
Selected Problems of Scheduling Tasksin Multiprocessor Computer SystemsMaciej Drozdowski
Instytut InformatykiPolitechnika Pozna�nskaPozna�n, 1997

ContentsSummary 51 Introduction 61.1 Scheduling in Multiprocessor Systems : : : : : : : : : : : : : 61.2 The Goal and the Scope of This Work : : : : : : : : : : : : : 82 Parallel Computer Systems 112.1 Hardware : 112.2 Software : 173 Notions and De�nitions 213.1 Deterministic Scheduling Theory : : : : : : : : : : : : : : : : 213.2 Complexity Theory : 303.3 Performance of Parallel Applications : : : : : : : : : : : : : : 354 Overview of Related Problems 384.1 Allocation : 384.2 Load Balancing : 404.3 Scheduling with Communication Delays : : : : : : : : : : : : 424.4 Loop Scheduling : 444.5 Communication Optimization : : : : : : : : : : : : : : : : : : 454.6 Problems in Implementing Scheduling Models : : : : : : : : : 475 Multiprocessor Tasks 495.1 Why Multiprocessor Tasks? : : : : : : : : : : : : : : : : : : : 495.2 Parallel Processors : 525.2.1 Overview of Earlier Results : : : : : : : : : : : : : : : 525.2.2 P j spdp�lin��j; var j Cmax : : : : : : : : : : : : : : 595.2.3 P j spdp�lin��j; var; rj j Cmax : : : : : : : : : : : : : 603

4 CONTENTS5.2.4 P2 j sizej ; pmtn; rj j Cmax : : : : : : : : : : : : : : : : 645.3 Dedicated Processors : 705.3.1 Overview of Earlier Results : : : : : : : : : : : : : : : 705.3.2 Low Complexity Algorithms for Maximum Lateness : 775.3.3 Scheduling in Time Windows : : : : : : : : : : : : : : 926 Divisible Tasks 1076.1 Introduction : 1076.2 Overview of Earlier Results : : : : : : : : : : : : : : : : : : : 1096.3 Applying Divisible Task Concept : : : : : : : : : : : : : : : : 1136.3.1 Chain Interconnection : : : : : : : : : : : : : : : : : : 1136.3.2 Star and Bus Interconnections : : : : : : : : : : : : : 1196.3.3 Hypercube : 1346.3.4 3D-mesh : 1436.3.5 Multistage Interconnection : : : : : : : : : : : : : : : 1476.4 Discussion and Conclusions : : : : : : : : : : : : : : : : : : : 1497 Conclusions 153Streszczenie w j¦zyku polskim 155Bibliography 157Index 173

SummaryContemporary computer systems are multiprocessor or multicomputer ma-chines. Their e�ciency depends on good methods of administering the exe-cuted works. Fast processing of a parallel application is possible only whenits parts are appropriately ordered in time and space. This calls for e�cientscheduling policies in parallel computer systems.In this work deterministic problems of scheduling are considered. Theclassical scheduling theory assumed that the application in any moment oftime is executed by only one processor. This assumption has been weake-ned recently, especially in the context of parallel and distributed computersystems. This monograph is devoted to problems of deterministic schedulingapplications (or tasks according to the scheduling terminology) requiringmore than one processor simultaneously. We name such applications mul-tiprocessor tasks. In this work the complexity of open multiprocessor taskscheduling problems has been established. Algorithms for scheduling mul-tiprocessor tasks on parallel and dedicated processors are proposed. For aspecial case of applications with regular structure which allow for dividingit into parts of arbitrary size processed independently in parallel, a methodof �nding optimal scattering of work in a distributed computer system isproposed. The applications with such regular characteristics are called di-visible tasks. The concept of a divisible task enables creation of tractablecomputation models in a wide class of computer architectures such as cha-ins, stars, meshes, hypercubes, multistage networks. Divisible task methodgives rise to the evaluation of computer system performance. Examples ofsuch performance evaluation are presented.This presentation summarizes earlier works of the author as well as con-tains new original results. The results are presented in a uni�ed form inthe context of the current state-of-the-art in the analyzed �eld. The resultsobtained point out further research directions.5

Chapter 1Introduction1.1 Scheduling tasks in multiprocessor computersystemsThe increase of the computer speed and their ability to solve bigger andbigger problems is an everlasting challenge for the designers. As computersystems growmore complex and their speed increases the problems that mustbe overcome to further increase the speed and the "capacity" seem to groweven faster. The di�culties follow physical phenomena at the foundations ofcomputer devices technology. For example consider a processor technology.A limited yield of the current sources in the integrated circuits for the �xedclock period limits the maximum length of buses and internal connections inthe circuit. And vice versa for the given size of the connections the frequencyof the clock is limited. Thus, to increase the speed the yield of the currentsources must be higher or the size of the devices must be smaller. Further-more, in order to minimize the number of defected circuits in one piece ofsilicon, the chips are reduced in size. This, and growing complexity of theprocessors results in increasing density of power dissipation. Yet, it cannotgrow to in�nity. Moreover, since the photolithography methods are limitedby the light wave length further miniaturization becomes slower and morecostly than in the recent years. Hence, it seems that unless new ways [197]are found to overcome the existing technological problems the developmentof processors will be slower and prohibitively expensive [123].A solution to this problem can be in exploiting potential simultaneity inexecution of some independent program fragments. In other worlds, explo-iting parallelism of computations can be the answer. It can be veri�ed that6

1.1. SCHEDULING IN MULTIPROCESSOR SYSTEMS 7even in commonly performed engineering and scienti�c computations there isa great potential for parallel computations [140]. The idea of reducing com-putation time by concurrent execution of some parts of a program is over ahundred and �fty years old [139]. Despite that, concurrent computations arenot so common in contemporary programs. There can be at least two reasonsfor this situation: limited technology and di�culties in creating correct ande�cient parallel applications. With the advent of relatively cheap and po-werful microprocessors the �rst reason became easier to overcome and manyvendors started to o�er multiprocessor systems. Furthermore, some paral-lelizing methods have been implemented in contemporary microprocessors[4, 115, 156] (multiple instruction issue, out of order instruction execution).The second reason seems to be much more signi�cant. It appears that de-veloping an e�cient and correct parallel application is not a trivial task.An important issue is that parts of the application must be executed in aproper sequence and should not wait for their data more than necessary.Thus, feasible and e�cient scheduling1 parts of a parallel application is veryimportant. Consequently, the �eld of scheduling for multiprocessor systemsis signi�cant in the design of libraries and compilers [11, 108, 170, 175]. Con-temporary parallel computer systems are valuable assets shared by manyusers. The access to the shared resources must by managed by the opera-ting system. Hence, scheduling of tasks is important also for the designersand administrators of operating systems [69, 185]. In hard-real-time envi-ronment, where programs must be completed before deadlines, scheduling isparticularly important element of the system design [114, 179, 184, 192, 212].Scheduling is also one of the main areas of contemporary mathematics [193]as a branch of combinatorial optimization. The origin of scheduling lies inthe operations research [10, 30, 43, 68, 143] mainly in production and projectmanagement. Only later were these results applied in the management andcontrol of computer systems.When building a schedule it is an objective to build the one which is thebest possible in the sense of some criterion, e.g. the shortest schedule. Onthe other hand, for practicality reasons the time spent on constructing sucha schedule cannot be long. In particular, the time should be polynomiallybounded - i.e. growing polynomially, not exponentially, with the growth ofthe problem size. Satisfying these two requirements is sometimes di�cult.When the scheduling problem is computationally hard (precisely NP-hard)1The notions used in this section in an intuitive sense will be de�ned more rigorouslyin the following sections of this work

8 CHAPTER 1. INTRODUCTIONthen according to the current state of the knowledge polynomial optimiza-tion algorithm should not be expected. Thus, it is a crucial problem to indi-cate which problems are solvable "fast" (in polynomial time). Determining,that a problem is not computationally hard is equivalent with demonstra-ting a useful algorithm solving the problem. Proving that the problem iscomputationally hard is a qualitative indication that it is hard to expect analgorithm which is both polynomial and always builds optimal solutions. Insuch a case it can be advantageous to use fast heuristic algorithm which gi-ves feasible solution, but not necessarily an optimal one. The computationalcomplexity theory supplies methods for the analysis of the problems fromthe point of view of the necessary computational costs as well as presentsthe methods of dealing with special classes of problems. Analysis of the al-gorithms results not only in the algorithms building schedules, but also inthe qualitative directions for the design of computer systems. For example,in some architectures it is possible to determine when it is better to executean application on all available processors and when it is more e�cient to useonly one processor [172] (without intermediate possibilities).The deterministic scheduling originated as a branch of operations rese-arch and as such has over �fty years of history, and a wide range of theoreticaland practical results. The domain is so immense that its systematic presen-tation is beyond the size of this work. However, many important aspects ofscheduling in parallel computer systems were not considered by the classi-cal scheduling theory. This work is devoted to the presentation and analysisof such problems - the problems of scheduling in multiprocessor computersystems.1.2 The Goal and the Scope of This WorkIn the sequel we consider the problems deterministically. This means thatall the parameters describing the tasks and the computer systems are �-xed values (uncertainty is not considered). This approach is justi�ed inmany practical situations and in the worst-case analysis. For these reasonsit is widely applied when considering scheduling problems. The determini-stic character of task parameters has been discussed in many earlier works[10, 30, 43, 68, 143]. In the context of this work it is necessary to explaindeterministic character of such parameters of the task as the number of re-quired processors or the set of required processors. Parallel applications areoften prepared for a precisely known number of processors. The choice of the

1.2. THE GOAL AND THE SCOPE OF THIS WORK 9actual number of processors can be done by the programmer, by a compileror by the operating system at the loading time. If changing the number ofprocessors executing an application is possible at the run-time, then stillthere exist a number of processors which can be most e�ciently exploited.In the case of dedicated processors not a number but a set of processors isrequired. In such dedicated environment the application has a predeterminedset of processors necessary for its execution. Thus, the number of requiredprocessors or the set of required processors can be considered as known de-terministically. This issue is further analyzed in Sections 2.2, 3.1, and 5.1.According to the taxonomy of [56] the scheduling we consider is global andstatic. In other words, we assume that decisions on scheduling are centrali-zed, the used policies remain constant, and all the required knowledge aboutthe workload is available.The domain of scheduling in parallel computer systems cannot be con-sidered independently from the architectural constraints and from the pro-gramming environment. Hence, the features of contemporary multiprocessorsystems important for this work will be presented.There are many alternative approaches to achieving e�ciency of parallelcomputer systems. Some of them concentrate on a particular element of thesystem, other try to optimize the system as a whole. The examples can beallocation, load balancing, routing etc. which often di�er only very slightlyfrom the classical scheduling. It appears that such partial approaches separa-ted from the issues of scheduling have a limited in
uence on the e�ciency ofthe computer system [133, 213]. Thus, it seems impossible to have an e�cientcomputer system without satisfactory scheduling algorithms. On the otherhand, from the practical viewpoint it is impossible to use only the schedulingmodels. It is a consequence of intractability of design and implementation ofscheduling algorithms tackling every possible aspect of a parallel computersystem. Hence, in complex systems cooperation between scheduling and thealgorithms optimizing other elements of the computer system seems requ-ired. Furthermore, a growing number of researchers attempt to incorporatecommunication constraints in the scheduling models [42]. Consequently, therelated approaches and their links with scheduling will be presented.The classical scheduling theory assumes that a task for its executionrequires only one processor at a time. This assumption is disregarded recen-tly, especially in the context of parallel applications in the multiprocessorcomputer systems. The tasks requiring more than one processor at the samemoment of time will be called multiprocessor tasks. This work is dedicated toscheduling multiprocessor tasks. The problems of multiprocessor task sche-

10 CHAPTER 1. INTRODUCTIONduling can be divided into two classes: scheduling on parallel processors andscheduling on dedicated processors. The computational complexity analysisof open multiprocessor scheduling problems will be conducted. For selectedproblems polynomial-time algorithms will be presented.There exists a class of computational tasks which have a very regularlinear structure, e.g. processing measurement data [60], some problems oflinear algebra [27]. Such computational tasks can be divided into parts of(almost) arbitrary sizes. The parts can be solved independently in parallel bydi�erent processors. The transmission times and the processing times for theparts are proportional to the sizes of the parts. Tasks with such characteristicwill be called divisible. The concept of divisible tasks allows for a creationof simple models of communication and computation processes for a wideclass of computer architectures. This enables �nding an optimal distributionof the computational task and evaluating the performance of a computersystem.For analyzed problems the previously existing results will be shown usinga uni�ed notation. The proposed notation is an attempt to unify communi-cation aspects of computer system with the scheduling problems. This workcomprises the results obtained by the author, collected in the context ofthe current state of research, which allows for pointing out further researchdirections.The organization of the work is the following. In Chapter 2 importantfeatures of contemporary parallel computer systems will be described. InChapter 3 basic de�nitions of scheduling theory, computational complexityanalysis, parallel algorithm performance evaluation will be introduced. InChapter 4 an overview of the problems related to scheduling in multiproces-sor computer system will be presented. Chapter 5 addresses scheduling ofmultiprocessor tasks. Chapter 6 considers divisible task scheduling. Chapter7 contains �nal remarks and conclusions.

Chapter 2Parallel Computer Systems2.1 HardwareThe �eld of parallel computing is immense. Thus, we introduce here onlybasic concepts referred to in the further sections.It is common to start a description of parallel systems with an attemptof classifying types of parallelism and types of parallel machines. A usefulview on parallelism types is distinguishing between data parallelism and codeparallelism (cf. Fig 2.1). Data parallelism is a situation in which the sameoperations are performed simultaneously on the data structures of the sametype, whereas in code parallelism di�erent operations are performed in pa-rallel. Another view of parallel processing classi�cation considers granularityof parallelism. Granularity is a measure of the synchronizations frequencyamong independent threads of parallel execution [98]. Granularity can bealso viewed as a size of the units by which work is assigned to processingelements [76]. When granularity is �ne the synchronizations are frequent,e.g. every instruction. When granularity is coarse the synchronizations arerare, e.g. every 106 instructions.Classical computers execute instructions in the order dictated by thesequence in the program code. This approach is called control-driven or vonNeumann architecture. A di�erent approach where instructions are executedas soon as their operands become available is called data-driven or data
ow.Using this concept data
ow machines were built like Manchester Data
owor LDF100 [76, 111].In [96] control-driven computers have been divided into four classes:SISD (single instruction stream, single data stream), SIMD (single instruc-11

12 CHAPTER 2. PARALLEL COMPUTER SYSTEMS
Figure 2.1: Illustration of a) data parallelism and b) code parallelism.tion stream, multiple data streams), MISD (multiple instruction streams,single data stream), MIMD (multiple instruction streams, multiple data stre-ams). SIMD and MIMD are currently regarded as the classes of parallelcomputer systems. A variation of SIMD is SPMD (single program multipledata streams). MISD can be a model for machines with pipelined compu-tations. The division into SIMD (resp. SPMD) and MIMD coincides withdistinguishing data and code parallelism. Another classi�cation divides pa-rallel computers into multiprocessors and multicomputers. A multiprocessoris a computer with processors communicating via a shared memory (e.g.CRAY X-MP, Y-MP, IBM 3090 [9]). A multicomputer consists of a set ofprocessors with local memories, interconnected by some kind of network.We will name by processing element (PE) a processor with local memoryand a network interface. When a processor has a local memory which isnot accessible for other processors, then only by passing messages can someother processor access the contents of nonlocal memory. Thus, the aboveclassi�cation coincides with the division into message-passing architectures(multicomputers) and shared-memory architectures (multiprocessors). Themessage-passing computers can be divided into two classes: tightly-coupledand distributed. Distributed systems are (usually) heterogeneous computerswith di�erent operating systems, connected by (usually) heterogeneous to-pology Local/ Metropolitan/ Wide Area Networks (LANS, MANs, WANs).This class provides a relatively low cost parallel computing environmentwhich recently became very popular and was successfully applied (e.g. [196]).As the opposite, tightly-coupled systems can be characterized by: homogene-ous PEs, uniform interconnection, uniform operating system, single vendorand a single boxing.Tightly-coupled computers can be further di�erentiated by the type ofPE interconnection. In this work we limit considered interconnection ty-pes to: bus(es), point-to-point networks (called also single-stage networks),

2.1. HARDWARE 13and multistage networks. Bus interconnection is a classical concept in whichprocessors (or PEs) communicate over a shared bus. Machines like C.mmp,Cm�, Alliant FX/8, LDF100, Sequent Balance, SGI Power and Challengeare based on the bus concept [9, 98, 186]. Furthermore, majority of con-temporary microprocessors are able to use buses. Point-to-point networkslink pairs of processing elements (or switches to which PEs are attached).A path between two arbitrary processors in the network may require severalhops at the intermediate processors or their network switches. In the classof point-to-point interconnections we distinguish: hypercube (machines: Co-smic Cube, nCUBE1, nCUBE2, CM-2, FPS T, Intel iPSC/2, iPSC/i860),and mesh (possibly torus) (examples: MPP, AP1000, DASH, Alewife, J -Machine, Paragon, Cray T3D) [9, 47, 55, 75, 76]. A hypercube ([180]) of di-mension d consists of 2d PEs which can be labeled using d-bit long binarystring. Two PEs connected by a link have labels di�ering on exactly one bit.Transputer interconnections are examples of point-to-point networks, butthe topology varies depending on the actual system.In multistage networks PEs are connected by several layers of switcheswhile the internal layer switches have no PEs attached. Multistage networksare divided here into: trees and multistage cube network [161]. In the treenetworks a message to reach the destination must go up and down the hie-rarchy of switches. This kind of networks include fat-tree [146] (e.g. CM-5,Meiko CS-2), and hierarchy of rings (KSR1, KSR2) [47] (cf. Fig. 2.2). Thefat-tree is a binary tree with PEs at the leaves and the number of links gro-wing while moving down to the root of the tree. The root is connected to the"external world". The multistage cube network (MCN) is a representativeof a wider class of interconnections in which processors are linked by severallayers of switches where each layer has the same number of switches (e.g.:BBN Butter
y, SP1 and SP2). When computations are performed by sys-tems consisting of hundreds or more nodes we will say that this is massivelyparallel processing (MPP). In this work when talking about MPP systemswe will mean mainly tightly-coupled systems.The classi�cation of point-to-point architectures is not full without de-scribing the communication subsystem. When a PE has no specialized com-munication hardware (e.g. bare T800 Transputers without external switches)the processor must perform communication and routing functions. Hence, itis not able to communicate and compute in parallel. PEs in majority of mo-dern computers are equipped with communication hardware and the overlapof computation by communication is possible. Another element of the archi-tecture is the maximum number of active ports per PE. If communication

14 CHAPTER 2. PARALLEL COMPUTER SYSTEMS
Figure 2.2: Illustration of the interconnection types: a)bus, b)hypercube d =4, c)2-dimensional torus mesh m = 9, d)fat-tree m = 8, e)hierarchy of rings,f)multistage cube network m = 8 (S - switch).over only one link at a time is possible we call PEs 1-port. In the oppositecase PEs are said to be p-port (where p stands for the maximum number oflinks at a PE which can communicate simultaneously).The next element of the architecture is the commutation mode. Thecommutation mode is a physical protocol for message routing. We describecommutation modes here because routing functions are increasingly executedby dedicated hardware. The methods we refer to in this section are alsocalled switching or routing techniques. This should not be mixed with therouting problems alluded to in Section 4.5. Among various commutation(or routing) modes we distinguish store-and-forward, circuit-switched andpacket-switched [125, 163]. In the following, distance d is the number of linksbetween the sender and the receiver. For all the commutation modes thecommunication time between two neighbors is equal to Tcom = S + LC,where S corresponds to the communication start-up time (message packing,routing decision, circuit setting-up), C represents the transmission rate (timeunits per data unit), and L is the message length.In the store-and-forward mode when a PE sends a message to anotherPE located at distance d, the message (either as whole or in packet pieces)is sent to the closest PE on the path and it is stored there. Then, thisintermediate node sends the message to the next node on the path, and soon until the message reaches its destination. In this mode, the distance is a

2.1. HARDWARE 15crucial parameter in the communication delay:Tcom = d(S + LC)In the circuit-switched mode from the transmitter to the receiver a headerof the message is sent which reserves all the links of a communication pathto form a circuit between both PEs. Then, the remaining part of the messageis sent in one step. The message is not stored in any intermediate node alongthe path. The communication delay is:Tcom = S + d� + LC;where � represents the time needed to commute a switch. Parameter � � S(� � (0:1% : : :1%) of S), and can be neglected. Hence, for this mode, thecommunication delay does not depend signi�cantly on the distance. Thisobservation is con�rmed by experiments [163].In the packet-switched modes the message is split into packets which con-sist of
its. Flits are also called
ow of control digits. These are words passedover a link in one control cycle (e.g. clock cycle, or hand-shake cycle). The�rst
it plays the role of the header, the rest of
its follow it immediately, thelast one releases the communication "pipe". The model of the communica-tion delay is the same as in the previous mode. Among the packet-switchedmodes three sub-types can be identi�ed: wormhole, virtual-cut-through andbu�ered-wormhole modes. These modes di�er in the behavior of
its andpackets when the packet cannot move forward (e.g. there is no free link).� In the wormhole mode, the progressing of the message in the pipe is stop-ped. All the
its remain in the intermediate bu�ers thus blocking the links.� In the virtual-cut-through mode
its continue progressing on their wayuntil reaching the site where the �rst
it is stopped. There a whole packet iswaiting for release of the link. This mode assumes in�nite capacity of bu�ers.� In the bu�ered-wormhole mode,
its of some packets move until they reachthe stopped
it, then the whole packet is stored there. Yet, the number ofpackets that can be stored is limited by bu�ers capacity.Since the communication delay time can be described in the same wayfor packet-switched and circuit-switched modes, in this work we distinguishonly store-and-forward and circuit-switched modes (circuit-switched includespacket-switched and circuit-switched modes). In Table 2.1 we give examplesof the timing parameters for some existing machines [52, 118]. Though adetailed analysis of communication delay time shows that Tcom is a more

16 CHAPTER 2. PARALLEL COMPUTER SYSTEMSTable 2.1: Example communication parametersMachine Name Interconnection Commutation S �s C �sbyteIntel iPSC/2 Hypercube Circuit-Switched 136 0.384Intel iPSC/i860 Hypercube Circuit-Switched 350 0.2Meiko CS-1 Mesh Store-and-Forward 250 1.000Think. Mach. CM-5 Fat-tree Wormhole 73 0.1Intel Paragon 2D-mesh Wormhole 100 0.005Meiko CS-2 Fat-tree Wormhole 12 0.02Cray T3D 3D-torus-mesh Wormhole 8.57 0.0033IBM SP-1/SP-2 Multistage (Bu�ered)Wormhole 39 0.0125Parastation Mesh Wormhole 3083 1.04Cray C-90 Shared memory - 0.108 0.0001complex function [88, 117], in this work we adopt the above models of Tcomfor their simplicity and satisfactory accuracy.The introduced classi�cation is summarized in Fig. 2.3. Note that theupper and the bottom parts of the �gure present exclusive di�erentiation,while the division of message passing branch is not exclusive, e.g. somehypercube-interconnected computer can use both store-and-forward, 1-portand overlapped communication. The classi�cation we use is not intended tobe ultimate, rather than that we wanted to show basic ways of di�erentiatingamong the parallel computers. It is not di�cult to point out its limitations.The division into control-driven and data-driven computers is not so obviouswhen considering out-of-order instruction execution by modern microproces-sors [115]. Superscalar processors are internally MIMD but for the "outsideworld" are SISD. Division into shared-memory and message-passing compu-ters also becomes fuzzy when we realize that the memory can be logicallyshared but physically distributed. Because of the software-hardware dualismthe hardware support for distributed shared memory will probably grow inthe future and the two classes can converge. Moreover, the same computersystem may include several di�erent interconnections at di�erent levels ofhardware (e.g. CS-2 has omega network (a kind of multistage network) inthe switch and fat-tree of switches) or used for di�erent purposes (e.g. CM-5has fat-tree as the data network and binary-tree as the control network).Finally, the performance is the ultimate goal for building parallel systems.Hence, the above classes can converge in the future to some yet unpredictablee�cient blend of di�erent ideas.

