz is considered. The num-
ber of processors is assumed to be big enough to deal with them as with a
continuous medium. Fach task is described by a continuous function binding
the processing speed and the number (amount) of assigned processors. Qu-
alitative conclusions are derived. The problem is reduced to a set of nonlinear
equations.

Problem P | cube;, pmin,r;,d; | —, (i.e. verification of the existence of
a feasible schedule) was reduced in [169] to a linear program with O(mn?)
variables and O(n%*m?) constraints.

In [37] problem @ | size;,pmtn | Cpqp of scheduling on uniform pro-
cessors was considered. It was also assumed that size; € {1,2} and that
processors form pairs of equal speed. A proposed O(nlogn+ nm) algorithm
was inspired by [103]. First, a lower bound of the schedule length is calcu-
lated. Next, tasks with size; = 2 are scheduled in the order of decreasing
processing times. Then, in the remaining free intervals tasks with size; =1
are scheduled. When the schedule is to short to accommodate all the tasks it
is extended by a calculated amount of time. The idea of the above algorithm
was extended to solve problem @ | size;, pmin | Cyqp with size; € {1, A}
in [39], and to solve problem Q) | cube;, pmtn | Cpqy in [38]. In the latter
problem tasks are scheduled in the order of decreasing size; and tasks with
the same size; in the order of decreasing t;we]. In [84] results of computa-
tional experiment on the above algorithm for @ | cube;, pmin | Cyp oy have
been reported. For problem Qm | size;, pmin | Cp,,p with arbitrary size; a
solution based on linear programming and feasible sets has been proposed
in [38].

Heuristics for scheduling P | spdp—lin—§;, prec | Cy,qz have been propo-
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sed in [205]. It has been proved that any LS algorithm has tight performance
ratio A—I—mm;A. The standard LS algorithm assigns a task to the first available
processor. However, it can be advantageous to delay the start of a task until a
moment when more processors are available. The Earliest Completion Time
(ECT) heuristic is an LS algorithm which assigns tasks to ready processors
in a manner minimizing their completion times. The worst case performance
ratio of ECT has been shown to be not worse than In A+ 1. Further analysis
of ECT in [206] proved that the performance is bounded by 3 — % and an
instance with 2.5 performance ratio was demonstrated. The idea of ECT
algorithm has been independently proposed in [7] to find the set of proces-
sors executing a computationally intensive task on a distributed workstation
system. Processors become available at different moments after completion
of earlier task(s) (this is a variation of problem Q,win | spdp—any | Cpos
with n = 1). An algorithm with complexity O(m?) has been proposed in [7]
and with complexity O(mlogm) in [91].

Preemptive scheduling on a hypercube was considered again in [183]. A
feasibility testing algorithm of [2] was modified to obtain complexity O(nm).
By the observation that in the optimal schedule at least one task must use
all the time remaining up to the end of the schedule, an O(n?m?) algorithm
finding optimal schedule for P | cube;,pmtn | Cyap was given. The above
algorithm uses for each subcube a parametric representation of the remaining
processing time as a linear function of some (hypothetical) common deadline
T. The parameters are modified as a result of building partial schedule.

For nonpreemptive scheduling on a hypercube a Largest Dimension Lon-
gest Processing Time (LDLPT) heuristic has been analyzed in [59]. The
LDLPT heuristic is a LS method assigning task to processors in the order
of (primarily) decreasing size; and (secondarily) decreasing processing time.
The tight performance ratio of LDLPT is 2 — 2/m.

A variation of P | spdp—any | Cyqr was considered in [131]. It was assu-
med that n < m, all tasks (at least initially) are executed in parallel, and mi-
nimization of C,,,, was achieved by changing the number of processors used
by the tasks. An approximation algorithm proposed in that paper was suc-
cessively increasing the number of processors used by the longest task until
d; was achieved or all m processors were occupied. We call this algorithm Va-
rying Size (VS). The tight performance ratio of VS is min{n, R/(1 —m/n)},
where R is the maximum of the ratio of two successive acceptable sizes of any
task. A similar idea was used in an approximate algorithm with performance
ratio R for problem P | spdp—any, pmtn | Cypay [132].

In [40] problem Pm | sizej,pmin | Ly,q, for size; € {1, A} was consi-
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dered. A linear program based on the processor feasible sets was proposed.
Since this method requires an LP with big number of variables an appro-
ximation method based on tabu search and linear programming has been
proposed. The reported good experimental results for the second method
have been explained by a particular topology of the criterial function.

In [214] the feasibility algorithm of [2] has been modified to obtain
O(n?*log?® n) algorithm finding optimal schedule for P | cube;, pmtn | Cpras-
Again, the observation is used that in the optimal schedule some task must
be scheduled exploiting all the remaining processing time on some subcube.
To calculate the testing values of (., a parametric representation of the
remaining free processing time on processors is used (cf. [183]). The opti-
mum C',q, is found by considering tasks in the order of decreasing size;
and testing the calculated schedule lengths for successively increasing sub-
cube numbers. For nonpreemptive scheduling the authors propose a Largest
Dimension First (LDF) heuristic with tight performance ratio 2 — 1/m. For
on-line scheduling (i.e. the set of tasks is not known a priori) an instance is
demonstrated for which LDF has performance ration greater than 1 —I—\/E/Q.

In [133] an experimental study is reported for on-line scheduling for pro-
blem P | cube; | 3" c;. It is observed that even sophisticated processor al-
location strategies alone cannot guarantee good performance. A set of Scan
strategies is proposed which combine the simple buddy allocation scheme
with clustering tasks according to their size;. Tasks with the same size; are
appended to one queue. Queues with different size tasks are scanned in the
direction of increasing (or decreasing) size. This strategy effectively overco-
mes the shortcomings (e.g. weak ability to recognize idle subcubes) of the
buddy allocator.

In [148] application of LPT heuristic to problem P | size; | Cpgp is
considered. The performance ratio is proved to be %k — k(ég;l), where £ is
the number of different task sizes. For problem P | cube; | Cpqp LPT has
performance ratio not greater than 2 — 1/m and performance 2 — 2/m has
been demonstrated.

In [181] various special cases solvable in polynomial time for P | spdp—
any | >_ ¢; are analyzed. For P | spdp—lin | 3" ¢; an SPT rule is proved to
be optimal.

Problem P | spdp—any, prec | C,q was considered in [170]. An algorithm
for the determining of size; and sequencing of multiprocessor tasks being
elements of an arbitrary DAG has been proposed. Processors are considered
here as a continuous medium which behaves like electrical charge passing
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from one task to another in the DAG. The optimality conditions impose a
set of nonlinear equations on the flow of processing power (processors) and
on the completion times of independent paths of execution. These equations
are analogous to Kirchhoff’s laws of electrical circuit theory. An algorithm
based on conjugate gradient method has been proposed. The complexity is
O(e?+ne+1I(n+e)), where e - the number of edges in the precedence graph
and I - number of iterations in the algorithm.

A similar problem motivated by computer vision application is considered
in [63] (a variation of P | spdp—any, prec | Cpqz). The important difference is
that the computations are pipelined and the tasks constantly coexist on the
processor set. Long sequences of data sets undergo processing by a collection
of tasks forming series-parallel DAG. The throughput defined as the longest
execution of a single task in the DAG is the interval between obtaining
results for two consecutive data sets (a "clock” of the pipe). Two problems
are posed: for the given throughput find minimal response time, and for
the given response time find maximal throughput. Heuristic algorithms are
proposed with complexity O(nm?) for the first problem and O(nm?log m)
for the second one.

In [85] problem P | size;, pmin | Cpyy is proved to be NPh, but it is an
open problem whether it is SNPh. Also problem P4 | size; | Cl,45 is proved
to be solvable in pseudpolynomial time provided that no task is uniprocessor.

In [89] a special case of problem P | spdp—lin—06;,var, chain | Cpqy is
considered. It is assumed that tasks form chains of three elements (denoted
| chain |= 3): a sequential head (size; = §; = 1), parallel central part
with an unbounded linear speedup (spdp—1Ilin,d; > m) and a tail which
is sequential again. This model was motivated by a master-slave model of
computations. It was shown that the above preemptive scheduling problem
is sSNPh. This result leads to a conclusion that preemptive scheduling of
tasks with linear speedup and a given execution profile (cf. Section 3.3) is
sINPh. Yet, the optimal schedule for the m — 1 longest tasks can be extended
to an optimal schedule for all the tasks. Furthermore, when m is fixed such
a schedule can be obtained in polynomial time. When the chain of tasks
consists of two elements of one type only, e.g. there are only heads and a
central (parallel) part (denoted | chain |= 2), then the optimal solution
can be found in O(nlogn) time. Three approximation algorithms have been
proposed with tight performance bounds 3,2, 2, respectively.

In [45] problem P3| size;,p; = 1, chain | Cpqy is proved to be sNPh.
Low-order polynomial time algorithms are proposed in special cases. When
the chain consists of two concatenated subchains: a leading chain of mul-
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tiprocessor tasks with size; = A and trailing chain of uniprocessor tasks
an O(nlogn) algorithm can be applied when 2A > m. Chains of this kind
are called monotonically decreasing chains (m.d.-chains in short). For uni-
form chains (u.-chains in short) consisting either of multiprocessor tasks
with size; = A or uniprocessor tasks the optimal schedule can be found in
O(nlogn) time.

The problem of nonpreemptive scheduling multiprocessor tasks on two
processors for 3" w;c;, Y ¢; and Li,,, criteria is considered in [144]. It is
shown that P2 | size; | 3 w;c; is SNPh. A dynamic programming procedure
is proposed for a fixed number of duoprocessor tasks. Problem P2 | size; |
>_c; is NPh even when there is only one duoprocessor task. A heuristic
is proposed for the first problem with tight performance bound 2 which
decreases to 2 for problem P2 | sizej | Y- ¢;. P2 | size;j | Ly is shown to be
sNPh and a dynamic program is proposed for a fixed number of duoprocessor
tasks. P2 | p; = 1,size; | L4y is shown to be polynomially solvable by an
extension of EDD (Earliest Due Date) rule. Using this rule for arbitrary
processing times gives an algorithm with bound LH2 < L* 4 %E]‘eﬁ t;,
where T2 is the set of duoprocessor tasks.

5.2.2 P spdp—lin—d;,var | Cpax

Let us start this section with an observation that P | spdp—lin,var | Cpaz,
unlike problem P | spdp—any, pmin | Chae, is trivially solvable in O(n)
by executing tasks on all available processors. Now, we show that problem
P | spdp—lin—36;,var | Cy,qy is solvable in polynomial time.

Theorem 5.1 Problem P | spdp—lin—24;,var | Cpqp can be solved in O(n)
time.

Proof The algorithm for this problem is an extension of McNaughton’s
wrap-around-rule [157]. First, we calculate the length of the schedule

th no¢l
cr :max{max{—] Q} (5.1)

maz Ler's;” m

Note that the schedule cannot be shorter because the first term denotes
the longest execution time of a single task, and the second term is the total
amount of work evenly distributed among the processors. We will show that a
feasible schedule of length C7 . exists. The schedule can be built by applying
McNaughton’s wrap-around-rule: Task 77 is scheduled starting at time 0 on
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processor P;. When t} < C7% . processing of the task Ty finishes at time
t{ on processor P;. In the opposite case amount ¢} — C%  of the remaining
work is executed on processor Pp. If t} — C% =~ > % .. the procedure is
repeated and the excess of the work is processed by processor(s) Ps, (Pa, .. .).
Right after the completion of task 77 processing of T, starts. When the task
does not fit completely on the processor where it was started the rest is
processed by the following processor(s). This procedure of wrapping-around
is repeated until the last task. Now, let us consider the feasibility of the
schedule. The second term determining C7;, . guarantees that the capacity
of the box of m processors in time C7, .
that no task uses more than ¢; processors. Assume that task 7;_; finished

is not exceeded. We have to ensure

at time x on processor F;. For Ty, + = 0 and ¢ = 1. Suppose task T} uses
more than §; processors. If this is true then in the whole schedule length task
T; uses at least §; processors and at moment z% (infinitesimally after z),
the task uses §; + 1 (or more) processors. This means that 7; occupies more

than 6;C% .. which contradicts C7 =~ > maXTJeT{%}. Hence, the schedule
is feasible. Let us analyze the time in which the schedule can be obtained.
Task T} finishes on processor |(t} + )/C, ] + 4. The completion time of
Tiis x +t} —Cr Lt +2)/Cr ] The processors used by a task and the
intervals of the task processing can be found in constant time. Thus, the

whole schedule can be built in O(n) time. o

5.2.3 P|spdp—lin—4;,var,rj| Crax

In this section we present an O(n?) algorithm for problem P | spdp—lin—
d;,var,r; | Chap [86]. The procedure we propose uses some concepts of the
Muntz and Coffman algorithm [159] solving problem P | pmin,in — tree |
Cinaz- That algorithm schedules tasks according to their level which is the
time required to finish all the tasks along the path from the given task
to the root of the tree. Furthermore, an idea of processing capabilities was
introduced in [159]. Processing capabilities are real numbers representing
a fraction of all m processors which is assigned to process a task for some
time. Processing capabilities can be considered as speeds of processing tasks.
We will use a similar method to assign processors to tasks. A technique
proposed in the previous section for problem P | spdp—lin—24;,var | Cpos,
is applied to schedule pieces of tasks. The main idea behind the algorithm is
to build a schedule starting from the interval where only one task is ready
and ending with the last interval where all tasks are ready. The more tasks
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are executed before the last interval, the smaller C,,, is. Now, we introduce
some additional notation.
Height h(j) of task T; is the shortest time required to complete T;.

h(j) is equal to the required remaining processing divided by 6;. h(j) is %
initially, and decreases while processing 7T’;. Hence, h(j) = 0 means that 7} is
finished. Two tasks are said to be equal if their heights are equal. We assume
that there are [ < n different values of ready times, and r1 =0 <ry <...< r.
We introduce also r;41 =00. In the algorithm we will denote by:

k - index of interval [rg, riy1], k=1,...,1,

Q. - set of tasks ready in interval &,

7 - length of the current processing capabilities assignment,

t - beginning time of the current processing capabilities assignment;

3 - a vector of n processing capabilities for tasks T7,...,T).
An Algorithm for P | spdp—lin—24§;,var,r; | Creyp
1: ¢t := 0; group tasks with ready time ry in set QJg; order tasks in @y

according to nonincreasing heights, k =1,...,[;
2:for k:=1to [l do
begin

2.1: order tasks in Q; according to nonincreasing values of h(j) for T; € Qp;
2.2: while (rp41 > t) and (37,¢0,h(j) > 0) do

begin
2.2.1: CAPABILITIES(Qy, 3);

2.2.2: calculate times:
if HT]7T]+1erh(j) > h(j + 1) then
. h(j)=h(i+1) . B; 4 8 . .
= ming, 1, eq, { MR 1 B £ BEL () > h(j+ 1)}
o 41

else 7' :=
- the shortest time required for two tasks 7, T;41 with different heights
to become equal;
1. hQk])
310l
2.2.3: 7= min{7, 7", rpyp1 — t};
2.2.4: schedule 73; piece of task T} in interval [t,¢ 4 7] according to
the algorithm for P | spdp—lin—36;,var | Cpyy, for T; € Qp;
2.2.5: h(j) := h(j) — 5i for Tj € Qy;
226:t:=1t+T;
end;
2.3:if (I1,e0,h(J) > 0) then Qryy = Qpy1 UAT; : T € Qp, h(j) > 0
end; (* end of the algorithm *)

- the time to the earliest completion of any task;
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procedure CAPABILITIES (in: X ;out:5); (* X - a set of tasks *)
begin
3.1: B := 0; avail := m; (* avail is the number of free processors *)
3.2: while avail > 0 and | X |> 0 do
begin
3.2.1: construct set Y of the highest tasks in X with h(j) > 0;
3.2.2: if ) 7 cy 0; > avail then

begin
3.2.3: ;= @% for task 7; € Y'; avail:=0;
end
else (* tasks in Y can use at most avail processors *)
begin
3.2.4: B; :=0; for T; € Y;avail := avail — ZT]eY 053
end;

325 X=X -Y;
end; (* of while loop *)

end; (* of procedure CAPABILITIES *)

High level description. Intervals [rg, rg4+1] are considered consecutively in
lines 2-2.3. In these intervals, subintervals are created in lines 2.2-2.2.6 where
processing capabilities assignment remains constant. Tasks are assigned pro-
cessors in line 2.2.1 analogously to the method proposed in [159]. High tasks
are given preference (line 3.2.1). If there are more processors than can be
simultaneously required by the ready tasks, a maximal possible number of
processors is assigned in line 3.2.4. Otherwise, processors are shared (line
3.2.3) by equal tasks such that their heights decrease at the same pace (cf.
line 2.2.5). The length of the current assignment is calculated in line 2.2.3.
The assignment of processors to tasks changes in three cases: h(j) for some
initially higher task becomes equal to h(j + 1) of some initially lower task
(calculated as 7 in line 2.2.2); or the lowest task in Q) finishes (7”), or else
the end of the interval is encountered and tasks in Jx41 must be considered.
In line 2.3 tasks from @ not completed by the end of interval k£ are added
to Qr+1 to be considered also in the next interval.

Lemma 5.1 The algorithm for P | spdp—lin—24§;,var,r; | Cqy is correct.

Proof First, we prove that the algorithm halts. Procedure CAPABILITIES
stops because in each execution of while loop in lines 3.2-3.2.5 at least one
task is removed from X. Equal tasks reduce their heights with the same speed
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(cf. line 2.2.5). Hence, when two tasks become equal they remain equal until
their completion. Height of an initially higher task cannot fall below a height
of any initially lower task, which is guaranteed by calculation of 7’ in line
2.2.2. Thus, two tasks can become equal at most » — 1 times. We conclude
that while loop of lines 2.2-2.2.6 can be executed only a limited number of
times. Therefore, the algorithm stops.

Now, consider feasibility of the schedule. Tasks are not scheduled before
their ready times because any task released at r; can be considered in sets
Qk, .- Q1, not Q1,...,Qr—1. No task T} is ruled out from consideration as
long as h(j) # 0. This means that each task receives required processing.
Finally, in each subinterval built in lines 2.2-2.2.6 equation (5.1) is satisfied
and a feasible schedule can be built by the algorithm introduced in Section
5.2.2. This is because:

(i) The sum of processing requirements of tasks is ETJerTﬁJ‘:T(ZTJeQ; S+
5J(m—ZTie% 8i)
ZTier—Q; b
ceived processing capabilities in line 3.2.4 of procedure CAPABILITIES. Thus,
the sum of processing requirements does not exceed the subinterval capacity.
(i) Task 7; (j = 1,...,n) is assigned at most §; processing capabilities
which results from lines 3.2.3 and 3.2.4 in procedure CAPABILITIES. Hence,

7'>i a
_5]'

ZT]er—Q; ) < 7m, where @}, C Q is a set of tasks which re-

Theorem 5.2 The above algorithm builds an optimal schedule in O(n?)
time.

Proof In each subinterval created in lines 2.2-2.2.6 either all m proces-
sors are occupied, or as many processors are occupied as possible. Hence, ca-
pacity of interval [rg, rg+1], & = 1,...,1—1,is maximally exploited. Thus, the
total processing requirement moved to (J;41 is minimal possible. Since tasks
with the longest expected execution time are preferred, also max;eg, h(j)
is maximally decreased. The above arguments hold inductively for intervals
[riey 1] (B=1,...,01—=1). Thus, also @; has tasks with the lowest possible
max;eq, h(j) and their total processing requirement >~ ..o h(j)d; is mini-
mal. Using arguments of Theorem 5.1 proof (cf. equation (5.1)) we conclude
that the schedule is optimal.

The complexity of the algorithm can be determined as follows. Gro-
uping tasks according to their ready times in line 1 can be implemented
in O(nlogn) time. There are O(n) values of index k considered in loop
2-2.3. Ordering tasks according to their heights is equivalent to sorting and
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requires O(nlogn) time in line 1 and O(n) time in line 2.1 (merging of @y,
and QQg—1). Procedure CAPABILITIES can be executed in O(n) time because
it assigns processing capabilities to at most n tasks. Lines 2.2.2-2.2.6 require

O(n) time. Thus, the total complexity is O(n?). o
Observe that to schedule tasks with ready times at most equal rg, the
value of ri41 is needed rather than information about tasks in Qgy1, ..., Q1.

Hence, the above algorithm can be run on-line, i.e. it builds optimal schedu-
les using only the information about tasks that have been already released
and about the time when the new tasks will arrive. In the above algorithm it
was assumed that the cost of preemption (or a context switch) is negligible.
The cost of context switching is related to the number of preemptions. The
number of preemptions can be determined by the number of subintervals
where processing capabilities are constant and the preemptions within such
subintervals. There can be at most 3n subintervals. Any task adds at most
one preemption on one processor within the subinterval. The end of a sub-
interval can add one more preemption on each processor. Hence, there are
at most 3n? 4+ 3nm preemptions in the schedule.

Now, consider problem P | spdp—lin—§;,var | Ly,q;. There are [ different
due-dates: dy < dy < ... < d;. This problem can be solved by a modification
of the above algorithm. For problem P | spdp—lin—6;,var | L., we have to
guarantee that task 77 is feasibly executed in interval [0, d;4 Ly,qz] and Ly, gz
is minimal possible. For problem P | spdp—lin—6;, var,r; | Ciqp we have to
schedule task T} in interval [r;, C,45] and minimize C, 4. Thus, for instance
I of P | spdp—lin—d;,var | L., we can construct equivalent instance I’ of
problem P | spdp—lin—3d;,var,r; | Cpap by assuming ri = d; — d;—j41 for
j=1,...,1. Schedule S’ for I’ should be read from the end at C7 . to the
beginning to be schedule S for P | spdp—lin—6;,var | Ly, i.e. each time

instant ¢’ in S’ has equivalent t = C/ ., —t" in S. We conclude:

Corollary 5.1 P | spdp—lin—=38;,var | Ly is solvable in O(n?) time.

5.2.4 P2 |sizej,pmin,r; | Crax

We use here methods designed in the previous section to solve the problem
of preemptive scheduling on two processors of multiprocessor tasks ready at
different moments with a fixed number of used processors, for the schedule
length criterion. The notation is analogous to the one in the previous section.
Height h(j) of task T} is the time required to complete it. There are [ < n
different values of ready times r1 = 0 < rg < ... < r; < ri41 = 00. Procedure
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CAPABILITIES was presented in Section 5.2.3 and we do not repeat it here.
Beyond the notation of Section 5.2.3 we use:

@ - the set of uniprocessor tasks ready in interval k,

Sk - the set of duoprocessor tasks ready in interval k.

An Algorithm for P2 | size;, pmin,r; | Crayp
1: ¢t := 0; group duoprocessor tasks with ready time rg in Sk,
and uniprocessor tasks with ready time rj in set Qp,

order tasks in (J; according to nonincreasing heights, k = 1,...,1;
2:for k:=1to [l do
begin

2.1: order tasks in Q; according to nonincreasing values of h(j) for T; € Qp;
2.2 7 == min{} g e, 2 Thy — TR
2.3: schedule 7 units of duoprocessor tasks from Sy, in interval [rg, rr + 7;
reduce h(j) of scheduled duoprocessor task 7; by the received amount
of processing for T; € Si;
24:t =1t +T;
2.5: while (rp41 > t) and (371,¢0,h(j) > 0) do
begin
2.5.1: CAPABILITIES(Qy, ();
2.5.2: calculate times:
if HT]7T]+1erh(j) > h(j+ 1) then

. h(7)—h(j . .
= ming, 7, e {AMPTRE 1 35 £ B0, () > (G + 1)

else 7’ := o0
- the shortest time required for two tasks 7, T;41 with different heights
to become equal;
" := h(] Q |) - the time to the earliest completion of any task;
2.5.3: 7 = min{7, 7", rpyp1 — t};
2.5.4: schedule 73, piece of task T} in interval [t,¢ 4 7] according to
McNaughton rule, for T; € Q;
2.5.5: h(j) == h(j) — 78; for T; € Q;
25.6:t:=1t+T;
end;
2.6: if (I1,e0,h(J) > 0) then Qryy = Qpy1 UAT; : T € Qp, h(5) > 0
2.7:if (Ir,es,h(j) > 0) then Sy := Spp U{T) : T; € S, h(j) > 0);
end; (* end of the algorithm *)
High level description. As in the previous algorithm intervals [rg, rri1]
are considered in lines 2-2.7. First, duoprocessor tasks are scheduled in these
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intervals such that either all duoprocessor tasks are scheduled in the inter-
val or the interval is completely filled by these tasks (lines 2.2-2.4). Then,
within intervals [rg, ri41] subintervals are created in lines 2.5-2.5.6 where
assignment of processing capabilities to tasks in (); remains constant. Tasks
are assigned processors in line 2.5.1 as in [159] and Section 5.2.3. Note that
0; = size; = 1 for all tasks passed to procedure CAPABILITIES. The current
processor assignment of uniprocessor tasks changes in three cases (calculated
in line 2.5.3): h(j) for some initially higher task becomes equal to h(j+1) of
some initially lower task (calculated as 7/ in line 2.5.2), the lowest task in Qg
finishes (7”), the end of the interval is encountered. In line 2.6 uniprocessor
tasks from Qy not completed by the end of interval &k are added to Qx41 to
be considered in the next interval. The same applies to duoprocessor tasks
in line 2.7.

Lemma 5.2 The algorithm for P2 | size;, pmtn,r; | Cyqap is correct.

Proof First, we prove that the algorithm stops. Procedure CAPABILITIES
stops as explained in Lemma 5.1. Equal tasks reduce their heights with
the same speed (cf. line 2.5.5). Hence, when two uniprocessor tasks become
equal they remain equal until their completion. Height of initially higher task
cannot fall below the height of an initially lower task, which is guaranteed
by calculation of 7" in line 2.5.2. Thus, two tasks can become equal at most
n — 1 times. We conclude that while loop of lines 2.5-2.5.6 can be executed
only a limited number of times and the algorithm stops.

Now, consider feasibility of the schedule. Tasks are not scheduled before
their ready times because any uniprocessor (duoprocessor) task released at
ri can be considered in sets Qp,...,Q; (Sk,...,S51). No task is ruled out
from consideration as long as h(j) # 0. Hence, each task is completed. In
each subinterval built in lines 2.5-2.5.6:

(i) no task is assigned more than processing capability 1, which results from
lines 3.2.3 and 3.2.4 in procedure CAPABILITIES. Hence, each uniprocessor
task fits in the subinterval.

(i) the sum of processing requirements of tasks is >1,€0,7H; =7( Q} |

+ | Qr — Q) | gk__%%") < 7m, where Q) C Qj is a set of tasks which
received processing Cakpability 1 in line 3.2.4 of procedure CAPABILITIES.
Thus, the sum of processing requirements for the subinterval does not exceed
its capacity.

(i) and (ii) ensure that in the subinterval created in lines 2.5-2.5.6 a feasi-
ble schedule can be obtained by McNaughton’s wrap-around rule. O
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Theorem 5.3 The above algorithm builds an optimal schedule in O(n?)
time.

Proof Observe that by swapping pieces of tasks on both processors si-
multaneously any feasible schedule can be converted to a schedule with the
same length in which duoprocessor tasks are executed consecutively from
their ready time. Thus, among optimal schedules there is one where duopro-
cessor tasks are executed first in intervals [rg, re41] (B =1,...,10).

The completion time for tasks in interval [r;, r;41], and hence of the whole
schedule, is Cpaz = 114 je5, h(J)+max{maxjeq, h(j), 3 X jeq, (J)} which
is the amount of processing required by duoprocessor tasks plus either the
longest uniprocessor task or the mean loading of the processors by uniproces-
sor tasks. Thus, the length of the schedule, depends on the amount of duopro-
cessor tasks shifted from [r;_y, r;], amount of shifted uniprocessor tasks, and
the longest shifted piece of a uniprocessor task. In each subinterval created in
lines 2.5-2.5.6 either all m processors are occupied, or as many processors are
occupied as possible. Hence, capacity of interval [rg, rgyq1], k= 1,...,0—11s
maximally exploited, and the total processing requirement moved to QQg41 is
minimal possible. Tasks with the longest expected execution time are prefer-
red in procedure CAPABILITIES, thus max;ecq, h(j) is maximally decreased.
These arguments hold inductively for intervals [rg, re41] (K=1,...,0—=1).
Thus, Q; has tasks with the lowest possible max;eq, h(j), 3 ;eq, h(j), and
>jes, (j) is minimal. Hence, the schedule is optimal.

Grouping tasks according to their ready times in line 1 requires O(n logn)
time. There are O(n) values of index k considered in loop 2-2.7. Ordering ta-
sks according to their heights is equivalent to sorting and requires O(n logn)
time in line 1 and O(n) time in line 2.1 (merging of @ and Q_1). Procedure
CAPABILITIES can be executed in O(n). Lines 2.5.2-2.5.6 require O(n) time.
Thus, the total complexity is O(n?). O

Note that the above algorithm can be extended to any number of pro-
cessors provided that V;ersize; € {1, m}. Furthermore, it can be used to
solve P2 | size;,pmtn | L., as it was possible to use an algorithm for
P | spdp—lin—36;,var,r;| Cpay to solve P | spdp—lin—06;,var | Ly,q;.

Corollary 5.2 P2 | sizej, pmin | Lyq, is solvable in O(n?) time.

In the following Table 5.1 we summarize results, from the literature as
well as presented in this work, for scheduling multiprocessor tasks on parallel
processors.



68 CHAPTER 5. MULTIPROCESSOR TASKS
Table 5.1: Scheduling multiprocessor tasks on parallel processors
Problem | Result | Reference
Nonpreemptive scheduling
P |sizej,p; = 1| Cras sNPh [149]
P3| sizej,p; = 1, chain | Crao
and size; € {1,2} sNPh [45]
P |sizej,p; = 1,prec| Cmae Sps = nf’_”;_fl [149]
P2 |sizej,p; = 1,prec| Cpmae O(n'°8=7) [149]
Plsize;, pj = 1|Cpae and size;e{l, A} | O(n) [32]
P |sizej,p; = 1| Cras
and size; € {1,..., A} O(n) ILP [32]
P |sizej,p; = 1| Cras sNPh [32]
P2 | size; | Crae, P3|size; | Crae NPh,pseudopoly. [90]
P4 | sizej | Crae ? [90]
P5 | sizej | Cae sNPh [90]
P2 | sizej, chain | Chpae sNPh [90]
P |sizej | Couan Sppr < %A _ Ao+ [148]
P4 | sizej | Cpae and size; # 1 pseudopoly. [85]
P2 | sizej | Y- wjcj sNPh,Sp; <2 [144]
P2 | size; | > wjc; dyn.prog. for special case [144]
P2 | sizej | > ¢ NPh, Sg1 < 2 [144]
P2 | sizej | Lmao sNPh [144]
P2 size; | s L <Lt 3 ety | (144]
P2 |sizej,p; = 1| Limae O(nlogn) EDD [144]
P |sizej,p; = 1,m.d.—chains | Crae
and size; € {1, A} 2A >m O(nlogn) [45]
P |sizej,p; = 1,u.—chains | Cpae
and size; € {1, A} O(nlogn) [45]
P | cube; | Craw StpLpr =2 — % [59]
P | cubej | Cmax SLDF =2- % [214]
P |cube; | > ¢ experimental study [133]
P | cubej | Cmax SLPT S 2 — % [148]
P | spdp-in—6; , prec | Craw Srs = A+ mm;A [205]
P | spdp-in—6; , prec | Craw Seer <InA+2 [205]
P | spdp-in—6; , prec | Craw Sgcr < 3 — % [206]
P | spdp—any | Crar and n<m Syvs = min{n, 2=} [131]
Q, winV | spdp—any,n=1|Cpas O(m?) ' [7]
P | spdp-in | > ¢; SPT is optimal [181]
P | spdp—any | > ¢; special cases analyzed [181]
P | spdp—any, prec | Chaz heuristic [63]
P | spdp—any, prec | Cras O(e? + en + I(e + n)) [170]
Q, win" | spdp—anyn=1|Cpaz O(mlogm) [91]

1) Processors become continuously available after different moments of time.
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Problem | Result | Reference
Preemptive scheduling

P | sizej, pmin | Chap and size; € {1, A} | O(n) [32]
Pm | size;, pmin | Crae Lp [32]
P | sizej, pmin,resl 1| Chrae
and size; € {1,2} O(nlogn) [41]
Q | sizej, pmin | Chqap and size; € {1,2} | O(nlogn + nm) [37]
Q | sizej, pmin | Chqp and size; € {1, A} | O(nlogn + nm) [39]
Qm | sizej, pmin | Cpae LP [38]
Pm | size;, pmin | Lyee LP or
and size; € {1, A} tabu search+LP [40]
P | sizej, pmin,resl 1| Chrae O(nm) [43]
Pm |size;, pmitn,res-- | Crao Lp [43]
P | sizej, pmin | Crae NPh, ? [85]
P2 | sizej, pmin,r; | Crae O(n?) Th.5.3
P2 | sizej, pmin | Liae O(n?) Coro.5.2
P | cube;, pmin | Crao O(n*(logn+

+ log max; {t;l'zej ) [58]
P | cube;, pmin | Crao O(n logn(logn+

+ max;{t; "7})) [119, 2]
P | cube;, pmin,r;,d; | — LP [169]
Q | cube;, pmin | Crae O(nlogn 4+ nm) [38, 84]
P | cube;, pmin | Crao O(n*m?) [183]
P | cube;, pmin | Crao O(n?log® n) [214]
R | spdp—lin,var,r;, d; | — LP [200]
P | spdp-in,var,r;, d; | X O(n?) [203]
P | spdp-in,var,r;, d; | X O(n?) [202]
P | spdp—in—6; ,var,7; | Lmae O(n*m) [201]
P | spdp—any,var,7; | Limae continuous processors [208]
Pm | spdp—any, pmin | Cpar and m >2 NPh pseudopoly. [90]
P | spdp—any, pmin | Cpag sNPh [90]
P | spdp—in—6; ,var, chain | Cpae sNPh, Sy =3
and | chain |= 3 Spa2 = Sps =2 [89]
Pm | spdp-lin—0; , var, chain | Cpae polynomially
and | chain |= 3 solvable [89]
P | spdp—in—6; ,var, chain | Cpae
and | chain |= 2 O(nlogn) [89]
P | spdp—any, pmin | Cpax Svs <R [132]
P | spdp—lin—0;,var | Cras O(n) Th.5.1
P | spdp-in—6; ,var,r; | Chas O(n?) Th.5.2
P | spdp—in—6; ,var | Limae O(n?) Coro.5.1
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5.3 Dedicated Processors

This section considers scheduling multiprocessor tasks on dedicated proces-
sors. First, we review the existing literature of this field (including earlier
author’s works). Then, from Section 5.3.2 on we present new results. Part of
them was prepared in cooperation with other researchers [24, 20]. In Section
5.3.2 we present analysis of low order complexity algorithms based on Ear-
liest Due-Date rule. In Section 5.3.3 we consider scheduling in time windows.

5.3.1 Overview of Earlier Results

The first paper considering multiprocessor scheduling seems to be [48] in
which branch and bound (B&B) algorithm is proposed for scheduling in
chemical plants. A concept of compatibility and incompatibility of tasks has
been introduced. Two tasks T; and T} are compatible if fiz;N fiz; = (. The
two tasks are incompatible when fiz;N fiz; # (. This gives way to definition
of incompatibility graph in which nodes represent tasks and edges link pairs
of tasks which cannot be processed together. To bound the search tree a
Maximum Degree of Incompatibility (MDI) was used to prefer executing
some tasks over the others.

In [130] scheduling of diagnostic tests is analyzed. The tests to be perfor-
med are represented by a diagnostic graph in which nodes represent proces-
sors and edges - tasks. An edge has weight - processing time of a task. Two
processors connected by an edge are simultaneously required to test each
other. We will call such kind of representation scheduling graph (following
[134]). The considered problem P | fiz; | Cpqp with V; | fiz; |= 2 is proved
in [130] to be NPh. An LPT heuristic is analyzed, and worst case perfor-
mance bound 4(d — 1)/d is demonstrated, where d is the maximum degree
of any vertex. For graphs with d < 5 this bound is tightened to 3, and for
binomial graphs with integral ratio of the weights to 2.

In [70] the problem of scheduling file transfers is considered. A file transfer
involves two computers /communication centers. Each computer may be able
to use multiple ports to execute simultaneous file transfers. Let p denote
maximum number of ports. The transfers to be performed are described by
a scheduling graph in which vertices are communicating nodes and edges are
files to transfer. The problem is analyzed for the case with central controller
as well as for the distributed case. The complexity of the problem is analyzed
in 10 theorems using (mainly) edge coloring model. In this way complexity
of 43 special cases is established (including general graphs, bipartite graphs,
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trees, paths, even/odd cycles, one-port, arbitrary number of ports, single
edges, multiple edges). The performance ratio of LS heuristics is analyzed.
It is proved that in the worst case 4/3 < Sps < 3. This bound can be
tightened for special forms of the scheduling graph, e.g. Srs < 2 for p < 2.
LPT heuristic has performance ratio 5/2 — 1/p when p > 2. Finally, two
distributed protocols are proposed to schedule file transfers. For the first
(called Demand Protocol 1) it is proved that CPPl < 3C* 4 ec, where
CDPlis the length of the schedule, 7. the length of the optimal schedule,
e is the number of edges in the scheduling graph, ¢ is the maximum time to
initiate some file transfer. For the second protocol similar bounds have been
obtained. These bounds were tightened in special cases.

In [134] problem P | fiz; | Cpap where | fiz; |€ {1,2} is analyzed.
Uniprocessor tasks are represented in the scheduling graph as loops. The
above problem is NPh even if the scheduling graph is caterpillar with one
loop or a star with a loop at each noncentral vertex. References are given to
other works establishing the complexity of 16 subcases.

In [74] the analysis of problems P | fiz; | Cpop and P | fiz;, p; =
1 | Cppaz is motivated by scheduling of built-in tests for VLSI circuits. An
incompatibility graph is a model of dependencies among the tasks. Three
algorithms based on Maximum Degree of Incompatibility are proposed.

In [79] problem P | fiz; | >° wjc; is considered. For P2 | fiz;,p; = 1|
> w;c; optimization algorithm with complexity O(nlogn) is given. For the
general version of the problem integer linear programming formulation was
given. Two relaxation methods and two heuristics were presented. Compu-
tational results are reported.

In [135] preemptive scheduling is considered. By reduction of edge mul-
ticoloring problem P | fiz;, pmtn | Ci,4p with | fiz; |= 2 is proved to be
sNPh (via complexity equivalence with P | fiz;,p; = 1| Cyaq). For pro-
blem Pm | fiz;, pmitn | Cp oz, i.e. when the number of processors is fixed an
algorithm based on linear programming and processor feasible sets is given.

In [31] the case of nonpreemptive scheduling on three processors is analy-
zed. The complexity of this problem is established by the following theorem.

Theorem 5.4 Problem P3| fiz; | Cpuyp is sSNPh in general [31].

Proof We prove strong NP-hardness by reduction of 3-PARTITION to a
decision version of our problem. 3-PARTITION is defined as follows.

3-PARTITION
INSTANCE: Set A of 3¢ numbers a; (j =1,...,3q), such that Efil a; = Byq
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and B/4 < a; < B/2for j =1,...,3¢. Without loss of generality we assume
that B > ¢.
QUESTION: Can A be partitioned into ¢ disjoint subsets Ay, ..., A, such that
ZaJeAiaJ‘ =Bfori=1,...,q7

The above problem can be transformed into problem P3| fiz; | Chp
as follows: n = 12¢ — 1, T = U UV UW U X U Y5 U Y3 U Yis. The above
sets of tasks are defined in the following table:

Task fix; j - task processing time
set indices

1 B® + B? ko
U {P1} Y BT+ B°+ BY for (jmod2) =1 | ko
B® + B for (jmod2) =0 ke
29+1,...,4¢g—1 | B® for (jmod2) =1 ks
4 {2} B"+B°+B?+Bfor (jmod2)=0 | kr
4q B°+B?+B k1
W {Ps} 4g+1,...,6¢g—1 | B+ B>+ B3 for (jmod2) =1 | ky
B™ for (j mod2) =0 k1o
X {P3} 6q,...,9q—1 a5 —6g+1 -
Y12 {Pl,Pz} 9q,...,10q—1 BS k’5
Y23 {PQ,PQ,} 10(],,11(]—1 B4 k’l
Y13 {Pl,Pg,} 11(],,12(]—1 32 ]{78

y=q(B"+ B+ B>+ B'+ B>+ B?+ B) - B".

We ask whether for the above task set a schedule of length at most y exists.
Suppose the answer to 3-PARTITION is positive, then a feasible schedule of
length y looks like the one in Fig. 5.1.

Assume now that a feasible schedule not longer than y exists for problem
P3| fiz; | Chqyp. Note that processing requirements for all processors are
equal to the schedule length. Hence, no idle time is allowed in a feasible
schedule. To prove a positive answer for 3-PARTITION we will examine the
numbers of various type tasks scheduled between tasks from sets Y79, Yo3, Yi3.
The notation of the task numbers for each defined task type is presented in
the last column of the above table (cf. also Fig. 5.1).

1. Tasks preceding some duoprocessor task 7; € Y13 must finish simulta-
neously on Py and Ps. Thus, kz(B5—|—B4)—|—k5B3—|—k6(B6—|—B)—|—k8B2+k9(B7—|—
B5 —|—B4) = k1B4 —|—l€4(B6 —|—B5 —|—B3) —|—k8B2 —|—l€10B7 —I_ZT,EL A;—6q415 where
L is the set of tasks from X executed before the considered task T € Yis.
Coeflicients at the same power of B must be equal on both sides of the
above equation, we have (equations bounding the coefficients are presen-
ted along with B at the appropriate power): (B :)keB = > 1.cp @i 6q41;
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BB 1B BOB BB BB B BOB B’ |plipiipl
BB i, ksB tB*BB 1 B? B’ B"+BO+B*'B BY

np2 R2 7
kBB B gy A BB kg BB A BB

BHB+B B B6B B
BB’ BSB*B

‘B7 OB+ B3

Figure 5.1: A schedule for the proof of Theorem 5.4. Symbols used to denote
the numbers of the given type tasks are placed in the lower-right corners.

(B ) kg = ks, (B :)ka+ ko = k1, (B® :)ky+ ko = ky, (B :) ke = ku,
(B" :) kg = k10, and from this

ki =ky=ks = ke =ky+ ko, k1o =Fg (5.2)

We conclude that the same number of tasks from sets Yj2, Yo3 must pre-
cede (and follow) in the schedule any task from Yis because ki = ks.
ZTieL a;—q+1 must be a multiple of B.

2. Tasks preceding some duoprocessor task T; € Y3 must finish simul-
taneously on P, and Ps. Therefore, k3B° + ks B> + k7(B7 + B%4+ B2 + B)+
k11(B® + B* + B) = k4(B® + B® 4+ B?) + ks B* + k1oB" + Y 1.1, @i6g+1,
from which we have (B :) (k7 +k11)B = > 1. cp @641, (B? ) kr+ kyp = ks,
(B3 :) k5 = k47 (B5 :) k3 = k47 (BG :) k7—|— kll = k47 (B7 :) klO = k7. From

the above

ks=kys=ks=ks=kr+ ki = Z ai—eq41/B, k7 = ko (5.3)
T,eL

Since k5 = ks the number of tasks from Y12 which precede (and follow) some
task from Y53 must be equal to the number of tasks from Y7s.

3. Tasks preceding some duoprocessor task from 7; € Yi, must finish
simultaneously on P, and P;. Hence, kz(B5—|—B4)—|—k5B3—|—k6(B6—|—B)—|—k8B2—|—
ko(B”+ B® + BY) = ky B+ k3 B® 4+ k7(B" + B¢ + B2 4 B) + ks B> + k1 (B® +
B? 4+ B). From this we obtain: (B :) ks = ki1 + k7, (B? :) ks = kr + ki1,
(B4 :) k2 + kg = kh (B5 :) k2 + kg = k37 (BG :) k6 = k7 + k117 (B7 :) kg = k7

and from this

ke =ks = kr + ki1, ki =ks =ko+ kg, kr = ko (5.4)
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Suppose some T; € Yy (i.e. with fiz; = {P, P»}) is the first (or the
last) scheduled task from Yiy an it is executed after (before) both 77 and
Ty4,. From this assumption we get ko = ky; = 1 and from (5.4) ky = ks =
1+ ko =14 ks = ke = ks. Thus, ky = ks > 1. From (5.3) it is known that
the same number of tasks from Y79 and from Y73 must precede any task from
Y53. But here we would have kg > 1 tasks from Yi3 and no task from Yjo,
which is a contradiction.

Suppose some 1T; € Y7g is the first (the last) scheduled task from Y;, and
there is neither T} nor Ty, before (after) it. From (5.4) we obtain ky = ks.
When ky = kg > 1 the same arguments as in the previous paragraph can
be applied. On the other hand, ky = ks = 0 implies that it is impossible
to be in agreement with (5.2) and (5.3) and schedule any task from Y53 or
Yi3 after the considered 7). This means that such a schedule cannot exist.
Conclusion: the first executed task from Yi, must be preceded either by T}
or Ty,.

Assume T; precedes the first task from Yi,, then ks = 1,k = 0,k =
ks=14kg=14+kr =1+ ks =1+ kg, and there is one more task from Y>3
before any task from Y, than the number of the tasks from Yj3.

When T4, precedes the first task from Yio then ky = 0,k = 1,k =
ks = ky = kg = ks — 1 = ke — 1, and there is one less task from Y53 before
any task from Yj, than the number of tasks from Yj3. Hence, the schedule
cannot be started with a task from Yi,.

4. Now, we will examine whether the schedule can be started by three
uniprocessor tasks. Suppose it is possible.

4a. T; € Yiy is the first duoprocessor task in the schedule, then %y 4
kg + ke > 0, ki1 + ks + k7 > 0, k4 = kg = 0 on the other hand, from
(54) k2 + kg = k37 kll + k7 = k67 kl = k37 k6 = kg from which we get a
contradiction: 0 = ky + kg = k3 + kg > 0.

4b. T; € Y3 is the first duoprocessor task in the schedule, then kg + kg +
ke > 0, ky = ks = 0, and from (5.2) ky + k9 = ke, k1 = kg, from which we
obtain a contradiction: 0 < 2kg = 2k; = 0.

4c. T; € Y3 is the first duoprocessor task in the schedule, but there is no
combination of tasks from sets V' (requiring P) and W (requiring Ps) which
would compensate B? and B? without duoprocessor tasks. Hence, such a
schedule is infeasible.

Conclusion: schedule may not start with uniprocessor tasks on all three
processors. Following conclusion of Point 3, schedule must start with a task
either from Y53 or from Yis.

5. Let us analyze how many tasks of various types precede the first task
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Figure 5.2: Proof of Theorem 5.4 Point 5. Arrows indicate examined times

intervals.

T; € Yi3. Without loss of generality we assume that the first duoprocessor
task in the schedule belongs to Y33 (i.e. k; > 1). Consider the time interval
between the task from Y33 preceding the first task from Yis (cf. Fig. 5.2a).
We have: ky(B® 4+ B*) + ke(B® + B) + kog(B” + B® + B*) + ks B> + k3 B® +
kz(B"+B®+B*+ B) 4 k11 (B°+ B>+ B) 4+ k1 B* = Y 1.1 @i—gg1 +Ea(B° +
B® + B?) 4 k1oB” + k1 B*. From the above (B :) Y oTier Gim6q41/B = k11 + ks,
(B2 :) kll + k7 = 07 (B3§) k5 = k47 (B4§) k2 + kg = 07 (B5 :) k2 + k3 + kg = k47
(B :) ke + k7 + k11 = kg, (B7:) ko + k7 = k10, and from this

ky=kr=ko=Fkio=ki1 =0, ka=ky=ks = ke = Z ai—gq+1/B  (5.5)
T,eL

Now, analyze the time from the start of the schedule to the first task T; € Yi,
(cf. Fig. 5.2b) which precedes T; € Yi3. We have k4(B° 4+ B*) 4+ k5(B®+ B) +
Ey(B” + B® + BY) = k3B® 4+ k1 B* (note that ki, k3 are the same numbers
as in equation (5.5)). From this we obtain: (B7 :) ki = 0, (B° :) k) + k) =
ks, (B* 1) ki + ki = ky and thus &, = ky = k3. Since ky > 1 and &} € {0,1}
then kb, = ky = k3 = ky = ks = kg = 1. Hence, the schedule before the first
task from Y713 must look like in Fig. 5.1.