2.2. SOFTWARE 17
Figure 2.3: The classi�cation of parallel computers.2.2 SoftwareIn many common applications (programs) great potential parallelism canbe found [140]. Thus, programs can be executed via many concurrent thre-ads (mutual relations between the notions of an application, a thread anda task, are precisely de�ned in Section 3.1). Computer systems should pro-vide support for implementing parallelism of an application including theissues posed by scheduling. In this section we introduce some aspects of pro-gramming models. Then, we consider operating system support for parallelapplications. We pay special attention to the methods of scheduling parallelcomputations.Shared memory parallel systems are mature programming platforms. Forsuch architectures extensions handling parallelism have been proposed in po-pular programming languages [9], especially, in the parallelism of loops (cf.Section 4.4). Unfortunately, it seems that shared-memory architecture doesnot o�er good scalability perspectives (here scalability means potential forincreasing the number of cooperating processors - cf. Section 3.3). On theother hand, distributed memory systems o�er almost unbounded scalabilityopportunities. Though many message-passing environments were o�ered andsuccessfully applied (e.g. PVM [196], Express[165], NX/2, Parmacs[47], MPI[204] etc.), the underlying message-passing architecture is di�cult to pro-gram. Thus, a concept of distributed memory which is logically shared hasbeen coined to hide the hardware from the view of the programmer. Imple-menting distributed shared memory rises many issues like data consistency,

18 CHAPTER 2. PARALLEL COMPUTER SYSTEMSperformance, scalability etc. Several approaches to the implementation ofdistributed shared memory in tightly-coupled message-passing systems havebeen applied including, for example, virtual shared memory, latency hidingby use of multiple threads, cache-based distributed shared memory [101].Also in loosely-coupled distributed systems the concept of logically sharedmemory has been realized in the form of associative memory o�ered byLinda environment [54]. Observe that since the underlying communicationarchitecture is based on message-passing, for the programmer there is littledi�erence between tightly-coupled system and distributed system.Parallel processing imposes di�erent requirements on operating systemsto the standard general-purpose single-processor machines. The performanceis a prerequisite of parallel systems existence. For that reason performanceshould not be sacri�ced for the functionality of the operating system [178].Thus, the parallel application must not be punished by unnecessary sys-tem functions which are not used but still contribute to memory occu-pation and latencies. For example, it was pointed out in [118], (cf. Table2.1) that even tightly-coupled message-passing systems are outperformed byshared-memory systems as far as communication parameters are considered.It is observed in [178] that the communication startup time consists in up to74% of the processing by the micro-kernel of the operating system. Thus, thefunctionality of the operating system, and scheduling in particular, should betightly tailored to the needs of the application (as it is, for example, in QNXoperating system [173]). Now, we put to the scrutiny the way applicationsare scheduled.Parallel operating systems are evolving from previously existing systemsand many ideas have been "naturally" inherited. Based on acceptable re-sponse time two load types have been distinguished in single-processor sys-tems [185]: terminal (or interactive) and batch load. Since batch tasks aresubmitted to the computer system far earlier than their actual executionbegins, deterministic scheduling algorithms can be applied. For the terminalload which requires immediate response, access to processors is granted onthe basis of FCFS, Round-Robin, multi-level priority queues etc. The con-cept of a "single" queue has been inherited by the parallel systems: readyprocessors are assigned work from a system-wide queue. This approach hasbeen applied e.g. in Cray X-MP [9]. Unfortunately, actual parallel executionof application threads depends on the machine loading and there is no gu-arantee of simultaneous execution on several processors. It is explained inSection 5.1 that such a situation can lead to a signi�cant performance de-terioration. To enable simultaneous execution of the application threads, an

2.2. SOFTWARE 19idea of coscheduling (sometimes called gang scheduling) has been applied inMedusa operating system of Cm� [98]. The coscheduled threads are assignedto processors in the same time quantum. Coscheduling is often implementedin shared-memory systems (e.g. Alliant FX/8, SGI Challenge). For example,in the IRIX 5.1 operating system running on SGI Challenge multiprocessorscoscheduling of threads is possible when requested by a parallel application.IRIX 5.1 insures parallel running of the threads by increasing the priority ofthe threads when the �rst thread of the application is scheduled. All threadsof the application are expected to be running in at most 10ms (60ms is thetime quantum). IRIX 5.1 ensures that even in the heavy load conditions 72%of the coscheduled application run time is truly parallel.A di�erent approach is based on the concept of partitions. All the proces-sors of the computer are divided into separated partitions. The applicationis granted simultaneous access to all the processors in a partition. Partitionsprovide means of restricting access to portions of the processor set for parti-cular users, types of jobs and a way to specify various scheduling characteri-stics on di�erent parts of the computer. For example, there are often di�erentpartitions for batch and interactive load. Partitions have been applied e.g.in Paragon, Cray T3D, KSR2, CM-5. In Paragon, Cray T3D, KSR-2 theuser can specify the size of the required partition. In Cray T3D two kinds ofpartitions are distinguished: hardware and software partitions. In the formerspecial hardware protects boundaries of the partition, while in the latter themicrokernel of operating system ensures isolation of applications in di�erentpartitions. In CM-5 size of the partition is managed by control processor towhich the user has interactive access. Time sharing of a partition by di�erentapplications is possible e.g. in Paragon and CM-5, but is not e.g. in CrayT3D. Since the application startup is time-consuming, the time quanta arevery long (minutes to hours).Existing computer resources are often not fully exploited [160]. Idle cyc-les of workstations and personal computers can be a cheap source of com-puting power. For such systems software is developed which identi�es idleworkstations, manages access to them, schedules tasks on such resources,supports process migration etc. [80, 104, 107, 162]. Furthermore, computersare often connected into clusters controlled by one scheduler. In such systemsprograms can be submitted for batch processing. Usually while submittinga task, a user can specify (among other features) the number of requiredcomputers, their architecture, maximum processing time. Network QueuingSystem (Cray), Load Sharing Facility (Convex), Load Leveler (IBM), Pro-spero Resource Manager [162], Condor [104] are examples of such systems.

20 CHAPTER 2. PARALLEL COMPUTER SYSTEMSMost of them claim support for parallel tasks, i.e. tasks requiring many ma-chines simultaneously. Probably a �nal form could be called a metasystemor metacomputer [107, 194] - a single computing resource composed of hete-rogeneous distributed computers.To this end let us remark on some analogies between processor schedulingand memory management. The simplest form of memory management is asituation in which one program uses all the available memory. Analogously,a single application on all processors gives the most of possible
exibilityand performance. To allow for multiprogramming memory has been par-titioned and the parts were used by di�erent programs. In contemporarycomputers processor partitions are introduced. This rises similar problemsas in the optimization of memory utilization: internal and external partition,recognizing and compacting idle processor partitions. Finally, a virtual me-mory allowed for almost unlimited size of program memory which is mappedinto real memory by operating system. Currently parallel applications mustgear to the available number of processors which is usually constant thro-ughout application lifetime. Yet, it is not inconceivable to allow for using asmany processors as the application needs and to change this number in therun-time. For this purpose virtual processors have been introduced whichare mapped by operating system into real processors (e.g. by time sharing).Furthermore, the idea of processor working set [98, 99] is almost immediateanalogy between virtual memory and processor allocation. The processorworking set is the number of processors which must be granted simultane-ously to the application to enable acceptable progress in computation. Still,it is disputable if the idea of virtual processors will be widely accepted be-cause it is conceptually close to processes (possibly with allowing for processmigration to idle processors). Moreover, this increase in functionality mustbe paid for in reduction of performance. There are also signi�cant di�erencesbetween memory and processor allocation. The processor allocation strategymust take into account the interconnection topology and the communicationpattern of the application. Processors may be equipped with di�ering hard-ware and software. Thus, processors are not as uniform as memory units.Moreover, processors are not as easily partitionable as memory space. Somearchitectures are well partitionable (e.g. meshes, hypercubes) some other arenot well suited for partitioning (e.g. multistage cubes). Finally, these daysthe number of processors is much smaller than the number of page units (yet,this may change in the future). Thus, although there are analogies betweenmemory and processor management, di�erent algorithms must be used forthese problems.

Chapter 3Notions and De�nitions3.1 Deterministic Scheduling TheoryIn this section basic notions of scheduling theory will be de�ned. Extensionsnecessary to deal with multiprocessor and divisible tasks will be introduced.We will propose a notation to describe considered scheduling problems.When analyzing scheduling problems three elements must be determi-ned: (i) computing environment comprising processor set P , communicationsystem and other resources R, (ii) task system T , (iii) optimality criterion.We assume that processor set P=fP1; : : : ; Pmg consists of m elements.Two classes of processors can be distinguished. Dedicated processors andparallel processors. Dedicated processors are specialized devices performingdi�ering functions. For example, we often say that specialized processorssuch as I/O, arithmetic, vector, graphic, signal processors are dedicated.Moreover, even identical processors can be considered as dedicated in cer-tain situations. A multiprocessor task can be considered as executed by adedicated processor also for the preallocation reasons. For a certain commu-nication pattern among the parts of the parallel application and for a givencommunication network it can be advantageous to map tasks to processors insome �xed way. Changing the preallocation may increase the communicationoverhead (due to dilatation, congestion etc., we say more about allocationin Section 4.1). Since the costs of �lling a pipeline, vector registers or a ca-che are high it is disadvantageous to transfer tasks to new sites frequently.Hence, there is a kind of a�nity between tasks and processors [155] andparallel processors may behave as dedicated devices. In production systemsmachines are regarded as dedicated rather than as parallel. In dedicated21

22 CHAPTER 3. NOTIONS AND DEFINITIONSenvironment a multiprocessor task requires certain processors not just somenumber of them. Hence, a set of processors is required simultaneously in thiscase. Alternatively, a task may be executed by some family of alternativeprocessor sets. As it is in the classical scheduling theory [43, 68] multipro-cessor tasks may consist of operations. In such a case we distinguish threetypes of dedicated processor systems:
ow-shop, open-shop and job-shop. Inthe
ow-shop all tasks have the same number of operations which are perfor-med sequentially and require the same sets of processors. In the open-shopthe order among the operations is immaterial. For the job-shop, the sequenceof operations and the sets of required processors are de�ned for each taskseparately.In the case of parallel processors each processor can execute any task.Hence, a task requires some number of arbitrary processors. As in the classi-cal scheduling theory parallel processors are divided into three classes: iden-tical processors - provided that all tasks are executed on all processors withthe same speed, uniform processors - if the execution speed di�ers from pro-cessor to processor, and unrelated processors - for which execution speeddepends on the processor and on the task. In each of the above cases speedof the processor can be determined. However, for the purposes of this workit is more convenient to use processing rate which is reciprocal of the speed.Processing rate is expressed in the units of time per unit of work. The rate ofidentical processors will be denoted A, of uniform processor Pi: Ai, and in thecase of unrelated processors Aij for processor Pi processing task number j.When processors are uniform or unrelated the slowest processor determinesspeed of processing the whole multiprocessor task.An important element of the multiprocessor computer is its communi-cation system. The classical scheduling theory originated in the time whenmultiprocessor systems with few tightly coupled processors dominated. Insuch systems processors could be considered as fully connected and the com-munication time was negligible. Nowadays, parallel systems are often multi-computers (cf. Section 2.1) comprising many processing elements connectedvia some kind of network. To be precise we should talk about processingelements rather than about processors. Yet, in this work these two namesare equivalent. There is also a great variety of interconnection architectu-res. Each processing element is characterized by its ability (or inability) tocommunicate and compute simultaneously. If simultaneous computing andcommunication is possible then there must be some specialized network pro-cessor in each PE which performs all network communication functions ando�-loads the computing processor. In such a case we say that the commu-

3.1. DETERMINISTIC SCHEDULING THEORY 23nication can overlap computation (a system with overlap in short). In theopposite case the communication system is without overlap. Another cha-racteristic is ability (or inability) of a processing element to simultaneouslycommunicate by several ports. If it is possible to communicate by p portssimultaneously we say that the system is p-port. In the opposite case onlyone port can communicate at a time and the system is 1-port. Accordingto Section 2.1 we distinguish two basic ways of transferring the messages:store-&-forward and circuit-switched routing. Furthermore, the communica-tion links between processors will be described by communication startuptime S and transmission rate C (cf. Section 2.1) when the links are identical,if the links di�er we will denote for link i startup and transmission rate Si,Ci, respectively.Apart from the processors there can be also a set R = fR1; : : : ; Rkg ofadditional resources, each available in j Ri j units (i = 1; :::; k).The second element of the scheduling problem is the task system. We willexplain now the relations between the notions of an application, a thread anda task. An application (or a program) can be executed (at least potentially)by many processors working concurrently. A thread is the basic unit of proces-sor utilization [125, 185]. Thus, any thread is executed by a single processor.A thread is equivalent to a program stream with independent instructioncounter running within the environment of an application. Hence, threadswithin the application are not isolated from each other. In this work, anyactivity inherently running on a single processor will be considered as equ-ivalent, from the scheduling viewpoint, to a thread. Analogously, activitieswhich can be performed on many processors (even only potentially) will beconsidered as applications. A task is the basic scheduling unit. Dependingon the scheduling model, the task can be equivalent either to an applicationor to a thread. In the classical scheduling models the application consistsof some (potentially) concurrent activities which are subject to scheduling.Thus, in this case tasks correspond to threads. In the case of multiprocessortasks, where the application is considered without its internal structure, thetask corresponds to the application.We assume that the set of tasks T consists of n tasks T1; : : : ; Tn. Forthe whole task system it is possible to determine such features as preemp-tability (or nonpreemptability) and existence (or unexistence) of precedenceconstraints. These characteristics are de�ned as in the classical schedulingtheory [43, 68]. Tasks are preemptable when each task can be interruptedand restarted later without incurring additional costs. In such a case theschedules are called to be preemptive. Otherwise, tasks are nonpreemptable

24 CHAPTER 3. NOTIONS AND DEFINITIONSand schedules nonpreemptive. Tasks are dependent if some task Tj must becompleted before starting some other task Ti, which we denote Tj � Ti.Precedence constraints are represented as directed acyclic graphs (DAGs).In the opposite case tasks are independent. New features are variable pro�leand divisibility of tasks. A pro�le of the multiprocessor task is �xed whenthe number (for parallel processors) or the set (for dedicated processors) ofused processors does not change during the execution of a task. A pro�le isvariable if it is possible to change within the schedule the number (of pa-rallel) or the set (of dedicated) processors used by a task. Unless otherwisestated, for variable pro�le tasks we assume that the cost of expanding a taskto a new (di�erent) processor is negligible and that not granting a processorto a task does not increase total amount of work. A task is divisible whenit is possible to divide it into parts of arbitrary size and execute these partsindependently in parallel on di�erent processors. Note that divisibility andchanging task pro�le resemble preemption. A preemptable task can be inter-rupted at any moment, hence it can be also divided into chunks of arbitrarysize. However, divisibility requires additionally that there are no precedenceconstraints (and thus no communication) among the copies of the task run-ning in parallel, which is not necessarily the case of preemptable tasks. Whena task pro�le is changing it means that the task appears and disappears onsome processor(s), this is thinkable when it is possible to interrupt proces-sing and restart a task. While considering allocation problem (cf. Section4.1) dependencies among tasks are often represented as task graphs. Theseare weighted graphs representing communications among tasks (nodes) byweights of the edges and processing times of the tasks by weights of thenodes.Each task separately Tj (j = 1; : : : ; n) is described by a number of para-meters. We enumerate them in the following.1. Number of operations nj . This parameter is given for tasks scheduledon dedicated processors. nj > 1 implies that task Tj consists of operationsfOj1; : : : ; Ojnjg.2. The set of simultaneously required processors fixj or the family ofalternative processors, setj . These parameters are de�ned only in the caseof dedicated processors. The multiprocessor task requires for its processinga set fixj of dedicated processors simultaneously. It is also possible thatmore than one set of processors can execute a task. Such a set of alternativeprocessor ensembles will be called a family of alternative processors setj .We will use the concept of a family of alternative processors only whenj setj j> 1. Analogously, for
ow-shop, open-shop, and job-shop set fixji or

3.1. DETERMINISTIC SCHEDULING THEORY 25family setji is de�ned for operation Oji.3. The number of simultaneously required processors sizej , or the maxi-mum number of usable processors �j , or the set of usable numbers of proces-sors anyj . These parameters are de�ned in the case of parallel processors.When the �rst parameter is given (task size or task width in short) thetask can be executed only on sizej processors required simultaneously. Themultiprocessor task can be executed by some number of processors fromthe range [1; �j] if the second parameter is given. In the case of the thirdparameter the task can be executed by various numbers of processors, enu-merated in set anyj . We assume that elements of anyj are ordered accor-ding to the increasing values. Note that in the case of uniprocessor taskssizej = �j = 1. When sizej is given then j anyj j= 1, when �j is de�-ned then j anyj j= �j . When the number of processors executing a task isnot restricted, then anyj includes all processor numbers from 1 till m. Wewill denote � = maxTj2T f�jg (for tasks executed by only one number ofprocessors � = maxTj2T fsizejg).4. Execution time. In the case of scheduling the task on set fixj of de-dicated processors the execution time will be denoted tfixjj . When task Tjcan be executed by a family of alternative processors setj then for eachfixji 2 setj the processing time is de�ned and denoted by tfixjij . In the caseof preemptable tasks it is necessary to determine how long a task must beprocessed in many intervals (possibly by di�erent processor sets) to considerit as �nished. Analogously to the classical scheduling on uniform and unrela-ted processors we assume that task Tj executed in l di�erent time intervalsof lengths �i, by processors in various sets fixji (i = 1; : : : ; l), is �nishedwhen Pli=1 �itfixjij � 1. For a task consisting of nj operations the executiontime tfixjiji is de�ned for each operation Oji requiring processors in set fixji.Analogously, for operation Oji with family setji of alternative processorsexecution time tfixjilji is de�ned for each fixjil 2 setji.Situation is di�erent in the case of parallel processors. Let us examineidentical processors �rst. When task Tj can be executed only by sizej proces-sors, its execution time is tsizejj . If it can be executed by various numbers ofprocessors, then for each feasible number k of processors execution time tkj isde�ned. There is a number of models describing relation between executiontime and the number of used processors. This relation is called parallelismsignature (cf. Section 3.3). In the literature it is:� an arbitrary discrete function [90],

26 CHAPTER 3. NOTIONS AND DEFINITIONS� an inversely proportional function (i.e. tkj = t1jk) [202],� an inversely proportional function up to k = �j [205],� a function inversely proportional to k� (i.e. tk= t1jk�) where 0 <� <1 [170].� an arbitrary continuous function [208].Analogously to the case of dedicated processors, we consider preemptabletask Tj executed in l intervals of length �i on ki processors (i = 1; : : : ; l) asbeing �nished when Pli=1 �itkij � 1. To calculate execution time of a task onuniform and unrelated processors one has to take into account speeds of theprocessors. We assume here that the slowest processor determines processingspeed of the whole task.For divisible tasks actual execution time depends not only on the proces-sor speed but also on the speed of communication medium, and scatteringalgorithm. Hence, it is more convenient to express the required amount ofwork by the volume of data that must be processed. For the problems withone task only symbol V will denote this volume, and Vj (j = 1; : : : ; n) forthe problems with more than one task.5. Ready time rj. A task can be executed only after rj .6. Due-date or deadline dj . A task should be �nished not later than by dj .If the task must be �nished before dj then this moment is called a deadline.7.Weight or priority wj. It can be interpreted also as the cost of remainingof Tj in the computer system.8. Resource requirementsRji. The task may additionally require Rji unitsof resource Ri.Before describing the third element of a scheduling problem formulationwe de�ne a schedule.De�nition 3.1 Schedule is an assignment in time of tasks to processors(and resources) satisfying the following requirements:- Each processor executes at most one task at a time.- In the case of dedicated processors, multiprocessor task Tj requiring proces-sors in set fixj is granted all these processors throughout all its executiontime. Task Tj with family setj of alternative processors is executed by exactlythose processors which are speci�ed in the used set(s) fixji 2 setj . OperationOji receives all processors required in fixji or when j setji j> 1 all processorsincluded in the used set(s) fixjil 2 setji.- In the case of parallel processors, a multiprocessor task which can be exe-cuted by only one number sizej of processors is granted that number of pro-cessors simultaneously throughout all its execution time. When maximum

3.1. DETERMINISTIC SCHEDULING THEORY 27number �j of usable processors is speci�ed, in no moment of time is the taskexecuted by more than �j processors simultaneously.- Tasks with �xed pro�le, when executed on parallel processors use alwaysthe same number of processors, and when executed on dedicated processorsuse always the same set of processors.- Task Tj is not executed before rj (j = 1; : : : ; n).- For each pair Tj � Ti, task Tj is completed before Ti starts.- All tasks are executed.- Nonpreemptable tasks are not interrupted, and preemptable tasks are inter-rupted a limited number of times.Given a schedule one can determine for task Tj :- completion time cj ,-
ow time fj = cj � rj,- lateness lj = cj � dj ,- tardiness �j = maxf0; cj � djg- whether it is late: Uj = 1 if cj > dj , Uj = 0 otherwise.The optimality criteria constituting the third element of a scheduling pro-blem are:Schedule length (makespan) Cmax = max1�j�nfcjg:Maximum lateness Lmax = max1�j�nfljg:Mean
ow time F = 1nPnj=1 fj . Note that it is equivalent to total com-pletion time Pnj=1 cj .Mean weighted
ow time Fw = Pnj=1 wjfjPnj=1 wj . It is equivalent to total weightedcompletion time Pnj=1 wjcj .Number of late tasks U =j fTj : Uj = 1g j.Weighted number of late tasks Pnj=1 wjUj .Mean tardiness 1nPnj=1 �j , which is equivalent to Pnj=1 �j .NotationTo denote the analyzed scheduling problems we will use standard three -�eldnotation � j � j
 proposed in [105] with extensions introduced in [44, 199].� j � j
 scheme in its three �elds describes processor system (�), task system(�), optimality criterion (
). Since the modi�cations proposed in [199] are notsatisfactory to describe the variety of the considered scheduling problems, wepropose further expansion of the notation. In the sequel we concentrate onthe new elements of the notation. Symbol � will denote empty (nonprintable)character which in the problem notation is skipped.

28 CHAPTER 3. NOTIONS AND DEFINITIONSThe �rst �eld contains symbols �1; : : : ; �7. The �rst two symbols are thestandard ones:�1 2 f1; P; P;Q;R;O;F; Jg - describes the type of processors (P - meansthat the number of identical processors is not bounded).�2 2 fk; �g - denotes the number of processors �xed to k or not �xed (�)by the de�nition of the problem.The third symbol �3 2 fwin; �g - denotes, respectively, that processorsare available in time windows or always available.Symbol �4 describes the processor interconnection architecture �4 2f�; conn; chain; star; tree; bus;mesh; hypercube;multistageg (cf. Section 2).The following values of �4 denote:- �4 = � interconnection is irrelevant because communication delays(i) are negligible, or(ii) for the considered communication system have been included into theexecution time of multiprocessor tasks, or(iii) for the considered communication system have been included in thecommunication time required to transfer data/results among two dependenttasks allocated to di�erent processors (cf. �7).- �4 = conn interconnection of an arbitrary type;- �4 = chain chain of processors;- �4 = star star of processors (i.e. single-level tree);- �4 = tree tree-type interconnection;- �4 = bus bus interconnection;- �4 = mesh regular rectangular mesh (possibly 3D�mesh; 2D�mesh forthree- and two-dimensional meshes);- �4 = hypercube hypercube;- �4 = multistage multistage interconnect.Symbols �5; �6; �7 are de�ned only when interconnection is explicitlyconsidered, i.e. when �4 6= �. Symbol �5 2 fno� overlap; �g denotes:- �5 = no�overlap on no PE can computation overlap communication;- �5 = � simultaneous communication and computation is possible.Symbol �6 2 fs&f; cswg denotes two basic types of routing:- �6 = s&f - store-and-forward;- �6 = csw - all types of routing for which the communication delay can be re-duced to a single startup time and a term linearly dependent on the volume oftransferred data, i.e. wormhole routing, circuit switching, virtual-cut-throughetc.Symbol �7 2 fp� port; �g denotes:

3.1. DETERMINISTIC SCHEDULING THEORY 29-�7 = p�port - simultaneous communication by at most p ports of a PE ispossible;-�7 = � - all ports of a PE can communicate simultaneously.The second �eld � = �1; : : : ; �10 de�nes the task system.�1 2 fspdp�lin; spdp�lin��j ; spdp�any; sizej ; cubej; fixj; fixij; setj ;setij ; �g - describes the type of the multiprocessor task.- �1 = spdp�lin - denotes that tkj is inversely proportional to k, in otherwords, speedup is linear (cf. Section 3.3).- �1 = spdp�lin��j - describes a situation similar to the previous one, butthe task cannot use more than �j processors simultaneously.- �1 = spdp�any - execution time tkj is an arbitrary function of k.- �1 = sizej - a task can be executed by only one number sizej of processors.- �1 = cubej - is a special case of sizej demanding that tasks be executed bynumbers of processors being powers of 2 (1, 2, 4, 8,: : : etc. processors). Thissituation refers to scheduling on hypercubes.- �1 = fixj - denotes that tasks can be executed by only one set fixj ofsimultaneously required dedicated processors. In the case of a multiprocessortask comprising a number of operations we use �1 = fixij .- �1 = setj - means that tasks have families of alternative dedicated proces-sors which can execute them. In the case of tasks with operations we willuse �1 = setij .- �1 = � - stands for standard uniprocessor tasks.According to the current value of �1 we will say that tasks require processorsaccording to model spdp�lin, spdp�lin��j etc.�2 2 fdiv; pmtn; var; �g - denotes divisibility, preemptability, variablepro�le or their absence.- �2 = div - tasks are divisible.- �2 = var - denotes variable pro�le. Note that �2 = var implies �1 2fspdp�lin; spdp�lin��j; spdp�any; setj ; setijg.- �2 = pmtn - tasks are preemptable, but the pro�le is �xed.- �2 = � - denotes that tasks are nonpreemptable and their pro�les are �xed.The rest of the notation for the task system is classical:�3 2 fprec; tree; chain; �g - describes the type of precedence constraints.�4 2 fpj = 1; pij = 1; �g - means, respectively, that processing times oftasks are equal, processing times of operations are equal, processing timesare arbitrary.�5 2 frj; �g - tasks have di�erent (rj) or identical (�) ready times.�6 2 fres ���; �g, where ��� 2 fk; �g - denotes the type of additionalresource requirements (res���) or absence of such requirements (�).