6. One can examine now what tasks are present between the first (second,
third, etc.) task from Yiq, and the first task from Y3 which is following it.
Analogously, the time between the first (second, third, etc.) task from Yi3
and the task from Yp; following it. From such an analysis it can be inferred
that the schedule must have a form like the one in Fig. 5.1. There are boxes
B time long on P53 between consecutive tasks from Y335 where tasks from
set X must be executed. Hence, the answer to the 3-PARTITION must be
positive. Observe that the schedule ends with a task from set Vi3 and task
Ty,. If we assumed in Point 5 that the schedule starts with a task from set
Y53 we would obtain the same schedule read from the end. O

In [31] normal schedules (NS) for problem P3| fiz; | Cp4p are analy-
zed. A normal schedule is the one in which task requiring two processors
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simultaneously are executed in parallel with tasks requiring the third pro-
cessor. Three special cases are identified when normal schedules are optimal.
In general case performance ratio of normal schedules is shown to be less
than 4/3. The same problem is further analyzed in [78]. It is shown that
normal schedules guarantee performance 5/4 and this bound is tight. On
the contrary LPT and SPT rules have tight worst-case performance ratio 3.
For a certain distribution of instances it is shown that over 95% of them are
recognized as solvable in polynomial time. A better approximation algorithm
with tight performance ratio Sis = 7/6 has been proposed in [102] (we call
it 18 for it chooses the best out of 18 schedules).

In [19] preemptive scheduling is considered. For problems Pm|fiz;, pmtn|
Loy, Pm| set;, pmin| Lpy,gz, Pm| fiz;, pmtn, r;| Ly, Pm | set;, pmtn, ;|
Lnae, are solved in polynomial time by the use of processor feasible sets and
linear programming.

In [50] many open-, flow- and job-shop scheduling problems with mul-
tiprocessor tasks are considered. For the open-shop it is assumed that the
same number operations of different tasks require the same set of proces-
sors. In some of the considered problems the number of stages is fixed, i.e.
for each task the number of operations can be fixed. These problems are
further pursued in [49]. In some cases the number of task types was fixed to
R.

In [21] O(n) complexity algorithms are given for problems P2|fix;, pmtn|
Corazy P3| fiz;, pmin|Crp, P4 fiz;, pmin|Chap, PA| fiz;, pmin, resl - 1|
Craz-

Problem P | fiz; | Cp4p is considered in [25]. For special cases P2,3,4 |
fiz;,p; = 1| Cpap linear time algorithms are given, for P5 | fiz;,p; =1 |
Crnazy O(n?) algorithm is given. The general case is analyzed on the base of
incompatibility graph. A special easy case is identified: when incompatibility
graph is a comparability graph, the problem is solvable in polynomial time.
For a general case B&B algorithm is proposed. The idea of augmenting
incompatibility graph to a comparability graph is further used in [77] to
examine problem P | fiz;, prec| Chap.

In [120] computational complexity of a group of multiprocessor task sche-
duling problems for C';,,, and 3~ ¢; criteria is considered (the work is known
since 1992).

Scheduling file transfers in time windows (i.e. P,win | fiz; | Cpae and
| fiz; |= 2) is analyzed in [136]. The problem is shown to be NPh. Lo-
wer and upper bounds on the optimal schedule length are proposed. Three
polynomially solvable cases are identified.
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In [22] polynomially solvable cases of scheduling unit-execution time ta-
sks are considered. Linear time algorithm is given for problem P2 | fiz;, p; =
1| Lpgs-

In [85] problem P2 | fiz; | L4z is shown to be sNPh.

Scheduling according to model set; is tackled in [23]. Dynamic program-
ming formulations are given for P2 | set; | Cy,qp and for P3| set; | Cpyp in
the absence of one of the three duoprocessor task types. For P | set; | Cpon
heuristic scheduling tasks in the shortest processing time mode (SPTM) is
proposed. Its tight performance ratio is m. For P | set;,pmtn | Chup a
polynomial time algorithm based on processor feasible sets and linear pro-
gramming is proposed.

In [26] the complexity of problem P | set; | Cpqp is analyzed. Methods
of calculating lower and upper bounds on the length of the schedule are
proposed. A heuristic method solving iteratively separate subproblems: the
assignment (selection of processing mode) and scheduling problem, is pro-
posed.

Article [138] analyzes the complexity of a wide range of preemptive and
nonpreemptive scheduling problems with | fiz; |= 2.

In [51] for problem P2 | fiz;, pmin | Y. c¢; an O(nlogn) optimization
algorithm is given. P2 | fiz; | 3 ¢; is proved to be sNPh, and a heuristic
with performance bound 2 is proposed.

The new results presented in this section as well as the previously existing
ones are summarized in Table 5.2.

5.3.2 Low Complexity Algorithms for Maximum Lateness

We assume that there are s different values of due-dates: dy < dy < ... < d;.
We will say that tasks with due-dates equal to d; must finish in the i-th
interval, because they must not be finished later than in interval [d;_y +
Linazsdi + Lypay] for i = 1,... s, where dy = — L4, Without loss of gene-
rality we assume in this section that there are no two tasks with the same
due-date and the same set of required processors (such tasks can be analyzed
as one task with execution time equal to the sum of execution times). The
task with due-date d; and requiring set D of processors will be denoted TP+
and P+ will denote its processing time. Moreover, we assume that tasks are
ordered according to nondecreasing values of their due-dates.
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P2 | fiwj,pmtn | Lnar

In this section we give a formulation of the algorithm for the case of tasks
requiring either one of the two processors or both of them. The following
theorem establishes conditions under which a feasible schedule with value L
of lateness can be built.

Theorem 5.5 For existence of a feasible schedule for problem P2|fix ;,pmtn|
Linae with mazimum lateness value equal to L it is necessary and sufficient
to guarantee that the following set of inequalities holds:

7

Z(tlz’j—l—tl’j) <d;+L for i=1,...,5 (5.6)
7=1
Z(tlz’j—l—tQ’j) <d;+L for i=1,...,5 (5.7)
7=1

Proof Inequalities (5.6), (5.7) establish necessary conditions for sche-
dule feasibility because there are processing requirements of processors P;
and P, on their left-hand sides. On the right-hand sides, there are processing
capacities of processors in periods [0,d; + L] (i = 1,...,s). Hence, no sche-
dule with smaller value of lateness can exist. Now, we will show that when
conditions (5.6) and (5.7) are satisfied then a feasible schedule exists. The
proof is given by induction over index ¢ of the interval.

For i =1 the inequalities (5.6), (5.7) have the form:

120 4 gt <di+1
(120 420 <di+1

From [21] we know that for problem P2 | fiz;,pmtn | Cypae the optimal
length of the schedule is equal to C} - = max{t!%t 4 ¢bt (121 44213 From
(5.6), (5.7) we get dy + L > C% . and a feasible schedule can be built in
the first interval for the given L (cf. Fig. 5.3a).

Now let us assume, that a feasible schedule for tasks finishing in intervals
1,...,7 exists and inequalities (5.6), (5.7) are satisfied for 1,...,i+ 1. Then,
a feasible schedule for tasks with due-date d;11 must also exist. Suppose no
feasible schedule for the tasks finishing in the interval 141 exists. This means

that one of the following inequalities must hold (cf. Fig. 5.3b):

PR s gy 4 L= Y (#2 4 6) (5:8)

i=1
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Figure 5.3: Partial schedule for P2 | fiz;, pmtn | Lyqq.

R L T D RN ) (5.9)

J=1

But (5.8) is in contradiction with (5.6), and (5.9) with (5.7). We conclude
that also for the tasks finishing in interval ¢ + 1 a feasible schedule must
exist. Induction on 7 completes the proof. O

From the above theorem we conclude that the optimal lateness L} ..
can be found as a minimal value of L which is satisfying inequalities (5.6),
(5.7). Since there are O(n) inequalities in (5.6),(5.7), L7, ... can be found in
O(n) time. The optimal schedule can be built following the scheme presented
in Fig. 5.3. T'2"+1 is scheduled as soon as tasks with the due-date d; are
finished. Tasks T1*! and T2+ are shifted to the left as far as possible.
Then, tasks from interval (¢ 4+ 2) follow immediately. We will name this
method interval scheduling. The schedule can be built in O(n) time. In order
to achieve this, the search for free time slots must be completed in O(n) time
for all n tasks. It is possible when the scheduling algorithm holds a list of free
time slots. The time spent on finding appropriate time slots is proportional
to the number of considered slots. Since no time slot is considered after it
is completely allocated, and there are at most [n/2] free time slots on one
processor, the schedule can be constructed in O(n) time.

P3| fix;,pmin | Ly

In this section we consider three processor case. The problem can be solved
in linear time for the instances with the following property which will be
called accommodation property:

7 7
Ztl’] > th?”] = b s Bt for i =1,...s
=1 =1

7 7
ST SN = B S 1B for =1, s (5.10)
i=1 i=1
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7 7
Zt?”] > Ztlz’] = 3t S 12 for =1, ...
=1 =1

This means that if in some interval uniprocessor tasks are executed longer
than duoprocessor tasks requiring the remaining two processors, then also
in the following intervals this situation takes place. The following theorem
states necessary and sufficient conditions for the existence of a schedule with
the given value of maximum lateness.

Theorem 5.6 For existence of a feasible schedule for problem P3 | fiz;,
pmin | Ly with mazimum lateness equal to L and instance with accom-
modation property, it is necessary and sufficient that the following set of
inequalities holds:

i(tm:m LB g3 by < L for i =1,

j=1

i(tm:m LB 23 B < di L for i=1,...,s

j=1

Zi:(t”?”f P B ) Sd L for i=1,...,s  (5.11)
j=1

Zi:(tu?”j £ 12 1 ) < g+ L for i=1,.. s

J=1

Proof Observe that no schedule with maximum lateness smaller than L
satisfying (5.11) can exist. Otherwise, tasks would have to overlap. We will
show by induction over interval number ¢ that for L satisfying inequalities
(5.11) a feasible schedule exists.

Let us analyze ¢ = 1. According to [21], where problem P3| fiz;, pmtn |
Cnar has been analyzed, the shortest schedule in the first interval has length
CL o= 1230 max {120 1130 g 121142800 14200 4130 14230 43,0 4121
{130 g g23.1),

From (5.11) we have C}

maxr

<dy + L, and a feasible schedule can be built in
the first interval.

Next, assume that for tasks finishing in intervals 1,...,¢ a feasible sche-
dule exists and inequalities (5.11) are satisfied for intervals 1,...,74+ 1. We
show that a feasible schedule for tasks with due-date d;11; must also exist.
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Figure 5.4: Partial schedule for P3| fiz;, pmtn | Lyqq.

Suppose no feasible schedule for tasks finishing in interval ¢ + 1 exists. We
will analyze each type of tasks according to the number of used processors.
Case A. Some uniprocessor task(s) with due-date d;41 cannot be sche-
duled feasibly. Without loss of generality let it be task 7%+, This means
that '
{123,041 12,041 13041 g gLl di+1+L—Z;‘:1(t123’j+t12’j+t13’j—|-t1’j),
which contradicts (5.11). We conclude that task 7%+ can be scheduled
feasibly. In the same manner one can prove the existence of feasible schedules
for tasks T2+ and T3+,

Case B. Some duoprocessor task(s) with due-date d;4; cannot be sche-
duled. We will analyze two subcases: B.1 - length of the schedule for tasks
finishing in the intervals 1,... 4 (denoted Cfmx,) was established by the pro-
cessing times of tripleprocessor or duoprocessor tasks (cf. Fig. 5.4a); B.2 -
C? . was imposed by processing time on a single processor (cf. Fig. 5.4b).

Subcase B.1 Assume task(s) from T'2"*+! cannot be scheduled. This me-

ans that one of the three inequalities must be satisfied:
{123,041 4 12,41 4 13001 Ll d¢+1+L—Z}:1(t123’j+t12’j—I—t13’j—I—tl’j)
(1230041 4 12,401 4 23001 204 L di+1+L—Z§:1(t123’j+t12’j—I—t23’j—I—tZ’j)
{123,041 4 12,041 4 13,041 4 g230041 di-|-1‘|‘L—Z;‘:1(t123’j‘|‘t12’j‘|‘t13’j‘|‘t23’j)-
The former two inequalities can be excluded from further analysis because
also some uniprocessor task would not be scheduled feasibly, which is impos-
sible according to Case A. The latter inequality contradicts (5.11). Hence,
T'2#+1 can be scheduled feasibly in this subcase. Analogous proof can be
given for T13¢+1 and 723441,
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Subcase B.2 C' .. was imposed by a single processor. Without loss of
generality let it be P;. Suppose T'2*+! cannot be scheduled. We exclude at
this point Case A (i.e. the fact that 72! cannot be scheduled due to some
uniprocessor task). Denote by 622 the length of the interval in which 723!
can be processed before moment C?, .. Hence,

5% = i maX{Zézl(th’j 420 4 130 t23,j)7zézl(t123,j 4120 4
123, +t2’j),Z}:1(t123’j I3 230 3}
Since T12**! cannot be scheduled feasibly, we have:

{123 120 130 | £, 23 §2Y S g L — O (5.12)
Suppose that 2311 > §23 then by substituting 6% in (5.12) we get:

{123,041 41200k ] 130kl 4 4230041

i
_C;nax + maX{Z(th’] + 12 + 13 + t23’]),

i=1
7 7
Z(tIQS,] + tl?,] + t23’] + t2,])7 Z(tIQS,] + t13’] + t23’] + tS,J)} >
=1 i=1

dig1+L—-C .. (5.13)

Assume that the first term in the maxz component of the above inequality
is grater, then we obtain
Z(tIQS,] _I_t12,] _I_t13,] _I_t23,]) > di—l—l _I_L
i=1
which contradicts (5.11). Consider the second term of the maz component in
5.13) as maximum. This may happen only if S>%_, 137 < S7%_ ¢?7, Then
Yy pp y 7=1 7=1 ’
we have
{12300 120001 130 4 23041
7
i=1

dit1+ L.

And from this

i+1
Z(tIQS,] _I_t12,] _I_t23,] + t2,]) _ t2,2—|—1 + t13,2—|—1 > di—l—l + L.
J=1
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From (5.11) we have dj41 + L > Z;‘; (t123’j 4120 4 230 4 tz’j) and the
above two inequalities together give t'3+1 > 2+ which contradicts ac-
commodation property. For the last component of maz term in (5.13) the

reasoning is analogous.
Now, suppose that ¢23+1 < §23. Then, (5.12) takes the form:

I N A RNy el

max”®

Since the length of the schedule for tasks finishing in the intervals 1,...,%

was imposed by a uniprocessor task using processor Py, C7 . is

7
C;nax — Z(tIQS,] _I_t12,] _I_t13,] —|—t1’]).

i=1

From the above two formulations we get

P23 20T 1B g Eézl(tlz?),j 120 4 130 4 gLy,
which contradicts (5.11). Thus, a feasible schedule for T'2**+! must exist.
The same reasoning can be applied to T+ and 723+ because inequ-
ality (5.12) must hold when T'3#*! and T23*! cannot be scheduled. This
completes Subcase B.2 and Case B.

Case C. Suppose some tripleprocessor task(s) cannot be scheduled. We
can exclude from further analysis the case when a tripleprocessor task cannot
be scheduled with uniprocessor and/or duoprocessor task(s), because these
cases have already been analyzed (Case A, B). Hence, we get:

£33 S digy + Lipay — C

maxr

which implies (5.12). Thus, a feasible schedule for tripleprocessor tasks must
exist. This proves the existence of a feasible schedule for tasks finishing in
interval 7 + 1. Induction on ¢ completes the proof. O

From the above theorem we conclude that when inequalities (5.10) hold,
the optimal schedule can be obtained in O(n) time. L% . can be found as
a minimal value L satisfying inequalities (5.11). Task 722! must be exe-
cuted immediately after all tasks from interval ¢ are finished. Duoprocessor
tasks from interval ¢ + 1 are shifted to the left as much as possible. Finally,
uniprocessor tasks follow shifted as much as possible to the left. In the next
interval tasks are scheduled in the same manner. Again, we will name this
method interval scheduling.

When conditions (5.10) do not hold, it is possible that inequalities (5.11)
are not sufficient to reflect interactions between tasks in consecutive inte-
rvals. For example, task 7% influences completion time of tasks T13¢+1,
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though they never appear together in (5.11). In such a situation it is easier
to apply linear programming approach proposed in [19] or Section 5.3.3. One
more explanation why the interval scheduling algorithm does not guarantee
optimality is the following. In each partial schedule of tasks from intervals
1,...,% there are free time slots which provide processing capacity for uni-
and duoprocessor tasks. When there is no longer free space for uniprocessor
task it must be allocated in the slots accessible for duo- and triple-processor
tasks. Depending on the choice of the slot free time intervals for duoproces-
sor tasks are consumed. Since the kind of duoprocessor tasks that follow in
the next interval(s) is not considered during the construction of a partial
schedule, it is not possible to build in this way an optimal schedule for all
cases.

We will show now that even though interval scheduling does not build
optimal schedules in all cases, it is still delivering solutions of good quality.
Namely, we will show that in the worst case, the relative difference between
optimum L, and maximum lateness L5 —of the schedule built by the

interval scheduling algorithm is bounded. Let us denote by C? the com-
pletion time of the last task from interval 7.

Theorem 5.7 Fvery schedule built by the interval scheduling algorithm for
problem P3| fiz;, pmtn | L., satisfies

w <9 h i satisfies €7 =18 4 (.
- <2, where jsatisfies C7 . = L,> . +d;.
Lmal’

Proof Firstly, an upper bound on LIS will be calculated. Note that

max
LIS = max;{C! . —d;}. Completion time C", . can be bounded from above
by 2;21 (t123’j 1200 442300 L 1300 g 42 —|—t3’j) in which we assume that
no tasks are executed in parallel. The lower bound for L7, ,..+d; is the length
of the shortest feasible schedule of tasks from intervals 1,...,?. According
to [21] it is '
2221(t123’j 120 4 130 4 1)
Z}:1(t123’j I 4230 4 g2)
2;21(t123’j 130 4230 4 g3
Zézl(tlz?),j 120 41340 4 423)
Suppose the last term is maximum, then from comparing it with the previous
three terms we have 2;21 thi < 2;21 237 and 2;21 127 < 2;21 137 and
2;21 37 < 2;21 123, Thus, we get

} (5.14)
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p31 | g1 ‘ 3 52 33

71231 21 o 71232 23 723
F31 ' n - 33

0 4 7 9 11 13 14 15 16 19 21 23

Figure 5.5: Example schedule for problem P3| fiz;, pmtn | Lyqq.

Zi (812209 441200 44230 44130 4417 44200 43.7)

Ozna.r J=1
L;ﬂna.r-l_dl‘ Z;zl(t123,]+t12,]+t13,]_I_t23,]) =
7 7
_ (t17J+t27J_|_t37J) _ (t17J+t27J_|_t37J)
1_|_ Z]_l 1_|_ Z]_l

k2 iy k3 iy
Z]=1 (11237 4-412,0 44187 4.423,3) Z]=1 (11237 4415 44200 4437
If any other term in a given interval is maximum in (5.14), similar arguments

follow. Next, there must exist at least one interval j satisfying C7 . =
<

L% +d;. Hence, C7 = LIS +d; <2(L},,.+d;) and from this Lios=dy

max max max max L*

2‘ D max
We complete this section with an example.

Example

We are given 14 tasks. Tasks with due-date dy = 2 (we enumerate only
processing times): 1231 =4 130 = 34231 — 4 bl = 9 431 = 3; tasks with
due-date dy = 4: 11232 = 2, 4122 = 24132 = 1; tasks with due-date d3 = 6:
123 = 3,133 = 2,4233 = 2,413 = 2,123 = 3,433 = 1. As it can be verified,
this instance has accommodation property. Inequalities (5.11) are satisfied
by values of L4, > 17. The optimal schedule is presented in Fig. 5.5.

P4 | fiwj,pmtn | Lnar

In this section scheduling on four processors will be considered. Let us in-
troduce some additional notation. By 7"+ we will denote the set of tasks in
the intervals 1,...,7 requiring processors from set D, i.e. TP = U;ZlTD’j.
A competition graph is a graph in which nodes correspond to task types and
edges connect nodes (i.e. task types) which cannot be executed in parallel.
Consider a competition graph built for tasks from intervals 1,...,7. One can
distinguish in such a graph twelve cliques - groups of tasks that must not be
executed in parallel. These are:

AZ' — {7‘1,2}7 7‘12,2'7 7‘13,2'7 7‘14,2'7 7‘123,2}7 7‘124,2}7 7‘134,2}7 7‘1234,2}7

Bz — {7‘2,2'7 7‘12,2}7 7‘23,2}7 7“24,2}7 7‘123,2'7 7‘124,2'7 7‘234,2'7 7‘1234,2}7

CZ' — {7‘3,2}7 7‘13,2'7 7‘23,2}7 7‘34,2'7 7‘123,2}7 7‘134,2'7 7‘234,2}7 7‘1234,2}7

Dt = {7‘4,27 7‘14,27 7‘24,27 7‘34,27 7‘124,27 7‘134,27 7‘234,27 7‘1234,2}7
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Ez — {7‘12,2}7 7‘13,2}7 7‘23,2}7 7‘123,2'7 7‘124,2'7 7‘134,2'7 7‘234,2'7 7‘1234,2}7

Fl = {T12,z'7 7‘14,2'7 7?4,2}7 7‘123,2'7 7‘124,2'7 7‘134,2'7 7‘234,2'7 T1234,z}7

G = {7‘13,27 7‘14,2'7 7#34,2'7 7~123,z'7 7~124,z'7 7‘134,2'7 7~234,z'7 7~1234,z}7

H = {723',27 7?4},27 7434},27 7‘123},27 7‘124},27 7‘134},27 7234',27 7‘1234',2}7

Iz' — {7‘12,2'7 7‘13,2'7 7‘14,2'7 7‘123,2'7 7‘124,2'7 7‘134,2'7 7‘234,2'7 7‘1234,2}7

Ji= {712,27 723,27 7?4,27 7‘123,2? T124,z? T134,z? 7234,27 T1234,z}7

K = {7‘13,27 7‘23,27 7‘34,27 7‘123,27 7‘124,27 7‘134,27 7—’234,27 7‘1234,2}7

Li = {7V T4 T34 7128, 12400 71340 2340 T123400)

To guarantee optimality of the schedule for four processors, built in the
same way as for two and three processors, the instance of the problem must
satisfy more restrictive conditions:

t12,2 — t34,27 t13,2 — t24,27 t14,2 — t23,2 fOI’ ;= 17 ..., 8

K3 K3
Ztl’j§2t234’j for e =1,...,s
7=1 7=1
Do fori=1,...,s  (5.15)
7=1 7=1
Zt?”]thlM’] for i=1,...,s
7=1 7=1

7 7
Zt4’]§2t123’] for i=1,...,s.
=1 i=1

As before our problem can be solved by analysis of a set of inequalities.

Theorem 5.8 For the instances of problem P4 | fiz;, pmtn | Ly, satisfy-
ing conditions (5.15) a feasible schedule with mazimum lateness equal to L
exists if and only if the following set of inequalities holds:

max  { Z tf} <d;+ L fori=1,...,s. (5.16)
TJe{Ar,.. L'} Ses TXeS
]
Proof Af, ..., L! are cliques of tasks which means that tasks in each of

these sets must be executed sequentially, and no schedule with maximum
lateness smaller than the value satisfying (5.16) can exist. We will show by
induction on interval number ¢ that as long as inequalities (5.15),(5.16) hold,
a feasible schedule must exist.
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Consider the first interval (¢ = 1). From (5.16) and [21] where length
C}L . of optimal schedule for problem P4 | fizj,pmin | Cpay has been

max
established, we have

di+L>CL, . = max { Z tf}
je{ [RRR2} } SEJ,TJI(GS

and a feasible schedule can be built in the first interval.

Assume now, that a feasible schedule for tasks from the intervals 1,...,7
exists and the inequalities (5.16) are satisfied for the intervals 1,...,7+ 1.
We will show that a feasible schedule must also exist for interval :4+1. On the
contrary, suppose that some task(s) cannot be scheduled. We will analyze
task types according to the number of processors used.

Case A. Some uniprocessor task(s) cannot be scheduled. Let it be T1+!]

without loss of generality. Then, the following inequality must hold:
Pl 12000 I3l ] 12800 ] 12400 ] 13400 4 12340040
dist + Donas — Zézl(tl,y‘ 120 130 g gl 1280 4 1240 4 1345 4 412344)
which contradicts (5.16). We conclude that a feasible schedule for 7'¢+!
must exist. For other uniprocessor tasks types reasoning is similar.

Case B. Some duoprocessor task(s) cannot be scheduled feasibly. We
can exclude from further analysis the case for which duoprocessor tasks
cannot be scheduled due to some uniprocessor task(s) - since this is Case A.
Hence, we can also exclude from further analysis violation of the schedule
feasibility by the tasks forming cliques of type A1, ..., D'T!. The rest of
the proof for Case B has two parts Subcase B.1 - when C?  _ was imposed by
tripleprocessor or duoprocessor tasks and Subcase B.2 - C  was imposed
by uniprocessor tasks.

Subcase B.1. C*

"t a Was imposed by duoprocessor or tripleprocessor tasks,

thus it is a sum of processing requirements of one of cliques E°, ..., L. For
instances satisfying equations (5.15), sums of processing times of tasks in
cliques E*, ..., L" are the same. Hence,
Chw= ¥
SeE' THXyes

Suppose some duoprocessor task cannot be scheduled. This means that for
some clique with duoprocessor and tripleprocessor tasks schedule is infeasi-
ble. Let it be a clique of the F type (Ei‘"1 — F*, to be precise) for example.
Then, we have

(1234001 L p123,00] | 124001 L 1340 | 23400 ]y 120001 4 130Ty 2304

di-l-l +L - Cﬁnal’ =
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341 | 11 ipI3.1| 7141 I3 | L H 3.4 | At
23,1 |p124,1 2.1 A 2344 | 1241 TI2,i+I
4,1 ; .
21 2% 2H 24itl
12341 2341 23,1 | eee g2l 7234541 723+
73,1 TI 3,1 T?,HI TI 3+
i34l 4.1 EYESS B4
Al 241 24 d 141 A |24 244 il

Figure 5.6: Partial schedule for the proof of Theorem 5.8.

digr + L — Z§:1(t1234’j 1230 g 1240 4 1345 4 234 4 y12 4 4134 4 4234
> L2341 | 123041 | 1240041 4 pI340i4] | 234041 4 120041 4 p1300 1 4 423,041
which contradicts (5.16). For other clique types, the proof is analogous.

Subcase B.2. This subcase cannot happen when inequalities (5.15) hold.
Hence, duoprocessor tasks can be feasibly executed in the interval 7 + 1.

Case C. Suppose some tripleprocessor task(s) cannot be scheduled. We
exclude situations that tripleprocessor task(s) cannot be scheduled due to
some uni- or duoprocessor task(s) since these are Case A or Case B, respec-
tively. Thus, the following inequality must hold (cf. Fig. 5.6):
$L2340HT 12301 12401 g 1840 2340kl S g L L O
But from (5.15)
o= 22:1(t1234’j 1230 g 1240 4 1345 234 4 4120 4 134 4 423.)
and we have a contradiction with (5.16). Hence, a feasible schedule for tri-
pleprocessor task(s) must also exist.

Case D. Some four-processor task(s) cannot be scheduled. If we exclude
the cases caused by some uni- or duo- or triple-processor tasks, then the
remaining situations contradict (5.16). Hence, the theorem follows. O

The optimal value L} ..

ing inequalities (5.16). The optimal schedule has form presented in Fig. 5.6:
four-processor tasks 71234+ are scheduled as soon as tasks from interval
¢ are finished, then tripleprocessor tasks are shifted as much to the left as
possible. Next, duoprocessor tasks are executed. Finally, uniprocessor tasks
follow. After scheduling uniprocessor tasks there is no idle time to the left
from scheduled uniprocessor tasks.

One may ask what would happen if inequalities (5.15) were not satisfied.
A schedule built in the above way would not be optimal in general and
inequalities (5.16) would not deliver L} .. Without (5.15) it is difficult to
give a simple (and independent of the instance) set of rules which would
guarantee optimality of the above algorithm. In such situations it is simpler
to apply linear programming approach ([19] or Section 5.3.3). As in the

can be found in linear time as minimal L satisfy-
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previous section we will prove that the worst case solutions generated by
interval scheduling algorithm have maximum lateness (L!3 ) within some
bounded vicinity of the optimum (L

max) °

Theorem 5.9 For any schedule generated by the interval scheduling algori-
thm for problem PA | fiz;, pmtn | Ly, the following holds

Lituw = 34;  sati i IS g
————= <4, where jsatisfies C}, = L7, + d;.
Lmax

Proof In each interval a lower bound on L} .. + d; is the sum of pro-
cessing times of tasks forming cliques. In this proof we will distinguish three
cliques A%, E* and I' as representatives for A’ ..., L. For other cliques the
proof is similar.

Case A. Clique A’ is maximal in interval i. Processing time of tasks in
this clique is a lower bound on L%, .. + d;. The upper bound on C? . can
be calculated assuming that all tasks from TP+ are executed before tasks
from TP7+! and after tasks from 7771 (7 < ©). Furthermore, the period
of executing tasks from TP+ can be calculated as the sum of processing
times of tasks in the A7 — A7=1 clique plus some excess of the processing
time which cannot be scheduled in parallel with clique A7 — A7=!. Thus, the
upper bound on CY o 18
Z}Zl(tm?"l’j—l—tm?”j—|—t124’7—|—t134’j+t12’j+t13’j+t14’j+t1’7—|—

(2340 4 230 4 24 g2 134 _ glg 13 _ 414,

{2345 44230 4 34 g3 1240 _ gl 124 _ 414,
max { 234 240 g3 g pdd 1230 gl 120 41840 ) <

(2345 4 4235 4240 340 glg _ 12,5 413 _ 414,

0
Z;Zl(t1234’j—|—t123’j—|—t124’j—|—t134’j—|—t12’j—|—t13’j—|—t14’j—|—t1’j—|—t234’j—|—t23’j—|—
1240 4 30 20 B ),

On the other hand, comparing A® with B*,C*, D* yields:
Z;ZI(tIZM,j T 130 4 ) > Zézl(tzzﬂ,g‘ 123 4 g2,
Zézl(tl,y‘ 120 4 g 1240 > Zézl(t:%,j + 1),
Zézl(tl,y‘ 3 4 120 4 1230 > 2;21(t4’j + 2y,
Thus, we have

o

max
Laztdi <

Z;_l(t1234,]_l_t123,]_|_t124,]_|_t134,]+t12,]+t13,]+t14,]+t1,]_I_t234,]_I_t23,]+t24,]+t34,]+t2,]+t3,]+t4,])

Zl L (t1234,] _|_t123,] _|_t124,] _|_t134,] +t12,] +t13,] +t14,] _|_t1,]) —
I=
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14 Z;zl(t234yj 12350 44240 44349 42,9 4437 _|_t47J)
Zl 1(t1234,]+t123,]+t124,]+t134,]+t12,]+t13,]+t14,]+t1,]) —
Jj=
Z;_l(t123,]+t124,]+t134,] +2t12,]+2t13,]+2t14,]+3t1,])
Z’ 1(t1234,]+t123,]+t124,] _|_t134,] +t12,]+t13,]+t14,] _|_t1,]) —
I=

I+

Case B. Suppose clique E' is maximal. By analyzing this case as Case A
we obtain an upper bound for C* for the sake of simplicity we dropped
pp maz plicity pp
subtraction in the maz term):
2221@1234’] G123 412405 o 1340 23405 4 12, 4 413 4 42305 4
max { 24 4 ¢2d )
t147] _I_ t17]
0
}:1(t123477—|—t1237j 1240 4 134 o g234 | 12, 4 13,5 4423 4 340 4 2400
From comparing E* with A%, ..., D' we get
1 (P £250) > 3 (8 ),
134,j 13,5 i 24,5 2,7
(1130 18) > S (124 g2,
124,j 12,5 i 34,j g
L) S S ),
]:1(t123,] _I_ tl?,] _I_ tl-?),] _I_ t23,]) 2 Z;:l (t14,] _I_ t24,] _I_ t34,] _I_ t47‘7).
Thus, we obtain
LSy
O’L
mazx <
L;ﬂna.r-l_dl‘ -
ijl(t1234’J-l—t123’J-l—t124’J-l—t134’J-|—t234’J-l—t12’]-I—tls’J-I—t23’J-|—t34’J-I—t24’]-|—t14’J-|—t1’]-I—t2’J-|—t3’J)
Z;zl(tl234,]+tl23,] +t1247j+t134’J +t234’J+t127J +t137j+t23’J —
Zi 1(7534’J+t24’]-I—t14’J-|—t1’J-|—t2’J-|—t3’J)
=
1 —I_ Z;_l(t1234,]+t123,]+t124,] _|_t134,] +t234,]+t12,] _|_t13,]_|_t23,]) —
Zi (#1249 1281300 4413400 1241300 1423405 494280 14123.9)

Z;ziztlwm,]_|_t123,]_|_t124,] 134,74 4234,5 4 12,9 44135 1423,5) —

Case C. Suppose clique I' is maximal. Then, as for previous cases C

can be bounded from above by

2221(t1234’j L1230 4 1245 | 134 4 4234 4 125 4 18,5 4 g4

{240 4 340 4 g4

{233 4 345 4 43

£23. 1 4240 1 42 <

th
;Zl(t1234’j+t123’j+t124’j+t134’j+t234’j+t12’j+t13’j+t14’j+t23’j+t24’j+

£340 3 2 4 1)

IA

I+

max
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By comparing I' with A%, ..., D' we obtain
Z;:l(t2347j) 2 Z;:l (tLj)?
Z;Zl(tliﬁﬁl,]: + t13,]: + t14,]:) 2 Z;}:l(t23,]: + t24,]: + t?,]:)7
Z}Zl(t124,]4 + tl?,]{ + t14,]4) 2 Z}:1(t23’]4 + t34,]4 + t3’]4)7
Z;_l(t123,] + tl?,] + t13’]) 2 Z}Zl(t24,] + t34’] + t4’]).
From this we get

Oi

max
LYaztdi <

Z;zl(t1234’J-l—t123’J-|—t124’J-|—t134’]-l—t234’J-l—t12’J-l—tls’J-I—t14’J-I—t23’J-I—t24’J-I—t34’J-I—t4’J-|—t3’J-|—t2’J+t1’J)

Zl 1(t1234,]+t123,]+t124,]+t134,]+t234,]+t12,]+t13,]+t14,]) —
~J=
Z;—l(t%J 1240 44340 44T 44300 4420 _|_t17J)
Z;zl(t1234,]+t123,]+t124,] +t1347] +t234’J+t127J +t13’]+t14’J) —

Z;_l(t123,]+t124,]+t134,] 12340 4 9412, £ 2413,0 4 21147

I+

1 —I_ Z;zl(t12347J+t1237J+t124J _|_t134,] +t234,]+t12,] +t13,]+t14,]) —
We have shown that C, . < 4(L%, .. +d;). The rest of the proof is analogous

maxr maxr

to the proof of Theorem 5.7. a

Computational Experiments

We describe here results of computational experiments on the interval sche-
duling algorithm for problem P4 | fiz;, pmitn | L,ae. The schedules ge-
nerated by interval scheduling have been compared with the optimal sche-
dules computed by the method presented in [19]. Simulation software has
been written in Borland Pascal version 7 using a simulator described in [83]
and run on IBM-AT 386. Parameters describing tasks have been generated
pseudo-randomly with a uniform probability distribution: processing times
were in range (0,10], due-dates in range [0,5], the number of required proces-
sors and their indices were generated from interval [1,4]. We tested instances
from 2 till 100 tasks but due to the limitations of our LP-solver only the
solutions with up to 20 tasks have been compared with the optimal solution.
Fig. 5.7 through Fig. 5.9 collect the results of over 2000 experiments.

In Fig. 5.7 the average execution times of the two methods are compa-
red. The lowest curve is the execution time of the pure interval scheduling
algorithm as it has been presented in the previous sections. The middle
curve is the execution time of the interval scheduling algorithm with the
time needed to sort tasks in the order of nonincreasing due-dates and group
them according to their types. The highest curve is the execution time of
the optimization algorithm ([19]). The approximation algorithm outranks
the optimization algorithm. For example, the interval scheduling algorithm
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schedules twenty tasks in dozens of milliseconds while the optimization al-
gorithm requires about a minute. Thus, the difference is three orders of
magnitude. In Fig. 5.8 memory requirements of the two methods are ju-
xtaposed. The approximation algorithm requires about 3kB of memory to
schedule 100 tasks while the optimization algorithm needs about 90kB to
schedule 20 tasks. In Fig. 5.9 the distance of the solution generated by the
interval scheduling algorithm from the optimum (i.e. LS /L* ) versus the
number of tasks is depicted. The upper curve is the worst case observed, the
lower one is the average from over 90 experiments for each point. It can be
seen that the average distance is about 2-3%. The worst case distance for all
observed cases is below 50%. This figure demonstrates that the worst-case
expectations of Theorem 5.9 overestimate the average case. For instances
with more than 8 tasks the worst observed case distance is decreasing. We
also analyzed the quality of the solution generated by the interval schedu-
ling as a function of the aggregated distance from the cases for which (5.15)
holds. The ”aggregated distance” is a rough measure reflecting how far the
instance is from satisfying (5.15). In practice, it was the sum for all intervals
of the absolute deviation from the equations and the inequalities (5.15) divi-
ded by the number of tasks. No correlation between the solution quality and
the distance from (5.15) has been observed. We conclude that the interval
scheduling algorithm is quite efficient.

5.3.3 Scheduling in Time Windows

The case of processors available in time windows is quite common in real situ-
ations. For example, tasks have different priorities. Urgent real-time tasks are
prescheduled on processors and executed in fixed time intervals which create
free time windows for lower priority tasks. Breakdowns of processors can be
modeled as time windows. We will present low order polynomial time algori-
thms for simple cases of the problem, then an algorithm solving the problem
for any fixed number of processors we will be presented. Before presenting the
results let us introduce some auxiliary notation. The number of time windows
is p. Time window ¢ is an interval [b;, e;] with a nonempty set of available
processors. Two neighboring intervals differ in the set of available proces-
sors. Windows with one, two etc. available processor are called 1-windows,
2-windows etc. There are s different values of due-dates: dy < dy < ... <dj,
and [ different values of ready times 0 = ry < ry < ... <7, where s, < n.
Unlike in the previous section, TP+ denotes the set of tasks released at 7,
requiring set D of processors simultaneously, while 7 is the sum of their
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Figure 5.9: Quality of solutions generated by the IS algorithm for problem
P4 | fiz;, pmin | Lpyqs.

processing times. Before examining the preemptive case, observe that the
nonpreemptive version is SNPh even for one processor, (i.e. 1, win || Cpaz)-
To prove this, observe that reduction from 3-PARTITION requires only that
time windows created boxes where triplets from 3-PARTITION problem must

fit.

P2,win | fixj,pmin | Cpax
The algorithm for problem P2, win | fiz;, pmtn | Cp ey is as follows.

1: Shift duoprocessor tasks in 2-windows to the left as far as possible.

2: Shift to the left uniprocessor tasks in the remaining free intervals so that
there is no idle time between time 0 and the completion of the last uni-
processor task.

Optimality of this algorithm follows from the following observations: du-
oprocessor tasks cannot be finished earlier, there is no idle time from the
beginning of the schedule until the completion of uniprocessor tasks on each
of the processors. The complexity of the algorithm is O(n + p), where p is
the number of time windows.
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P2,win | fix;, pmin,r; | Cpaz

The algorithm for problem P2, win | fiz;, pmtn,r; | Cpqyp is a combination
of the algorithms for problems P2 | fiz;,pmtn,r; | Cpar and P2, win |
fiz;,pmin | Cpayp. We introduce the algorithm for the problem without
time windows first.
Algorithm for P2 | fiz;, pmtn,r; | Cpap
On arrival of tasks:
1: Suspend processing of uniprocessor tasks, if there are any.
Schedule duoprocessor tasks first.
2: On completion of duoprocessor tasks immediately start processing of the
remaining uniprocessor tasks or their parts.

Now, we examine optimality of this algorithm. When a set of tasks appears
at time rj, it can be either finished before the next ready time r;y;, or it
can be necessary to execute tasks from both ready times together. Only in
the latter case may the tasks released at r; influence the schedule length.
Consequently, tasks released at r;,r;41,...,7—1 will have their contribution
to O if there is no idle time on at least one of the processors in the interval
[, Cag)- Hence, Chyqp can be found from the formula:

l l p

Crar = lrg?é(l{rz + Z 2 4 maX{Ztl’], Z 3
== j=i j=i j=i

On the other hand, there can be no shorter schedule because the above equ-

ation represents processing requirements of tasks released at certain time

moments to be processed on a given processor. Hence, the schedule is opti-

mal. The algorithm can be implemented to run in O(n) time.

Now, we return to problem P2, win | fiz;, pmtn,r; | Cpap. Adaptation
of the previous algorithm for this case consists in scheduling uniprocessor
tasks in 1-windows whenever ready uniprocessor tasks exist, while giving
preference to duoprocessor tasks in 2-windows. Thus, duoprocessor tasks are
scheduled as soon as they appear and cannot be finished earlier. Uniprocessor
tasks are shifted to the left, so that the idle times are avoided and ready times
are observed. Uniprocessor tasks can be finished earlier only by delaying
some duoprocessor task(s). This, however, does not reduce the length of the
schedule. We conclude that no shorter schedule can exist. Observe that to
apply this algorithm the only required information is which (ready) task
requires what set of processors. The complexity of the algorithm is O(n + p).
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P3,win | fixj,pmin | Cpax

The problem with three processors requires more careful treatment because
different types of duoprocessor tasks cannot be executed in parallel. The
order of executing duoprocessor tasks in 3-windows is important because
appropriate 2-window for some duoprocessor task can be found somewhere
later in the schedule. Hence, 3-window space should be preserved for the
duoprocessor tasks that have no appropriate 2-windows.

Now, we describe the rationale behind the algorithm presented below.
Without loss of generality we assume that for each set D of required pro-
cessors there is only one multiprocessor task 77 with processing time 7.
Shifting tripleprocessor task to the left in 3-windows produces the shortest
possible schedule for this task. In the remaining schedule there are 2-windows
which comprise the following sets of processors: {P), Py}, {Py, Ps}, or { P, Ps}.
3-windows are available for all types of duoprocessor tasks. This creates a
processing capacity profile consisting of the amount of processing time ava-
ilable for each of duoprocessor task types separately and the processing time
available in 3-windows for all types of duoprocessor tasks together. For inter-
val [0, ¢] there are 2-windows with processing capacity pcia(t), peis(t), pezs(t)
on processors {Py, P}, {Py, Ps}, { P5, Ps}, respectively, and 3-windows with ca-
pacity pcias(t). The shortest schedule for duoprocessor tasks is defined by
the minimal time at which the processing capacity profile accommodates
requirements of the tasks:

Cauoproc-tasks — min{t : min{0,¢'* — pera(t)} + min{0, "% — peys(t) }+

min{0,#** — peas(t)} < peras(t)}

Thus, while scheduling duoprocessor tasks, 2-windows can be immediately
allocated to appropriate duoprocessor tasks, because no other type of du-
oprocessor task can use it. Allocation in 3-windows should be postponed
until the final allotment of duoprocessor tasks to 2-windows is known. Uni-
processor tasks should be shifted to the left so that there is no idle time
before the end of the last uniprocessor task on the given processor. Hence,
the algorithm consists in three steps of scheduling tripleprocessor, duopro-
cessor, and finally, uniprocessor tasks. For simplicity of the presentation we
assume that all tasks fit in p time windows.
An Algorithm for P3,win | fiz;, pmin | Cphay
1: Schedule tripleprocessor task shifted to the left in 3-windows; remove
allocated 3-windows from data structures holding free time windows;
J =15 peras =05
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2: while (1'2>0) or (t'%>0) or (¢1**>0) do
begin
2.1: if j is 2-window comprising processors from set D and t” >0 then
begin
2.1.1: tmp = min{t? e; — b;};
2.1.2: if 12 4+ #13 + ¢23 — tmp < pera3 then (* enough pe found *)
begin
2.1.2.1: tmp = tP — (2 + 13 12 — peyas);
2.1.2.2: schedule tmp units of TP task in interval [b;, b; + tmp];
2.1.2.3:tP =P — tmp;
2.1.2.4: schedule remaining duoprocessor tasks or their parts
in the previously memorized 3-windows;
update data structures holding free time windows;
2.1.2.5: t12 =13 := 23 .= (;
end
else (* not enough pc to schedule all duoprocessor tasks *)
begin
2.1.2.6: schedule tmp units of TP task in interval [b;,b; + tmpl;
update data structures holding free time windows;
2.1.2.7: P = 1tP — tmp;
end;
end;
2.2: if window j is 3-window then
begin
2.2.1:if t12 4+ 1% + 123 < peyas + (e — bj) then (* enough pe found *)
begin
2.2.1.1: schedule remaining duoprocessor tasks or their parts in 3-window j
and previously memorized 3-windows finishing at b 4+1-23pcq23;
update data structures holding free time windows;
2.2.1.2: t12 = 13 .= 123 .= (;
end
else (*still not enough pc has been found*)
begin
2.2.1.3: pcig3 := pcigs + (e; — bj); memorize 3-window j for future use;
end;
end;
2.3: j:=j + 1; (* analyze the next window *)
end;
3: Schedule uniprocessor tasks in the remaining time windows such that
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there is no idle time before the completion time of the last uniprocessor
task on each of the processors;
end.

High level description. Tripleprocessor task is scheduled in line 1, duopro-
cessor tasks in lines 2-2.3, and uniprocessor tasks in line 3. While scheduling
duoprocessor tasks, windows are analyzed one by one. 2-windows are consi-
dered in lines 2.1-2.1.2.7, 3-windows in lines 2.2-2.2.1.3. Final schedule for
duoprocessor tasks is built in lines 2.1.2.1-2.1.2.5 when the last used window
has 2 processors and in lines 2.2.1-2.2.1.2 if it is 3-window. When the final
schedule cannot be built finishing in the current window, a piece of duopro-
cessor task is scheduled in 2-window (lines 2.1.2.6-2.1.2.7), or in the case of
3-window information about it is stored for future use (2.2.1.3).

Optimality of the above algorithm is a result of the following facts: Tri-
pleprocessor task cannot be finished earlier. A duoprocessor task can be
finished earlier only by using time interval of some other duoprocessor task
or of some tripleprocessor task. This is not reducing the length of a schedule
(but can increase). The same applies to uniprocessor tasks. The complexity
of the algorithm is O(n + p).

It is hard to extend this approach to solve the cases with greater num-
ber of processors. For instance, in P4, win | fiz;, pmin | Cpqy, duoprocessor
task 72, beside appropriate 2-windows, can be scheduled in 3-windows com-
prising processors { Py, Py, P3}, {Pi, P, P4}, and in 4-windows. The decision
where the tasks from 72 are scheduled influences the completion time of the
other duoprocessor task types. Hence, a stronger tool seems to be necessary
to solve such problems.