30 CHAPTER 3. NOTIONS AND DEFINITIONS� 2 fk; �g - denotes the number of resource types �xed to k or arbitrary (�);� 2 fk; �g - means that each resource has either �xed number of k units or(�) the numbers of resources' units are given in the instance of the problem;� 2 fk; �g - implies that for any resource the maximum number of its unitsrequired by any task is �xed to k or (�) that it is arbitrary.�7 2 fcom; cjk; cj�; c�j; c; c= 1; �g - denotes communication delays appe-aring when two dependent tasks are executed by di�erent processors.- �7 = com - the communication delays depend on the volume of transferreddata, the function binding time and volume is arbitrary;- �7 = cjk - the communication delay is de�ned for each pair of dependenttasks;- �7 = cj� - the communication delay depends on the transmitter only;- �7 = c�j - the communication delay depends on the receiver only;- �7 = c - all the communication delays last c units of time;- �7 = c = 1 - all the communication delays last one unit of time;- �7 = � - no communication delay takes place.�8 2 fdup; �g- �8 = dup - tasks can be duplicated (to avoid communication delays) i.e.multiple copies of the same task can be executed independently,- �8 = � - duplication is not allowed.�9 2 fn = 1; �g - denotes that only one task is considered (n = 1) or thenumber of tasks is arbitrary (�).�10 2 fdj ; �g - marks either that deadlines are imposed on the tasks (dj),or (�) that no deadlines are considered (still, due-dates can be de�ned for adue-date involving optimality criterion).The third �eld
 =
1 where
1 2 fCmax; Lmax; U;Pcj ;Pwjcj ;PwjUj ;P �j ;�; Xg denotes the optimality criterion. Symbol "�" indicates testingfor existence of a feasible schedule. When a non-standard optimality criterionis considered we denoted such a case by X .3.2 Complexity TheoryIn this section we present basic concepts of computational complexity ana-lysis for combinatorial problems. The description is only a rough outline ofthe complexity theory. More comprehensive treatment of this subject can befound in [28, 97, 137]. The complexity analysis enables the determinationof the computational complexity class of a considered problem, and givesdirections for dealing with problems in certain classes.

3.2. COMPLEXITY THEORY 31Among the combinatorial problems we can distinguish decision problemsand optimization ones. Decision problems consist in answering "yes" or "no"to some question. Optimization problems require extremalization of someobjective function. Each optimization problem has its decision version (butnot vice versa) which is not computationally harder than the original ver-sion. Hence, it is possible to analyze computational hardness of optimizationproblems, such as scheduling problems, by considering only their decisioncounterparts (the links between decision and optimization versions are eventighter [28, 97]). To classify inherent computational complexity of variousproblems two reliable measures are necessary: a measure of the problemsize, and a measure of the execution time which is the considered computa-tional expense. As a measure of size of problem instance I , the length N(I)of a string encoding its data is used. All encoding schemes are equivalent forpurposes of complexity analysis provided that:(i) numbers are encoded using counting system with base greater than 1,(ii) encoding is not redundant,(iii) the encoded string can be decoded.As a measure of the execution time for algorithm A and problem size nthe maximum number of elementary steps taken by a computer for any in-stance I 2 D� is used, where D� is the domain of problem � and N(I) = n.Such a measure of execution time is called algorithm complexity function (inshort: algorithm complexity). When the number of steps can be bounded fromabove by a polynomial in the problem size we say that the algorithm is poly-nomial time (or polynomial in short). When the complexity function cannotbe bounded in this way the algorithm is called exponential time (exponen-tial in short). Observe that this de�nition of exponential algorithms includesalso complexity functions which are not considered exponential and namenonpolynomial seems more precise. Yet, we stick to a traditional term in-troduced in [28, 97]. We will say that algorithm A has complexity O(f(n))when the complexity function gA(n) satis�es: 9C such that for almost allI 2 D� : gA(N(I)) � Cf(N(I)). Still, the execution time cannot be reliablymeasured without establishing a model of the computer system. We distin-guish two types of computer system models: realistic and unrealistic. Theclass of realistic models comprise such models of computers as: DeterministicTuring Machine (DTM), k-tape Deterministic Turing Machine, Random Ac-cess Machine. All the above models are equivalent for the task of classifyingthe complexity of considered problems because algorithms polynomial on oneof the three models remain polynomial on any other realistic machine. Theclass of unrealistic models includes e.g.: Nondeterministic Turing Machine

32 CHAPTER 3. NOTIONS AND DEFINITIONS(NDTM), Oracle Turing Machine (OTM). Unrealistic models are capable ofperforming computations nondeterministically, which can be interpreted asability of executing unbounded number of computations in a unit of time.A crucial element of computational complexity analysis is establishingthe complexity class which the considered problem belongs to. In this pre-sentation we use only three basic classes of computational complexity (fordecision problems): P, a class of NP-complete problems (NPc in short),and a class of problems NP-complete in the strong sense (sNPc).De�nition 3.2 Class P includes all problems solvable in polynomial timeon DTM.To de�ne the remaining two classes we have to introduce additional notions.De�nition 3.3 ClassNP includes all problems solvable in polynomial timeon NDTM.From these de�nitions (and de�nitions of DTM, NDTM [28, 97]) it can beconcluded that P�NP. Yet, it has neither been proved that P6=NP nor thatP=NP. It is only known that DTM can simulate NDTM in exponential time.De�nition 3.4 By a polynomial transformation of problem �2 to problem�1 (which is denoted �2 / �1) we call a function f : D�2 ! D�1 such that:(i) 8I22D�2 the answer is "yes" if and only if it is "yes" for I1 = f(I2),(ii) 8I22D�2 function f can be calculated in time polynomial in N(I2).De�nition 3.5 Decision problem �1 is NP-complete if �1 2 NP and8�22NP �2 / �1.Hence, if there existed a polynomial algorithm for anyNP-complete problemthen any problem in NP would be solvable in polynomial time. Though ithas not been shown that P 6= NP for years, no polynomial time algorithmis known for any NPc problem. Furthermore, this class includes many com-putationally di�cult combinatorial problems. From the de�nition it can beconcluded, that to prove NP-completeness of some problem it is enough toshow that some NPc problem polynomially transforms to the analyzed pro-blem. The �rst problem proved to be NPc is satisfiability. Nowadays, itis known that class NPc includes thousands of problems and subproblemsfrom many �elds of combinatorial optimization. For example, in [143] it is

3.2. COMPLEXITY THEORY 33Figure 3.1: Relation between complexity classes provided that P6=NP.said that (decision versions of) 417 scheduling problems are in P, 3821 inNPc, and for 298 problems complexity is not known.Although no polynomial algorithms were found for problems in NPc, forsome of them algorithms have been found with complexity bounded by poly-nomial in the instance size N(I) and the maximum numerical valueMax(I).Such algorithms are called pseudopolynomial. Mind that these are not poly-nomial algorithms. On the other hand, for some problems pseudopolynomialtime algorithms were hard to be found. Strongly NP-complete problems arethe ones for which no pseudopolynomial algorithms exist (unless P=NP).This class is de�ned as follows.De�nition 3.6 Let �p for problem � and some polynomial p denote sub-problem of � obtained by restricting D� to instances such that Max(I) �p(N(I)). Problem � is strongly NP-complete when � 2 NP and �p 2 NPc.Showing strongNP-completeness using this de�nition is not very convenient.The following de�nition and theorem give a simpler way of doing this.De�nition 3.7 By a pseudopolynomial transformation of problem �2 to �1we call function f : D�2 ! D�1 such that:(i) 8I22D�2 the answer is "yes" if and only if it is "yes" for f(I2),(ii) 8I22D�2 function f can be calculated in time polynomial in N2(I2) andMax2(I2),(iii) there exists polynomial q1 such that 8I22D�2 q1(N1(f(I2))) � N2(I2),(iiii) there exists polynomial q2 such that 8I22D�2Max1(f(I2)) �q2(Max2(I2); N2(I2)).Theorem 3.1 [97] If �2 2 sNPc, �1 2 NP, and �2 can be transformedpseudopolynomially to �1 then �1 2 sNPc.The relations between the de�ned classes are presented in Fig. 3.1.Now, we show how to apply the above notions to analyze optimizationproblems. For optimization problems an equivalent of the class of NPc pro-blems is the class of NP-hard problems and for the class of sNPc problems

34 CHAPTER 3. NOTIONS AND DEFINITIONSis the class of stronglyNP-hard problems (in shortNPh and sNPh, respec-tively). The optimization problems can be represented as search problemsconsisting of the domain D� and the set of feasible solutions Z�(I) for eachI 2 D�.De�nition 3.8 R(�; e) = f(x; y) : x is a string encoding I 2 D� accordingto coding rule e, y is a string encoding Z�(I) using rule eg.The search problem � for encoding rule e is solvable in polynomial time whenthere exists some program for DTM solving relation R(�; e), i.e. for a stringencoding instance I 2 D� the program �nds a string encoding a solutionfrom Z�(I) if such a solution exists (if Z�(I) = ; empty string is returnedas a solution).De�nition 3.9 By a polynomial Turing transformation of problem �1 to �2(denoted �1 /T �2) we mean algorithm A solving problem �1 on DTM by useof some hypothetical procedure P solving problem �2. A is polynomial-timeprovided that P can be executed in polynomial time by DTM.De�nition 3.10 R(�; e) is NPh when there exists some NPc language Lsuch that L /T R(�; e). The search problem � is NPh when R(�; e) is NPh.More informally, the above de�nitions can be summarized in the followingway. Language L is equivalent to decision problem �1: for the given stringencoding I 2 D�1 does I belong to L? Hence, there exists someNPc decisionproblem �1 which can be solved in polynomial time provided that R(�; e) canbe solved in polynomial time. Furthermore,NPc problem �1 can be solved inpolynomial time when the optimization problem � (represented by R(�; e))is solvable in polynomial time. Thus, � is NPh when there exists someNPc problem �1 such that �1 /T �. Note that formulating decision version�1 of optimization problem � is immediately a proof of �1 /T �. Hence,NP-completeness of a decision version of some problem implies NP-hardnessof its optimization version. Analogously to strong NP-completeness, strongNP-hardness is de�ned. To prove sNPh of some problem it is enough toprove sNPc of the decision version. Observe that anNPh problem cannot besolved in polynomial time unless P=NP. For many optimization problems itcan be also shown [28, 97] that if P=NP these problems would be solvablein polynomial time. Thus, the complexity classes introduced for decisionproblems are useful in the analysis of optimization problems.

3.3. PERFORMANCE OF PARALLEL APPLICATIONS 35There are practical consequences of determining the complexity classof a considered problem. When the problem belongs to class P then it issolvable in polynomial time which in practice means that it can be solved"fast" (i.e. in reasonable time). Further analysis of such problem complexityconsists in the search for the lowest complexity algorithm. On the contrary,NP-hardness of some problem (or NP-completeness of its decision version)results in the combinatorial explosion when the optimal solution is searchedfor. Thus, only exponential optimization algorithms (i.e. the ones �ndingthe optimal solutions) have been proposed for NPh problems. For NPhproblems which are not sNPh, pseudopolynomial algorithms, like dynamicprogramming, can be proposed. When the optimality of the solution is notas important as the time in which the solution is obtained, heuristics canbe used. A heuristic is an algorithm which �nds a feasible solution of theproblem. However, there is no guarantee of optimality. A prerequisite ofusing some method as a heuristic is its low-order polynomial execution time.Heuristics which give solutions close to the optimum (on average, in the worstcase) are obviously preferred. To evaluate the worst-case performance of someheuristic H we will use the worst-case performance ratio (performance ratioin short): SH = inffr � 1 : 8I2D fH(I)OPT (I) � rg, where I - the instance, D- the problem domain, fH(I) - the value of solution generated by H on I ,OPT (I) - the optimal value of the criterion for I . The way of proceeding withanalysis of the problem complexity and the resulting solution methods aresummarized in Fig. 3.2. The the running lines show ways of establishing thecomplexity class of the problem, while dashed lines indicate possible ways ofproceeding with construction of an algorithm solving the problem.3.3 Performance of Parallel ApplicationsMany factors contribute to the e�ciency of a parallel application (task).Among them are scheduling policies assumed while mapping an algorithm(in its pure mathematical sense) to a real application in a particular com-puter architecture. In this section we introduce basic notions of the parallelapplication performance description.The expected outcome of parallelization is reduction of the executiontime. Hence, application execution time is the base for majority of e�ciencydescriptions. The other counterpart of e�ciency measures are costs at whichthe low execution time can be achieved. The most important resource whichwe must pay with for the reduction of execution time are processors. From

36 CHAPTER 3. NOTIONS AND DEFINITIONS
Figure 3.2: An outline of problem � complexity analysis.these two parameters speedup is calculated [125]:Sk = t1tkwhere k is the actual number of processors assigned to execute a task, t1 issequential execution time (i.e. on one processor), tk is execution time on kprocessors. Two famous theoretical laws link speedup with the number ofprocessors used: Amdahl's law [5]Sk = 1s+ (1� s)=kand Gustafson's law [112] Sk = s0 + k(1� s0)where s is the ratio of time spent in immanently sequential part of thecode to the whole sequential execution time, s0 is the ratio of time spent insequential part to a total parallel execution time. In the Amdahl's law it isassumed that the size of the problem is �xed, while in the Gustafson's lawit is assumed that the size of the problem grows linearly with the numberof used processors. It was pointed out by other researchers (e.g. [82]) thatthis two views do not exploit the whole variety of possible situations. Therequired behavior of an application is that the speedup be linear, whichmeans that increasing the number of processors reduces the execution time(inversely) proportionally. In most situations speedup is less than linear,but in certain cases speedup greater than linear can be obtained [98]. Moreprecisely the parallel execution time in relation to the number of assignedprocessors is characterized by a function named parallelism signature [99].The parallelism signature is often modeled by the function:

3.3. PERFORMANCE OF PARALLEL APPLICATIONS 37t(k) = a+ bk + c(k)where a is the time spent in the sequential part of the program, b is theamount of work which is unboundedly parallelizable, c(k) is the overhead(e.g. communication) introduced by adding more processors; c(k) is a func-tion increasing with k (linearly in the simplest case). Observe that the abovemeasures (speedup, parallelism signature) are equivalent as based on tk.The number of processors used by an application can change over timewhile for measuring speedup the number of used processors is bounded fromabove. Hence, speedup may not represent parallelism in the application per-fectly. A parameter which does not have such limitations is execution pro�le[99, 140, 181]. Execution pro�le is a function of the number of processors usedvs. time, measured on a computer with unbounded number of processors. Inother words, execution pro�le represents parallelism of the application intime when the number of available processors does not limit the applica-tion. From execution pro�le parameters like average parallelism, maximumparallelism can be derived.The above measures determine application scalability, i.e. its ability toe�ectively utilize processors [141]. The application has good scalability whenincreasing the number of processors reduces proportionately the executiontime. When increasing the number of processors returns diminishing reduc-tions of execution time the application scalability is bad. Thus, a good sca-lability means that speedup is linear in a wide range of circumstances [215].

Chapter 4Overview of RelatedProblemsThe �eld of scheduling in parallel computer systems is very diverse. In thischapter we describe main approaches related to the problems considered inthis work. Since in Chapter 6 we analyze some communication aspects inscheduling, a subsection on communication optimization is included here.Though the methods presented in this chapter are not directly applicablefurther in the work, we describe them for the completeness of the presenta-tion in the work on scheduling in parallel computer systems. Some methodsdescribed here and in the further sections are based on similar assumptions.Some other methods are based on di�erent assumptions and thus are hardto compare. Hence, in the last part of this chapter we point out di�erencesin foundations of the scheduling concepts considered in this work.4.1 AllocationSome researchers consider scheduling as comprising two components: allo-cation and sequencing. In some situations sequencing of activities is notso important. For example, consider an application with clearly separatedcomputation and communication phases. In such a program all processorsinterchange data, then compute, interchange data again, etc. If all commu-nications can be performed in parallel (e.g. only the neighboring processorshave to communicate, bu�ers have su�cient capacity) then detailed ana-lysis of sequencing each operation in relation to other operations may beunnecessary. The allocation problem in itself consists in determining where38

4.1. ALLOCATION 39to execute a task while disregarding the sequencing of the tasks. An allo-cator (i.e. an algorithm solving the allocation problem) can be a part of atwo-level scheduling system in which modules are allocated to processors�rst, and then tasks are sequenced on the processors. Hence, the allocationproblem can be considered as a relaxed version of the scheduling problem.Now, we describe the allocation problem more precisely. Consider a paral-lel application whose modules are communicating with each other. The ap-plication is to be executed on a set of processors connected by some network.For fast execution of the computations processors should work in parallel.On the other hand, physical distribution of modules causes communicationdelays. Thus, to minimize communication overhead it can be advantageousto allocate frequently communicating modules close to each other (possiblyon the same processor). Since the actual sequencing of the activities is nottaken into account, the precedence constraint graph is reduced to an acyclicgraph representing interactions among the tasks "integrated" over run-time.Such a graph is called a task graph.The task allocation problem can be formulated as follows. De�ne:xik = 1 when task i is executed on processor k, otherwise xik = 0;cij - the number of data units transferred from task i to task j;dkl - is an interconnection-related communication cost of moving oneunit of data between processors k and l (for example, by setting dkl = 1it is possible to forbid allocating communicating tasks to processors k and lwhich are not directly connected);tik - cost of executing task i on processor k.The problem is to minimize:mXk=1 nXi=1(tikxik + mXl=1 nXj=1 cijdklxikxjl) (4.1)subject to mXk=1 xik = 1 for i = 1; : : : ; nThe above formulation (with minor variations) was used in e.g. [57, 62, 152,153, 158]. Observe tight links to quadratic assignment problem [187]. Theabove objective function is reasonable for unrelated processors. It can beobserved that for identical and uniform processors its minimum is achievedwhen all the work is performed on the fastest processor. Thus, in [73, 182,210] instead of function (4.1) the working time of the most loaded processor

40 CHAPTER 4. OVERVIEW OF RELATED PROBLEMSwas used as the objective function to be minimized, i.e.:maxk f nXi=1(tikxik + mXl=1 nXj=1 cijdklxikxjl)gThe allocation problem was solved using enumerative search (e.g. branch-and-bound) [62, 152, 153, 182], heuristics tailored to the problem [73, 57, 210]and metaheuristics [158]. Observe that matrix of xik binary variables de�nesa mapping of processes to processors.The mapping of a task graph into the processors and interconnectionnetwork is also called embedding. However, when talking about embedding aslightly di�erent problem is considered in the literature than the allocationproblem de�ned above. Let G = (V;E) be a task graph and let H = (P ; N)be a graph consisting of nodes representing processors, and set of edges Nrepresenting interconnection network. More precisely the embedding < f; b >of G into H is one-to-one mapping f of the nodes from G to processors ofH with mapping b of every edge e = (u; v) 2 E onto path b(e) connectingf(u) and f(v). There are three main embedding cost functions consideredin the literature [92, 110, 129]: dilatation which is the maximum length ofany b(e), expansion equal to jPjjV j , and congestion which is the maximum overe0 2 N of j fe 2 E : e0 2 b(e)g j (i.e. the number of di�erent paths b(e) usingthe same edge e0). Embedding is a computationally hard problem in general.As one may note embedding a cycle graph G (a ring) into a graph H withj V j=j P j and congestion 1 is equivalent to Hamiltonian Circuit [97](cf. also [129]).4.2 Load BalancingAllocation of computations to processors described in the previous sectionis done o�-line assuming knowledge of computation and communication co-sts. Load balancing is an approach which attempts to minimize applicationexecution time by distributing the computations evenly among the proces-sors. Furthermore, load balancing inherently considers on-line case in whichfull knowledge of the incoming task cannot be assumed. A task appearing(i.e. created) during the computation produces additional load which mustbe distributed to the processors. Note that there exists no on-line methodproducing a solution which is optimal o�-line (i.e. with the full knowledge oftasks parameters) [192]. A �rst step to load balancing is load sharing whosegoal is supplying each processor with at least some load.

4.2. LOAD BALANCING 41Before implementing any load balancing method several problem areasmust be addressed. A reliable and accurate measure of the processor load isrequired. For example, it can be the number of branch-and-bound tree nodesto be processed by the processor. It can be some estimate of the expectednumber of search tree nodes (or time) which can emerge from the nodesalready assigned to the processor [151]. In [211] CPU utilization, memoryutilization or average response time are suggested as load measures. On theother hand, it is demonstrated in [142] that sophisticated load measures arenot more useful than the simple ones. Thus, in the following we assume thatthe number of data units assigned to a PE for processing is its load. Anotherproblem are data dependencies. When there is little dependency betweenload elements it is possible to move them in an arbitrary fashion. However,in many practical applications such dependencies exist, for instance, whilesolving partial di�erential equations [209]. In such cases provisions must bemade to avoid sparsely distributing related (e.g. mutually communicating)load elements.Load balancing methods can be di�erentiated by the initiator of loadbalancing [104, 106]. It can be initiated by a processor which ran out ofwork (this is demand-driven approach) or it can be initiated by a processoron which a new load appeared (supply-driven method). Next, the decisionabout moving the load can be done globally using information about thewhole system status [211], or this decision can be done locally in a distributedmanner based on the locally available information [151]. Also intermediateforms are possible [122, 211]. The global approach has bad scalability andthe central "load balancer" can easily become a bottleneck. On the otherhand, due to the lack of information distributed approaches can result inimbalance. Finally, the amount of load to be transferred must be determined.As far as distributed methods are considered, there are two dominant ways ofcalculating this value: nearest neighbor averaging and di�usion. Let li denotea load of processor Pi before load balancing, l0i after load balancing, and �ithe set of its neighbors. The nearest neighbor averaging intends to change theload such that it is equal to the mean load of the processor and its neighbors,i.e. l0i = li+Pj2�i ljj�ij+1 . To achieve this goal processor Pi transfers to processorPj amount of data equal to (li � l0i) qjPj2�i qj , where qj = maxf0; l0i � ljg. Inthe di�usion approach processor Pi sends to Pj amount �(li � lj) of dataunits, where � 2 (0; 1). Thus, after a load balancing step processor Pi hasl0i = li + �Pj2�i(li � lj) data units.