Observe that for integer values of processing times and time window
intervals all preemptions take place at integer values of time. Thus, the above
algorithms can be applied also for unit execution time tasks. We conclude:

Corollary 5.3 Problems P2, win | fiz;,p; = 1| Cpap, P3,win| fiz;, p; =
1| Cpuaw can be solved in O(n + p) time.

Pm,win | fizj,pmin,r; | Crax

When the number of processors is fixed the problem can be solved in po-
lynomial time using linear programming, processor feasible sets and binary
search. Observe that since tasks are released at different moments and since
Cinar can be smaller than the beginning time of some time window, the pro-
cessor feasible sets change with time and C,4,. Only tasks which are already
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released can be included in processor feasible sets. Assume that it is possible
to schedule feasibly all tasks in u time windows. Then we will apply a binary
search to find the smallest possible u. We denote by:

M; the number of processor feasible sets in time window ¢,

i fori=1,...,M;,j=1,...,u, avariable denoting processing time of
the i-th feasible set in window j,

A; the set of processor feasible sets indices in window ¢ which include
task 717,

S; the set of tasks released in window i,

fiq the index of the task released in window ¢ as ¢-th task,

U;, the set of all processor feasible set indices in window ¢ which include
tasks released in window ¢ as ¢-th, ¢ + 1-th, ..., | S; |-th task, i.e. U;, =
ulEl i
For the considered u linear program LP;(u) is as follows:

minimize C,qp

subject to
M]
inj <e;—b; forj=1,...,0u—1 (5.17)
=1
M,
inu S Cmaac - bu (518)
=1
Z Thy <e -7y, for¢g=1...]9;],j=1,...,u—1 (5.19)
heU]q
Z Tha < Cpaw—rp, Torg=1,...,]5,] (5.20)
heUuq
Z Z T >t forj=1,....n (5.21)
i=1 pe 4
by < Caz < €4 (5.22)
Ty >0 fore=1,...,.M; j=1,...,u

Inequalities (5.17),(5.18) guarantee that processor feasible sets are not
executed beyond the end of their windows. Inequalities (5.19),(5.20) guaran-
tee that tasks released during a time window will not be executed longer
than the interval from their ready time to the end of the window or till
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Cnaz, respectively. Inequalities (5.21) guarantee that tasks are fully execu-
ted and (5.22) guarantee that u is the last window used. The above linear
program has O(pn™) variables. The number of inequalities (5.19) is equal to
the number or ready times. Hence, there are O(n+p) constraints in LP; (u).
It can be formulated and solved in polynomial time, provided the number
of processors is fixed. When LP; (u) has a feasible solution it can be verified
whether for smaller number of windows a feasible solution exists. On the
other hand, when a feasible solution does not exist one may try with bigger
number of windows. Thus, using binary search over u the optimal solution
can be found by solving O(log, p) linear programs.

Pm,win | setj,pmin,r; | Crax

When tasks have alternative modes of execution (set; model), then while ge-
nerating processor feasible sets we have to analyze a wider set of possibilities.
Furthermore, to guarantee complete execution of the tasks we have to sum
the percentages of processing times on alternative sets of processors. The
number of processor feasible sets remains polynomially bounded. Assume
that each task can be executed on K alternative sets of processors then
there are no more than O((nk)™) processor feasible sets. Such a number
could be achieved only if the tasks were executed on two (or more) alterna-
tive sets of processors in the same processor feasible set (i.e. the same task
would be executed simultaneously on several non-intersecting sets of proces-
sors) which is forbidden. Since the number of processors m is fixed, K is
O(2™) and the number of processor feasible sets is polynomially bounded by
O(p(n2™)™). A linear program for problem Pm, win | set;, pmtn,r; | Chos
differs from the formulation (5.17)-(5.22) only in the set of inequalities (5.21)
which should be replaced by

> X TEzlfor j=1..n (5.23)

=1 De€set; heAiD,] J

where AiDJ is the set of the processor feasible set indices including task T’
executed on processors from set D in interval 7. Then, the problem can be
solved in polynomial time analogously to the method of solving Pm, win |
fiz;, pmin,r; | Crgs.
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Figure 5.10: Nonexistence of an on-line optimization algorithm for P2 |
fiz;, pmin,r; | Lyae.

Pmywin | fixj,pmin,rj | Lya:

Assuming that ”on-line” scheduling is based only on the information about
tasks that already arrived we will show that there is no on-line optimization
algorithm for this problem. Consider an example.

Example

fi$1 = {P17P2}7f7:$2 = {P1}7t%2 :t% = 37d1 :47d2 = 277‘1 =T9 = 0. Since
Ti and T cannot be executed in parallel, they must be executed sequentially.
Assume task 75 is started first and after this task 73 is executed. Then at
moment r3 = 3 arrives task 75 which has t3 = 5,d3 = 6, fizs = {P}. The
best schedule that can be achieved at that moment is presented in Fig. 5.10a
and has L,,,, = 5. If T] were scheduled first the best schedule could have
Linar = 4 (Fig. 5.10b). Assume an opposite scenario in which T} is scheduled
first, then at r3 = 3 task T5 arrives which has t5 = 5,ds = 9, fizs = {P,} and
the best possible schedule has L., = 4 (Fig. 5.10b). If T; were scheduled
first the schedule could have L., = 2 (Fig. 5.10a).

We conclude that whatever the sequence of executing the ready tasks is,
a scenario is possible which results in not optimal schedule. Thus, there is no
on-line optimization algorithm for problem P2 | fiz;, pmtn,r; | L. This
applies also in the nonpreemptive case. Next, let us note that EDD (Earliest
Due - Date first) rule is not optimal (off-line) for this problem as shown in
the following example.

Example
n = 27f7:$1 = {P17P2}7t%2 = 37d1 = 47f7:$2 = {P1}7t% = 37d2 = 37]) =
1,6 = 3,e; = 6 and it is 1-window with {P;} free. The EDD schedule is
presented in Fig. 5.11a. It has L,,,» = 5. The optimal schedule in Fig. 5.11b
has L., = 3.

We conclude that the optimization algorithm requires a global look at the
schedule. When the number of processors is fixed, the problem can be solved
using linear programming. The algorithm is similar to the one proposed for
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Figure 5.11: Nonoptimality of the EDD rule for P2 | fiz;, pmin | Lyqq.

problem Pm,win | fiz;, pmitn,r; | Cpap. When building processor feasible
sets for window 7 one can use only tasks which are present, i.e. set {7} : r; <
€iyd;+ Lyqy > bi}. Thus, the processor feasible sets change when value L, 4
passes a point where for some tasks 7, T}, and window 4: d;, + L, = b; o1
7j, = dj, + Lya.. Hence, there are O(np—l—n2) intervals of L, ., values where
the processor feasible sets remain unchanged. Consider minimization of L,
in u-th such interval, i.e. in the range [L?, L¢] of L., values. In such an
interval the sequence of all the events in the system (ready times, due-dates
increased by L., windows beginnings and windows ends) is constant. Let
us order all such events according to their appearance. We denote:

g = 2p + 2n - the number of events,

g; for + = 1,...,q - the time instant at which event ¢ takes place for
releases of tasks, window beginnings and window ends; for a due-date related
event &; is appropriate due-date (i.e. &; = d; when event 7 is related to
d; + Ly for some T; and the current value of L,,4.); £1 = 0,

fi for ¢ = 1,...,q - the function returning 1 if event ¢ is related to a
due-date, and returning 0 otherwise,

M; for : = 1,...,qg — 1 - the number of processor feasible sets between
events ¢ and 7 + 1,

i fore=1,...,M;,7=1,...,¢—1- the time of executing tasks in ¢-th
processor feasible set in interval between events j and 7 + 1,

A; fore=1,...,g—1,7=1,...,n- aset of processor feasible sets indices
between event ¢ and ¢4 1 which include task 7;.

For the considered interval [L2, L¢] the linear program LP;(u) is as follows:

min L,,qz

subject to

MJ
Zwm ng-l—l_gj‘I'Lmax(fj-l-l_fj) fOI’j = 17 cees g — 1 (524)

=1
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~1

(JZ:Zxkith forj=1,...,n (5.25)

=1 penl

LY, < Lipar < L, (5.26)
;>0 fori=1,...,M;,57=1,...,q-1

Inequalities (5.24) guarantee that processor feasible sets are executed
between appropriate events. Inequalities (5.25) guarantee that tasks are fully
executed. Finally, (5.26) guarantees that the order of events is unchanged
and processor feasible sets remain valid. There are O(p + n) constraints
and O((p + n)n™) variables. Hence, the above formulation can be solved
in polynomial time for fixed m [150]. When a feasible solution exists then
a range of smaller L,,,, values can be considered. And vice versa, when no
feasible solution exists a rage of greater L4, values can be analyzed. Hence,
the optimal value L7, .. can be found by binary search in O(log(np+n?)LP))

time, where L P is the complexity of formulating and solving L P (u).

Pk win | set;,pmin,r; | Lpas

The method from the previous subsection can be extended to set; model
where tasks can be processed by alternative sets of processors. The differen-
ces come from a wider range of possible task combinations in feasible sets
and from the fact that processing time must be accumulated over alternative
sets of processors executing a task. Since the number of processor feasible
sets is limited from above by O((n2™)™), the number of variables in the
linear program is bounded polynomially from above by O((p 4 n)(n2")™).
The linear program differs from LP;(u) in inequality (5.25) which should be
replaced by

q—1 )
> D ff{zlforjzl,...m (5.27)

=1 Deset; heAiD,] J
where AiDJ is the set of the processor feasible set indices including task T’
executed on processors from set D in interval 7. The method of finding L7 .~
and computational complexity can be derived analogously.

In Table 5.2 results on scheduling multiprocessor tasks in dedicated pro-
cessors environment are collected. The following abbreviations denote: B&B
- branch and bound algorithm, s.g. - scheduling graph, LP - linear program-
ming, ILP - integer linear programming, pseudopoly. - pseudopolynomial
algorithm.
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Table 5.2: Scheduling multiprocessor tasks on dedicated processors

Problem | Result | Reference
Nonpreemptive scheduling

P | fiz; | Craw B&B [48]
P | fizj | Cpaw and | fiz;|= 2 NPh, S pp = 2471

Sppr <3 when d <5

Sppr <2 binomial s.g. [130]
P | fiz; | Cmaw and | fiz;|= 2 20 cases NPh

23 cases polynomial

% < Sps <3

Sps <2 for p<2

Sppr =32 — %,

Chte <3Ch a0 +ee [70]
P | fiz; | Crmaw and | fiz; |€{1,2} 9 cases NPh

9 polynomial cases [134]
P | fiz; | Crmae and
P| fiz;,p; = 1] Crao experimental study [74]
P2 fiwj,py =113 wjcs O(nlogn) [79]
P | fiz; | > wje; ILP+experiment [79]
P3| fiz; | Crrae sNPh, Th.5.4,

31, 120]

Sns < % [31]

Scpr = Sspr =3 [78]
P |fizj,p; =1|Crae special cases, bounds [207]
O | fiz;; | Crmae and stages = 2 O(n) [50]
O | fiz;; | Crmae and stages =3 NPh [50]
O | fizij,pij=1|Cnas and stages=r | polynomial [50]
F | fiz;; | Crmae and stages = 2 O(nlogn) [50]
F2| fiz;; | Cpnae and stages =3 sNPh [50]
J2 | fil‘ij,pij =1 | Cmax sNPh [50]
J2| fizi; | Crmaw and ny < 2 O(nlogn) [50]
J | fizij | Crae and n =2 O(n?logn) [50]
J2| fizij | Crmae and n =k O(n3F) [50]

Pm/| fizj,p;=1|f
and fe > wjU;, > 1,3 wjc;} O(RQRnR‘l'l—I—

and R number of task types +2B(R + m)) [49]
Pm | fizj,pj =1, | f

and f € {Cpae, ) ¢} O(RQRnR‘l'l—I—

and R number of task types 28 (R + m)) [49]

J | flxljaplj = 1,])7”66, T | f
and n =k, f € {mazf; > f;}
and f; nondecreasing function of ¢; | O(k2¥m 2?21 nj Hl;zl nj) [49]
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Table 5.2 continued

Problem

Result

Reference

F | fizg,pi;=1|f

and stages = r

ande {ijcj,szazijj}
F | fizij,pi; =1, | f

and stages =r, f € {3 ¢;, Crnac}
O fixij,pi; =11 f

and stages = r

and f € {wjej, Yo7, Yo w;Us}
O | fizij,pi; = 1,7 | f

and stages = r

and f € {Cpae, ) ¢}

0 | fil’ij,pij,prec | f

and n = 2, stages = r

and f € {mazf;, > f;}

and f; nondecreasing function of ¢;
P2a3a4 | fl$]ap] =1 | Cmax

P5 | fll‘],p] =1 | Cmax

P | fl$] | Crae

Pm | fll‘],p] =1 | Cmax

P fizj,pj = 1| Cnao

P2 | fiz;,p; = 1, chain | Cpae

P2 fizj,p; = 1,7; | Crnae
Pm| fizj,p; = 1,7 | Crae
P2 fixj | 3 ¢
P3| fixj | 3¢

P2 fizj | Y wjc;

P fiwg,py =113 ¢

P2 | fiz;,p; = 1,chain | > ¢;

P win | fiz; | Chas

P2 | fil‘j,pj =1 | Lm(m

P3| fir; | Conae

P2 fiz; | Limas

P3| fiz; | Crmaw and | fiz;|= 2
P3| fiz;, chain | Cpae

and | fiz;|=2

P4 | fiz;,p; = 1,chain| f

and | fiz;|= 2 and f€{Cnas, Y ¢;}
Pl fizj,pj = 1|3 cj and | fizjl=2
P3| fix;, chain|> " ¢; and | fiz; E2
P4 | fiz; | > ¢; and | fiz;|=2

P fizg | 3¢

and | fiz;|= 2 and s.g. is 2-star

O(r?2"n"™+2 + 27 (r 4+ m))
O(r?2"n"™+2 + 27 (r 4+ m))

O(r3(rl)22rnr!(r+1)+1+
+27(r +m))

O(r3(rl)22rnr!(r+1)+1+
+27(r +m))

0(7“2'5)
O(n)
0(77,2'5)
B&B
ILP
sNPh
sNPh
sNPh
ILP
NPh
sNPh
sNPh
sNPh
sNPh
NPh, 3 polynomial cases
O(n)
Sig = %
sNPh
O(n)

O(n)
sNPh
sNPh
O(nlogn)
NPh

NPh
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Table 5.2 continued

Problem Result Reference
P2 | set; | Craw pseudopoly. [23]
P3| set; | Craw

and VYr, fix; # {P1, Ps} pseudopoly. [23]

P | setj | Cmax SSPTM =1m [23]
P | set; | Craw sNPh, heuristic [26]
P2 fix; | Y ¢y sNPh,5z < 2 [51]
P | fiz;,prec| Cmae special cases [77]
P2, win| fizj,p; = 1| Chas

and p number of time windows O(n+p) Coro.5.3
P3,win| fizj,p; = 1| Chas O(n+p) Coro.5.3

Preemptive scheduling
P | fw:],pmtn | Cmax

and | fiz;|=2 sNPh [135]
Pm | fiz;, pmin | Chae
and | fiz;|=2 LP [135]

P2 | fiz;, pmin | Cras O(n) [21]
P3| fiz;, pmin | Cras O(n) [21]
P4 | fiz;, pmin | Cras O(n) [21]
P4 | fiz;, pmin resl -1 | Crao O(n) [21]

P2 | fiz;,pmin | Lyae O(n) Th.5.5

P3| fiz;,pmin | Lyae interval scheduling | Th.5.6,5.7
P4 | fiz;,pmin | Lyae interval scheduling | Th.5.8,5.9
P | fiz;,pmin | Crae and | fiz;|=2

s.g. bipartite, unicyclic O(n?) [138]

P | fiz;,pmin | Crae and | fiz;|=2

s.g. candy,caterpillar O(n) [138]
P4 | fix;, pmin, chain | f

and | fiz;|=2 and f € {Chaw, > ¢} sNPh [138]

P | fiz;,pmin | > c; and | fiz;|= 2 sNPh [138]
P3| fix;, pmin, chain | )" ¢;

and | fiz;|=2 O(nlogn) [138]

P | fiz;,pmin | Crao

and | fiz;|= 2 and s.g. 2-star,superstar | O(nlogn) [138]
P2 | fiz;,pmin |3 ¢; O(nlogn) [51]
Pm | setj,var | Cnae Lp [23]
Pm | setj,var,r; | Lmae Lp [19]
P2, win | fiz;, pmin | Chae O(n+p) Sec.5.3.3
P2, win | fizj, pmin,r; | Chae O(n+p) Sec.5.3.3
P3,win | fizj, pmin | Chae O(n+p) Sec.5.3.3
Pm,win | setj var,r; | Chae LP Sec.5.3.3

Pm,win | set;,var,7; | Lmao LP Sec.5.3.3




Chapter 6

Divisible Tasks

6.1 Introduction

In this chapter a new scheduling model applicable in a wide range of parallel
architectures and parallel applications is presented. We consider scheduling
divisible tasks, i.e. tasks that can be divided into parts of arbitrary size. Fur-
thermore, the parts can be processed in parallel independently of each other.
In other words, the parallel application includes no precedence constraints
(data dependencies) and granularity of parallelism is fine. Before proceeding
to the presentation of the divisible task method, we introduce, in a more
informal way, basic founding concepts.

Many contemporary parallel applications are divisible tasks. Consider,
for example, searching for a record in a huge database (thousands or more
records). This can be done by cooperating processors. The database file can
be divided into parts with one record granularity. The search can be con-
ducted in each part independently of the other parts. Finally, the results
are reported to some master processor. The same method can be applied
to searching for a pattern in a text, graphical, audio, etc. file. Similar situ-
ation takes place when sorting a database file in a distributed way. Yet, this
case is a bit more complex because the sorted file parts must be merged.
Analogously, big measurement data files can be divided into parts processed
independently in parallel [60]. Further examples of divisible tasks are relevant
to data parallelism: simulations of molecular dynamics [3], some problems
of linear algebra with the use of big matrices [27], solving partial differential
equations by finite element method [209] and many other engineering and
scientific problems [53]. Note that similar assumptions on divisibility of the
load were made in loop scheduling and load balancing (cf. Sections 4.2,4.4).

107
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Now, we will outline the process of data dissemination and processing.
A parallel computer consists of m processing elements (PEs), each of which
comprises a processor, local memory, and is capable of communicating in the
interconnection network (either by independent network processor, or by use
of software run on the processor). For simplicity reasons names of processor
and processing element are equivalent here. Only when a PE has a network
processor is it capable of simultaneous computing and communicating. Ini-
tially, the whole volume V' of data to be processed resides in one processor
called originator. The originator intercepts for local processing ay data units
and sends the rest (i.e. V —aq) to its idle neighbors. Each processing element
intercepts for local processing some data from the received volume and sends
the rest to the idle neighbors. Thus, PE number ¢ (denoted P;) intercepts
and processes locally «; data units while sending the rest of the obtained
data to its still idle neighbors. P; will process its share «; in a;A; units of
time. Following Section 2.1 the transmission time of z data units over link
¢ joining two processors is 5; + xC;. Our goal is to find such a distribution
of task parts (or problem data) that the communications and computations
are finished in the shortest possible time. The above description still leaves
space for details including, e.g. a communication algorithm tailored to the
interconnection. Observe that when no results are returned to the origina-
tor, all the processors must stop working at the same moment of time. This
observation can be explained intuitively: when P; finishes earlier then it is
possible to off-load other PEs by moving part of the load to F;. In this way
the whole length of a schedule would be reduced. This observation has been
proved both for particular interconnections [60, 188] and for a general type
of interconnection [33]. The model can be applied also in the case when some
results are returned. However, the former case simplifies the presentation.
In majority of works on divisible tasks only one application is assumed to
be present in the computer system (i.e. n = 1). Unless otherwise stated we
assume in this chapter that the number of tasks is equal to one. Since the
actual processing time of a task depends on speeds of communication chan-
nels, speeds of PEs, and distribution of the load it is hard to use a single
value of processing time as in the previous sections. Hence, in this chapter
we will use volume V of data to be processed as a more natural measure of
work to be performed.

The organization of this chapter is as follows. In Section 6.2 we give an
overview of existing subject literature. In Section 6.3 we present results of
applying the idea of divisible task to scheduling and performance evaluation
of distributed systems. Section 6.3 is divided according to the analyzed inter-
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connection architectures. Section 6.4 contains final remarks and conclusions.

6.2 Overview of Earlier Results

To our knowledge, the first work analyzing divisible tasks was [60]. Consi-
dering divisible tasks was motivated by the problem of finding the optimal
balance between parallelism and necessary communication in a network of
intelligent sensors. Linear network of PEs with or without network processor
for store-and-forward commutation mode was examined. Thus, the investi-
gated problems can be denoted Q,chains&f,no—overlap|n=1div|C,,,, or
Q,chains&f | n = Ldiv| Cpqz. The communication time was assumed to be
a linear function of the transferred volume. The startup time was negligible
(S=0). A solution based on reduction to a set of linear equations can be
applied in time proportional to the number of PEs. The same problem was
analyzed independently in [154]. Closed-form expressions were presented to
find a distribution of the load. It was also shown that in a homogeneous
network with the originator located in the network interior, the whole load
processing time is the same when the originator sends data to the left first
or to the right first.

In [61] scheduling divisible tasks on a tree network of processors is con-
sidered. The analyzed problems can be denoted Q,tree, s& f, no — overlap |
div,n = 1| Cpap or Q,tree, s&f| div,n = 1| Cpap. The sequence of com-
munications is assumed to be known a priori. There is no communication
startup time. For such assumptions the problem can be solved by a set of
linear equations.

Scheduling a divisible task on a bus interconnected system has been
analyzed in [14]. Again, it was assumed that the sequence of communications
is known and startup time is negligible. Two cases were distinguished: a
system with a master processor which is not computing but is in charge of
collecting measurements and handling data communications, and a system
without the master processor. PEs had no network processors. The tackled
problems can be denoted @, bus, no — overlap | div,n = 1| Cpqz. The case
of PEs with the network processor (i.e. Q,bus | div,n = 1 | Chap) Was
analyzed in [13].

In [15] problems Q,chains& fyno—overlap|divn=1|C\qz; Qchains& f |
divn=1|C\,4z; Qtrees& fino—overlap|divn = 1|Cup; Qtrees& f|divn=
1| Cpaz are considered. By the use of the concept of an equivalent proces-
sor which is a single-processor equivalent of the original multiprocessor sys-
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tem, the ultimate performance limits are calculated. This analysis is further
extended in [176]. Also in [100] performance limits of linear networks and
star networks are examined (problems @Q, chain, s& f, no — overlap | div,n =
1| Chaz; Qs chain, s&f | div,n = 1| Chpap; @, star, s& f,no — overlap |
div,n = 1| Cpas; Q, star, s&f | div,n = 1| Cpyaz). Closed-form formulae
expressing the limit of the performance enhancement obtained by using ad-
ditional processors are presented. The communication appeared to have a
similar effect on speedup as the sequential part of parallel application in the
Amdahl’s law.

In [16] optimal sequencing of communications in a star network is consi-
dered. It is shown that for the case with the network processors the optimal
sequence of distributing data is the order of decreasing communication speed,
speeds of processors are irrelevant. Thus, when the communication links are
identical, the ordering of communications to processors is immaterial. These
counterintuitive results are satisfied for S = 0.

Closed-form expressions for the optimal load distribution in a bus and
tree networks are given in [12]. The performance of symmetric tree networks
is analyzed by collapsing the component processors and links into one equ-
ivalent processor.

Work [189] analyzes scheduling more than one divisible application in the
computer system. The PEs were either equipped with network processors or
not so equipped and interconnected by a bus (R, bus, no—overlap| div|Cl,qz
and R, bus | div | Cpay). Tasks were processed in the First-In First-Out
fashion.

The problem of scheduling a divisible job on a bus system in the pre-
sence of background activities is investigated in [190]. It is assumed that
the speed of processors and communication links is inversely proportional
to the number of tasks sharing a processor or a link. The arrival of a back-
ground task reduces the speed observed by the considered application. The
method of computing deterministically the optimal load distribution is gi-
ven for the case in which the arrival times and departures of background
tasks are known. When the above parameters of the background tasks are
unknown a probabilistic analysis is presented.

In [34] the idea of divisible job is applied in scheduling and performance
analysis for hypercube networks. The startup time was assumed to be negli-
gible (S =0).

The first paper including startup time S in the model of communication
time is [33]. For linear networks (chain, ring) and homogeneous hypercube
the optimal distribution of the load can be found in low order polynomial
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Figure 6.2: Communication and computation in star interconnection.

time. However, in general case scheduling on arbitrary interconnection graph,
and on arbitrary bus system in particular, requires determining the optimal
sequence of communications which is sSNPh. For a star network polynomial
cases are identified. We will describe in more detail chain and star networks
as starting points for considerations in the further sections. The Gantt chart
of communications and computations in the chain network and in the star
network are depicted in Fig. 6.1 and Fig. 6.2. For simplicity of presentation
we assume that no results are returned to the originator. It will be demon-
strated later that this restriction can be removed. Assume, that PEs have
network processors and the originator is located at the chain’s end. In the
chain network the part of load which is not processed by the originator is
sent to the nearest neighbor. The neighbor divides the received data into a
part processed locally and re-sends the rest to the next idle processor. This
procedure is repeated until the last processor. Since no data is returned all
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the processors must stop at the same moment of time [33, 60]. The com-
puting time on the PE sending data lasts as long as communication to and
computing on the receiver (cf. Fig. 6.1). Thus, we can find the distribution
of the load from the following set of equations:

oAy = S+ (042'+1—|—...—|—04m)02'—|—042'+1142'+1 r=1,....m—1 (6.1)
Vv ar o+ ..+ oy,

04170427...704m20

where 5;,C; are parameters describing a link joining F; and P41, and A;
is processing rate for P;. The above equation set can be solved in O(m)
time. Yet, it may happen that a feasible solution does not exist [33]. In
such a case less than m processors can solve the problem. The maximum
number of usable processors can be found by binary search over m. When
the results are returned the above equation set must be modified in such a
way that while P; computes, the spare data is sent to P;41, processed on
Piy1,..., Py, and results are returned to P;. Thus, equations (6.1) have form
(fori=1,...,m—1):

a; Ay =25+ (o1 + .o o) Ci+ a1 A +H Bl + . o )Cr (6.2)

where [3(z) is the amount of results returned for z units of data (in simple
cases [3(z) is constant or linear function). For the star network it was assumed
that the originator is located in the center of the star, each PE has a network
processor and no data is returned. Observe that computing on P; lasts as
long as communicating to and processing on P41 (cf. Fig. 6.2). Hence, we
have a set of equations from which optimal distribution of the load can be
found:

Ay = SitoaipCipn oAy i=1,...,m—1 (6.3)
V = aog4+as+...4a,
A1y, A2y e ey Qi 2 0

Note that all the communications are performed by the originator in the
center of the star. Analogous situation takes place in the bus network because
bus cannot be used by multiple communications at the same moment of
time. Therefore, the originator sends the data to the consecutive processors
in sequel and equation set (6.3) can be applied to find the data distribution
in the bus system.
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Two-dimensional rectangular mesh network with store-and-forward com-
munication mode is considered in [35] (P, 2D—mesh, s& f | div,n =1 |Cp4z).
A better communication algorithm based on circuit-switched communication
mode is applied to distribute computation in [36] (P, 2D—mesh, csw|div,n =
1|Caz)- In the former work S = 0, and in the latter one S > 0 were assu-
med.

The problem of scheduling in a star network is tackled again in [17]. A
new data distribution pattern based on pipelining is proposed. The data is
distributed in greater number of small chunks rather than in one big chunk
to each processor in sequel. This results in improved performance.

In work [18] scheduling in a chain network is considered in which PEs
are equipped with 1-port network processors. This means that a PE can
communicate only over one link at a time. The originator sends the share of
data to be processed directly to a particular PE. The network processors of
intermediate PEs facilitate these transfers. Thus, any PE can start compu-
ting right after receiving its share of data, without waiting for the load to
be re-sent to the following PEs. Again, this improves the performance.

A bus system with network processors investigated in [191]. Two criteria
are minimized: computing time and cost Q,bus | div,n = 1 | X. Cost
of computation is calculated per unit of load. For the minimal cost PEs
should be activated in nondecreasing order of their costs per data unit. Two
algorithms are proposed: finding minimal execution time for the given cost,
and finding minimal cost for the given execution time.

The results mentioned in this section are collected in Table 6.3.

6.3 Applying Divisible Task Concept

6.3.1 Chain Interconnection

In this section a new data distribution scheme based on circuit-switched
communication is proposed and compared with the previously known me-
thods [60]. In the following we assume that all PEs have network processors
and all PEs can simultaneously transmit over both ports. Hence, we consider
problem @, chain, csw| div| Cypqy. Moreover, we assume that the originator
is located in the center of the chain and results are not returned.

Let us repeat after Section 2.1 that in the circuit-switching routing
(unlike in the store-and-forward) the time of data transfer does not de-
pend significantly on the distance between the sender and the receiver.
The same situation takes place for packet-switched communication. Accor-
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Table 6.1: Number of PEs activated while scattering in a chain.

Step number | Initially active | Activated | Finally active
1 1 2 3

2 3 6 9

3 9 18 27
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Figure 6.3: Communication and computation in a chain with circuit-switched
commutation.

ding to conventions adopted in the previous sections when talking about
circuit-switching communication we mean all modes with the above mo-
del of communication delay. Since communication delay does not depend
on distance it can be advantageous to send some data far ahead and then
redistribute it from two (or more) points. Thus, the originator sends data
simultaneously to two distant PEs. In the next step both the originator and
the two previously activated PEs send data to two new processors. The pro-
cess is repeated until activating all the PEs after h={[logs m| steps. In Table
6.1 we demonstrate how the number of active (i.e. computing) processors is
growing with consecutive steps of data distributing. The process of data
distributing is depicted in Fig. 6.3 for m = 9. In Fig. 6.3 we present also a
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diagram of communication and computing in a chain with the above com-
munication algorithm. When no results are returned, all the PIs must finish
processing their parts of data at the same moment of time. The correctness
of this observation has been demonstrated under very general assumptions
in [33]. Here, it can be explained in the following way. Suppose to the con-
trary that one PE of the two activated from the same ”parent” PE finishes
earlier than the second one. Then, by balancing the load between the two
descendants of the same ”parent” PE would reduce the total length of the
schedule. This reasoning can be repeated recursively until the originator.
The case of non-zero data return time can be easily included as demonstra-
ted in equations (6.2). Before proceeding to the solution of the problem let
us remind that we denote:

V' - the whole volume of data to be processed,

A - the processing rate of all processors,

C' - the communication rate of all links,

S - the startup time of all links,

h - the number of steps in data distribution algorithm,

«; - the amount of data assigned to PEs activated in step ¢t=1,...,hA.

Observe (cf. Fig. 6.3) that time of computing on the sending PE is equal
to time of communicating to and computing on the receiving PE. Thus, the
following set of equations can be formulated:

ap_1A = S+o,C+apA
ap—9A = S+ (p—1+203)C+ap1 A
ap—3A = S+ (ap_2 + 201 + 603,)C + aj_g A

oap_; A = S+ (ah—i+1 + 2 Z 3j_204h_2'+]‘)0 + ah—i+1A (6.4)

7=2
h—1 ]
OélA = S + (042 + 2 Z 3]_204]‘+1)C + 04214

i=2

h
VvV = 041—|—223]_204]‘
i=2
04170427...704k20

The above set of equations can be solved in O(log m) time provided a feasible
solution exists. The solution method uses the first h — 1 equations of (6.4)
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Figure 6.4: Communication and computation diagram in chain with pipeli-
ning and circuit-switched commutation.

to reduce aj—; (i = 1,...,h — 1) to a linear function of ay, i.e. ap_; =
kn—iap + lp—;. Coefficients kp,—;, {—; are (from (6.4)):

C L
kp—; = Z(kh—i+1 +2> 3 kpigg) + khein
7=2
S C
lhei = =3 A(lh i+1 +223] lhmig) F i
7=2

While ay, is found from the last equation of (6.4):

V20372 — 1y
250 312y 4 Iy

The communication pattern can be further improved by applying pipe-
lining of communications as proposed for star network in [17]. The commu-
nication and computation diagram for such a case is presented in Fig. 6.4.
Note that now the data distribution consists of g pipeline stages each of
which consists (as previously) of h steps. Let us denote by «; ; the amount
of data processed by each of PEs activated in step 7 of data distribution
and in pipeline stage j. Since results are not returned, for the last stage it
can be observed that all PEs must finish simultaneously. Hence, computing
on the sender must last as long as communicating to and computing on the
receiver. According to [17] we assume that PEs activated in step ¢ of stage
Jj(G=1,...,9 — 1) of pipelining must compute as long as sending data in
steps e+ 1,...,h of stage j and steps 1,...,7 of stage 7 + 1. In other words,
PEs are processing the current portion of the load exactly until receiving the

ap =
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next portion of data. This assumption can be motivated as follows: Suppose
it receives less, then there is an idle time and the schedule could be made
shorter by avoiding the idle time. Suppose it receives more, then the PEs
activated in the next step wait for data longer than necessary and start com-
puting later than it is possible, thus increasing the idle time. The originator
computes as long as all the communication lasts plus the time of computing
the a4, i.e. when all PEs compute only and no communication takes place.
This discussion can be summarized in the set of equations:

ah—l,gA = S+ Oéh7gC + Oéh7gA

QpoigA = S+ (hoizig +2D 3 P 0higj)C + anoip1 A

7=2
h—2 ]
0427gA = S —|— (043757 —|— 2 Z 3]_204]‘4_1757)0 —|— 0437gA
7=2
h h—p
Wp—ijA = Z [S+Clap,; +2 Z 3 _lo‘p-l—qd)] +
h—1 h—p
+ Y IS+ Clapirr +2) 37 o j41)] (6.5)
p=2 g=1
g h h—p
oA = Z Z(S + C(Oépd‘ + 2 Z 3q_104p_|_q7]‘)) + Oéh7gA
7=2p=1 g=1
g
V = 041—|—22232_204w
7=11=2
a;; >0

The above equation set can be solved analogously to (6.4) by expressing all
the unknowns as linear functions of ay, 4. Thus, a; ; = k; jop 4 4 1;; and for
1=2,...,h

C o
kp—ig = —(kpoiy1,4+ 2 Z 3 2k igig) FRhivig
A

J=2

S C
lheig=—+ 1

1 ity + 2 3 2 lhigjg) + lmigrg

i=2
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Figure 6.5: Comparison of the algorithms based on store-and-forward and
on circuit-switched commutation in a chain network.

and forve=2,...,hj=1,...,9—1:

C h h—p B h—1 h—p B
kh—m = Z Z (kp,j +2 Z 3 1kp+q,j) + Z(km'-l—l +2 Z 3 1kp-l—tm-l—l)
p=h—1t+1 g=2 p=2 g=1
hoos C it
lh—m‘: Z A A p71+223 lp-l—%] +ZA A p7J+1‘|‘223 p-I—q ]-I-l
p=h—i+1
and
C g h h—p
hi=220 2 (i +2) 37y ) +1
7=1p=2 g=1
S C e
ll:ZZ(A—I'A p7]+223_lp+171))
j=1p=2 q=1

We compared the above two methods based on circuit-switching routing
with a method proposed in [60] and based on store-and-forward routing. The
results are collected in Fig. 6.5 where times of processing various size tasks
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on a network of 27 PEs with A = 1us/byte,C' = 0.01us/byte, S = 10us
are juxtaposed. The figure presents times for store-and-forward routing and
for circuit-switched routing. For both commutation methods two pipelining
schemes are considered g = 1 (no pipelining), and ¢ = 5. Not for all sizes
the above patterns are feasible. When ¢ = 5 only for big volumes com-
puting on all 27 PEs is possible using store-and-forward. For smaller sizes
the computation is finished on smaller number of PEs before the furthest
ones are activated. Such situations are not included in Fig. 6.5. As it can
be seen the algorithm based on circuit-switched routing is significantly bet-
ter. Pipelining gives much smaller reduction (about 10%) in computing time
than replacing the old algorithm using store-and-forward with the new one
exploiting circuit-switched commutation (reduction by about 50%).

6.3.2 Star and Bus Interconnections

In this section we consider star and bus interconnections. It has been ob-
served earlier [33] that star and single bus networks can be viewed in the
same way. Thus, we will use here only the star name. The star intercon-
nection is an attractive model of distributed computations, e.g. of the PVM
master-worker concept. Hence, in the following discussion names origina-
tor and master are equivalent. We begin this section with some theoretical
points. Next, we analyze some on-line scheduling algorithms. Finally, we
practically verify the considered model.

Though the complexity of problem Q, star | div,n =1 | Cyq4z, i.e. sche-
duling a divisible task on a star is not established when the startup times are
nonzero, the optimal solution can be found from the following mixed linear
programming formulation.

minimize Crnaw
subject to
Cmaac = 041141 (66)
J m m
Craz = > Y wkilCiai+ S+ zjiAia;
k=2:=1 =1
j=2,....m (6.7)
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L= > i=1,....m (6.9)
=1

1= > i=1,...,m (6.10)
j=1

zi; € {0,1} ihwj=1,...,m (6.11)
O, Oy 0oy Oy > 0

In the above formulation z;; = 1 denotes that P; is activated as the 7th in the
sequence. z;; = 0 denotes the opposite situation. Equation (6.6) demands
that Py computes all the time, equations (6.7) that the communication to the
processor activated as the jth immediately follows activating of the previous
one. Furthermore, computing on all processors finishes at the end of the
schedule. Equations (6.8) impose processing of the whole load, (6.9) that
each PE is activated, (6.10) that each position in the activations sequence is
filled. The above formulation may have no feasible solution if it is not possible
to activate all PEs before processing the whole load on a smaller number of
PEs. In such a case one may reduce the value of m in the formulation until
a feasible (and optimal) solution is found. We proposed a solution based
on mixed linear programming for the case without returning results (cf.
equations (6.3)). Yet, it would not be a difficult task to reformulate it and
include returning results.

Divisible Task Scheduling in Distributed Batch System

In [7, 91] the problem of finding the optimal set of processors to execute a
distributed application is considered. This problem is related, for example,
to distributed batch schedulers like NQS, LL, LSF, PRM, etc. The system
assumed in [7, 91] allows for executing only one application on a processor
at a time. Changing the assigned processors during the execution is not allo-
wed. The application is submitted to a scheduler which runs it on available
processors such that the completion time is minimized. The central scheduler
”knows” which processors are available and the moments when the busy pro-
cessors will become available. Immediate starting of the application on small
number of available processors may not be optimal. Furthermore, delaying
the start time until more processors are available may reduce the completion
time. In [7, 91] the set of processors and the starting moment was selec-
ted using ECT (Earliest Completion Time) rule. In the above publications
no communication overhead was considered. In the following we examine
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such a computing system using divisible task concept. Let us denote by b,
(¢=1,...,m) the moment of time at which processor P, becomes available.
Without loss of generality we assume by < by < ... < b4 = ﬁ—l—h +51,
where b,,,+1 is an upper bound on the schedule length introduced to simplify
the presentation. For the sake of simplicity we assume that results are not
returned.

Consider the case when before b; communication to F; is not possible,
after b; both communication and processing on FP; are possible. An immediate
approach to this problem is to follow the lines of [7, 91] and use the ECT
rule. The scheduler starts communication to processors {F,..., P} (i =
1,...,m) at the some moment b; for some selected ¢. Distribution of the
load and the completion time can be calculated using (6.3). This can be
done in O(m) time for each 7, which results in O(m?) complexity.

A different approach is allowing for successive activating PEs as they be-
come available. Thus, P, would start computing first after receiving its share
of data, then P, would be activated etc. In this case minimal execution time is
determined by the processing capacity available on the activated processors.
Let us denote by ¢; the time moment at which communication to processor

F; stops and computation begins. At e; communication to P,y can begin
Cmaz—max{e;_1,b;}—5;

provided that b;1q < e;. Hence, P; can process o; = oL

units of data, where e; = max{e;—1,b;} + &;C; +S; (¢« = 1,...,m) and
eg = ;. For the given (4, the total amount of load that can be processed
is Y7, a;, where b; < Clqp < bjyq1. By binary search over j the earliest
interval for which the total amount of load that can be processed is gre-
ater than or equal to V and where the optimal length of the schedule is,
can be determined in O(mlogm) time. This procedure can be further ap-
plied to find the optimal schedule length C

ape OUppose ¢ is the precision

of C% .. calculation. Then, the complexity of the binary search would be
O(m(logm +log max;{b; —b;_; } —loge)). We cannot use equations (6.3) in
this case because there are intervals when the processor activated earlier (say
P;) is not communicating with the originator while the processor activated
as the next one (P;41) cannot start communicating because it is not available
yvet. Thus, to solve the problem with a perfect precision a stronger tool se-
ems necessary. Before going into further details let us assume that the above
procedure has been applied and it is determined that C7, .. € [b;,b;41]. The

minimal length of the schedule and distribution of the load can be found
from the following linear program.

min C, 4z
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subject to
Crae > €+ Ao for i=1,...,j (6.12)
e > e_1+Ca; +5; for e =2,...,7 (6.13)
e; > b+ Ciap+ 5, for i=1,...,J (6.14)
j
g >V (6.15)
=1
€1y ey €500,y 0, Ul >0

In the above formulation equations (6.12) guarantee that computing times
fit in the available time intervals, equations (6.13), (6.14) guarantee that
the proper sequence of communications is preserved and no communication
starts before the processor becomes available. Equation (6.15) ensures com-
plete processing of the task. The above formulation has at most 2m + 1
variables and 3m constraints and can be formulated and solved in polyno-
mial time. Hence, the problem is polynomially solvable.

Now, consider a situation when PEs have network processors with sa-
tisfactory buffers allowing for sending new data to processor F; while it
is still computing the pervious task. Then, communication is allowed even
before b;, but processing is allowed only after this time. This case can be
solved similarly to the previous one. The amount of load processed by pro-
cessor P, depends on the starting time of the computations. The starting
time for computations is either b; if the communication to F; finishes before
the processor becomes available or it is the moment when the communica-
tion to P; finishes, i.e. ¢;. In the first case P, processes «; = C’"“A%i_b’ Since
e; = e;_1 + «;C; + 55 <b; this case implies e;_q <b; — %(Cmax —b;) — S;.
In the second case P, computes «o; = % Thus, for a given C 4z
the number of used processors j can be determined from conditions b; <
Crnaz < bj41. Then, the capacity for processing the load can be found as a
sum Y_!_, a;, where «; are calculated according to the two above cases. This
results in O(mlogm) complexity binary search procedure determining the
set of required processors for load V. As before, one can extend this proce-
dure to find the optimal length of the schedule with some accuracy. When
perfect precision is required one may use linear program (6.12)-(6.15) with
equations (6.13) in range ¢ = 1,...,j and eg = 0, while (6.14) should be
replaced with

e > b for i =1,...,7.

Thus, also this case can be solved in polynomial time.
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On-line Algorithms

The methods of data distribution presented above are well suited for com-
puter systems dedicated to one application only where the processing speed
and communication speed are stable. Yet, in distributed computations based
on LAN/MAN/WANS stability of these parameters is hard to be guaranteed.
Thus, a different adaptive scattering algorithm seems to be required. By an
7adaptive” algorithm we mean here a method which makes no assumptions
on the speed of computer and communication media. The A; parameters
depend on the background loading of processors and on the application with
its current data. Therefore, it is hard to use some standard benchmark to
estimate A;s. Note that the same problem appears in loop scheduling (cf.
Section 4.4). On the other hand, the application itself is a good benchmark.
Thus, we conclude that the best way of calculating A;s is doing it while
executing the particular application for the particular data set. The commu-
nication algorithm proposed in [61, 100] for processing divisible tasks causes
that a lot of data is sent to the PE activated as the first one. Consequently,
the first communication time is very long. In the meantime, the other PEs
are unnecessarily idle. It is more efficient to send small chunks of data to all
PEs and let them start computing earlier. Thus, the communication pattern
should be based on pipelining as the one proposed in [17]. With the above
observations in mind we propose the following scheduling algorithm.

Distribution Algorithm 1 (DA1)
1: Send to all processors the same initial amount «; = « of data to process.
2: While there is anything to send, send to idle processor P; amount a; = o; =
of data to process, where «; is the amount of data sent in the previous
activation of P, 7 is the required length of the interval between accesses to
the originator and o is the observed interval between two accesses.

In the above algorithm the PE that returns results earlier is sent a bigger
chunk of data than the PE that returns the results later. The key idea behind
the above algorithm is to obtain a fixed interval 7 between the accesses of
different PEs to the originator. This reduces the contention in accessing the
originator. Below, we analyze the behavior of DA1. Without loss of generality
we assume that the amount of returned results is equal to the amount of
data to process. Furthermore, we assume that originator is not computing
(performs only control and communication functions) and the number of
slave processors is m.
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Lemma 6.1 In the contention-free situation and for stable parameters of
communication links and PEs, the interval between the accesses to the ori-
ginator in DA1 converges to 7.

Proof In the assumed contention-free situation the access to the origina-
tor of some processor does not coincide with the access of any other processor.
Let us denote by o, ¢/, ¢” the time between three consecutive accesses of P
to the originator. Let «, o/, &/ denote the amounts of data sent to P; in the
three respective accesses. Remember, that we assume the amount of returned
results being equal to the amount of data. Observe that o = o(2C;+ A;)+25;,
o' = o (2C; + A;) + 25;, 0" = o"(2C; + A;) + 25;. Now, let us calculate
o''—o' = O//(QCZ' + AZ) +25; — 0/(202' + AZ) +25; = (' — O/) (202 + AZ) On

the other hand, ¢/ = aZ = —"—— and ¢’ =o' = ——T——. Thus,
g 20,4+ A+ a’ g 20+A;+ Ol/l
" ; 27’5,‘(20,‘+A,‘)(%—$) _ 27’5,‘(20,‘+A,‘)(1—%)
g —0 = 75, 5, — 75,

(204 Ai+ 1) 20+ A+ 228)  a(20i+A+ ) (20 + A+ 20)

From the above we can infer about the direction of ¢”, ¢’ changes. Suppose
Z > 1 then o > a and ¢’ > o. Furthermore, ¢” > ¢’ and " > o'. Thus,
the amount of data sent to P; is increased in two consecutive steps. For
I < 1 the amount of data sent to F; is gradually decreased. This can be
inductively extended to all accesses to the originator. Note that direction
of changes is constant. Hence, the time between two consecutive accesses
cannot become greater than 7 if it was smaller than 7 initially. And vice
versa, if the interval between the accesses was greater than 7 initially then
it cannot become smaller than 7.

Finally, consider the distance from 7 in consecutive data distribution
steps. We will calculate how the distance from 7 changes. (6" —71)—(¢'—7) =
o —o'. For = < 1 the data chunks are decreasing and the distance from 7
is decreasing in consecutive steps. For ~ > 1 the data chunks are increasing.
The time between the accesses is approaching 7 from below and distances
(¢'—7) and (0" —7) are negative values. Thus, in the latter steps the distance
is ”less negative” and the absolute value of deviation from 7 decreases. We
conclude that in the conditions stated above the time between the accesses
to the originator monotonically converges to 7. a

In the following lemma we discuss the execution time of an application
with DA1 assuming that access intervals of all PEs are equal to 7. This is a
slight simplification because the initial adjusting of data chunks is neglected.
Furthermore, we assume that communications take place immediately one
after another (cf. Fig. 6.6).
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Figure 6.6: Computation - communication diagram for DAT.

Lemma 6.2 When access intervals for all PEs are equal to T, where
™98 (1— 2%

V(201 + A1) +25 > 7> iz m( 222’.%’)

=300 oA

the application execution time is

T— r— T—25; T7—2852
Tl Zé‘iii |+ 1+ i QCge i +290) +Cagp i, + 9+ 7
i=1 2C;+ 4,

where x satisfies
z T—285; |4 m  T—=285;
Zi:l QCH_Ali 2 V- L m  T—295; J Zi:l QCl‘-I—All‘ .