42 CHAPTER 4. OVERVIEW OF RELATED PROBLEMS4.3 Scheduling with Communication DelaysThe class of problems we will call scheduling with communication delays canbe denoted P j prec; cij j Cmax or P j prec; cij; dup j Cmax. The consideredproblems can be described as follows. Given is a task set T with precedenceconstraints among its elements. Two tasks Ti; Tj linked by precedences com-municate (e.g. the successor uses results of the predecessor). When both tasksare allocated to the same processor the communication time (data transfertime) can be neglected. Otherwise, the successor can be started only aftercommunication delay cij following the completion of the predecessor. Theoptimality criterion is the schedule length. It can be allowed to duplicatetasks, i.e. to execute more than one instance of the same task on di�erentprocessors. When duplication is allowed it is possible to avoid communica-tion delays by producing data for the successors on multiple processors. Forexample, when the number of processors is not bounded, duplication allowsbuilding schedules without communication delays in O(n) time for problemP j out� tree; cij ; dup j Cmax [66]. A special form of scheduling with commu-nication delays is P j prec; pj = 1; c = 1 j Cmax called UETUCT schedulingwhich stands for Unit Execution Time, Unit Communication Time.Unfortunately, even for very restricted cases scheduling with commu-nication delays is computationally hard. Not many polynomially solvablecases have been identi�ed. This directs the research to e�cient approxi-mation algorithms. To our knowledge, there is no approximation algorithmwith performance ratio better than 2 in the general case. Furthermore, ithas been shown in [198] that no polynomial approximation scheme exi-sts (unless P=NP) neither for P j prec; pj = 1; c = 1 j Cmax nor forP j prec; pj = 1; c = 1 j Cmax. The majority of works on scheduling withcommunication delays considered idealistic fully connected computer systemwhich can transfer unlimited number of messages simultaneously. A particu-lar interconnection type is considered in [94], but even here the schedulingproblems are computationally hard. In Table 4.1 we present some impor-tant results in scheduling with communication delays. Yet, this branch ofscheduling is rapidly evolving and the contents of the table can be foundrather limited by an expert. More comprehensive study of the problem canbe found in [67, 108].

4.3. SCHEDULING WITH COMMUNICATION DELAYS 43Table 4.1: Results in scheduling with communication delaysProblem Result ReferenceP j prec; pj = 1; c = 1 j Cmax sNPh [175]P j prec; pj = 1; c = 1 j Cmax Cgmax � (3� 2m)C�max�(1� 1m) [175]P j pmtn; c = 1 j Cmax O(n) [174]P j pmtn; c � 2 j Cmax sNPh [174]P j prec; com j Cmax CETFmax � (2� 1n)C0max+Ccom [124]P j in�tree; cjk j Cmaxcjk � minj pj O(n) [64]P j prec; pj = 1; c; dup j Cmax sNPh [164]P j prec; cj�; dup j Cmax S � 2 [164]P j prec; cij; dup j Cmax"short" communication times O(n2) [72]P j in� tree; pj = 1; c j Cmax sNPh [127]P j in� tree; pj = 1; c j Cmaxcomplete k-ary intree O(n2 logn) [127]P j prec; cij j Cmax NPh [65]P j tree; cij j Cmax unit depth tree O(n2) [65]P j prec; pj=1; c=1 j Cmax=4bipartite precedence graph sNPh [198]P j prec; pj=1; c=1 j Cmax=3 polynomial [198]P j prec; pj=1; c=1 j Cmax=6 sNPh [198]P j prec; pj=1; c=1 j Cmax=5 polynomial [198]P j prec; pj = 1; c = 1 j Cmax�xed width of precedence graph polynomial [198]P j in�tree; pj =1; c=1 j Cmax sNPh [198, 147]P2 j in�tree; pj =1; c=1 j Cmax O(n) [109, 147]P j out�tree; cij; dup j Cmax O(n) [66]P j prec; c � 1 j Cmax sNPh [168]P j prec; c � 1 j Cmax SSCT = 1 + r [168]P j out�tree; cjk j Cmax NPh [67]P; bus j prec; pj = 1; c = 1 j Cmax sNPh [94]Q2 j in�tree; pj =1;c=1 j Cmaxcomplete k-ary intree O(n) [29]Used notation:Cgmax - length of any greedy schedule, C�max - optimal length of the sche-dule, C0max - length of the schedule without communication delays, Ccom �C0max � 1 - communication requirement over some chain of precedences,r = maxi;j2T fcijgmini;j2T ftjg .

44 CHAPTER 4. OVERVIEW OF RELATED PROBLEMS4.4 Loop SchedulingThe idea of a divisible task is tightly linked to parallelism of loops. Thus,we present the most important concepts for the case of loop scheduling.Moreover, loops are considered as the largest and most natural source ofparallelism in many applications [101, 139, 155]. In many cases loops can beexecuted in parallel by di�erent processors. The key problem is determiningof the chunk size, i.e. the size of the load portion assigned to a processorin one step of data distribution. Two important factors must be taken intoaccount: unpredictability of the actual loop execution time, and overheadrelated to the access to the work "distributor" (i.e. loop scheduler, note thatloop index is a critical section). In the following we denote by t the totalnumber of loops and m the number of processors. Below we present themost widely known ways of loop scheduling [128, 155].Static ChunkEach processor is assigned t=m loops to execute. This results in low overheadin accessing the loop scheduler but in bad load-balance among processors.Self-SchedulingEach processor is assigned one loop at a time and fetches a new iterationto perform when it becomes idle. This results in good load balance, butthe overhead due to accessing scheduler is signi�cant (proportional to thenumber of loops). A variation of self-scheduling is chunk self-scheduling inwhich a processor is assigned k loops at a time.Guided Self-SchedulingA processor requesting for a work is assigned 1=m of the remaining unassi-gned loops. This results in good balance and low overhead if the loops areuniform. When the loops are not so uniform assigning t=m loops to the �rstrequesting processors may result in load imbalance. Furthermore, at the endof the computation processors are assigned one loop at a time which mayresult in contention while accessing the scheduler.Trapezoid Self-SchedulingThe �rst assigned chunk of work has size Ns. The following chunks aredecreasing linearly by some step d to the �nal size Nf . Example valuesof Ns and Nf can be N=(2m) and 1, respectively. A disadvantage of thismethod is, that when m is big the di�erence between the chunks assignedto the consecutive processors as the �rst ones can be as big as md.FactoringFactoring is intended to achieve balanced workload. For this purpose, at eachsuccessive allocation the algorithm evenly distributes among the processors

4.5. COMMUNICATION OPTIMIZATION 45half of the remaining iterations. Thus, ci = dRi=(2m)e iterations are assignedto each processor in step i, where R1 = t and Ri+1 = Ri �mci.A�nity scheduling [155]A�nity scheduling tries to take advantage of using local memory or cache.In contrast to the previous methods each processor has its own work queue.Thus, the need for synchronization is minimized. Initially, loops are dividedinto chunks of size dt=me and appended to each processor's queue. A pro-cessor executes 1=k (k can be m) of the loops remaining in its queue. Whenthe queue becomes empty, the processor �nds the most loaded processor (i.e.with the longest queue) removes 1=k of the iterations from that processor'squeue and executes them.Safe Self-Scheduling [128]This scheme assigns statically the main portion of the loops and then balan-ces the load by assigning the so-called smallest critical chores. More precisely,the processors are assigned statically �t=m (amount computed at the compiletime) loops in the �rst batch. At runtime, the ith processor fetching someload is assigned maxfk; (1 � �)di=met�=mg loops. � is a crucial allocationfactor. It is proposed to calculate it from the equation:� = 1 + prob(Emax) + prob(Emin)Emin=Emax2where Emin - minimum execution time of a loop, Emax - maximum executiontime of a loop, prob(x) - probability of executing a loop with time x. Thus,to use this method the execution time distribution must be known.The methods of divisible task scheduling presented in Chapter 6 can beviewed as scheduling loops in distributed environment.4.5 Communication OptimizationThe basic commutation methods such as store-&-forward, circuit-switched,wormhole, virtual-cut-through have been described in Section 2.1. The �eldof communication optimization considers design of e�cient algorithms ofmessage routing geared to the considered data exchange operations and com-munication networks. A routing algorithm is a method of �nding the way fora message in the network. In the following we describe what are the commondata exchange operations and what is meant by e�ciency of routing.Most of commonly considered communications problems which are ty-pical of many applications involve the following data exchange operations[116, 145, 177]:

46 CHAPTER 4. OVERVIEW OF RELATED PROBLEMSOne-to-oneThere is at most one message to be sent from each processor and at mostone message to be sent to each processor.BroadcastingMoving the same data unit from one processor to all others.GossipingMoving a data unit from each processor to every other processor.Scattering/GatheringScattering involves moving data from one processor to all others. Gatheringconsists in collecting data in one processor from all other processors. Inscattering (gathering) every recipient (seder) receives (sends) a di�erent pieceof data.Multiscattering/MultigatheringThis operation consists in scattering (gathering) from (in) every node.The routing algorithms should be best possible. Thus, an optimality cri-terion must be de�ned. A natural criterion is the total time required to routethe messages to their destinations. A special form of this can be minimiza-tion of the number of data transfers, especially in networks with big startuptimes. Yet, there are also other criteria [145]. In communication networka deadlock or a leavelock (starvation) may arise. A deadlock is a situationin which some messages cannot move because they mutually block requ-ired resources (e.g. bu�ers or channels). A leavelock is a situation in whichmessages can move, but some messages cannot make progress toward theirdestination (e.g. are repetitively blocked or discarded). Avoiding deadlocksand leavelocks is a prerequisite to the routing algorithm feasibility. Whenmessages are blocked or can be dropped, one may want to maximize thenumber of messages successfully transferred in a given period of time (maxi-mizing throughput). In applications where hot spots (locations exceptionallyoften visited) can arise, e.g. involving gathering, the impact of routing to hotspots on messages with other destinations should be minimized. When mes-sages are bu�ered one would minimize the size of the bu�ers used. Finally,we may want to minimize the size of the network (number and capacityof switches, wires etc.) and make the routing algorithm reliable enough torespond to network faults.The communication problems most often considered in Chapter 6 arescattering and gathering.

4.6. PROBLEMS IN IMPLEMENTING SCHEDULING MODELS 474.6 Problems in Implementing Scheduling Mo-delsThe above approaches to scheduling in parallel computer systems, despitemany successful implementations, have some disadvantages. The drawbacksare results of di�erent assumptions made for each method. In a system notsatisfying the presupposed assumptions some approaches can be hardly ap-plied or the results can be far from optimal. The assumptions are related tothe following issues:- who is scheduling: the application or the operating system,- when is scheduling done: in the pre-runtime or during the runtime,- how much information is necessary for scheduling.However, these di�erentiations have deeper origins. In our opinion, theseare assumptions on necessary data about the application. Two features arerelated to data: availability, and complexity.When availability of extensive knowledge about the application(s) (i.e.task system) is assumed then only the programmer or compiler are able tocollect such data. Hence, the operating system has no necessary knowledgeand scheduling is made by the application itself. For example, allocation mo-dels require extensive information about execution times and communicationpatterns of the program modules. In the case of scheduling with communica-tion delays the precedence DAG is highly data-dependent. Thus, the actualDAG is known rather after execution than before. Hence, schedules or al-locations based on the information collected in some previous experimentalruns can miss the optimum when the new data sets are very di�erent. It canbe observed that the above two approaches are rather application-orientedand give little help in scheduling by operating system.Another problem related to available data is complexity. This has twoaspects: complexity of data structures and schedule optimization complexity(cf. Section 3.2). For instance, task graphs and precedence DAGs for realisticproblems are huge and can comprise thousands of nodes. The operatingsystem scheduler cannot a�ord wasting its space and time for dealing withso big and complex structures. Furthermore, detailed setting of the problemoften results in itsNP-hardness. For such problems optimal solutions cannotbe expected in low-order polynomial time and only small size problems canbe solved in short time. Hence, such problem settings can be analyzed andoptimized rather o�-line in the pre-runtime scheduling than during runtime.The approaches to scheduling presented in this work are compared in

48 CHAPTER 4. OVERVIEW OF RELATED PROBLEMS
Figure 4.1: Comparison of scheduling methods. The numbers denote:1-allocation, 2-load balancing, 3-scheduling with communication delays,4-loop scheduling, 5-multiprocessor task scheduling, 6-divisible task sche-duling.Fig. 4.1 with regard to the described data features. This qualitative compari-son re
ects only author's opinion on general characteristics of these methods,not all their possible settings. A method was considered as a high-knowledgewhen precedence DAG or task graph of application is essential to applying it.Complexity was considered low when low-order complexity algorithms (classP) can be applied and data structures are small. Complexity was consideredhigh when the method is high-knowledge and the problem setting is NPh.Finally, let us observe that required precision of data is a result of simpli-�cations made in viewing the scheduling problem. Of course, precision con-tributes to the complexity and availability of data. Note that all the abovemethods address (successfully) some restricted areas, while disregard other.For instance, allocation models do not consider sequencing of tasks and com-munications. Thus, a deadlock in communication system can be unpredicta-ble with these models. Load balancing rarely considers restrictions imposedby communication between the balanced elements of the computation. Sche-duling loops, though addresses an important area of parallelism, is restrictedto a particular class of applications and architectures. The methods we pre-sent in the following sections, undoubtfully, are not panacea. Yet, we hopethat they improve presentation and solvability of real problems.

Chapter 5Multiprocessor TasksIn this chapter we consider scheduling of multiprocessor tasks. Section 5.1motivates the use of multiprocessor tasks. Section 5.2 is devoted to schedulingmultiprocessor tasks on parallel processors, and Section 5.3 to scheduling ondedicated processors.5.1 Why Multiprocessor Tasks?A proper scheduling strategy is an indispensable element of an e�cient pa-rallel computer system. As it was observed in [133] it cannot be substitutedfor. Many distributed and multiprocessor computer systems o�er some kindsof parallelism. It is not so evident, however, that the concurrency of the ap-plication execution is guaranteed, especially in the extreme load conditions.In this section we are going to explain that for many reasons real concurrencyshould be provided.Consider a general purpose computer system with time sharing. A paral-lel application which consists of many concurrent threads is run on a numberof processors. The access to a critical section is guarded by a lock which mustbe acquired by threads using the section. Imagine a situation in which oneof the threads captures the lock. It must compete for the processors withan uncertain number of other threads. Soon it can lose its processor. Then,other threads (of the same application) must busy-wait for the release of thelock. This, however, will not happen as long as the thread which is in thepossession of the lock is not running. Thus, a bad decision about schedu-ling such a critical thread results in a signi�cant performance degradation.One conclusion from this example is that busy-waiting threads should not49

50 CHAPTER 5. MULTIPROCESSOR TASKSbe executed in time quanta when the thread holding a lock is not running.Now, consider a di�erent situation. The threads of the same applicationcommunicate with each other but are run in di�erent time quanta. Onethread tries to communicate with some other thread. It sends the data, butsince the other thread is descheduled, it must wait at least until the end ofthe time quantum. Hence, big part of the �rst thread time quantum is lostfor busy-waiting. In one of the following time quanta the receiving threadobtains the data, processes it and sends back the results. The results muststill wait for the �rst thread to start running in order to receive the data.In both of the above examples the progress in computation depends onthe speed of context switching rather than on the raw speed of the processorsor the communication system. Coscheduling is a scheduling policy proposedto avoid these di�culties [98]. Coscheduling consists in granting simultane-ously (in the same time quantum) the processors to the threads of the sameapplication. It has been demonstrated in [213] that coscheduling performsquite well in a wide range of conditions and for various models of parallelapplications. In [93] the performance of a parallel application using barriersynchronization was studied. The coscheduling policy (called here gang sche-duling) has been compared, both theoretically and in practice, with blocking.In blocking the thread releases a processor as soon as it completes its share ofthe work. For coarse-grain parallelism blocking performs well. For �ne-grainparallel application coscheduling is better. Thus, coscheduling is postulatedin parallel systems. Observe that coscheduled applications occupy severalprocessors at the same moment of time and as such are multiprocessor ta-sks.The parallel applications are very often represented by DAGs. Yet, thiskind of representation has a limited applicability for the operating system.Contemporary parallel applications have DAGs with thousands of nodes. Atthe current state of technology, it is hard to imagine a scheduler (one of themost often executed parts of the operating system) able to handle, analyzeand optimize so big structures. Furthermore, threads of an application areindistinguishable for the scheduler. Hence, without additional informationfrom the application the scheduler is not able to give a priority to impor-tant threads (e.g. holding a lock) [213]. Note that since the DAG is highlydata-dependent it can be precisely known after the execution rather thanbefore. From the above we conclude that it would be reasonable for the ope-rating system to control only the number of processors granted to a parallelapplication and leave the control of the threads to the application (i.e. tothe compiler and the programmer).

5.1. WHY MULTIPROCESSOR TASKS? 51Following these propositions a number of massively parallel computersystems divide their processors into partitions [47, 75] (cf. Section 2.2). Themain idea of a partition is to give an exclusive access to a number of pro-cessors to one application only. The operating system is responsible for ma-naging the partitions, granting the access to them etc. Note that from theviewpoint of the partition manager the applications are multiprocessor ta-sks because they occupy all the processors within the partition at the samemoment of time.In computer control systems a high level of reliability is often achievedby executing redundant copies of the program on di�erent processors andvoting on the �nal control decision [8, 98, 121]. Applications of this kindare multiprocessor tasks because more than one processor is simultaneouslyoccupied.In the preceding discussion we concentrated on parallel processors. Now,we are going to demonstrate that multiprocessor tasks scheduling is also ap-plicable in the case of dedicated processors. The main idea behind dedicationof processors is their specialization. Hence, in massively parallel computersthere are processing nodes equipped with communication and other I/Ohardware (e.g. disks), while other processing nodes are not equipped withsuch devices. There can be nodes with arithmetic, vector, graphic, signalprocessing facilities, while there can be other nodes without them. It is notinconceivable to present parallel applications requiring a little bit of all thesefacilities. Thus, a multiprocessor task can be considered also in the case ofdedicated processors.The multiprocessor task concept originated from scheduling tests in mul-tiprocessor computer systems [130], testing VLSI chips [74] or other devices[81]. Testing of processors by one another requires at least two processorssimultaneously. Due to the fact that the graph of mutual tests cannot bearbitrary to guarantee testability of the system [113, 171] one may regard atest as a dedicated task. A similar situation takes place in testing VLSI chipswhere some functional units are required to test other units [74]. Anotherapplication for multiprocessor task scheduling in dedicated environment canbe scheduling of �le transfers [70]. A �le transfer requires at least two "pro-cessing" elements simultaneously: the sender and the receiver. Simultaneoustransfers on multiple buses can be also considered as multiprocessor tasks[126]. Finally, simultaneous execution of multiple instructions in a supersca-lar processor requires matching instructions in such a way that the sets ofsimultaneously required processor units do not intersect. Scheduling in thiscase is performed by a compiler or by the hardware of the processor. Not

52 CHAPTER 5. MULTIPROCESSOR TASKSonly can the specialization of the processing elements justify considering pro-cessors as dedicated. A multiprocessor task can be regarded as executed bya dedicated processor also for the preallocation reasons. For a certain com-munication pattern among the tasks of a parallel application and a givencommunication network it can be advantageous to map tasks to processorsin some �xed way. Changing the preallocation may increase the communica-tion overhead (due to dilatation, congestion etc.). In some cases even parallelprocessors may behave as dedicated devices. For example, since the costs of�lling a pipeline, vector registers or a cache are high it is disadvantageousto frequently transfer threads to new sites. Hence, there is a kind of a�nitybetween tasks and processors [155].Though we introduced multiprocessor tasks in the computer context it isnot di�cult to �nd application for this kind of scheduling in production sys-tems. In fact, the �rst papers considering an idea of simultaneous executionof a task by many processors dealt with scheduling operations in chemicalplants [48] and project scheduling [200].5.2 Parallel ProcessorsIn this section we �rst review the subject literature including earlier worksof the author. Then, we present new results especially for scheduling withvariable pro�le. Table 5.1 summarizes the results mentioned in this section.5.2.1 Overview of Earlier ResultsWe survey here scheduling multiprocessor tasks on parallel processors (cf.also [87, 199]). One of the �rst papers considering multiprocessor task sche-duling was [149] in which Unit Execution Time (UET) tasks were consi-dered. It was shown that problems P j sizej ; pj = 1 j Cmax and problemP3 j sizej ; pj = 1; prec j Cmax with sizej 2 f1; 2g are sNPh (reduction fromP jj Cmax and P j pj = 1; prec j Cmax, respectively). The performance of anylist scheduling heuristic (LS in short) has been proved to be bounded fromabove by (2m��)=(m��+ 1) and the ratio of b(2m��)=(m��+ 1)chas been achieved. For problem P2 j sizej ; pj = 1; prec j Cmax an algori-thm with complexity O(nlog2 7) has been proposed. It is based on buildingthe transitive closure of precedence constraints graph (hence the complexity[95]) and Co�man-Graham algorithm [71].Problem R j spdp�lin; pmtn; var; rj; dj j �, i.e. a decision problem con-sisting in verifying existence of a feasible schedule, has been reduced in [200]

5.2. PARALLEL PROCESSORS 53to solving a linear program with O(n3) variables and O(n2) constraints.In [203] problem P j spdp�lin; pmtn; var; rj; dj j X is analyzed. For eachtask a deadline is given. All the tasks must be completed in time. To achievesuch goal any processor is capable of increasing its speed. The optimalitycriterion is not standard. Firstly, the optimality criterion is minimizing themaximum speed necessary for processing the tasks. Secondly, when proces-sing at some speed is unavoidable then the period of processing at such aspeed is minimized. In [202] a similar problem is considered, but the opti-mality criterion is the total intensity cost, where the cost function is convex.Problem P j spdp�lin��j; pmtn; var; rj j Lmax has been considered in[201]. This problem can be solved by a reduction to a sequence of equivalentmaximum network
ow problems which check the existence of a feasibleschedule for a given value of Lmax. Let the events in the task system (i.e.rj and dj + Lmax for j = 1; : : : ; n) be sorted such that event ei � ei+1(i =0; : : : ; 2n � 1). In the network a vertex representing the task is connectedwith a vertex representing interval [ei; ei+1] when the task can be executedin this interval. The capacity of such an edge is (ei+1 � ei)�j . The taskvertices are connected with the source vertex by an edge with capacity t1j ,and the interval vertices are connected to the sink vertex by edges of capacitym(ei+1� ei). The network comprises O(n) vertices. It is shown in [202] thatO(Pi=1 �j) � O(nm) calls to O(n3) network
ow algorithm are required.This results in a total complexity of O(n4m).In [32] preemptive and nonpreemptive scheduling of multiprocessor ta-sks is considered. This paper extends preliminary results of [46]. For problemP j sizej ; pj = 1 j Cmax and sizej 2 f1;�g an O(n) algorithm has been pro-posed. When the numbers of simultaneously required processors are in theset f1; : : : ;�g and � is �xed the above problem can be solved in O(n) timeby integer linear programming (ILP) with �xed number of variables. ProblemP j sizej ; pj = 1 j Cmax has been shown to be sNPh in general (reductionfrom 3-Partition). It has been shown in [32] that among the optimal schedu-les for problem P j sizej ; pmtn j Cmax where sizej 2 f1;�g there must bea so-called A-schedule. In the A-schedule tasks with sizej = � are assignedin the interval [0; Cmax] using McNaughton's wrap-around-rule [157], andtasks with sizej = 1 are assigned in the same way in the remaining part ofthe schedule. Then, an algorithm with complexity O(n) building A-scheduleshas been proposed for problem P j sizej ; pmtn j Cmax where sizej 2 f1;�g.When the numbers of simultaneously required processors are from largerthan two-element set, an algorithm based on linear programming and theconcept of a processor feasible set has been proposed. The processor feasible