Zi:l 20+ A;

Proof First, let us comment on the conditions set in the lemma. When
7 is longer than the execution time on a single processor, i.e. 7 > V(2C; 4+
A1) + 257, then the execution time remains constant and equal to V (2Cy 4+
A1) + 25;. On the other hand, when 7 is too short it may be impossible
to communicate to all m processors. This is the case when communica-
tions are longer than 7. Since access intervals of all PEs are equal to 7, F,

processes amount of load equal to «; = 27(;42_‘3{,. Thus, 7 > Y%, (2C0; +
25;) = ;fil(QCi;C_i—_lz_i{i + 25;), from which we obtain that 7 must satisfy

2L, 280 se)
m 20
l_zizl 20+ A;
of the application under DA1 consists of two phases. In the first one all
processors one by one are repetitively accessing the originator. The num-

T > in order to make DA1 realizable. The execution time

ber of repetitions is y = LmLJ = Lﬁj Thus, the first phase
Zi:l e Zi:l 2C;+A;
lasts TL#_Z)S@J units of time. In the second phase only some proces-

1=1 2C; + A,
sors are activated. Let us denote by z the number of processors activa-

ted in this phase. It must be big enough to accommodate the remaining

volume of data. Hence, Y7 a; > V —y> " a;. From which we obtain

z T—25; |4 m T—25; .
iy O TA >V - LWJ >y O TA In this phase processors
Do 3014,

Py, ..., P, return results from the last cycle of the first stage, while only
processors Py, ..., P, are activated for the last time. Thus, the last phase
includes the time of sending data to P, receiving results from, and sen-
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ding data to Ps, ... receiving results from, and sending data to F,, time
of processing data on P, and returning results from F,. Other communica-
tions and data processing activities take place in parallel with the above
actions (cf. Fig. 6.6). The last sending to P,, computing on it and re-
turning results lasts 7 units of time. Hence, the total processing time is

Vv T—28 r— T—25; T—2852
S yar=—=ha st A T2+ (250, +250) + Cogiy dr +SetT

which is the amount of time specified above. a

From Lemma 6.2 we can conclude that when the number of cycles is big
the first phase of DA1 dominates and the first term in the execution time

formula dominates. Furthermore, when startup times are small in relation

to 7 then the total execution time tends to —wr————. Hence, under the

=1 20+ Ay
above conditions the total processing time does not depend on 7 which is

the only parameter that can be modified in the algorithm.

Corollary 6.1 When the number of iterations is big and startup times are
small the execution time under DA1 does not depend on 7.

We compared DA1 with an algorithm in which the data chunk is constant
for all processors:

Distribution Algorithm 2 (DA2)
While there is anything to send, send fixed amount v of data to a free PE.

In Fig. 6.7 and Fig. 6.8 we compared relative execution times of ap-
plication executed under DA1 and under DA2 as a function of 7 and v,
respectively. Relative execution time is a ratio of the actual execution time
and the execution time for the case when all PEs receive data in one chunk
as described in [61, 100]. The results were calculated in a series of simula-

tions. There were m = 8 PEs, the processing rate was 4; = ... = Ag =1,
in the first experiment, A; = ... = Ag = 0.1 in the second, and 4; = ... =
Ag = 0.01 in the third one. The communication links were identical with
Ci=...=Csg=0.001, Sy = ... = S5s = 0.1 which is a typical relation be-

tween transfer rate and startup time (cf. Table 2.1). DA1 guarantees better
performance than DA2 in the worst case. Yet, for big values of 7 the execu-
tion time becomes unstable: for growing 7 it first increases, then decreases
and increases again (cf. Fig. 6.7). This anomalous behavior is a result of too
big value of 7. To keep the interval between the accesses equal to 7 one of the
processors intercepts a big chunk of load. This results in the load imbalance
which dominates the execution time. When 7 is big the load remaining for
the dominating last chunk is smaller than for small 7, because for big T the
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Figure 6.7: Execution time for DA1 - simulation.

chunks sent earlier were also bigger. Thus, increasing 7 may reduce execu-
tion time. As it can be seen for small chunk sizes, where communication time
dominates, the bigger the speed of processors, the worse DA2 is.

In Fig. 6.9 and 6.10 we present results of applying DA1 and DA2 in a
cluster of six (including the originator) SUN workstations cooperating by use
of PVM [88]. The distributed application consisted in distributed search for
a pattern in a text file. The size of the file was V =5760kB. In the observed
range of intervals between accesses to the master processor DA1 has better
stability than DA2 and better worst-case performance. This situation is in
accordance with simulations for small values of 7. As it can be observed
DA?2 exposes bad performance when chunk size is too small. This behavior
is analogous to the one observed in simulations.

Though algorithm DA1 exposes good qualities in certain conditions (cf.
Lemma 6.1, Corollary 6.1), it has also weaknesses when the value of 7 is
chosen badly. The drawbacks of DA1 are visible in Fig. 6.7. These are imba-
lances which contribute to a longer than necessary execution time. Hence,
we proposed a new algorithm which adjusts value of 7.

Distribution Algorithm 3 (DA3)
Apply the DAT algorithm with two exceptions:
1) if the originator is constantly busy in the second access cycle or later,
then set 7 := 7 x m;
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Figure 6.9: Execution time for DA1 in a workstation cluster.
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Figure 6.10: Execution time for DA2 in a workstation cluster.

2) if some PE wants to take more than 1 of the remaining load and one of
the two is true: master is not continuously occupied, or it is the first data

distribution cycle, then contract 7 := .

Let us comment on DA3. The first exception prevents communications
and queuing to the master from dominating the whole execution time. The
second exception is intended to prevent the imbalances. Observe that the two
exceptions cannot take place simultaneously. We assume that initially master
is not idle. The same simulations were performed for DA3 as depicted in Fig.
6.7 for DA1. The results are collected in Fig. 6.11. As it can be observed
DAS3 has better stability on average. However, for certain combinations of
computer system parameters and the history of data distribution the set of
conditions included in DA3 to prevent instability is not satisfactory. This
results in ”glitches” as e.g. in Fig. 6.11 for the initial value of 7 = 200.

The three data distribution algorithms are compared in one more way
in Fig. 6.12. This chart presents dependence of the variance in processing
time on changing speed of PEs. The following parameters were assumed:
m = 8,C; = 0.001,5; = 0.1,V = 10°. The processing rate A; remains with
uniform probability in the interval [0.5, 1.5]. The rate remained unchanged
during random number of accesses to the PE. The number of accesses wi-
thout change in speed was uniformly distributed in interval [1, 5]. Each point
in the chart presents variation (i.e. standard deviation) of 20 experiments.
As it can be observed DA1, DA2 are more stable than DA3 for small chunk
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Figure 6.11: Execution time for DA3 vs. initial values of 7 - simulation.

size, resp. 7. For big values of these parameters processing dominates in the
total execution time, and hence changes of processing rates significantly in-
fluence total execution time. Variance of processing time for DA3 is similar
over all (initial) values of 7. Hence, it can be claimed that on average DA3
is more impervious to the changes of the processing rate.

Verification in Transputer System

In the following paragraphs we present results of a practical verification of
the divisible task concept in a star architecture.

The basic star model of e.g. [61] assumed that the results are returned
in the inverted order of sending data. Here, we assumed that the results are
returned in the same order as the data was sent (cf. Fig. 6.13). In such a
situation the time of processing on processor F; and returning results from
this processor must be equal to the time of sending to P11 and processing
on Piyq. Hence, the basic equation set (6.3) must be modified as follows

A+ S+ ()0 = Sipitai(Cipr+Aipr) i=1,..,m—1(6.16)
V = ogt+ay+...+a,
A1y Ay e ey Oy 2 0
where () is the amount of results returned for & units of data. The above

method has been practically applied in a T805 transputer network depicted
in Fig. 6.14a. As it can be verified in Fig. 6.14a the underlying topology is
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Figure 6.13: Communication and computation in a star. The sequences of
data distribution and the results collection are the same.

Figure 6.14: The transputer testbed: a) topology b) data distribution paths
in the experiment with eight processors.
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not a star. Thus, by a star we mean a logical interconnection observed in
scattering. The communication algorithm is based on wormhole routing. The
considered application was a search for a pattern in a text file. In all experi-
ments the returned results fit in one 1000-byte packet. Hence, §(c;) = 1000.
For simplicity of the experiment we assume that computations and commu-
nications do not overlap. Parameters A; were measured for each PE as an
average of 100 tests consisting in searching in 300000-byte file. Parameters
C;, S; were calculated using linear regression from a set of transmission time
measurements where the originator (labeled 0) sent to P, messages of size
1,...,100 packets (which is range 2000, ...,102584 of bytes with step 1016
bytes). The first experiment considered only a pair: the originator plus the
PE labeled 11 and consisted in transferring and processing 300000 bytes of
data. The difference between execution time measured experimentally and
calculated was below 0.5%. In the next experiment we used three proces-
sors labeled 6, 9, 11, respectively. For only three computing processors the
interconnection can be considered as a star. Fig. 6.15 presents an absolute
value of relative difference between the expected and measured execution
time. Every point is an average of 100 experiments. As it can be seen in Fig.
6.15 the difference decreases fast and for V' > 40000 it is smaller than 10%
while for V' > 300000 it is below 1%. In the following experiment we tried
to use eight processors. Yet, it turned out that the construction of a routing
table caused that PEs were simultaneously computing and processing. This
resulted in approx. 25% difference between the measurement and the expec-
tation. Such a big discrepancy was caused by the fact that parameters A; no
longer reflected the speed of processing because on routing PEs the routing
process competed for processing power with the application. We changed
the data distribution sequence in accordance to the routing table such that
the routing process is not activated together with application process. The
topology of data distribution paths is depicted in Fig. 6.14b. We activated
the PEs in the following order: 6, 2, 5, 1, 11, 7, 3, 4. As in [61] the results
were returned in the inverted order of sending the data. In this way, we avo-
ided simultaneous routing and processing by PEs. In Fig. 6.16 we present
the difference between the expected and measured execution time. As it can
be verified the difference is in the range [—1.5%, 1.5%]. We conclude that the
practical verification proved viability of the proposed theory.
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6.3.3 Hypercube

In this section we present data distribution methods based on divisible task
concept for hypercube interconnection. Previous works on this architecture
[34] assumed no communication startup costs and store-and-forward commu-
nication. Here we consider methods using circuit-switched communication for
the system where simultaneous communication over all available PE links is
possible (i.e. for d-dimensional hypercube PEs are d-port). PEs have network
processors so that simultaneous communication and computation is possible.
Furthermore, we assume that network processors are able to re-route data
stream without additional intervention of the sender after transferring some
fixed amount of data. Finally, all PEs and communication links are identical.

Let us remind that PEs of hypercube interconnection can be labeled such
that the connected PEs differ in exactly one bit. In the following discussion as
a measure of the distance of PEs from the originator we will use Hamming
distance of the PE label and the originator label. Let us name by layer
of processors the set of PEs activated simultaneously in the same step of
data distribution. Moreover, as it was in [33, 34], we assume that layers
consist of PEs differing in exactly one bit. For quick reference we will number
layers according to the Hamming distance from the originator (number of
1 bits in a PE label, in other words). Note that the layer number may not
coincide with the sequence of activating PEs. We will try to take advantage
of circuit-switched communication for which the costs of sending data to the
layers distant from the originator is similar to sending to a very close layer.
We will present several methods of data distribution. However, due to space
limitation only some of them are described in fine detail. The considered
data distribution methods are illustrated in Fig. 6.17, where sequence of
communications between layers is depicted.

Hypercube Distribution Algorithm 1 (H1) [33, 34]

In H1 all the data for layers 1,...,d is sent from the originator (layer 0)
to a layer 1. On the receipt of all that data PEs in layer 1 start processing
their share of data and sending the rest of data to the following layers. Data
for layers ¢,...,d (i =2,...,d—1) are sent from layer i — 1 to layer 7. Having
received all data for layers ¢, ..., d, PEs in layer ¢ start computing their part
of data and sending the rest to layer ¢ + 1. H1 is based store-&-forward
communication.

Hypercube Distribution Algorithm 2 (H2)

H2 is a modification of H1. The sequence of activating layers is as in H1.
Yet, the PEs in consecutive layers first receive their part of the load and
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Figure 6.17: Data distribution methods for hypercube: a) H1,H2, b) H3, ¢)
H4.

immediately start computing. The rest of data is re-routed by the network
processors to the next layer without storing.

Hypercube Distribution Algorithm 3 (H3)

H3 is a modification of H2. As in H2 the PEs are activated right after
receiving their share of data, while the rest of data stream is re-routed to
the next layer. Yet, the data for layers [d/2],...,d are sent from layer 0 to
?antipodes” of the hypercube, i.e. to layer d PE first. Then, the layers are
activated from the opposite "ends” of the hypercube.

Hypercube Distribution Algorithm 4 (H4)

H4 is a modification of H3. The data for layers [d/2],...,d is sent from
layer 0 to layer d — 1. Then, layer d and layers [d_TlL ..., d—2 are fed from
layer d — 1. Layers 1,..., Ldg—lj are supplied with data via the layers closer

to the originator.

Hypercube Distribution Algorithm 5 (H5)

In the H5 method PEs are activated one by one. For each of them data is
supplied over d non-intersecting paths. The d paths can be built as follows.
Consider a PE with ¢ bits equal to 1 in the label at positions a4, a9, as, ..., a;.
The first path goes via PEs with label bits equal to 1 in positions: aq, then
in positions aq, a9, next a PE with bits equal to 1 in positions aq, as, as;

. a1,0a9,ds,...,a;. The second path is routed via PEs with bits equal to
1 in positions: as; ag, as; ag,a3,a04; ... G2,03,...,0;; G1,02,03,...,a;. In an
analogous way the rest of ¢ differing paths can be routed. Suppose b; is one
of d —1 bits equal to 0 in the address of a target PE. The next d —¢ paths can
be routed as follows: Reach the PE with bit b; equal to 1, then route via PEs
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with label bits set to 1: b;, ay; b;, a1, az; by, ay,aq,as; ... by, aq, a9, a3, ..., a;.
H5 method is logically equivalent to distributing in a star.

Hypercube Distribution Algorithm 6 (H6)

H6 algorithm divides a hypercube into hypercube-shaped subcubes of a
smaller dimension. The originator sends data to several neighbors which in
turn become originators for distributing in the subcubes. The subcubes are
divided into a next level subcubes, etc. This dividing into smaller subcubes
continues until activating all the PEs.

In the following we describe the methods for finding the amounts of data
to be processed by particular layers. Let us denote by «; the amount of load
to be processed by one PE of layer ¢, by A processing rate of PEs and by
C, S parameters of the communication links. For the sake of simplicity we
assume that no data are returned to the originator. Hence, all the PEs must
stop computing at the same moment of time. Then, the time of computing
on the sending PEs must be equal to the time of data transmission to the
receiving PEs plus the computing time on the receiver. The solution method
for H1 has been given in [33, 34].

H2: Since the time of computing on the sender PE must be equal to the
time of computing on the receiver plus the communication time, we have the
following set of equations from which data distribution can be found.

d\C

AO&O = S+O&1((1)E—|—A)
d\C

AO&l = S—I_OQ((Q)E—I_A)

Av,_1 = S+ o (( Lj ) %—I— A) (6.17)

C
Aoy = S—I—O&d(E—I—A)
d
d

In the above equations term «; ( Cll )% stands for communication time to

layer ¢ from the originator over its d links simultaneously. Note that the first
set of d links from layer 0 to layer 1 is limiting the speed of data transfer
because in the following layers data is fairly distributed among the links of
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d

a PE. The number of links from layer ¢ to layer ¢ 4 1 is ( ; )(d — 1) [33]

which at least equals to d. Equations (6.17) can be solved in O(d) time by a
method analogous to that used to solve sets of equations (6.4), (6.5). When
a solution with a;; >0 (¢=0,...,d) does not exist then the maximum feasible
number of layers can be found in O(dlogd) time by a binary search over d .

H3: In this algorithm data distribution starts by sending data from the
originator to layer d. Then distribution from the originator and layer d is
symmetric because the topology of a hypercube observed from both direc-
tions is the same. Hence, we conclude that o; = ag—; for ¢ = 1,...,[d/2].
The distribution of the load can be found from the equation set:

C Q|d/2] d
AO&O = S—I_E(Oéd—l_dal—l_—l_m(td/QJ ))—FO&CIA

Aag = S+ a1(C+ A)

Ao,y = S—I—O&Z(((j)

d C
Aajgpp-1 = S+ ) (( 1d/2] ) A Imodz +A)

a0

—|—A) for i=2,...,]d/2]-1 (6.18)

o = ag-; for t=1,...,|d/2]
d
d

In the first equation of (6.18) and in the equation number |d/2] 4+ 1 term
2d+1mod2 plavs any role only for the hypercubes of even dimension. In such
hypercubes the central layer is fed from the originator and from the ”anti-
podes”. Since both directions are symmetric, half of data is received from
the direction of the originator and half from layer d. (6.18) can be solved
analogously to equation sets (6.4), (6.5). Observe that the number of data
distribution steps is smaller in H3 than in H1, H2. However, this reduction
is at the cost of transferring big part of data to the "antipodes” first which
is a potential bottleneck.

Hj: The number of data distribution steps is 42| + 1 instead of d.
The communication pattern for the last activated layer is different for odd
dimension d of the hypercube and for even d. For even d there are two
separated layers which are activated in the last cycle: layer Ld_TlJ fed from
the originator and layer {d—le fed from layer d — 1. For odd d there is one
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layer of PES which are activated in the last step of data distribution from
layers 4= — 1 and 9L + 1. We will describe both cases in the sequel. Let
us denote by p = Ld/QJ When d is even o; (¢ =0,...,d) can be found from

the following set of linear equations:
d
P
¢
d

+ A) fori=2,...,p—1

C
Aag = S+E(04d‘|‘d04d 1+

_I_
AOép_Z' = S—|— Qp_i41 (( —|— 1 )

d C .
Aayr; = S+ appi (( pri—1 m‘l'A) fori=1,...,p-1
C
Acag_1 = S+ Oéd(g + A)
AO&d_l = S + 041(0 + A) (619)
o d
V = Z( ; )042'
=0
Equations (6.19) can be solved in O(d) time similarly to (6.4), (6.5). a,4;
fori =1,...,p— 1 can be expressed as a linear function of «,, i.e. a,4; =
d
kpyicy + lptiy where kyp = (1 + Ad-1)A 1) ( i ))kp-l—i—l and lpyi =
S+ (1+ Ta-0A 1) (p—l-cli ))lpyi—1. In the same manner a,_; for i =
2,...,p — 1 can be expressed as a linear function of a,_;, i.e. a,_; =
d
ky_iap,—y + L,—;, where ky,_; = (14 %( b il Vkp—it1 and [,_; = %—I—
d
C . .

(1+ 55( bt ))lp—it1. From the penultimate equation of (6.19) we get
ap= ﬁ(% +(§ + Dlh—ly—1 + ap_1(5 + 1)k1). Using this relation we can

express all «;’s as a linear function of o,_; and from the last equation of
(6.19) one may find the value of a,_q.

When d is odd, layer p receives data both from layer p—1 and from layer
p+ 1. Let us denote by aj, the amount of data received by a PE of layer p
from PEs of layer p— 1 and by 04;’ received from layer p+ 1. In the following
discussion we assume that only when all its data already arrived can a PE
start computation. The subsequent lemma establishes relation between the
moments when receiving from layers p4 1 and p — 1 should be finished.
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Lemma 6.3 In the case of circuit-switched communication and PFEs re-
ceiving data asynchronously from many identical links, the data transfers
should finish simultaneously.

Proof Let us consider some PE receiving data from two links asyn-
chronously. In a circuit-switched communication we can change the sizes of
messages sent to the considered PE without affecting the PEs activated ear-
lier. Let us consider two cases: one link is finishing communication § units
of time earlier, both links are finishing communication simultaneously. Sup-
pose the total time of communication to the considered PE and computing
on it is T. Let C denote transfer rate, S startup, A processing rate, and
«;; amount of data received by P; in case 7. Thus, in the first case we get
T = Alogg + agz) +anC+ 6+ 5 and T = A(ag; + aq2) + a2C + S.
Hence, a1 + aqg = 2(T' = S — 26)(2A 4 C'). In the second case we have
T = A(agr +azz) +a1C+ S and T' = A(ag; + az2) + az2C' + 5. From which
we obtain agy 4+ age = 2(1T = 5)/(2A 4 C) which is bigger than aj; + aq;. We
infer that in the second case more load can be processed in the given time.
Consequently [33], given load is processed in the shortest time when data
transfers are finished simultaneously. This reasoning can be applied also to
more than two links and to links which are not identical. a

The results of Lemma 6.3 can be used to find distribution of the load as

a solution to the following equations:

C d
Aoy = S—I—E(ad—l—dad_l—l—...—l—(p)oe;)—l—oed_lA

d C .
A,y = SHap_ip1 ((p—i—l—l)E—I_A) fori=2,...,p—1

d\ Co
Ao,y = S—I—(p)Tp—I—A(oeg—l—oe;)

d C .
Aayr; = S+ appi (( pri—1 ) m‘l'A) fori=2,...,p-1

d Caoll
AO‘p+1 = S+ ( » ) (i(TfD+A(ag+@;)

C
Aoy = S—I—O&d(E—I—A)
AO&d_l = S + aq (C + A) (620)
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p—1 d
vV = Z(?)ai—l—(Z)(a;—l—a;’)—l— Z (cj)ai

=0 i=p+1

Equation set (6.20) can be solved in O(d) time analogously to equations
(6.19). Loads apqq,ap—; for ¢ = 1,...,p—1 can be expressed as a linear
functions of aj, and aj. Then, the penultimate equation can be used to find

/ 1" .
» and «aj. The rest of the procedure is analogous.

H6: The H6 method is based on a recursive dividing a hypercube into
subcubes of a smaller dimension. Unfortunately, this approach does not scale
well with the dimension of the network. For example, a hypercube of dimen-
sion 6 has 4 subcubes of dimension 4, and 8 subcubes of dimension 3. Thus,
one can feed from the originator 4 subcubes of dimension 4 using 4 links (out
of 6) simultaneously, or feed 8 subcubes of dimension 3 but not simultane-
ously. In H6 we accepted the first choice, i.e. simultaneous activating of the
same size subcubes. Furthermore, in the H6 algorithm it seems impossible to
apply re-routing of the messages as, e.g. in H2. This is because the links that
were used to feed originator of subcube e.g. Z are needed to distribute in
other subcubes in the following scattering steps. Thus, these links cannot be
kept occupied with the transfer to the sub-subcubes in Z via the originator
of Z. Table 6.2 describes behavior of H6 along with the dimension of the
hypercube. The originator first sends data to the number of PEs specified in
the second column. Then, these PEs and the originator become sources for
distribution in the subcubes which number is in the third column. In each of
the following scattering steps all active PEs are sources of data for subcubes
of decreasing dimension. The pattern of communications in the subcube of
some dimension is the same as for hypercube of this dimension. Observe that
in H6 PEs in the same layer may have different distance from the originator.
The last column gives the numbers of PEs activated in consecutive steps
of scattering. The distribution of the load can be found from the following

linear relation between o

equation set:

h
Aa; = S+C(aip1+ Y m(ip1)j;)Faip1 A fori=0,...,h—1 (6.21)
=42

h
Vo= ki
=0

where:

fkj—k - the number of PEs in layer j fed from one PE in layers (,. . .,7,
1=0 "l

my; =
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Table 6.2: Numbers of PEs activated by H6

No. of No. of size of No. of No. of PEs in layers
d originator’s 1st-step 1st-step distribution | 0,...,d
sending links | subcubes | subcubes | steps
1 1 1 1 1 1,1
2 |1 2 2 2 1,1,2
3 | 3 2 2 2 1,34
2 | 3 2 2 3 1,3,4,8
5 |3 2 3 3 1,3,12,16
6 | 3 2 16 2 1,3,12,16,32
7 |7 3 16 2 1,7,24,32,64
s |7 3 32 2 1,7,24,96,128
9 |7 3 64 5 1,7,24,96,128,256
0|7 3 128 5 1,7,56,192,256,512
|7 8 256 5 1,7,56,192,768,1024
12 |7 8 512 6 1,7,56,192,768,1024,2048
3|7 8 1024 6 1,7,56,448,1536,2048,4006
12 | 7 8 2048 6 1,7,56,448,1536,6144,3192
15 | 15 16 2048 6 1,15,112,896,3072,12288,16384
16 | 15 16 2096 7 1,15,112,396,7168,12288,32763

h - the total number of layers (the 2nd column from right in Table 6.2),
k; - the number of PEs in layer ¢ (ith position in the rightmost column (and
the proper row) of Table 6.2).

We compared our data distribution algorithms for hypercube in a se-
ries of simulations. Fig. 6.18 presents execution times for an application
with V' = 10° bytes, for different dimension hypercubes with A = 1us,
C'=100ns/byte, S = 0.1ms (typical values of Table 2.1) executed under the
above data distribution algorithms. The presented values are all ratio of the
actual execution time and the execution time of H1 for the same d. As it
can be observed H2 is the best algorithm. For d > 10, however, H2 is not
able to feed all the PEs before completing all the computations on smaller
number of processors. On the other hand H3, H4 for small dimensions are ra-
ther cumbersome, while for bigger dimensions perform better. Furthermore,
for d > 12 H3, H4 are still able to supply with data all the PEs. On the
other hand, it cannot be considered as an advantage because it is a sign of
longer communications. For big dimension hypercubes H4 is better than H3
because more PEs are activated earlier in H4 than in H3. Both H3 and H4
suffer from the fact that the first step of distribution consists in sending big
chunk of data to the ”antipodes” of the hypercube. H5 performs satisfactory
for small hypercubes. For big ones the startup times of numerous consecutive



142 CHAPTER 6. DIVISIBLE TASKS

1.1t

1.057

0.95

09

+H2 @H3 #H4 4-HS ¥Ho

085T t | 1 } t } } } } |
0 2 4 d 6 8 10

Figure 6.18: Execution times under different data distribution modes.

communications limit applicability of this method. H6 performs worse than
H1,....,H4. The curve of the H6 performance is irregular because the numbers
of PEs activated in a given step of scattering can change radically with d.
Moreover, in Fig. 6.18 a ratio of H6 execution time to H1 execution time is
presented. Performance of H6, expressed e.g. as speedup is smoother.

We conclude this section with some remark on practical aspects of apply-
ing the above algorithms. The method of finding the routes in H5 has been
described before. In the remaining five algorithms it is possible to calculate
the amounts of data to be shifted from a PE of one layer to a PE of the
next layer over one link. This can be used to partition the load into chunks
according to all the different paths reaching some PE. Such chunks, before
leaving the originator should be properly grouped. For example in H1 PE of
layer 1 receives data for itself and for d — 1 PEs of layer 2. In the chunk of
a layer 2 PE there is data for itself and for d — 2 PEs of layer 3, etc. At the
destination data received from different directions can be (if needed) resto-
red to the original order. This requires also sending additional information
to the network processors about the size and destination of the data chunk.
Such an approach to applying H1,...,.H4,H6, though possible, can be hard
to implement in practice for big hypercubes, especially when one takes into
account that data comes to the last PE over m different paths. Yet, in many
applications it is possible to consider data chunks as "nameless”. In such
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a case no reinstantiating of the original order of data at the destination is
necessary. Hence, it is not necessary to establish at the originator the desti-
nation of each chunk of data. Only the amount of data to be intercepted in
each layer is necessary. Any PE reads from the incoming data streams due
amount of data and re-routes the rest in equal shares to the outgoing links.
This can be implemented in far less coding.

6.3.4 3D-mesh

In this section we consider divisible job applications executed in three-
dimensional meshes or tori (3DMesh in short). In the following we present
five methods of recursive distribution (scattering) in such architectures and
analyze their performance. The methods differ in the number p of a PE
ports used simultaneously. The algorithms are based on repetitive execution
of three types of moves in submeshes of decreasing size. The PEs activated
in the same move of scattering will be called a layer. The three consecutive
moves will be called a step. The PEs activated in the same step of scattering
will be said to constitute a basic cube. Each step activates all the PEs of
the basic cube. Then, each of the active PEs becomes a source of further
distribution in the basic cube of a smaller size. The size of the basic cube
decreases after each step by 1/(p+ 1). In the proposed methods each move
increases the number of activated PEs p times. Note that this is the maxi-
mum possible because the number of ports used simultaneously is limited to
p. Initially only the originator is active. Thus, after k£ distribution moves the
number of working PEs is (p+1)*. Accordingly, the number of PEs activated
by a step of scattering (i.e. three moves) is (p + 1)°. In Fig. 6.19, and Fig.
6.20 the data distribution patterns are presented.

Let us describe more precisely the distribution methods. For p = 1 and
p = 2, each move of a step activates p PEs neighboring along a different
dimension. In a 3-port system the originator activates three PEs located
in the same two-dimensional cross-section of a basic mesh (say, along the
plane y0z). Next, the four active PEs send data along the third dimension
(z dimension). In the last move each active processor sends data to the
neighbors along the hull of basic cube and to one neighbor to the inside
of a basic cube. For the 4-port system the first move sends data from the
originator to four processors located along one dimension (e.g. z). Then,
each PE actives other PEs located in a two-dimensional cross-section of a
basic cube (along the plane z0y) as it was proposed in [36, 167]. In the
5-port system (cf. Fig. 6.20) the originator located at coordinates (2, yo, 20)
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Figure 6.20: Data distribution pattern in 3-dimensional tori for 5-port PEs
a) z0— 3,20 — 1,20+ 1 b) 20 — 2, 20, 20 + 2.

activates PEs at coordinates (2941, y0—1, 20—3), (zo, Yo, 20— 2), (zo+1, yo—
1,20—1), (zo+1,y0—1, z0+1), (z0, Yo, 20+2). The communication systems of
PEs at z coordinate values equal, respectively, to zg—3, z0— 2, and zp— 1, g,
and zg + 1, zp 4+ 2, cooperate in pairs in the moves two and three. Each of
the three pairs perform the same communications. Each PE activated in the
first move sends data to five neighbors with the same value of z coordinate.
For that purpose four PEs are activated using only links of the PEs in the
very one two-dimensional cross-section (the same z coordinate), and one
PE is activated using the links of the pairing two-dimensional cross-section.
Thus, in each two-dimensional cross-section there are 5 active processors
after move two. In the third move each active PE activates 4 more PEs in the
same two-dimensional cross-section and one in the pairing two-dimensional
cross-section. A method of scattering in 6-port toroidal 3-dimensional mesh
has been proposed in [6]. In [166] a broadcasting method for d-dimensional
toroidal mesh with 2d-port PEs and edge size (2d + 1)’“ has been proposed
(where k € Z*t). This method activates (2d + 1)*® PEs in kd moves. Thus,
the methods proposed in this section can be extended to toroidal meshes of
arbitrary dimension when p = 2d + 1.

Now, we evaluate our data distribution methods. As in the previous
sections we assume for simplicity reasons that nothing is returned to the
originator. Let us denote by «; the amount of data to be processed by a PE
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Figure 6.21: Speedup for 3-dimensional tori.

activated in the move ¢ of scattering, and by k = log,,, m the number of
moves. The volumes of data can be found from the following set of equations

(pedl,...,6}):
Aapy = S+ (A+C)ay

7
Aoy = S+ Clog—it1 + pZ hivi(p+ 1)) + Aag_ig
=2
fori=2,...,k (6.22)
k
V = w —I—pZ(p + 1) ey
=1
The speedup of systems with 1-port to 6-port PEs have been compared
in Fig. 6.21. It was assumed that A = 1us/byte, C' = 3.3ns/byte, S = 8.57us,
V = 1Mb (the communication parameters are typical of CRAY T3D). As it
can be observed the bigger the number of ports is the bigger speedup the
computer system can sustain. It is because the more ports work in parallel the
more data can be transferred in a unit of time, and hence the communication
system introduces less overhead.
Finally, let us comment on the communication patterns proposed for
the 3DMesh. Observe that the scattering methods for p = 1 and p = 2
can be extended to more dimensions than three. For d-dimensional mesh d
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moves would be necessary to activate basic cube of (p+ 1)? PEs. Whether
equivalent or more efficient methods exist for d > 4 and p > 3 is an open
problem. The methods proposed are optimal in that sense that the number
of activated processors in the allowed number of steps is the biggest possible.
Using message pipelining may result in further reduction of data distribution
and total processing times. Note that in the above scattering methods the
following equation is satisfied for a basic cube: (p + 1)’“ = 2%, where p is
the number of ports per a PE, k is the number of moves per step, z is the
length of one edge of the basic cube, and d is the number of dimensions. It
is an interesting problem which solutions of this equation lead to a feasible
tessellation of moves in a basic cube. It was shown in [166] that for meshes
not all solutions lead to a feasible tessellation. A similar problem is existence
of moves tessellations for shapes other than cube.

6.3.5 Multistage Interconnection

In this section we apply the divisible task concept in the multistage archi-
tecture. As examples we consider multistage cube network (MCN) and IBM
SP-2 high performance switch (HPS) network [1, 195].

We will analyze the multistage cube network in the form introduced in
Fig. 2.2f. Note that since PEs are 1-port, the distribution of the load could
be found from equations (6.22) provided that a feasible scattering method
using all ports of all active PEs existed. We present such a method in the
following. Let k& = logem denote the number of stages in the network. The
method of activating PEs is the following:

Scattering in MCN
1: Fy activates P, _1;
2:z:=m—2;
3: for ¢ := k downto 2 do

begin
4: for j € {0...28""—1} U {m — 2*7".. .m—1} paralleldo

P; activates Pjxor =}

5: z 1= m xor 2kl

end;
Phrase for index paralleldo body demands that body block be performed
in parallel for all values of indez. For example, when m = 16 the following
sequence of distributions takes place (z — y means z activates y, ’;” separates
actions not performed simultaneously): 0 — 15;0 — 14,15 — 1;0 — 12,1 —
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Figure 6.22: An SP-1/-2 interconnection: a) 16-PE frame, b) 64-PE/4-frame.

13,15 — 3,14 — 2,0 — 8,1 — 9,2 — 10,3 — 11,15 — 7,14 — 6,13 —
5,12 — 4.

Lemma 6.4 A multistage cube network of m = 2% processors can be acti-
vated in k steps by the above algorithm of scattering in MCN.

Proof Note that in each step of the MCN distribution the number of
active PEs duplicates. Hence, we have to show only, that all the concurrent
communications are contention-free. The message in the MCN is switched
Pswap” in ith layer switch if the source and the destination differ in their
addresses in position 2. Otherwise, the message goes ”straight”. ”Straight”
means that a message entering the switch at the lower input leaves the switch
from the lower output, a message entering at the higher input departures
from the higher output (cf. Fig. 2.2f). ”Swap” is the opposite case. During
the distribution each PE communicates to a PE with the binary address
being the sender address xor’ed with z. All the sending PEs addresses are
changed in the same bits to obtain the destination. Hence, the messages
are switched in the same way in all the respective layers of multistage cube
network. A contention may arise only when two messages arrive at the same
switch and one message wants to go "straight”, while the other needs to be
?swapped”. This means that the two messages are differently switched in the
same layer which contradicts the earlier observations. Thus, communications
are contention free. a

Analogous reasoning can be conducted for multistage interconnection
of IBM SP-1/SP-2 computers which are using bi-directional switches. The
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data distribution pattern differs slightly in this case. 16 PEs interconnected
by HPS constitute a frame presented in Fig. 6.22a. Frames can be linked
with each other in a variety of ways [195] including e.g. fat-tree networks,
SW-Banyan. There are at least 4 usable paths between each pair of nodes,
except for node pairs that are directly attached to the same HPS (4-PE
groups Fp...Ps; Py...Pr etc.) In this section we assume that each PE has a
single port attachment to the HPS (p = 1). Hence, each PE can activate
only one additional PE in a distribution step. This pattern can be applied
in a multi-frame SP-1/-2 releases. Assuming that f is the number of frames
and that each frame can be connected with any other frame by at least one
contention-free route, all the frames can be activated in log, f steps. Then,
PEs of a frame can be activated starting from a single PE as in the following
description. The distribution for a single frame can be 4-step (cf. Fig. 6.22):
1§P0 — ]Dg7
2§P0—>P47P8—>P12;
3:P0%P27P4—>P67P8—>P107P12—>P14;
4:]3()—>1317132—>]D37]D4—>]D57136—>]D77 Pg%P97P10—>P117P12—>P137P14—>P15.

In a multi-frame machine (Fig. 6.22b) the above four steps could be
preceded by two more steps:
1:FrameOQ Fy :(—Framel Fy;
2:Frame0Fy :—Frame2 Fy, Framel Fy :—Frame3 F;.

Then, the distribution of the load can be found analogously to a multi-
stage cube network case using equations (6.22) for p = 1.

6.4 Discussion and Conclusions

In this section we comment on the granularity of data, summarize this chap-
ter as well as discuss some possible further extensions of divisible task con-
cept. The results of this chapter are collected in Table 6.3. Column ”Result”
shows (among the others) computational complexity of the algorithm finding
distribution of the load.

Let us observe that the assumption on infinite divisibility can be hard
to justify in practice. In real applications data usually has some unit of
granularity e.g. record in a database file, a floating point number, etc. It
is still possible to calculate bounds on performance of computer systems
or to use the above described methods as good approximations. The data
distribution calculated from solutions of equations e.g. (6.1), (6.3), (6.4),
(6.16) can be rounded up to the nearest unit of granularity. This results in a
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schedule longer than calculated. Yet, the increase of the schedule length can
be bounded from above. For the case of not returning results this bound is
equal to §(A + kC'), where § is the maximal increase of the load for a PE
(equal to the granularity unit), A - is the processing rate of the target PE, C
- is the communication rate (homogeneous communication links assumed),
k - is the biggest number of times the data chunks including the load for
the target PE are transferred from one PE to another PE. k is a constant
depending on the scattering method and the communication network. Thus,
the deviation from the expectation is bounded from above. When returning
the results is considered, parameter k should include also the biggest number
of data transfer operations during returning the results.

The analysis performed here usually included two steps: devising a scat-
tering algorithm and solving a set of linear equations. The scattering algori-
thm included and hid the underlying hardware/software details (i.e. archi-
tecture). The sets of linear equations include two types of equations: firstly,
equations linking processing time and communication time of the sender
and the receiver PEs or of the consecutively activated PEs, and secondly, an
equation expressing that all the load must be processed. Although this me-
thod has been applied to analyze quite wide range of computer architectures
still many questions remain open. One of them is the complexity of problem
Q, star | div,n = 1| Cpap or Q,bus | div,n = 1| Cyqp when startup times
are non-zero. Similar question can be raised for tree networks of processors.

In this publication and in the previous works on divisible task theory
it was assumed that the computation time depends linearly on the volume
of processed data. But, for example, distributed sorting has nonlinear de-
pendence of the processing time on the size of processed data. This can be
included in our equations (e.g. (6.1), (6.4), (6.16), etc.) as a nonlinear pro-
cessing time function depending on the amount of processed data. In such
a case, however, the sets of equations would be by far harder to solve. This
problem can be even more difficult than solving a set of nonlinear equations.
Consider, for example, distributed multiplication of two matrices. To pro-
duce one entry in the resulting matrix a column from one input matrix and
a row from another must be known. A possible approach here is to send a
column and a row to a PE each time a final entry is calculated. Then, the
divisible task concept can be used as presented in the earlier sections. Yet,
it is not difficult to observe that this method is not optimal because many
columns and rows would be sent several times. The minimum number of
communications is achieved when the PEs compute square submatrix of the
product matrix. It is because square is a rectangle with minimal length of
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edges for the given area. Hence, to find an optimal distribution of the load
it may be necessary to find partitioning of the product matrix into squares,
possibly of different sizes. Note that this is a cutting problem - one of the
hardest computational problems.

In the scattering algorithms presented in this chapter PEs received data
from one link only. An interesting direction of further research can be con-
sidering the case when PEs receive data via several non-identical paths. As
far as scattering algorithms are considered, perplexing problem is the qu-
estion of their optimality. To our knowledge there are no general methods of
proving time optimality of the scattering algorithms. To demonstrate supe-
riority of the scattering algorithm direct comparison is applied. Hence, the
description of the methods proposed here ended in performance evaluation.

Another interesting issue for further research is including in the model a
limited sizes of buffers on the communication paths and at the destination
PEs, applying divisible task concept in dynamic distributed load balancing,
or considering multiple applications (instead of one) issued by multiple ori-
ginators.

Observe that divisible task approach can be also applied to analyze the
production-transportation systems. In such a system the transportation sys-
tem is an equivalent of the computer interconnection network, while produc-
tion facilities are equivalent to processors.

Finally, let us note that divisible task and multiprocessor task concepts
can be used together at different levels of scheduling. For example, multipro-
cessor task scheduling can be applied to assign processors or partitions to
applications, while divisible task scheduling can be applied to find the best
computation distribution for the application.
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Table 6.3: Scheduling divisible tasks
Problem Result, remarks Reference
Qchains& fno—overlap|divn=1|Cpnar | O(m) [15, 60, 100]
[154, 176]
Q.chain, s& f | div,n=1|Cpas O(m) [15, 60]
[100, 154]
Qtrees& fino—overlap|div,n=1|Cpar | O(m) [12, 15, 61]
Qtree s&f|divin=1| Cpas O(m) [12, 15, 61]
Q.bus no—overlap|div,n=1|Cpax O(m) [14]
Qbus|div,n=1|Cpaz O(m) [12, 13]
Q star,s& fno—overlap |div,n=1|Ciap | O(m) [16, 100]
Qstar, s& f | divin=1|Cpaz O(m) [16, 100]
Rbus, no—overlap | div| Crax O(m),FIFO [189]
Rbus|div|Cras O(m),FIFO [189]
P hypercube, s& f | div,n=1|Cpas O(logm) [33, 34]
Q.chain, s& f| divn=1|Cras O(mlogm), S#£0 [33]
Q.conn, s& f| divn=1|Cpaz NPh,S#0 [33]
Qbus|div,n=1|Cpaz NPh,S#0 [33]
Qstar, s& f | div,n=1|Cpas polynomial cases, S #£0 [33]
Q. hypercube, s& f | div,n=1|Cras O(logmloglogm), S#0 [33]
P2D—mesh, s&f | divyn=1|Cpasz performance bounds [35]
P2D—mesh,csw|divyn=1|Cpaz O(logmloglogm) [36]
Qstar, s& f | divn=1|Cpaz pipelining [17]
Q,chain, 1—port, s& f | div,n=1|Cpnas O(m) [18]
Qbus,|div,n=1| X two criteria [191]
Pchain, csw|div,n=1|Cras performance bounds Sec.6.3.1
Qstar | div,n=1|Cpaz MILP Sec.6.3.2
Qstar, win' | div,n=1|Cpas polynomial ,L.P Sec.6.3.2
P hypercube, esw | div,n=1|Cpaz O(logmloglogm),S#0 Sec.6.3.3
P3D—mesh, csw|div,n=1|Cpax O(logmloglogm),S#0 Sec.6.3.4
Prultistage, csw|div,n=1|Cpas O(logmloglogm),S#0 Sec.6.3.5

1) Processors become continuously available after certain moments of time.




Chapter 7

Conclusions

In this work we considered selected methods of scheduling in multiprocessor
computer systems. With the advent of modern computer systems it turned
out that classical scheduling methods in many cases are not satisfactory (cf.
Sections 4.6, 5.1). Therefore, two new scheduling models were analyzed here:
multiprocessor tasks and divisible tasks.

Multiprocessor tasks require several processors simultaneously, thus allow
for expressing task parallelism at high level of abstraction. This results in
formulation of more tractable scheduling problems which in classical form are
computationally hard. Divisible task model assumes that work is infinitely
divisible and parallelizable. This model allows for finding simple solutions
of problems which in other setting are again intractable. Moreover, divisible
task concept permits introducing computer architecture context which in the
classical approach is often highly generalized to make problems manageable.
In this way scheduling problems have been combined with communication
optimization problems. Thus, a method has been proposed which links these
two research areas.

The results of this work are collected, together with the previous publi-
cations on the subject, in tables: 5.1,5.2,6.3. To sum up the results of this
publication, the most important in our opinion are:

e Formulation of algorithms for scheduling preemptive multiprocessor
tasks with linear speedup on parallel processors.

e Formulation of low-order complexity algorithms for scheduling preemp-
tive multiprocessor tasks on dedicated processors with L., criterion.

e Formulation of polynomial-time algorithms for scheduling preemptive
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multiprocessor tasks on dedicated processors in time windows.

e Formulation of divisible job scheduling algorithms for a variety of com-
puter architectures (including 3-dimensional meshes, hypercubes, mul-
tistage interconnections)

This work has not exhausted the resource of scheduling problems in mul-
tiprocessor systems. Further research can include for example:

e Scheduling multiprocessor tasks on parallel processors available in time
windows.

e Scheduling multiprocessor tasks with linear speedup for mean comple-
tion time criterion.

e Scheduling divisible tasks on other architectures.
e Scheduling multiple divisible tasks in a system with many originators.

e Further practical verifying divisible task concept for other applications
and other architectures.



Streszczenie w jezyku
polskim

Nowoczesne systemy komputerowe sa systemami wieloprocesorowymi. Ich
efektywnosé¢ zalezy od metod zarzadzania wykonywanymi pracami. Szybkie
wykonanie réwnoleglych aplikacji jest mozliwe jedynie wtedy, gdy poszcze-
gélne jej elementy sa odpowiednio uporzadkowane w czasie i przestrzeni.
Stad wynika znaczenie poprawnego szeregowania zadan w wieloprocesoro-
wych systemach komputerowych.

W niniejszej rozprawie rozwazne sa zagadnienia deterministycznego sze-
regowania zadan. Klasyczna teoria szeregowania zadan zaktada, zZe zadanie
w jednej chwili czasu wymaga doktadnie jednego procesora. W ostatnich la-
tach zalozenie to jest podwazane, zwlaszcza w kontekscie aplikacji dla réw-
noleglych i rozproszonych systeméw komputerowych. Praca podwiecona jest
zagadnieniom szeregowania tego typu aplikacji zwanych dalej zadaniami wie-
loprocesorowymi. Przedstawiono analize ztozonosci obliczeniowej otwartych
probleméw szeregowania zadan wieloprocesorowych. Zaprezentowano algo-
rytmy szeregowania zadan podzielnych zachowujacych liniowe przyspieszenie
na procesorach réwnolegtych. Analizie poddano problemy podzielnego sze-
regowania zadan wieloprocesorowych na procesorach dedykowanych z kryte-
rium maksymalnego opdéznienia.

Wiele aplikacji réwnoleglych ma tak regularna strukture, ze mozliwy jest
podzial obliczei na czesci o dowolnych rozmiarach i wykonywanie ich na nie-
zaleznych procesorach. Tego typu aplikacje nazwiemy zadaniami jednorod-
nymi. Dla zadan jednorodnych zaprezentowano metode znajdowania opty-
malnego rozdzialu obliczenn w rozproszonym systemie wieloprocesorowym.
Koncepcja zadan jednorodnych umozliwia prosta analize obszernej klasy sys-
teméw komputerowych (m.in. architektur takich jak 3-wymiarowa krata,
hiperkostka, magistrala itd.), uwzgledniajaca wiele szczegélowych aspek-
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tow obliczen réwnoleglych. Metoda ta pozwala takze na ocene efektywnosci
wieloprocesorowych systeméw komputerowych; przedstawiono przyklady ta-
kiej oceny. Koncepcja zadania jednorodnego umozliwia uwzglednienie wielu
aspektéw komunikacyjnych, stanowi tym samym pomost pomiedzy teoria
szeregowania zadan a teoria optymalizacji komunikacji w sieciach kompute-
rowych.

Praca zawiera wyniki przedstawione na tle aktualnego stanu badan w
rozpatrywanej dziedzinie. Uzyskane rezultaty, przedstawione w ujednoliconej
formie, wskazuja dalsze kierunki badawcze.
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