54 CHAPTER 5. MULTIPROCESSOR TASKSset is a set of tasks that can be executed in parallel on a given number ofprocessors. Note that for n tasks and m processors there are O(nm) proces-sor feasible sets. We can denote by xl the processing time of l�th processorfeasible set. Then, problem Pm j sizej ; pmtn j Cmax boils down to solvinga linear program: minimize the sum of execution times of all processor fe-asible sets, subject to the sum of processing times for processor feasible setscontaining Tj being not smaller than tsizejj (j = 1; : : : ; n). Such a formulationhas O(nm) variables, n constraints, and can be formulated and solved inpolynomial time, provided m is �xed.In [41] problem P j sizej ; pmtn; res1 � 1 j Cmax was considered. Additio-nally, it was assumed that sizej 2 f1; 2g, all tasks with sizej = 1 requireda unit of the resource, while only some tasks with sizej = 2 required theresource. It was shown that among the optimal schedules there must existan A-schedule (called here normalized). An O(n logn) algorithm has beenproposed. This problem was further analyzed in [43] for � > 2 and taskswith sizej = 1 requiring a unit or no resource. An O(nm) algorithm wasgiven. For problem Pm jsizej ; pmtn; res� � �jCmax a method based on linearprogramming and feasible sets of tasks was proposed.The problem of preemptive scheduling multiprocessor tasks on hypercubemulticomputer, i.e. problem P j cubej ; pmtn j Cmax, has been tackled in [58].An O(n2) algorithm has been proposed to test whether a feasible scheduleof length T exists. The algorithm builds a stair-like schedules. A schedule isstair-like when (i) each processor Pj is busy before time f(Pj) and idle afterf(Pj), (ii) f is nonincreasing function of processor number. Thus, the higheststep is at processor 0 (the most loaded machine), the steps gradually decreasetill the lowest step at the least loaded processor(s). Tasks are scheduled inthe order of decreasing sizej . A task is executed in such a way that it endsat the common deadline T , steps of the stair-like schedule are consecutively�lled from left to right and no sooner is the new (less loaded) step used thanthe current one is completely full. This results in O(n2) preemptions. Thetesting algorithm can be applied in time O(n2(logn + logmaxjftsizejj g)) to�nd the optimal schedule. Note that in such a case Cmax is calculated withunit granularity.In [90] the authors proved that problems P2 j sizej ; chain j Cmax,P5 j sizej j Cmax are sNPh. Each schedule for P2 j sizej j Cmax, P3 j sizej jCmax can be transformed into a canonical schedule and dynamic program-ming method can be used to obtain an optimal schedule. The complexityof problem P4 j sizej j Cmax remains open. The preemptive scheduling has

5.2. PARALLEL PROCESSORS 55been shown in [90] to be NPh for P2 j spdp�any; pmtn j Cmax and sNPhfor P j spdp�any; pmtn j Cmax. For Pm j spdp�any; pmtn j Cmax, i.e. whenthe number of processors is �xed, a dynamic program has been given.In [119] an O(n logn) algorithm testing the existence of a schedule forproblem P j cubej; pmtn j Cmax has been proposed. The algorithm dif-fers from the one from [58] in the use of pseudo-stairlike schedules. In thepseudo-stairlike schedule a task is not �lling "steps" one by one, but �lls atmost two subcubes ("steps") one from the moment it becomes available tillthe end of the schedule and possibly one more but only partially. This re-sults in a lower number of O(n) preemptions. The algorithm can be appliedin time O(n logn(logn + logmaxjftsizejj g)) to �nd the optimal schedule bya binary search. A similar approach has been proposed independently in [2].In [208] problem P j spdp�any; pmtn; rj j Lmax is considered. The num-ber of processors is assumed to be big enough to deal with them as with acontinuous medium. Each task is described by a continuous function bindingthe processing speed and the number (amount) of assigned processors. Qu-alitative conclusions are derived. The problem is reduced to a set of nonlinearequations.Problem P j cubej ; pmtn; rj; dj j �, (i.e. veri�cation of the existence ofa feasible schedule) was reduced in [169] to a linear program with O(mn2)variables and O(n2m2) constraints.In [37] problem Q j sizej ; pmtn j Cmax of scheduling on uniform pro-cessors was considered. It was also assumed that sizej 2 f1; 2g and thatprocessors form pairs of equal speed. A proposed O(n logn+nm) algorithmwas inspired by [103]. First, a lower bound of the schedule length is calcu-lated. Next, tasks with sizej = 2 are scheduled in the order of decreasingprocessing times. Then, in the remaining free intervals tasks with sizej = 1are scheduled. When the schedule is to short to accommodate all the tasks itis extended by a calculated amount of time. The idea of the above algorithmwas extended to solve problem Q j sizej ; pmtn j Cmax with sizej 2 f1;�gin [39], and to solve problem Q j cubej ; pmtn j Cmax in [38]. In the latterproblem tasks are scheduled in the order of decreasing sizej and tasks withthe same sizej in the order of decreasing tsizejj . In [84] results of computa-tional experiment on the above algorithm for Q j cubej ; pmtn j Cmax havebeen reported. For problem Qm j sizej ; pmtn j Cmax with arbitrary sizej asolution based on linear programming and feasible sets has been proposedin [38].Heuristics for scheduling P j spdp�lin� �j ; prec j Cmax have been propo-

56 CHAPTER 5. MULTIPROCESSOR TASKSsed in [205]. It has been proved that any LS algorithm has tight performanceratio �+m��m . The standard LS algorithm assigns a task to the �rst availableprocessor. However, it can be advantageous to delay the start of a task until amoment when more processors are available. The Earliest Completion Time(ECT) heuristic is an LS algorithm which assigns tasks to ready processorsin a manner minimizing their completion times. The worst case performanceratio of ECT has been shown to be not worse than ln �+1. Further analysisof ECT in [206] proved that the performance is bounded by 3 � 2m and aninstance with 2:5 performance ratio was demonstrated. The idea of ECTalgorithm has been independently proposed in [7] to �nd the set of proces-sors executing a computationally intensive task on a distributed workstationsystem. Processors become available at di�erent moments after completionof earlier task(s) (this is a variation of problem Q;win j spdp�any j Cmaxwith n = 1). An algorithm with complexity O(m2) has been proposed in [7]and with complexity O(m logm) in [91].Preemptive scheduling on a hypercube was considered again in [183]. Afeasibility testing algorithm of [2] was modi�ed to obtain complexity O(nm).By the observation that in the optimal schedule at least one task must useall the time remaining up to the end of the schedule, an O(n2m2) algorithm�nding optimal schedule for P j cubej; pmtn j Cmax was given. The abovealgorithm uses for each subcube a parametric representation of the remainingprocessing time as a linear function of some (hypothetical) common deadlineT . The parameters are modi�ed as a result of building partial schedule.For nonpreemptive scheduling on a hypercube a Largest Dimension Lon-gest Processing Time (LDLPT) heuristic has been analyzed in [59]. TheLDLPT heuristic is a LS method assigning task to processors in the orderof (primarily) decreasing sizej and (secondarily) decreasing processing time.The tight performance ratio of LDLPT is 2� 2=m.A variation of P j spdp�any j Cmax was considered in [131]. It was assu-med that n � m, all tasks (at least initially) are executed in parallel, and mi-nimization of Cmax was achieved by changing the number of processors usedby the tasks. An approximation algorithm proposed in that paper was suc-cessively increasing the number of processors used by the longest task until�j was achieved or all m processors were occupied. We call this algorithm Va-rying Size (VS). The tight performance ratio of VS is minfn;R=(1�m=n)g,where R is the maximum of the ratio of two successive acceptable sizes of anytask. A similar idea was used in an approximate algorithm with performanceratio R for problem P j spdp�any; pmtn j Cmax [132].In [40] problem Pm j sizej ; pmtn j Lmax for sizej 2 f1;�g was consi-

5.2. PARALLEL PROCESSORS 57dered. A linear program based on the processor feasible sets was proposed.Since this method requires an LP with big number of variables an appro-ximation method based on tabu search and linear programming has beenproposed. The reported good experimental results for the second methodhave been explained by a particular topology of the criterial function.In [214] the feasibility algorithm of [2] has been modi�ed to obtainO(n2 log2 n) algorithm �nding optimal schedule for P j cubej ; pmtn j Cmax.Again, the observation is used that in the optimal schedule some task mustbe scheduled exploiting all the remaining processing time on some subcube.To calculate the testing values of Cmax a parametric representation of theremaining free processing time on processors is used (cf. [183]). The opti-mum Cmax is found by considering tasks in the order of decreasing sizejand testing the calculated schedule lengths for successively increasing sub-cube numbers. For nonpreemptive scheduling the authors propose a LargestDimension First (LDF) heuristic with tight performance ratio 2� 1=m. Foron-line scheduling (i.e. the set of tasks is not known a priori) an instance isdemonstrated for which LDF has performance ration greater than 1+p6=2.In [133] an experimental study is reported for on-line scheduling for pro-blem P j cubej j P cj . It is observed that even sophisticated processor al-location strategies alone cannot guarantee good performance. A set of Scanstrategies is proposed which combine the simple buddy allocation schemewith clustering tasks according to their sizej . Tasks with the same sizej areappended to one queue. Queues with di�erent size tasks are scanned in thedirection of increasing (or decreasing) size. This strategy e�ectively overco-mes the shortcomings (e.g. weak ability to recognize idle subcubes) of thebuddy allocator.In [148] application of LPT heuristic to problem P j sizej j Cmax isconsidered. The performance ratio is proved to be 43k � k(k+1)6m , where k isthe number of di�erent task sizes. For problem P j cubej j Cmax LPT hasperformance ratio not greater than 2 � 1=m and performance 2 � 2=m hasbeen demonstrated.In [181] various special cases solvable in polynomial time for P j spdp�any j P cj are analyzed. For P j spdp�lin j P cj an SPT rule is proved tobe optimal.Problem P j spdp�any; prec j Cmax was considered in [170]. An algorithmfor the determining of sizej and sequencing of multiprocessor tasks beingelements of an arbitrary DAG has been proposed. Processors are consideredhere as a continuous medium which behaves like electrical charge passing

58 CHAPTER 5. MULTIPROCESSOR TASKSfrom one task to another in the DAG. The optimality conditions impose aset of nonlinear equations on the
ow of processing power (processors) andon the completion times of independent paths of execution. These equationsare analogous to Kirchho�'s laws of electrical circuit theory. An algorithmbased on conjugate gradient method has been proposed. The complexity isO(e2+ne+I(n+e)), where e - the number of edges in the precedence graphand I - number of iterations in the algorithm.A similar problem motivated by computer vision application is consideredin [63] (a variation of P j spdp�any; prec j Cmax). The important di�erence isthat the computations are pipelined and the tasks constantly coexist on theprocessor set. Long sequences of data sets undergo processing by a collectionof tasks forming series-parallel DAG. The throughput de�ned as the longestexecution of a single task in the DAG is the interval between obtainingresults for two consecutive data sets (a "clock" of the pipe). Two problemsare posed: for the given throughput �nd minimal response time, and forthe given response time �nd maximal throughput. Heuristic algorithms areproposed with complexity O(nm2) for the �rst problem and O(nm2 logm)for the second one.In [85] problem P j sizej ; pmtn j Cmax is proved to be NPh, but it is anopen problem whether it is sNPh. Also problem P4 j sizej j Cmax is provedto be solvable in pseudpolynomial time provided that no task is uniprocessor.In [89] a special case of problem P j spdp�lin��j; var; chain j Cmax isconsidered. It is assumed that tasks form chains of three elements (denotedj chain j= 3): a sequential head (sizej = �j = 1), parallel central partwith an unbounded linear speedup (spdp� lin; �j > m) and a tail whichis sequential again. This model was motivated by a master-slave model ofcomputations. It was shown that the above preemptive scheduling problemis sNPh. This result leads to a conclusion that preemptive scheduling oftasks with linear speedup and a given execution pro�le (cf. Section 3.3) issNPh. Yet, the optimal schedule for them�1 longest tasks can be extendedto an optimal schedule for all the tasks. Furthermore, when m is �xed sucha schedule can be obtained in polynomial time. When the chain of tasksconsists of two elements of one type only, e.g. there are only heads and acentral (parallel) part (denoted j chain j= 2), then the optimal solutioncan be found in O(n logn) time. Three approximation algorithms have beenproposed with tight performance bounds 3; 2; 2, respectively.In [45] problem P3 j sizej ; pj = 1; chain j Cmax is proved to be sNPh.Low-order polynomial time algorithms are proposed in special cases. Whenthe chain consists of two concatenated subchains: a leading chain of mul-

5.2. PARALLEL PROCESSORS 59tiprocessor tasks with sizej = � and trailing chain of uniprocessor tasksan O(n logn) algorithm can be applied when 2� > m. Chains of this kindare called monotonically decreasing chains (m.d.-chains in short). For uni-form chains (u.-chains in short) consisting either of multiprocessor taskswith sizej = � or uniprocessor tasks the optimal schedule can be found inO(n logn) time.The problem of nonpreemptive scheduling multiprocessor tasks on twoprocessors for Pwjcj , P cj and Lmax criteria is considered in [144]. It isshown that P2 j sizej jPwjcj is sNPh. A dynamic programming procedureis proposed for a �xed number of duoprocessor tasks. Problem P2 j sizej jP cj is NPh even when there is only one duoprocessor task. A heuristicis proposed for the �rst problem with tight performance bound 2 whichdecreases to 32 for problem P2 j sizej jP cj . P2 j sizej j Lmax is shown to besNPh and a dynamic program is proposed for a �xed number of duoprocessortasks. P2 j pj = 1; sizej j Lmax is shown to be polynomially solvable by anextension of EDD (Earliest Due Date) rule. Using this rule for arbitraryprocessing times gives an algorithm with bound LH2max � L�max+ 12Pj2T 2 tj ,where T 2 is the set of duoprocessor tasks.5.2.2 P j spdp�lin��j; var j CmaxLet us start this section with an observation that P j spdp�lin; var j Cmax,unlike problem P j spdp�any; pmtn j Cmax, is trivially solvable in O(n)by executing tasks on all available processors. Now, we show that problemP j spdp�lin��j; var j Cmax is solvable in polynomial time.Theorem 5.1 Problem P j spdp�lin��j ; var j Cmax can be solved in O(n)time.Proof The algorithm for this problem is an extension of McNaughton'swrap-around-rule [157]. First, we calculate the length of the scheduleC�max = max(maxTj2T f t1j�j g;Pnj=1 t1jm) (5.1)Note that the schedule cannot be shorter because the �rst term denotesthe longest execution time of a single task, and the second term is the totalamount of work evenly distributed among the processors. We will show that afeasible schedule of length C�max exists. The schedule can be built by applyingMcNaughton's wrap-around-rule: Task T1 is scheduled starting at time 0 on

60 CHAPTER 5. MULTIPROCESSOR TASKSprocessor P1. When t11 � C�max, processing of the task T1 �nishes at timet11 on processor P1. In the opposite case amount t11 �C�max of the remainingwork is executed on processor P2. If t11 � C�max > C�max the procedure isrepeated and the excess of the work is processed by processor(s) P3; (P4; : : :).Right after the completion of task T1 processing of T2 starts. When the taskdoes not �t completely on the processor where it was started the rest isprocessed by the following processor(s). This procedure of wrapping-aroundis repeated until the last task. Now, let us consider the feasibility of theschedule. The second term determining C�max guarantees that the capacityof the box of m processors in time C�max is not exceeded. We have to ensurethat no task uses more than �j processors. Assume that task Tj�1 �nishedat time x on processor Pi. For T0, x = 0 and i = 1. Suppose task Tj usesmore than �j processors. If this is true then in the whole schedule length taskTj uses at least �j processors and at moment x+ (in�nitesimally after x),the task uses �j +1 (or more) processors. This means that Tj occupies morethan �jC�max which contradicts C�max � maxTj2T f t1j�j g. Hence, the scheduleis feasible. Let us analyze the time in which the schedule can be obtained.Task Tj �nishes on processor b(t1j + x)=C�maxc + i. The completion time ofTj is x + t1j � C�maxb(t1j + x)=C�maxc. The processors used by a task and theintervals of the task processing can be found in constant time. Thus, thewhole schedule can be built in O(n) time. 25.2.3 P j spdp�lin��j; var; rj j CmaxIn this section we present an O(n2) algorithm for problem P j spdp�lin��j ; var; rj j Cmax [86]. The procedure we propose uses some concepts of theMuntz and Co�man algorithm [159] solving problem P j pmtn; in � tree jCmax. That algorithm schedules tasks according to their level which is thetime required to �nish all the tasks along the path from the given taskto the root of the tree. Furthermore, an idea of processing capabilities wasintroduced in [159]. Processing capabilities are real numbers representinga fraction of all m processors which is assigned to process a task for sometime. Processing capabilities can be considered as speeds of processing tasks.We will use a similar method to assign processors to tasks. A techniqueproposed in the previous section for problem P j spdp�lin��j ; var j Cmax,is applied to schedule pieces of tasks. The main idea behind the algorithm isto build a schedule starting from the interval where only one task is readyand ending with the last interval where all tasks are ready. The more tasks

5.2. PARALLEL PROCESSORS 61are executed before the last interval, the smaller Cmax is. Now, we introducesome additional notation.Height h(j) of task Tj is the shortest time required to complete Tj.h(j) is equal to the required remaining processing divided by �j . h(j) is t1j�jinitially, and decreases while processing Tj . Hence, h(j) = 0 means that Tj is�nished. Two tasks are said to be equal if their heights are equal. We assumethat there are l � n di�erent values of ready times, and r1=0 <r2 <: : :< rl.We introduce also rl+1=1. In the algorithm we will denote by:k - index of interval [rk; rk+1], k = 1; : : : ; l,Qk - set of tasks ready in interval k,� - length of the current processing capabilities assignment,t - beginning time of the current processing capabilities assignment;� - a vector of n processing capabilities for tasks T1; : : : ; Tn.An Algorithm for P j spdp�lin��j; var; rj j Cmax1: t := 0; group tasks with ready time rk in set Qk; order tasks in Qkaccording to nonincreasing heights, k = 1; : : : ; l;2: for k := 1 to l dobegin2.1: order tasks in Qk according to nonincreasing values of h(j) for Tj 2 Qk;2.2: while (rk+1 > t) and (9Tj2Qkh(j) > 0) dobegin2.2.1: capabilities(Qk; �);2.2.2: calculate times:if 9Tj ;Tj+12Qkh(j) > h(j + 1) then� 0 := minTj ;Tj+12Qkfh(j)�h(j+1)�j�j ��j+1�j+1 : �j�j 6= �j+1�j+1 ; h(j) > h(j + 1)gelse � 0 :=1- the shortest time required for two tasks Tj; Tj+1 with di�erent heightsto become equal;� 00 := h(jQkj)�jQk j - the time to the earliest completion of any task;2.2.3: � := minf� 0; � 00; rk+1 � tg;2.2.4: schedule ��j piece of task Tj in interval [t; t+ �] according tothe algorithm for P j spdp�lin��j; var j Cmax, for Tj 2 Qk;2.2.5: h(j) := h(j)� ��j�j for Tj 2 Qk ;2.2.6: t := t+ � ;end;2.3: if (9Tj2Qkh(j) > 0) then Qk+1 := Qk+1 [fTj : Tj 2 Qk ; h(j)> 0g;end; (* end of the algorithm *)

62 CHAPTER 5. MULTIPROCESSOR TASKSprocedure capabilities(in:X ;out:�); (* X - a set of tasks *)begin3.1: � := 0; avail := m; (* avail is the number of free processors *)3.2: while avail > 0 and j X j> 0 dobegin3.2.1: construct set Y of the highest tasks in X with h(j) > 0;3.2.2: if PTj2Y �j > avail thenbegin3.2.3: �j := �j availPTj2Y �j for task Tj 2 Y ; avail:=0;endelse (* tasks in Y can use at most avail processors *)begin3.2.4: �j := �j for Tj 2 Y ; avail := avail�PTj2Y �j ;end;3.2.5: X := X � Y ;end; (* of while loop *)end; (* of procedure capabilities *)High level description. Intervals [rk; rk+1] are considered consecutively inlines 2-2.3. In these intervals, subintervals are created in lines 2.2-2.2.6 whereprocessing capabilities assignment remains constant. Tasks are assigned pro-cessors in line 2.2.1 analogously to the method proposed in [159]. High tasksare given preference (line 3.2.1). If there are more processors than can besimultaneously required by the ready tasks, a maximal possible number ofprocessors is assigned in line 3.2.4. Otherwise, processors are shared (line3.2.3) by equal tasks such that their heights decrease at the same pace (cf.line 2.2.5). The length of the current assignment is calculated in line 2.2.3.The assignment of processors to tasks changes in three cases: h(j) for someinitially higher task becomes equal to h(j + 1) of some initially lower task(calculated as � 0 in line 2.2.2), or the lowest task in Qk �nishes (� 00), or elsethe end of the interval is encountered and tasks in Qk+1 must be considered.In line 2.3 tasks from Qk not completed by the end of interval k are addedto Qk+1 to be considered also in the next interval.Lemma 5.1 The algorithm for P j spdp�lin��j; var; rj j Cmax is correct.Proof First, we prove that the algorithm halts. Procedure capabilitiesstops because in each execution of while loop in lines 3.2-3.2.5 at least onetask is removed fromX . Equal tasks reduce their heights with the same speed

5.2. PARALLEL PROCESSORS 63(cf. line 2.2.5). Hence, when two tasks become equal they remain equal untiltheir completion. Height of an initially higher task cannot fall below a heightof any initially lower task, which is guaranteed by calculation of � 0 in line2.2.2. Thus, two tasks can become equal at most n � 1 times. We concludethat while loop of lines 2.2-2.2.6 can be executed only a limited number oftimes. Therefore, the algorithm stops.Now, consider feasibility of the schedule. Tasks are not scheduled beforetheir ready times because any task released at rk can be considered in setsQk; : : : ; Ql, not Q1; : : : ; Qk�1. No task Tj is ruled out from consideration aslong as h(j) 6= 0. This means that each task receives required processing.Finally, in each subinterval built in lines 2.2-2.2.6 equation (5.1) is satis�edand a feasible schedule can be built by the algorithm introduced in Section5.2.2. This is because:(i) The sum of processing requirements of tasks isPTj2Qk��j=�(PTj2Q0k �j+PTj2Qk�Q0k �j(m�PTi2Q0k �i)PTi2Qk�Q0k �i) � � m, where Q0k � Qk is a set of tasks which re-ceived processing capabilities in line 3.2.4 of procedure capabilities. Thus,the sum of processing requirements does not exceed the subinterval capacity.(ii) Task Tj (j = 1; : : : ; n) is assigned at most �j processing capabilitieswhich results from lines 3.2.3 and 3.2.4 in procedure capabilities. Hence,� � ��j�j . 2Theorem 5.2 The above algorithm builds an optimal schedule in O(n2)time.Proof In each subinterval created in lines 2.2-2.2.6 either all m proces-sors are occupied, or as many processors are occupied as possible. Hence, ca-pacity of interval [rk; rk+1]; k = 1; : : : ; l�1, is maximally exploited. Thus, thetotal processing requirement moved to Qk+1 is minimal possible. Since taskswith the longest expected execution time are preferred, also maxj2Qk h(j)is maximally decreased. The above arguments hold inductively for intervals[rk; rk+1] (k = 1; : : : ; l�1). Thus, also Ql has tasks with the lowest possiblemaxj2Ql h(j) and their total processing requirement Pj2Ql h(j)�j is mini-mal. Using arguments of Theorem 5.1 proof (cf. equation (5.1)) we concludethat the schedule is optimal.The complexity of the algorithm can be determined as follows. Gro-uping tasks according to their ready times in line 1 can be implementedin O(n logn) time. There are O(n) values of index k considered in loop2-2.3. Ordering tasks according to their heights is equivalent to sorting and

64 CHAPTER 5. MULTIPROCESSOR TASKSrequires O(n logn) time in line 1 and O(n) time in line 2.1 (merging of Qkand Qk�1). Procedure capabilities can be executed in O(n) time becauseit assigns processing capabilities to at most n tasks. Lines 2.2.2-2.2.6 requireO(n) time. Thus, the total complexity is O(n2). 2Observe that to schedule tasks with ready times at most equal rk, thevalue of rk+1 is needed rather than information about tasks in Qk+1; : : : ; Ql.Hence, the above algorithm can be run on-line, i.e. it builds optimal schedu-les using only the information about tasks that have been already releasedand about the time when the new tasks will arrive. In the above algorithm itwas assumed that the cost of preemption (or a context switch) is negligible.The cost of context switching is related to the number of preemptions. Thenumber of preemptions can be determined by the number of subintervalswhere processing capabilities are constant and the preemptions within suchsubintervals. There can be at most 3n subintervals. Any task adds at mostone preemption on one processor within the subinterval. The end of a sub-interval can add one more preemption on each processor. Hence, there areat most 3n2 + 3nm preemptions in the schedule.Now, consider problem P j spdp�lin��j ; var j Lmax. There are l di�erentdue-dates: d1 < d2 < : : : < dl. This problem can be solved by a modi�cationof the above algorithm. For problem P j spdp�lin��j ; var j Lmax we have toguarantee that task Tj is feasibly executed in interval [0; dj+Lmax] and Lmaxis minimal possible. For problem P j spdp�lin��j ; var; rj j Cmax we have toschedule task Tj in interval [rj ; Cmax] and minimize Cmax. Thus, for instanceI of P j spdp�lin��j; var j Lmax we can construct equivalent instance I 0 ofproblem P j spdp�lin��j; var; rj j Cmax by assuming r0j = dl � dl�j+1 forj = 1; : : : ; l. Schedule S 0 for I 0 should be read from the end at C0max to thebeginning to be schedule S for P j spdp�lin��j ; var j Lmax, i.e. each timeinstant t0 in S 0 has equivalent t = C0max � t0 in S. We conclude:Corollary 5.1 P j spdp�lin��j; var j Lmax is solvable in O(n2) time.5.2.4 P2 j sizej; pmtn; rj j CmaxWe use here methods designed in the previous section to solve the problemof preemptive scheduling on two processors of multiprocessor tasks ready atdi�erent moments with a �xed number of used processors, for the schedulelength criterion. The notation is analogous to the one in the previous section.Height h(j) of task Tj is the time required to complete it. There are l � ndi�erent values of ready times r1 = 0 < r2 < : : : < rl < rl+1 =1. Procedure

5.2. PARALLEL PROCESSORS 65capabilities was presented in Section 5.2.3 and we do not repeat it here.Beyond the notation of Section 5.2.3 we use:Qk - the set of uniprocessor tasks ready in interval k,Sk - the set of duoprocessor tasks ready in interval k.An Algorithm for P2 j sizej ; pmtn; rj j Cmax1: t := 0; group duoprocessor tasks with ready time rk in Sk ,and uniprocessor tasks with ready time rk in set Qk,order tasks in Qk according to nonincreasing heights, k = 1; : : : ; l;2: for k := 1 to l dobegin2.1: order tasks in Qk according to nonincreasing values of h(j) for Tj 2 Qk;2.2: � := minfPTj2Sk t2j ; rk+1 � rkg;2.3: schedule � units of duoprocessor tasks from Sk in interval [rk; rk + �];reduce h(j) of scheduled duoprocessor task Tj by the received amountof processing for Tj 2 Sk;2.4: t := t+ � ;2.5: while (rk+1 > t) and (9Tj2Qkh(j) > 0) dobegin2.5.1: capabilities(Qk; �);2.5.2: calculate times:if 9Tj ;Tj+12Qkh(j) > h(j + 1) then� 0 := minTj ;Tj+12Qkfh(j)�h(j+1)�j��j+1 : �j 6= �j+1; h(j)> h(j + 1)gelse � 0 :=1- the shortest time required for two tasks Tj; Tj+1 with di�erent heightsto become equal;� 00 := h(j Qk j) - the time to the earliest completion of any task;2.5.3: � := minf� 0; � 00; rk+1 � tg;2.5.4: schedule ��j piece of task Tj in interval [t; t+ �] according toMcNaughton rule, for Tj 2 Qk;2.5.5: h(j) := h(j)� ��j for Tj 2 Qk;2.5.6: t := t+ � ;end;2.6: if (9Tj2Qkh(j) > 0) then Qk+1 := Qk+1 [fTj : Tj 2 Qk ; h(j)> 0g;2.7: if (9Tj2Skh(j) > 0) then Sk+1 := Sk+1 [fTj : Tj 2 Sk; h(j) > 0g;end; (* end of the algorithm *)High level description. As in the previous algorithm intervals [rk; rk+1]are considered in lines 2-2.7. First, duoprocessor tasks are scheduled in these

66 CHAPTER 5. MULTIPROCESSOR TASKSintervals such that either all duoprocessor tasks are scheduled in the inter-val or the interval is completely �lled by these tasks (lines 2.2-2.4). Then,within intervals [rk; rk+1] subintervals are created in lines 2.5-2.5.6 whereassignment of processing capabilities to tasks in Qk remains constant. Tasksare assigned processors in line 2.5.1 as in [159] and Section 5.2.3. Note that�j = sizej = 1 for all tasks passed to procedure capabilities. The currentprocessor assignment of uniprocessor tasks changes in three cases (calculatedin line 2.5.3): h(j) for some initially higher task becomes equal to h(j+1) ofsome initially lower task (calculated as � 0 in line 2.5.2), the lowest task in Qk�nishes (� 00), the end of the interval is encountered. In line 2.6 uniprocessortasks from Qk not completed by the end of interval k are added to Qk+1 tobe considered in the next interval. The same applies to duoprocessor tasksin line 2.7.Lemma 5.2 The algorithm for P2 j sizej ; pmtn; rj j Cmax is correct.Proof First, we prove that the algorithm stops. Procedure capabilitiesstops as explained in Lemma 5.1. Equal tasks reduce their heights withthe same speed (cf. line 2.5.5). Hence, when two uniprocessor tasks becomeequal they remain equal until their completion. Height of initially higher taskcannot fall below the height of an initially lower task, which is guaranteedby calculation of � 0 in line 2.5.2. Thus, two tasks can become equal at mostn � 1 times. We conclude that while loop of lines 2.5-2.5.6 can be executedonly a limited number of times and the algorithm stops.Now, consider feasibility of the schedule. Tasks are not scheduled beforetheir ready times because any uniprocessor (duoprocessor) task released atrk can be considered in sets Qk; : : : ; Ql (Sk; : : : ; Sl). No task is ruled outfrom consideration as long as h(j) 6= 0. Hence, each task is completed. Ineach subinterval built in lines 2.5-2.5.6:(i) no task is assigned more than processing capability 1, which results fromlines 3.2.3 and 3.2.4 in procedure capabilities. Hence, each uniprocessortask �ts in the subinterval.(ii) the sum of processing requirements of tasks is PTj2Qk��j = �(j Q0k j+ j Qk � Q0k j m�jQ0k jjQk�Q0kj) � � m, where Q0k � Qk is a set of tasks whichreceived processing capability 1 in line 3.2.4 of procedure capabilities.Thus, the sum of processing requirements for the subinterval does not exceedits capacity.(i) and (ii) ensure that in the subinterval created in lines 2.5-2.5.6 a feasi-ble schedule can be obtained by McNaughton's wrap-around rule. 2

5.2. PARALLEL PROCESSORS 67Theorem 5.3 The above algorithm builds an optimal schedule in O(n2)time.Proof Observe that by swapping pieces of tasks on both processors si-multaneously any feasible schedule can be converted to a schedule with thesame length in which duoprocessor tasks are executed consecutively fromtheir ready time. Thus, among optimal schedules there is one where duopro-cessor tasks are executed �rst in intervals [rk; rk+1] (k = 1; : : : ; l).The completion time for tasks in interval [rl; rl+1], and hence of the wholeschedule, is Cmax = rl+Pj2Sl h(j)+maxfmaxj2Ql h(j); 12 Pj2Ql h(j)gwhichis the amount of processing required by duoprocessor tasks plus either thelongest uniprocessor task or the mean loading of the processors by uniproces-sor tasks. Thus, the length of the schedule, depends on the amount of duopro-cessor tasks shifted from [rl�1; rl], amount of shifted uniprocessor tasks, andthe longest shifted piece of a uniprocessor task. In each subinterval created inlines 2.5-2.5.6 either all m processors are occupied, or as many processors areoccupied as possible. Hence, capacity of interval [rk; rk+1]; k = 1; : : : ; l� 1 ismaximally exploited, and the total processing requirement moved to Qk+1 isminimal possible. Tasks with the longest expected execution time are prefer-red in procedure capabilities, thus maxj2Qk h(j) is maximally decreased.These arguments hold inductively for intervals [rk; rk+1] (k = 1; : : : ; l� 1).Thus, Ql has tasks with the lowest possible maxj2Ql h(j), Pj2Ql h(j), andPj2Sl h(j) is minimal. Hence, the schedule is optimal.Grouping tasks according to their ready times in line 1 requires O(n logn)time. There are O(n) values of index k considered in loop 2-2.7. Ordering ta-sks according to their heights is equivalent to sorting and requires O(n logn)time in line 1 and O(n) time in line 2.1 (merging of Qk and Qk�1). Procedurecapabilities can be executed in O(n). Lines 2.5.2-2.5.6 require O(n) time.Thus, the total complexity is O(n2). 2Note that the above algorithm can be extended to any number of pro-cessors provided that 8j2T sizej 2 f1; mg. Furthermore, it can be used tosolve P2 j sizej ; pmtn j Lmax as it was possible to use an algorithm forP j spdp�lin��j; var; rj j Cmax to solve P j spdp�lin��j; var j Lmax.Corollary 5.2 P2 j sizej ; pmtn j Lmax is solvable in O(n2) time.In the following Table 5.1 we summarize results, from the literature aswell as presented in this work, for scheduling multiprocessor tasks on parallelprocessors.

68 CHAPTER 5. MULTIPROCESSOR TASKSTable 5.1: Scheduling multiprocessor tasks on parallel processorsProblem Result ReferenceNonpreemptive schedulingP j sizej ; pj = 1 j Cmax sNPh [149]P3 j sizej ; pj = 1; chain j Cmaxand sizej 2 f1; 2g sNPh [45]P j sizej ; pj = 1; prec j Cmax SLS = 2m��m��+1 [149]P2 j sizej ; pj = 1; prec j Cmax O(nlog2 7) [149]P jsizej ; pj = 1jCmax and sizej2f1;�g O(n) [32]P j sizej ; pj = 1 j Cmaxand sizej 2 f1; : : : ;�g O(n) ILP [32]P j sizej ; pj = 1 j Cmax sNPh [32]P2 j sizej j Cmax, P3 jsizej jCmax NPh,pseudopoly. [90]P4 j sizej j Cmax ? [90]P5 j sizej j Cmax sNPh [90]P2 j sizej ; chain j Cmax sNPh [90]P j sizej j Cmax SLPT � 4�3 � �(�+1)6m [148]P4 j sizej j Cmax and sizej 6= 1 pseudopoly. [85]P2 j sizej jPwjcj sNPh,SH1 � 2 [144]P2 j sizej jPwjcj dyn.prog. for special case [144]P2 j sizej jP cj NPh; SH1 � 32 [144]P2 j sizej j Lmax sNPh [144]P2 j sizej j Lmax LH2max�L�max+ 12Pj2T 2 tj [144]P2 j sizej ; pj = 1 j Lmax O(n logn) EDD [144]P j sizej ; pj = 1;m:d:�chains jCmaxand sizej 2 f1;�g,2� > m O(n logn) [45]P j sizej ; pj = 1; u:�chains jCmaxand sizej 2 f1;�g O(n logn) [45]P j cubej j Cmax SLDLPT = 2 � 2m [59]P j cubej j Cmax SLDF = 2 � 1m [214]P j cubej jP cj experimental study [133]P j cubej j Cmax SLPT � 2 � 1m [148]P j spdp�lin��j ; prec j Cmax SLS = � + m��m [205]P j spdp�lin��j ; prec j Cmax SECT < ln � + 2 [205]P j spdp�lin��j ; prec j Cmax SECT < 3 � 2m [206]P j spdp�any jCmax and n�m SV S = minfn; R1�mn g [131]Q;win1) jspdp�any;n=1 jCmax O(m2) [7]P j spdp�lin jP cj SPT is optimal [181]P j spdp�any jP cj special cases analyzed [181]P j spdp�any; prec j Cmax heuristic [63]P j spdp�any; prec jCmax O(e2 + en + I(e + n)) [170]Q;win1) jspdp�any;n=1 jCmax O(m logm) [91]1) Processors become continuously available after di�erent moments of time.

5.2. PARALLEL PROCESSORS 69Problem Result ReferencePreemptive schedulingP j sizej ; pmtn j Cmax and sizej 2f1;�g O(n) [32]Pm j sizej ; pmtn j Cmax LP [32]P j sizej ; pmtn; res1 � 1 j Cmaxand sizej 2 f1; 2g O(n logn) [41]Q j sizej ; pmtn j Cmax and sizej 2 f1; 2g O(n logn + nm) [37]Q j sizej ; pmtn j Cmax and sizej 2f1;�g O(n logn + nm) [39]Qm j sizej ; pmtn j Cmax LP [38]Pm j sizej ; pmtn j Lmax LP orand sizej 2 f1;�g tabu search+LP [40]P j sizej ; pmtn; res1 � 1 j Cmax O(nm) [43]Pm jsizej ; pmtn; res��� jCmax LP [43]P j sizej ; pmtn j Cmax NPh, ? [85]P2 j sizej ; pmtn; rj j Cmax O(n2) Th.5.3P2 j sizej ; pmtn j Lmax O(n2) Coro.5.2P j cubej; pmtn j Cmax O(n2(logn++ logmaxjftsizejj g)) [58]P j cubej; pmtn j Cmax O(n logn(logn++ maxjftsizejj g)) [119, 2]P j cubej; pmtn; rj; dj j � LP [169]Q j cubej ; pmtn j Cmax O(n logn + nm) [38, 84]P j cubej; pmtn j Cmax O(n2m2) [183]P j cubej; pmtn j Cmax O(n2 log2 n) [214]R j spdp�lin; var; rj ; dj j � LP [200]P j spdp�lin; var; rj; dj j X O(n2) [203]P j spdp�lin; var; rj; dj j X O(n2) [202]P j spdp�lin��j ; var; rj j Lmax O(n4m) [201]P j spdp�any; var; rj j Lmax continuous processors [208]Pm j spdp�any; pmtn j Cmax and m �2 NPh,pseudopoly. [90]P j spdp�any; pmtn j Cmax sNPh [90]P j spdp�lin��j ; var; chain j Cmax sNPh, SH1 = 3and j chain j= 3 SH2 = SH3 = 2 [89]Pm j spdp�lin��j ; var; chain jCmax polynomiallyand j chain j= 3 solvable [89]P j spdp�lin��j ; var; chain j Cmaxand j chain j= 2 O(n logn) [89]P j spdp�any; pmtn j Cmax SV S � R [132]P j spdp�lin��j ; var j Cmax O(n) Th.5.1P j spdp�lin��j ; var; rj j Cmax O(n2) Th.5.2P j spdp�lin��j ; var j Lmax O(n2) Coro.5.1

70 CHAPTER 5. MULTIPROCESSOR TASKS5.3 Dedicated ProcessorsThis section considers scheduling multiprocessor tasks on dedicated proces-sors. First, we review the existing literature of this �eld (including earlierauthor's works). Then, from Section 5.3.2 on we present new results. Part ofthem was prepared in cooperation with other researchers [24, 20]. In Section5.3.2 we present analysis of low order complexity algorithms based on Ear-liest Due-Date rule. In Section 5.3.3 we consider scheduling in time windows.5.3.1 Overview of Earlier ResultsThe �rst paper considering multiprocessor scheduling seems to be [48] inwhich branch and bound (B&B) algorithm is proposed for scheduling inchemical plants. A concept of compatibility and incompatibility of tasks hasbeen introduced. Two tasks Ti and Tj are compatible if fixi\fixj = ;. Thetwo tasks are incompatible when fixi\fixj 6= ;. This gives way to de�nitionof incompatibility graph in which nodes represent tasks and edges link pairsof tasks which cannot be processed together. To bound the search tree aMaximum Degree of Incompatibility (MDI) was used to prefer executingsome tasks over the others.In [130] scheduling of diagnostic tests is analyzed. The tests to be perfor-med are represented by a diagnostic graph in which nodes represent proces-sors and edges - tasks. An edge has weight - processing time of a task. Twoprocessors connected by an edge are simultaneously required to test eachother. We will call such kind of representation scheduling graph (following[134]). The considered problem P j fixj j Cmax with 8j j fixj j= 2 is provedin [130] to be NPh. An LPT heuristic is analyzed, and worst case perfor-mance bound 4(d� 1)=d is demonstrated, where d is the maximum degreeof any vertex. For graphs with d � 5 this bound is tightened to 3, and forbinomial graphs with integral ratio of the weights to 2.In [70] the problem of scheduling �le transfers is considered. A �le transferinvolves two computers/communication centers. Each computer may be ableto use multiple ports to execute simultaneous �le transfers. Let p denotemaximum number of ports. The transfers to be performed are described bya scheduling graph in which vertices are communicating nodes and edges are�les to transfer. The problem is analyzed for the case with central controlleras well as for the distributed case. The complexity of the problem is analyzedin 10 theorems using (mainly) edge coloring model. In this way complexityof 43 special cases is established (including general graphs, bipartite graphs,

5.3. DEDICATED PROCESSORS 71trees, paths, even/odd cycles, one-port, arbitrary number of ports, singleedges, multiple edges). The performance ratio of LS heuristics is analyzed.It is proved that in the worst case 4=3 < SLS � 3. This bound can betightened for special forms of the scheduling graph, e.g. SLS � 2 for p � 2.LPT heuristic has performance ratio 5=2 � 1=p when p � 2. Finally, twodistributed protocols are proposed to schedule �le transfers. For the �rst(called Demand Protocol 1) it is proved that CDP1max � 3C�max + e", whereCDP1max is the length of the schedule, C�max the length of the optimal schedule,e is the number of edges in the scheduling graph, " is the maximum time toinitiate some �le transfer. For the second protocol similar bounds have beenobtained. These bounds were tightened in special cases.In [134] problem P j fixj j Cmax where j fixj j2 f1; 2g is analyzed.Uniprocessor tasks are represented in the scheduling graph as loops. Theabove problem is NPh even if the scheduling graph is caterpillar with oneloop or a star with a loop at each noncentral vertex. References are given toother works establishing the complexity of 16 subcases.In [74] the analysis of problems P j fixj j Cmax and P j fixj ; pj =1 j Cmax is motivated by scheduling of built-in tests for VLSI circuits. Anincompatibility graph is a model of dependencies among the tasks. Threealgorithms based on Maximum Degree of Incompatibility are proposed.In [79] problem P j fixj j Pwjcj is considered. For P2 j fixj ; pj = 1 jPwjcj optimization algorithm with complexity O(n logn) is given. For thegeneral version of the problem integer linear programming formulation wasgiven. Two relaxation methods and two heuristics were presented. Compu-tational results are reported.In [135] preemptive scheduling is considered. By reduction of edge mul-ticoloring problem P j fixj ; pmtn j Cmax with j fixj j= 2 is proved to besNPh (via complexity equivalence with P j fixj ; pj = 1 j Cmax). For pro-blem Pm j fixj ; pmtn j Cmax, i.e. when the number of processors is �xed analgorithm based on linear programming and processor feasible sets is given.In [31] the case of nonpreemptive scheduling on three processors is analy-zed. The complexity of this problem is established by the following theorem.Theorem 5.4 Problem P3 j fixj j Cmax is sNPh in general [31].Proof We prove strong NP-hardness by reduction of 3-partition to adecision version of our problem. 3-partition is de�ned as follows.3-partitionInstance: Set A of 3q numbers aj (j = 1; : : : ; 3q), such that P3qj=1 aj = Bq

72 CHAPTER 5. MULTIPROCESSOR TASKSand B=4 < aj < B=2 for j = 1; : : : ; 3q. Without loss of generality we assumethat B > q.Question: Can A be partitioned into q disjoint subsets A1; : : : ; Aq such thatPaj2Ai aj = B for i = 1; : : : ; q?The above problem can be transformed into problem P3 j fixj j Cmaxas follows: n = 12q � 1, T = U [V [W [X [Y12 [Y23 [Y13. The abovesets of tasks are de�ned in the following table:Task fixj j - task processing timeset indices1 B5 + B4 k2U fP1g 2; : : : ; 2q B7 + B5 + B4 for (j mod 2) = 1 k9B6 + B for (j mod 2) = 0 k62q + 1; : : : ; 4q� 1 B5 for (j mod 2) = 1 k3V fP2g B7+B6+B2+B for (j mod 2)=0 k74q B6 + B2 + B k11W fP3g 4q + 1; : : : ; 6q� 1 B6 + B5 + B3 for (j mod 2) = 1 k4B7 for (j mod 2) = 0 k10X fP3g 6q; : : : ; 9q � 1 aj�6q+1 -Y12 fP1; P2g 9q; : : : ; 10q� 1 B3 k5Y23 fP2; P3g 10q; : : : ; 11q� 1 B4 k1Y13 fP1; P3g 11q; : : : ; 12q� 1 B2 k8y = q(B7 +B6 +B5 +B4 +B3 +B2 +B) �B7.We ask whether for the above task set a schedule of length at most y exists.Suppose the answer to 3-partition is positive, then a feasible schedule oflength y looks like the one in Fig. 5.1.Assume now that a feasible schedule not longer than y exists for problemP3 j fixj j Cmax. Note that processing requirements for all processors areequal to the schedule length. Hence, no idle time is allowed in a feasibleschedule. To prove a positive answer for 3-partition we will examine thenumbers of various type tasks scheduled between tasks from sets Y12; Y23; Y13.The notation of the task numbers for each de�ned task type is presented inthe last column of the above table (cf. also Fig. 5.1).1. Tasks preceding some duoprocessor task Tj 2 Y13 must �nish simulta-neously on P1 and P3. Thus, k2(B5+B4)+k5B3+k6(B6+B)+k8B2+k9(B7+B5+B4) = k1B4+k4(B6+B5+B3)+k8B2+k10B7+PTi2L ai�6q+1, whereL is the set of tasks from X executed before the considered task Tj 2 Y13.Coe�cients at the same power of B must be equal on both sides of theabove equation, we have (equations bounding the coe�cients are presen-ted along with B at the appropriate power): (B :) k6B = PTi2L ai�6q+1,

5.3. DEDICATED PROCESSORS 73
Figure 5.1: A schedule for the proof of Theorem 5.4. Symbols used to denotethe numbers of the given type tasks are placed in the lower-right corners.(B3 :) k4 = k5, (B4 :) k2 + k9 = k1, (B5 :) k2 + k9 = k4, (B6 :) k6 = k4,(B7 :) k9 = k10, and from thisk1 = k4 = k5 = k6 = k2 + k9; k10 = k9 (5.2)We conclude that the same number of tasks from sets Y12, Y23 must pre-cede (and follow) in the schedule any task from Y13 because k1 = k5.PTi2L ai�6q+1 must be a multiple of B.2. Tasks preceding some duoprocessor task Tj 2 Y23 must �nish simul-taneously on P2 and P3. Therefore, k3B5 + k5B3 + k7(B7+B6 +B2 +B) +k11(B6 + B2 + B) = k4(B6 + B5 + B3) + k8B2 + k10B7 +PTi2L ai�6q+1,from which we have (B :) (k7+ k11)B =PTi2L ai�6q+1, (B2 :) k7+ k11 = k8,(B3 :) k5 = k4, (B5 :) k3 = k4, (B6 :) k7 + k11 = k4, (B7 :) k10 = k7. Fromthe abovek3 = k4 = k5 = k8 = k7 + k11 = XTi2Lai�6q+1=B; k7 = k10 (5.3)Since k5 = k8 the number of tasks from Y12 which precede (and follow) sometask from Y23 must be equal to the number of tasks from Y13.3. Tasks preceding some duoprocessor task from Tj 2 Y12 must �nishsimultaneously on P1 and P2. Hence, k2(B5+B4)+k5B3+k6(B6+B)+k8B2+k9(B7+B5+B4) = k1B4+k3B5+k7(B7+B6+B2+B)+k5B3+k11(B6+B2 + B). From this we obtain: (B :) k6 = k11 + k7; (B2 :) k8 = k7 + k11;(B4 :) k2 + k9 = k1; (B5 :) k2 + k9 = k3; (B6 :) k6 = k7 + k11; (B7 :) k9 = k7and from this k6 = k8 = k7 + k11; k1 = k3 = k2 + k9; k7 = k9 (5.4)

74 CHAPTER 5. MULTIPROCESSOR TASKSSuppose some Tj 2 Y12 (i.e. with fixj = fP1; P2g) is the �rst (or thelast) scheduled task from Y12 an it is executed after (before) both T1 andT4q. From this assumption we get k2 = k11 = 1 and from (5.4) k1 = k3 =1 + k9 = 1 + k7 = k6 = k8. Thus, k1 = k8 � 1. From (5.3) it is known thatthe same number of tasks from Y12 and from Y13 must precede any task fromY23. But here we would have k8 � 1 tasks from Y13 and no task from Y12,which is a contradiction.Suppose some Tj 2 Y12 is the �rst (the last) scheduled task from Y12 andthere is neither T1 nor T4q before (after) it. From (5.4) we obtain k1 = k8.When k1 = k8 � 1 the same arguments as in the previous paragraph canbe applied. On the other hand, k1 = k8 = 0 implies that it is impossibleto be in agreement with (5.2) and (5.3) and schedule any task from Y23 orY13 after the considered Tj . This means that such a schedule cannot exist.Conclusion: the �rst executed task from Y12 must be preceded either by T1or T4q.Assume T1 precedes the �rst task from Y12, then k2 = 1; k11 = 0; k1 =k3 = 1+ k9 = 1+ k7 = 1+ k8 = 1+ k6, and there is one more task from Y23before any task from Y12 than the number of the tasks from Y13.When T4q precedes the �rst task from Y12 then k2 = 0; k11 = 1; k1 =k3 = k7 = k9 = k8 � 1 = k6 � 1, and there is one less task from Y23 beforeany task from Y12 than the number of tasks from Y13. Hence, the schedulecannot be started with a task from Y12.4. Now, we will examine whether the schedule can be started by threeuniprocessor tasks. Suppose it is possible.4a. Tj 2 Y12 is the �rst duoprocessor task in the schedule, then k2 +k9 + k6 > 0, k11 + k3 + k7 > 0, k1 = k8 = 0 on the other hand, from(5.4) k2 + k9 = k3, k11 + k7 = k6, k1 = k3, k6 = k8 from which we get acontradiction: 0 = k1 + k8 = k3 + k6 > 0.4b. Tj 2 Y13 is the �rst duoprocessor task in the schedule, then k2+k9+k6 > 0, k1 = k5 = 0, and from (5.2) k2 + k9 = k6, k1 = k6, from which weobtain a contradiction: 0 < 2k6 = 2k1 = 0.4c. Tj 2 Y23 is the �rst duoprocessor task in the schedule, but there is nocombination of tasks from sets V (requiring P2) and W (requiring P3) whichwould compensate B2 and B3 without duoprocessor tasks. Hence, such aschedule is infeasible.Conclusion: schedule may not start with uniprocessor tasks on all threeprocessors. Following conclusion of Point 3, schedule must start with a taskeither from Y23 or from Y13.5. Let us analyze how many tasks of various types precede the �rst task

5.3. DEDICATED PROCESSORS 75Figure 5.2: Proof of Theorem 5.4 Point 5. Arrows indicate examined timesintervals.Tj 2 Y13. Without loss of generality we assume that the �rst duoprocessortask in the schedule belongs to Y23 (i.e. k1 � 1). Consider the time intervalbetween the task from Y23 preceding the �rst task from Y13 (cf. Fig. 5.2a).We have: k2(B5 + B4) + k6(B6 + B) + k9(B7 + B5 + B4) + k5B3 + k3B5 +k7(B7+B6+B2+B)+k11(B6+B2+B)+k1B4 =PTi2L ai�6q+1+k4(B6+B5+B3)+k10B7+k1B4. From the above (B :) PTi2L ai�6q+1=B = k11+k6;(B2 :) k11+ k7 = 0; (B3 :) k5 = k4; (B4 :) k2+ k9 = 0; (B5 :) k2+ k3+ k9 = k4;(B6 :) k6+ k7 + k11 = k4; (B7 :) k9+ k7 = k10, and from thisk2 = k7 = k9 = k10 = k11 = 0; k3 = k4 = k5 = k6 = XTi2Lai�6q+1=B (5.5)Now, analyze the time from the start of the schedule to the �rst task Ti 2 Y12(cf. Fig. 5.2b) which precedes Tj 2 Y13. We have k02(B5+B4)+k06(B6+B)+k09(B7 + B5 + B4) = k3B5 + k1B4 (note that k1; k3 are the same numbersas in equation (5.5)). From this we obtain: (B7 :) k09 = 0; (B5 :) k09 + k02 =k3; (B4 :) k09 + k02 = k1 and thus k02 = k1 = k3. Since k1 � 1 and k02 2 f0; 1gthen k02 = k1 = k3 = k4 = k5 = k6 = 1. Hence, the schedule before the �rsttask from Y13 must look like in Fig. 5.1.6. One can examine now what tasks are present between the �rst (second,third, etc.) task from Y12, and the �rst task from Y23 which is following it.Analogously, the time between the �rst (second, third, etc.) task from Y13and the task from Y12 following it. From such an analysis it can be inferredthat the schedule must have a form like the one in Fig. 5.1. There are boxesB time long on P3 between consecutive tasks from Y23 where tasks fromset X must be executed. Hence, the answer to the 3-partition must bepositive. Observe that the schedule ends with a task from set Y13 and taskT4q. If we assumed in Point 5 that the schedule starts with a task from setY23 we would obtain the same schedule read from the end. 2In [31] normal schedules (NS) for problem P3 j fixj j Cmax are analy-zed. A normal schedule is the one in which task requiring two processors

76 CHAPTER 5. MULTIPROCESSOR TASKSsimultaneously are executed in parallel with tasks requiring the third pro-cessor. Three special cases are identi�ed when normal schedules are optimal.In general case performance ratio of normal schedules is shown to be lessthan 4=3. The same problem is further analyzed in [78]. It is shown thatnormal schedules guarantee performance 5=4 and this bound is tight. Onthe contrary LPT and SPT rules have tight worst-case performance ratio 3.For a certain distribution of instances it is shown that over 95% of them arerecognized as solvable in polynomial time. A better approximation algorithmwith tight performance ratio S18 = 7=6 has been proposed in [102] (we callit 18 for it chooses the best out of 18 schedules).In [19] preemptive scheduling is considered. For problems Pmjfixj; pmtn jLmax; Pm j setj ; pmtn jLmax; Pm j fixj ; pmtn; rj j Lmax; Pm j setj ; pmtn; rj jLmax, are solved in polynomial time by the use of processor feasible sets andlinear programming.In [50] many open-,
ow- and job-shop scheduling problems with mul-tiprocessor tasks are considered. For the open-shop it is assumed that thesame number operations of di�erent tasks require the same set of proces-sors. In some of the considered problems the number of stages is �xed, i.e.for each task the number of operations can be �xed. These problems arefurther pursued in [49]. In some cases the number of task types was �xed toR. In [21] O(n) complexity algorithms are given for problems P2 jfixj; pmtn jCmax; P3 jfixj ; pmtn jCmax; P4 jfixj ; pmtn jCmax; P4 jfixj ; pmtn; res1 � 1 jCmax.Problem P j fixj j Cmax is considered in [25]. For special cases P2; 3; 4 jfixj ; pj = 1 j Cmax linear time algorithms are given, for P5 j fixj ; pj = 1 jCmax, O(n2:5) algorithm is given. The general case is analyzed on the base ofincompatibility graph. A special easy case is identi�ed: when incompatibilitygraph is a comparability graph, the problem is solvable in polynomial time.For a general case B&B algorithm is proposed. The idea of augmentingincompatibility graph to a comparability graph is further used in [77] toexamine problem P j fixj ; prec j Cmax.In [120] computational complexity of a group of multiprocessor task sche-duling problems for Cmax and P cj criteria is considered (the work is knownsince 1992).Scheduling �le transfers in time windows (i.e. P;win j fixj j Cmax andj fixj j= 2) is analyzed in [136]. The problem is shown to be NPh. Lo-wer and upper bounds on the optimal schedule length are proposed. Threepolynomially solvable cases are identi�ed.

5.3. DEDICATED PROCESSORS 77In [22] polynomially solvable cases of scheduling unit-execution time ta-sks are considered. Linear time algorithm is given for problem P2 j fixj ; pj =1 j Lmax.In [85] problem P2 j fixj j Lmax is shown to be sNPh.Scheduling according to model setj is tackled in [23]. Dynamic program-ming formulations are given for P2 j setj j Cmax and for P3 j setj j Cmax inthe absence of one of the three duoprocessor task types. For P j setj j Cmaxheuristic scheduling tasks in the shortest processing time mode (SPTM) isproposed. Its tight performance ratio is m. For P j setj ; pmtn j Cmax apolynomial time algorithm based on processor feasible sets and linear pro-gramming is proposed.In [26] the complexity of problem P j setj j Cmax is analyzed. Methodsof calculating lower and upper bounds on the length of the schedule areproposed. A heuristic method solving iteratively separate subproblems: theassignment (selection of processing mode) and scheduling problem, is pro-posed.Article [138] analyzes the complexity of a wide range of preemptive andnonpreemptive scheduling problems with j fixj j= 2.In [51] for problem P2 j fixj ; pmtn j P cj an O(n logn) optimizationalgorithm is given. P2 j fixj j P cj is proved to be sNPh, and a heuristicwith performance bound 2 is proposed.The new results presented in this section as well as the previously existingones are summarized in Table 5.2.5.3.2 Low Complexity Algorithms for Maximum LatenessWe assume that there are s di�erent values of due-dates: d1 < d2 < : : : < ds.We will say that tasks with due-dates equal to di must �nish in the i-thinterval, because they must not be �nished later than in interval [di�1 +Lmax; di + Lmax] for i = 1; : : : ; s, where d0 = �Lmax. Without loss of gene-rality we assume in this section that there are no two tasks with the samedue-date and the same set of required processors (such tasks can be analyzedas one task with execution time equal to the sum of execution times). Thetask with due-date di and requiring set D of processors will be denoted TD;iand tD;i will denote its processing time. Moreover, we assume that tasks areordered according to nondecreasing values of their due-dates.

78 CHAPTER 5. MULTIPROCESSOR TASKSP2 j fixj; pmtn j LmaxIn this section we give a formulation of the algorithm for the case of tasksrequiring either one of the two processors or both of them. The followingtheorem establishes conditions under which a feasible schedule with value Lof lateness can be built.Theorem 5.5 For existence of a feasible schedule for problem P2jfixj;pmtnjLmax with maximum lateness value equal to L it is necessary and su�cientto guarantee that the following set of inequalities holds:iXj=1(t12;j + t1;j) � di + L for i = 1; : : : ; s (5.6)iXj=1(t12;j + t2;j) � di + L for i = 1; : : : ; s (5.7)Proof Inequalities (5.6), (5.7) establish necessary conditions for sche-dule feasibility because there are processing requirements of processors P1and P2 on their left-hand sides. On the right-hand sides, there are processingcapacities of processors in periods [0; di + L] (i = 1; : : : ; s). Hence, no sche-dule with smaller value of lateness can exist. Now, we will show that whenconditions (5.6) and (5.7) are satis�ed then a feasible schedule exists. Theproof is given by induction over index i of the interval.For i = 1 the inequalities (5.6), (5.7) have the form:t12;1 + t1;1 � d1 + Lt12;1 + t2;1 � d1 + LFrom [21] we know that for problem P2 j fixj ; pmtn j Cmax the optimallength of the schedule is equal to C1max = maxft12;1+ t1;1; t12;1+ t2;1g. From(5.6), (5.7) we get d1 + L � C1max, and a feasible schedule can be built inthe �rst interval for the given L (cf. Fig. 5.3a).Now let us assume, that a feasible schedule for tasks �nishing in intervals1; : : : ; i exists and inequalities (5.6), (5.7) are satis�ed for 1; : : : ; i+1. Then,a feasible schedule for tasks with due-date di+1 must also exist. Suppose nofeasible schedule for the tasks �nishing in the interval i+1 exists. This meansthat one of the following inequalities must hold (cf. Fig. 5.3b):t12;i+1 + t1;i+1 > di+1 + L� iXj=1(t12;j + t1;j) (5.8)

5.3. DEDICATED PROCESSORS 79Figure 5.3: Partial schedule for P2 j fixj ; pmtn j Lmax.t12;i+1 + t2;i+1 > di+1 + L� iXj=1(t12;j + t2;j) (5.9)But (5.8) is in contradiction with (5.6), and (5.9) with (5.7). We concludethat also for the tasks �nishing in interval i + 1 a feasible schedule mustexist. Induction on i completes the proof. 2From the above theorem we conclude that the optimal lateness L�maxcan be found as a minimal value of L which is satisfying inequalities (5.6),(5.7). Since there are O(n) inequalities in (5.6),(5.7), L�max can be found inO(n) time. The optimal schedule can be built following the scheme presentedin Fig. 5.3. T 12;i+1 is scheduled as soon as tasks with the due-date di are�nished. Tasks T 1;i+1 and T 2;i+1 are shifted to the left as far as possible.Then, tasks from interval (i + 2) follow immediately. We will name thismethod interval scheduling. The schedule can be built in O(n) time. In orderto achieve this, the search for free time slots must be completed in O(n) timefor all n tasks. It is possible when the scheduling algorithm holds a list of freetime slots. The time spent on �nding appropriate time slots is proportionalto the number of considered slots. Since no time slot is considered after itis completely allocated, and there are at most dn=2e free time slots on oneprocessor, the schedule can be constructed in O(n) time.P3 j fixj; pmtn j LmaxIn this section we consider three processor case. The problem can be solvedin linear time for the instances with the following property which will becalled accommodation property:iXj=1 t1;j > iXj=1 t23;j) t1;i+1 > t23;i+1 for i = 1; : : : ; siXj=1 t2;j > iXj=1 t13;j) t2;i+1 > t13;i+1 for i = 1; : : : ; s (5.10)

80 CHAPTER 5. MULTIPROCESSOR TASKSiXj=1 t3;j > iXj=1 t12;j) t3;i+1 > t12;i+1 for i = 1; : : : ; s:This means that if in some interval uniprocessor tasks are executed longerthan duoprocessor tasks requiring the remaining two processors, then alsoin the following intervals this situation takes place. The following theoremstates necessary and su�cient conditions for the existence of a schedule withthe given value of maximum lateness.Theorem 5.6 For existence of a feasible schedule for problem P3 j fixj ;pmtn j Lmax with maximum lateness equal to L and instance with accom-modation property, it is necessary and su�cient that the following set ofinequalities holds:iXj=1(t123;j + t12;j + t13;j + t1;j) � di + L for i = 1; : : : ; siXj=1(t123;j + t12;j + t23;j + t2;j) � di + L for i = 1; : : : ; siXj=1(t123;j + t13;j + t23;j + t3;j) � di + L for i = 1; : : : ; s (5.11)iXj=1(t123;j + t12;j + t13;j + t23;j) � di + L for i = 1; : : : ; s:Proof Observe that no schedule with maximum lateness smaller than Lsatisfying (5.11) can exist. Otherwise, tasks would have to overlap. We willshow by induction over interval number i that for L satisfying inequalities(5.11) a feasible schedule exists.Let us analyze i = 1. According to [21], where problem P3 j fixj ; pmtn jCmax has been analyzed, the shortest schedule in the �rst interval has lengthC1max = t123;1+maxft12;1+t13;1+t1;1; t12;1+t23;1+t2;1; t13;1+t23;1+t3;1; t12;1+t13;1 + t23;1g.From (5.11) we have C1max � d1 + L, and a feasible schedule can be built inthe �rst interval.Next, assume that for tasks �nishing in intervals 1; : : : ; i a feasible sche-dule exists and inequalities (5.11) are satis�ed for intervals 1; : : : ; i+ 1. Weshow that a feasible schedule for tasks with due-date di+1 must also exist.

5.3. DEDICATED PROCESSORS 81
Figure 5.4: Partial schedule for P3 j fixj ; pmtn j Lmax.Suppose no feasible schedule for tasks �nishing in interval i + 1 exists. Wewill analyze each type of tasks according to the number of used processors.Case A. Some uniprocessor task(s) with due-date di+1 cannot be sche-duled feasibly. Without loss of generality let it be task T 1;i+1. This meansthatt123;i+1+ t12;i+1+ t13;i+1+ t1;i+1 > di+1+L�Pij=1(t123;j+ t12;j+ t13;j+ t1;j);which contradicts (5.11). We conclude that task T 1;i+1 can be scheduledfeasibly. In the same manner one can prove the existence of feasible schedulesfor tasks T 2;i+1 and T 3;i+1.Case B. Some duoprocessor task(s) with due-date di+1 cannot be sche-duled. We will analyze two subcases: B.1 - length of the schedule for tasks�nishing in the intervals 1; : : : ; i (denoted Cimax) was established by the pro-cessing times of tripleprocessor or duoprocessor tasks (cf. Fig. 5.4a); B.2 -Cimax was imposed by processing time on a single processor (cf. Fig. 5.4b).Subcase B.1 Assume task(s) from T 12;i+1 cannot be scheduled. This me-ans that one of the three inequalities must be satis�ed:t123;i+1+ t12;i+1+ t13;i+1+ t1;i+1 > di+1+L�Pij=1(t123;j+ t12;j+ t13;j + t1;j)t123;i+1+ t12;i+1+ t23;i+1+ t2;i+1 > di+1+L�Pij=1(t123;j+ t12;j+ t23;j + t2;j)t123;i+1+t12;i+1+t13;i+1+t23;i+1 > di+1+L�Pij=1(t123;j+t12;j+t13;j+t23;j):The former two inequalities can be excluded from further analysis becausealso some uniprocessor task would not be scheduled feasibly, which is impos-sible according to Case A. The latter inequality contradicts (5.11). Hence,T 12;i+1 can be scheduled feasibly in this subcase. Analogous proof can begiven for T 13;i+1 and T 23;i+1.

82 CHAPTER 5. MULTIPROCESSOR TASKSSubcase B.2 Cimax was imposed by a single processor. Without loss ofgenerality let it be P1. Suppose T 12;i+1 cannot be scheduled. We exclude atthis point Case A (i.e. the fact that T 12;i+1 cannot be scheduled due to someuniprocessor task). Denote by �23 the length of the interval in which T 23;i+1can be processed before moment Cimax. Hence,�23 = Cimax � maxfPij=1(t123;j + t12;j + t13;j + t23;j);Pij=1(t123;j + t12;j +t23;j + t2;j);Pij=1(t123;j + t13;j + t23;j + t3;j)g.Since T 12;i+1 cannot be scheduled feasibly, we have:t123;i+1+ t12;i+1 + t13;i+1+maxf0; t23;i+1� �23g > di+1+L�Cimax: (5.12)Suppose that t23;i+1 � �23 then by substituting �23 in (5.12) we get:t123;i+1 + t12;i+1 + t13;i+1 + t23;i+1�Cimax +maxf iXj=1(t123;j + t12;j + t13;j + t23;j);iXj=1(t123;j + t12;j + t23;j + t2;j); iXj=1(t123;j + t13;j + t23;j + t3;j)g >di+1 + L� Cimax: (5.13)Assume that the �rst term in the max component of the above inequalityis grater, then we obtaini+1Xj=1(t123;j + t12;j + t13;j + t23;j) > di+1 + Lwhich contradicts (5.11). Consider the second term of the max component in(5.13) as maximum. This may happen only if Pij=1 t13;j < Pij=1 t2;j . Then,we have t123;i+1 + t12;i+1 + t13;i+1 + t23;i+1 +iXj=1(t123;j + t12;j + t23;j + t2;j) >di+1 + L:And from thisi+1Xj=1(t123;j + t12;j + t23;j + t2;j)� t2;i+1 + t13;i+1 > di+1 + L:

5.3. DEDICATED PROCESSORS 83From (5.11) we have di+1 + L � Pi+1j=1(t123;j + t12;j + t23;j + t2;j) and theabove two inequalities together give t13;i+1 > t2;i+1, which contradicts ac-commodation property. For the last component of max term in (5.13) thereasoning is analogous.Now, suppose that t23;i+1 < �23. Then, (5.12) takes the form:t123;i+1 + t12;i+1 + t13;i+1 > di+1 + L� Cimax:Since the length of the schedule for tasks �nishing in the intervals 1; : : : ; iwas imposed by a uniprocessor task using processor P1, Cimax isCimax = iXj=1(t123;j + t12;j + t13;j + t1;j):From the above two formulations we gett123;i+1 + t12;i+1 + t13;i+1 > di+1 + L�Pij=1(t123;j + t12;j + t13;j + t1;j),which contradicts (5.11). Thus, a feasible schedule for T 12;i+1 must exist.The same reasoning can be applied to T 13;i+1 and T 23;i+1 because inequ-ality (5.12) must hold when T 13;i+1 and T 23;i+1 cannot be scheduled. Thiscompletes Subcase B.2 and Case B.Case C. Suppose some tripleprocessor task(s) cannot be scheduled. Wecan exclude from further analysis the case when a tripleprocessor task cannotbe scheduled with uniprocessor and/or duoprocessor task(s), because thesecases have already been analyzed (Case A, B). Hence, we get:t123;i+1 > di+1 + Lmax � Cimaxwhich implies (5.12). Thus, a feasible schedule for tripleprocessor tasks mustexist. This proves the existence of a feasible schedule for tasks �nishing ininterval i+ 1. Induction on i completes the proof. 2From the above theorem we conclude that when inequalities (5.10) hold,the optimal schedule can be obtained in O(n) time. L�max can be found asa minimal value L satisfying inequalities (5.11). Task T 123;i+1 must be exe-cuted immediately after all tasks from interval i are �nished. Duoprocessortasks from interval i+ 1 are shifted to the left as much as possible. Finally,uniprocessor tasks follow shifted as much as possible to the left. In the nextinterval tasks are scheduled in the same manner. Again, we will name thismethod interval scheduling.When conditions (5.10) do not hold, it is possible that inequalities (5.11)are not su�cient to re
ect interactions between tasks in consecutive inte-rvals. For example, task T 2;i in
uences completion time of tasks T 13;i+1,

84 CHAPTER 5. MULTIPROCESSOR TASKSthough they never appear together in (5.11). In such a situation it is easierto apply linear programming approach proposed in [19] or Section 5.3.3. Onemore explanation why the interval scheduling algorithm does not guaranteeoptimality is the following. In each partial schedule of tasks from intervals1; : : : ; i there are free time slots which provide processing capacity for uni-and duoprocessor tasks. When there is no longer free space for uniprocessortask it must be allocated in the slots accessible for duo- and triple-processortasks. Depending on the choice of the slot free time intervals for duoproces-sor tasks are consumed. Since the kind of duoprocessor tasks that follow inthe next interval(s) is not considered during the construction of a partialschedule, it is not possible to build in this way an optimal schedule for allcases.We will show now that even though interval scheduling does not buildoptimal schedules in all cases, it is still delivering solutions of good quality.Namely, we will show that in the worst case, the relative di�erence betweenoptimum L�max and maximum lateness LISmax of the schedule built by theinterval scheduling algorithm is bounded. Let us denote by Cimax the com-pletion time of the last task from interval i.Theorem 5.7 Every schedule built by the interval scheduling algorithm forproblem P3 j fixj ; pmtn j Lmax satis�esLISmax � djL�max � 2; where j satis�es Cjmax = LISmax + dj :Proof Firstly, an upper bound on LISmax will be calculated. Note thatLISmax = maxifCimax�dig. Completion time Cimax can be bounded from abovebyPij=1(t123;j+ t12;j+ t23;j+ t13;j+ t1;j+ t2;j+ t3;j) in which we assume thatno tasks are executed in parallel. The lower bound for L�max+di is the lengthof the shortest feasible schedule of tasks from intervals 1; : : : ; i. Accordingto [21] it is maxi f8>>><>>>: Pij=1(t123;j + t12;j + t13;j + t1;j)Pij=1(t123;j + t12;j + t23;j + t2;j)Pij=1(t123;j + t13;j + t23;j + t3;j)Pij=1(t123;j + t12;j + t13;j + t23;j) g (5.14)Suppose the last term is maximum, then from comparing it with the previousthree terms we have Pij=1 t1;j � Pij=1 t23;j and Pij=1 t2;j � Pij=1 t13;j andPij=1 t3;j �Pij=1 t12;j . Thus, we get

5.3. DEDICATED PROCESSORS 85Figure 5.5: Example schedule for problem P3 j fixj ; pmtn j Lmax.CimaxL�max+di < Pij=1(t123;j+t12;j+t23;j+t13;j+t1;j+t2;j+t3;j)Pij=1(t123;j+t12;j+t13;j+t23;j) �1 + Pij=1(t1;j+t2;j+t3;j)Pij=1(t123;j+t12;j+t13;j+t23;j) � 1 + Pij=1(t1;j+t2;j+t3;j)Pij=1(t123;j+t1;j+t2;j+t3;j) � 2:If any other term in a given interval is maximum in (5.14), similar argumentsfollow. Next, there must exist at least one interval j satisfying Cjmax =LISmax+dj . Hence, Cjmax = LISmax+dj � 2(L�max+dj) and from this LISmax�djL�max �2: 2We complete this section with an example.ExampleWe are given 14 tasks. Tasks with due-date d1 = 2 (we enumerate onlyprocessing times): t123;1 = 4; t13;1 = 3; t23;1 = 4; t1;1 = 2; t2;1 = 3; tasks withdue-date d2 = 4: t123;2 = 2; t12;2 = 2; t13;2 = 1; tasks with due-date d3 = 6:t12;3 = 3; t13;3 = 2; t23;3 = 2; t1;3 = 2; t2;3 = 3; t3;3 = 1. As it can be veri�ed,this instance has accommodation property. Inequalities (5.11) are satis�edby values of Lmax � 17. The optimal schedule is presented in Fig. 5.5.P4 j fixj; pmtn j LmaxIn this section scheduling on four processors will be considered. Let us in-troduce some additional notation. By T D;i we will denote the set of tasks inthe intervals 1; : : : ; i requiring processors from set D, i.e. T D;i = [ij=1TD;j.A competition graph is a graph in which nodes correspond to task types andedges connect nodes (i.e. task types) which cannot be executed in parallel.Consider a competition graph built for tasks from intervals 1; : : : ; i. One candistinguish in such a graph twelve cliques - groups of tasks that must not beexecuted in parallel. These are:Ai = fT 1;i; T 12;i; T 13;i; T 14;i; T 123;i; T 124;i; T 134;i; T 1234;ig,Bi = fT 2;i; T 12;i; T 23;i; T 24;i; T 123;i; T 124;i; T 234;i; T 1234;ig,Ci = fT 3;i; T 13;i; T 23;i; T 34;i; T 123;i; T 134;i; T 234;i; T 1234;ig,Di = fT 4;i; T 14;i; T 24;i; T 34;i; T 124;i; T 134;i; T 234;i; T 1234;ig,

86 CHAPTER 5. MULTIPROCESSOR TASKSEi = fT 12;i; T 13;i; T 23;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,F i = fT 12;i; T 14;i; T 24;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,Gi = fT 13;i; T 14;i; T 34;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,H i = fT 23;i; T 24;i; T 34;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,I i = fT 12;i; T 13;i; T 14;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,J i = fT 12;i; T 23;i; T 24;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,Ki = fT 13;i; T 23;i; T 34;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig,Li = fT 14;i; T 24;i; T 34;i; T 123;i; T 124;i; T 134;i; T 234;i; T 1234;ig.To guarantee optimality of the schedule for four processors, built in thesame way as for two and three processors, the instance of the problem mustsatisfy more restrictive conditions:t12;i = t34;i; t13;i = t24;i; t14;i = t23;i for i = 1; : : : ; siXj=1 t1;j � iXj=1 t234;j for i = 1; : : : ; siXj=1 t2;j � iXj=1 t134;j for i = 1; : : : ; s (5.15)iXj=1 t3;j � iXj=1 t124;j for i = 1; : : : ; siXj=1 t4;j � iXj=1 t123;j for i = 1; : : : ; s:As before our problem can be solved by analysis of a set of inequalities.Theorem 5.8 For the instances of problem P4 j fixj ; pmtn j Lmax satisfy-ing conditions (5.15) a feasible schedule with maximum lateness equal to Lexists if and only if the following set of inequalities holds:maxJ2fAi;:::;Ligf XS2J ;TKj 2S tKj g � di + L for i = 1; : : : ; s: (5.16)Proof Ai; : : : ; Li are cliques of tasks which means that tasks in each ofthese sets must be executed sequentially, and no schedule with maximumlateness smaller than the value satisfying (5.16) can exist. We will show byinduction on interval number i that as long as inequalities (5.15),(5.16) hold,a feasible schedule must exist.

5.3. DEDICATED PROCESSORS 87Consider the �rst interval (i = 1). From (5.16) and [21] where lengthC1max of optimal schedule for problem P4 j fixj ; pmtn j Cmax has beenestablished, we haved1 + L � C1max = maxJ2fA1;:::;L1gf XS2J ;TKj 2S tKj gand a feasible schedule can be built in the �rst interval.Assume now, that a feasible schedule for tasks from the intervals 1; : : : ; iexists and the inequalities (5.16) are satis�ed for the intervals 1; : : : ; i + 1.We will show that a feasible schedule must also exist for interval i+1. On thecontrary, suppose that some task(s) cannot be scheduled. We will analyzetask types according to the number of processors used.Case A. Some uniprocessor task(s) cannot be scheduled. Let it be T 1;i+1,without loss of generality. Then, the following inequality must hold:t1;i+1 + t12;i+1 + t13;i+1 + t14;i+1 + t123;i+1 + t124;i+1 + t134;i+1 + t1234;i+1 >di+1+Lmax�Pij=1(t1;j + t12;j + t13;j + t14;j + t123;j + t124;j + t134;j + t1234;j),which contradicts (5.16). We conclude that a feasible schedule for T 1;i+1must exist. For other uniprocessor tasks types reasoning is similar.Case B. Some duoprocessor task(s) cannot be scheduled feasibly. Wecan exclude from further analysis the case for which duoprocessor taskscannot be scheduled due to some uniprocessor task(s) - since this is Case A.Hence, we can also exclude from further analysis violation of the schedulefeasibility by the tasks forming cliques of type Ai+1; : : : ; Di+1. The rest ofthe proof for Case B has two parts Subcase B.1 - when Cimax was imposed bytripleprocessor or duoprocessor tasks and Subcase B.2 - Cimax was imposedby uniprocessor tasks.Subcase B.1. Cimax was imposed by duoprocessor or tripleprocessor tasks,thus it is a sum of processing requirements of one of cliques Ei; : : : ; Li. Forinstances satisfying equations (5.15), sums of processing times of tasks incliques Ei; : : : ; Li are the same. Hence,Cimax = XS2Ei;TK;j2S tK;j :Suppose some duoprocessor task cannot be scheduled. This means that forsome clique with duoprocessor and tripleprocessor tasks schedule is infeasi-ble. Let it be a clique of the E type (Ei+1 �Ei, to be precise) for example.Then, we havet1234;i+1+ t123;i+1+ t124;i+1+ t134;i+1+ t234;i+1+ t12;i+1+ t13;i+1+ t23;i+1 >di+1 + L� Cimax =

88 CHAPTER 5. MULTIPROCESSOR TASKS
Figure 5.6: Partial schedule for the proof of Theorem 5.8.di+1 + L�Pij=1(t1234;j + t123;j + t124;j + t134;j + t234;j + t12;j + t13;j + t23;j)� t1234;i+1+ t123;i+1 + t124;i+1 + t134;i+1 + t234;i+1 + t12;i+1 + t13;i+1 + t23;i+1which contradicts (5.16). For other clique types, the proof is analogous.Subcase B.2. This subcase cannot happen when inequalities (5.15) hold.Hence, duoprocessor tasks can be feasibly executed in the interval i+ 1.Case C. Suppose some tripleprocessor task(s) cannot be scheduled. Weexclude situations that tripleprocessor task(s) cannot be scheduled due tosome uni- or duoprocessor task(s) since these are Case A or Case B, respec-tively. Thus, the following inequality must hold (cf. Fig. 5.6):t1234;i+1 + t123;i+1 + t124;i+1 + t134;i+1 + t234;i+1 > di+1 + L� CimaxBut from (5.15)Cimax =Pij=1(t1234;j + t123;j + t124;j + t134;j + t234;j + t12;j + t13;j + t23;j)and we have a contradiction with (5.16). Hence, a feasible schedule for tri-pleprocessor task(s) must also exist.Case D. Some four-processor task(s) cannot be scheduled. If we excludethe cases caused by some uni- or duo- or triple-processor tasks, then theremaining situations contradict (5.16). Hence, the theorem follows. 2The optimal value L�max can be found in linear time as minimal L satisfy-ing inequalities (5.16). The optimal schedule has form presented in Fig. 5.6:four-processor tasks T 1234;i+1 are scheduled as soon as tasks from intervali are �nished, then tripleprocessor tasks are shifted as much to the left aspossible. Next, duoprocessor tasks are executed. Finally, uniprocessor tasksfollow. After scheduling uniprocessor tasks there is no idle time to the leftfrom scheduled uniprocessor tasks.One may ask what would happen if inequalities (5.15) were not satis�ed.A schedule built in the above way would not be optimal in general andinequalities (5.16) would not deliver L�max. Without (5.15) it is di�cult togive a simple (and independent of the instance) set of rules which wouldguarantee optimality of the above algorithm. In such situations it is simplerto apply linear programming approach ([19] or Section 5.3.3). As in the

5.3. DEDICATED PROCESSORS 89previous section we will prove that the worst case solutions generated byinterval scheduling algorithm have maximum lateness (LISmax) within somebounded vicinity of the optimum (L�max).Theorem 5.9 For any schedule generated by the interval scheduling algori-thm for problem P4 j fixj ; pmtn j Lmax the following holdsLISmax � 3djL�max � 4; where j satis�es Cjmax = LISmax + dj :Proof In each interval a lower bound on L�max + di is the sum of pro-cessing times of tasks forming cliques. In this proof we will distinguish threecliques Ai, Ei and I i as representatives for Ai; : : : ; Li. For other cliques theproof is similar.Case A. Clique Ai is maximal in interval i. Processing time of tasks inthis clique is a lower bound on L�max + di. The upper bound on Cimax canbe calculated assuming that all tasks from TD;j are executed before tasksfrom TD;j+1 and after tasks from TD;j�1 (j < i). Furthermore, the periodof executing tasks from TD;j can be calculated as the sum of processingtimes of tasks in the Aj � Aj�1 clique plus some excess of the processingtime which cannot be scheduled in parallel with clique Aj �Aj�1. Thus, theupper bound on Cimax isPij=1(t1234;j + t123;j + t124;j + t134;j + t12;j + t13;j + t14;j + t1;j +max8>>>>><>>>>>: t234;j + t23;j + t24;j + t2;j � t134;j � t1;j � t13;j � t14;jt234;j + t23;j + t34;j + t3;j � t124;j � t1;j � t12;j � t14;jt234;j + t24;j + t34;j + t4;j � t123;j � t1;j � t12;j � t13;jt234;j + t23;j + t24;j + t34;j � t1;j � t12;j � t13;j � t14;j0) �Pij=1(t1234;j+ t123;j + t124;j + t134;j + t12;j + t13;j + t14;j + t1;j + t234;j + t23;j +t24;j + t34;j + t2;j + t3;j + t4;j):On the other hand, comparing Ai with Bi; Ci; Di yields:Pij=1(t134;j + t14;j + t13;j + t1;j) �Pij=1(t234;j + t23;j + t2;j);Pij=1(t1;j + t12;j + t14;j + t124;j) �Pij=1(t34;j + t3;j);Pij=1(t1;j + t13;j + t12;j + t123;j) �Pij=1(t4;j + t24;j):Thus, we haveCimaxL�max+di �Pij=1(t1234;j+t123;j+t124;j+t134;j+t12;j+t13;j+t14;j+t1;j+t234;j+t23;j+t24;j+t34;j+t2;j+t3;j+t4;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t12;j+t13;j+t14;j+t1;j) �

90 CHAPTER 5. MULTIPROCESSOR TASKS1 + Pij=1(t234;j+t23;j+t24;j+t34;j+t2;j+t3;j+t4;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t12;j+t13;j+t14;j+t1;j) �1 + Pij=1(t123;j+t124;j+t134;j+2t12;j+2t13;j+2t14;j+3t1;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t12;j+t13;j+t14;j+t1;j) � 4:Case B. Suppose clique Ei is maximal. By analyzing this case as Case Awe obtain an upper bound for Cimax (for the sake of simplicity we droppedsubtraction in the max term):Pij=1(t1234;j + t123;j + t124;j + t134;j + t234;j + t12;j + t13;j + t23;j +max8>>>>><>>>>>: t24;j + t34;j + t14;j + t4;jt34;j + t3;jt24;j + t2;jt14;j + t1;j0) �Pij=1(t1234;j+ t123;j+ t124;j+ t134;j + t234;j+ t12;j+ t13;j + t23;j + t34;j+ t24;j +t14;j + t1;j + t2;j + t3;j + t4;j):From comparing Ei with Ai; : : : ; Di we getPij=1(t234;j + t23;j) �Pij=1(t14;j + t1;j);Pij=1(t134;j + t13;j) �Pij=1(t24;j + t2;j);Pij=1(t124;j + t12;j) �Pij=1(t34;j + t;j);Pij=1(t123;j + t12;j + t13;j + t23;j) �Pij=1(t14;j + t24;j + t34;j + t4;j):Thus, we obtainCimaxL�max+di �Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t23;j+t34;j+t24;j+t14;j+t1;j+t2;j+t3;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t23;j �1 + Pij=1(t34;j+t24;j+t14;j+t1;j+t2;j+t3;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t23;j) �1 + Pij=1(t124;j+2t13;j+t134;j+2t13;j+t234;j+2t23;j+t123;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t23;j) � 3Case C. Suppose clique I i is maximal. Then, as for previous cases Cimaxcan be bounded from above byPij=1(t1234;j + t123;j + t124;j + t134;j + t234;j + t12;j + t13;j + t14;j+max8>>><>>>: t24;j + t34;j + t4;jt23;j + t34;j + t3;jt23;j + t24;j + t2;jt1;j) �Pij=1(t1234;j+ t123;j+ t124;j+ t134;j + t234;j+ t12;j+ t13;j + t14;j + t23;j+ t24;j +t34;j + t4;j + t3;j + t2;j + t1;j)

5.3. DEDICATED PROCESSORS 91By comparing I i with Ai; : : : ; Di we obtainPij=1(t234;j) �Pij=1(t1;j);Pij=1(t134;j + t13;j + t14;j) �Pij=1(t23;j + t24;j + t2;j);Pij=1(t124;j + t12;j + t14;j) �Pij=1(t23;j + t34;j + t3;j);Pij=1(t123;j + t12;j + t13;j) �Pij=1(t24;j + t34;j + t4;j):From this we getCimaxL�max+di �Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t14;j+t23;j+t24;j+t34;j+t4;j+t3;j+t2;j+t1;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t14;j) �1 + Pij=1(t23;j+t24;j+t34;j+t4;j+t3;j+t2;j+t1;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t14;j) �1 + Pij=1(t123;j+t124;j+t134;j+t234;j+2t12;j+2t13;j+2t14;j)Pij=1(t1234;j+t123;j+t124;j+t134;j+t234;j+t12;j+t13;j+t14;j) � 3.We have shown that Cimax � 4(L�max+di). The rest of the proof is analogousto the proof of Theorem 5.7. 2Computational ExperimentsWe describe here results of computational experiments on the interval sche-duling algorithm for problem P4 j fixj ; pmtn j Lmax. The schedules ge-nerated by interval scheduling have been compared with the optimal sche-dules computed by the method presented in [19]. Simulation software hasbeen written in Borland Pascal version 7 using a simulator described in [83]and run on IBM-AT 386. Parameters describing tasks have been generatedpseudo-randomly with a uniform probability distribution: processing timeswere in range (0,10], due-dates in range [0,5], the number of required proces-sors and their indices were generated from interval [1,4]. We tested instancesfrom 2 till 100 tasks but due to the limitations of our LP-solver only thesolutions with up to 20 tasks have been compared with the optimal solution.Fig. 5.7 through Fig. 5.9 collect the results of over 2000 experiments.In Fig. 5.7 the average execution times of the two methods are compa-red. The lowest curve is the execution time of the pure interval schedulingalgorithm as it has been presented in the previous sections. The middlecurve is the execution time of the interval scheduling algorithm with thetime needed to sort tasks in the order of nonincreasing due-dates and groupthem according to their types. The highest curve is the execution time ofthe optimization algorithm ([19]). The approximation algorithm outranksthe optimization algorithm. For example, the interval scheduling algorithm

92 CHAPTER 5. MULTIPROCESSOR TASKSschedules twenty tasks in dozens of milliseconds while the optimization al-gorithm requires about a minute. Thus, the di�erence is three orders ofmagnitude. In Fig. 5.8 memory requirements of the two methods are ju-xtaposed. The approximation algorithm requires about 3kB of memory toschedule 100 tasks while the optimization algorithm needs about 90kB toschedule 20 tasks. In Fig. 5.9 the distance of the solution generated by theinterval scheduling algorithm from the optimum (i.e. LISmax=L�max) versus thenumber of tasks is depicted. The upper curve is the worst case observed, thelower one is the average from over 90 experiments for each point. It can beseen that the average distance is about 2-3%. The worst case distance for allobserved cases is below 50%. This �gure demonstrates that the worst-caseexpectations of Theorem 5.9 overestimate the average case. For instanceswith more than 8 tasks the worst observed case distance is decreasing. Wealso analyzed the quality of the solution generated by the interval schedu-ling as a function of the aggregated distance from the cases for which (5.15)holds. The "aggregated distance" is a rough measure re
ecting how far theinstance is from satisfying (5.15). In practice, it was the sum for all intervalsof the absolute deviation from the equations and the inequalities (5.15) divi-ded by the number of tasks. No correlation between the solution quality andthe distance from (5.15) has been observed. We conclude that the intervalscheduling algorithm is quite e�cient.5.3.3 Scheduling in Time WindowsThe case of processors available in time windows is quite common in real situ-ations. For example, tasks have di�erent priorities. Urgent real-time tasks areprescheduled on processors and executed in �xed time intervals which createfree time windows for lower priority tasks. Breakdowns of processors can bemodeled as time windows. We will present low order polynomial time algori-thms for simple cases of the problem, then an algorithm solving the problemfor any �xed number of processors we will be presented. Before presenting theresults let us introduce some auxiliary notation. The number of time windowsis p. Time window i is an interval [bi; ei] with a nonempty set of availableprocessors. Two neighboring intervals di�er in the set of available proces-sors. Windows with one, two etc. available processor are called 1-windows,2-windows etc. There are s di�erent values of due-dates: d1 � d2 � : : :� ds,and l di�erent values of ready times 0 = r1 � r2 � : : : � rl, where s; l � n.Unlike in the previous section, TD;i denotes the set of tasks released at ri,requiring set D of processors simultaneously, while tD;i is the sum of their

5.3. DEDICATED PROCESSORS 93
Figure 5.7: Execution time vs. n for problem P4 j fixj ; pmtn j Lmax.

Figure 5.8: Memory consumption vs. n for problem P4 j fixj ; pmtn j Lmax.

94 CHAPTER 5. MULTIPROCESSOR TASKS
Figure 5.9: Quality of solutions generated by the IS algorithm for problemP4 j fixj ; pmtn j Lmax.processing times. Before examining the preemptive case, observe that thenonpreemptive version is sNPh even for one processor, (i.e. 1; win jj Cmax).To prove this, observe that reduction from 3-partition requires only thattime windows created boxes where triplets from 3-partition problem must�t.P2; win j fixj; pmtn j CmaxThe algorithm for problem P2; win j fixj ; pmtn j Cmax is as follows.1: Shift duoprocessor tasks in 2-windows to the left as far as possible.2: Shift to the left uniprocessor tasks in the remaining free intervals so thatthere is no idle time between time 0 and the completion of the last uni-processor task.Optimality of this algorithm follows from the following observations: du-oprocessor tasks cannot be �nished earlier, there is no idle time from thebeginning of the schedule until the completion of uniprocessor tasks on eachof the processors. The complexity of the algorithm is O(n + p), where p isthe number of time windows.

5.3. DEDICATED PROCESSORS 95P2; win j fixj; pmtn; rj j CmaxThe algorithm for problem P2; win j fixj ; pmtn; rj j Cmax is a combinationof the algorithms for problems P2 j fixj ; pmtn; rj j Cmax and P2; win jfixj ; pmtn j Cmax. We introduce the algorithm for the problem withouttime windows �rst.Algorithm for P2 j fixj ; pmtn; rj j CmaxOn arrival of tasks:1: Suspend processing of uniprocessor tasks, if there are any.Schedule duoprocessor tasks �rst.2: On completion of duoprocessor tasks immediately start processing of theremaining uniprocessor tasks or their parts.Now, we examine optimality of this algorithm. When a set of tasks appearsat time rj , it can be either �nished before the next ready time rj+1, or itcan be necessary to execute tasks from both ready times together. Only inthe latter case may the tasks released at rj in
uence the schedule length.Consequently, tasks released at rj ; rj+1; : : : ; rl�1 will have their contributionto Cmax if there is no idle time on at least one of the processors in the interval[rj; Cmax]. Hence, Cmax can be found from the formula:Cmax = max1�i�lfri + lXj=i t12;j + maxf lXj=i t1;j ; pXj=i t2;jggOn the other hand, there can be no shorter schedule because the above equ-ation represents processing requirements of tasks released at certain timemoments to be processed on a given processor. Hence, the schedule is opti-mal. The algorithm can be implemented to run in O(n) time.Now, we return to problem P2; win j fixj ; pmtn; rj j Cmax. Adaptationof the previous algorithm for this case consists in scheduling uniprocessortasks in 1-windows whenever ready uniprocessor tasks exist, while givingpreference to duoprocessor tasks in 2-windows. Thus, duoprocessor tasks arescheduled as soon as they appear and cannot be �nished earlier. Uniprocessortasks are shifted to the left, so that the idle times are avoided and ready timesare observed. Uniprocessor tasks can be �nished earlier only by delayingsome duoprocessor task(s). This, however, does not reduce the length of theschedule. We conclude that no shorter schedule can exist. Observe that toapply this algorithm the only required information is which (ready) taskrequires what set of processors. The complexity of the algorithm is O(n+p).

96 CHAPTER 5. MULTIPROCESSOR TASKSP3; win j fixj; pmtn j CmaxThe problem with three processors requires more careful treatment becausedi�erent types of duoprocessor tasks cannot be executed in parallel. Theorder of executing duoprocessor tasks in 3-windows is important becauseappropriate 2-window for some duoprocessor task can be found somewherelater in the schedule. Hence, 3-window space should be preserved for theduoprocessor tasks that have no appropriate 2-windows.Now, we describe the rationale behind the algorithm presented below.Without loss of generality we assume that for each set D of required pro-cessors there is only one multiprocessor task TD with processing time tD.Shifting tripleprocessor task to the left in 3-windows produces the shortestpossible schedule for this task. In the remaining schedule there are 2-windowswhich comprise the following sets of processors: fP1; P2g; fP1; P3g, or fP2; P3g.3-windows are available for all types of duoprocessor tasks. This creates aprocessing capacity pro�le consisting of the amount of processing time ava-ilable for each of duoprocessor task types separately and the processing timeavailable in 3-windows for all types of duoprocessor tasks together. For inter-val [0; t] there are 2-windows with processing capacity pc12(t); pc13(t); pc23(t)on processors fP1;P2g; fP1; P3g; fP2; P3g, respectively, and 3-windows with ca-pacity pc123(t). The shortest schedule for duoprocessor tasks is de�ned bythe minimal time at which the processing capacity pro�le accommodatesrequirements of the tasks:Cduoproc:tasksmax = minft : minf0; t12� pc12(t)g+ minf0; t13� pc13(t)g+minf0; t23� pc23(t)g � pc123(t)gThus, while scheduling duoprocessor tasks, 2-windows can be immediatelyallocated to appropriate duoprocessor tasks, because no other type of du-oprocessor task can use it. Allocation in 3-windows should be postponeduntil the �nal allotment of duoprocessor tasks to 2-windows is known. Uni-processor tasks should be shifted to the left so that there is no idle timebefore the end of the last uniprocessor task on the given processor. Hence,the algorithm consists in three steps of scheduling tripleprocessor, duopro-cessor, and �nally, uniprocessor tasks. For simplicity of the presentation weassume that all tasks �t in p time windows.An Algorithm for P3; win j fixj ; pmtn j Cmax1: Schedule tripleprocessor task shifted to the left in 3-windows; removeallocated 3-windows from data structures holding free time windows;j := 1; pc123 := 0;

5.3. DEDICATED PROCESSORS 972: while (t12�0) or (t13�0) or (t23�0) dobegin2.1: if j is 2-window comprising processors from set D and tD>0 thenbegin2.1.1: tmp := minftD ; ej � bjg;2.1.2: if t12 + t13 + t23 � tmp � pc123 then (* enough pc found *)begin2.1.2.1: tmp := tD � (t12 + t13 + t23 � pc123);2.1.2.2: schedule tmp units of TD task in interval [bj ; bj + tmp];2.1.2.3: tD := tD � tmp;2.1.2.4: schedule remaining duoprocessor tasks or their partsin the previously memorized 3-windows;update data structures holding free time windows;2.1.2.5: t12 := t13 := t23 := 0;endelse (* not enough pc to schedule all duoprocessor tasks *)begin2.1.2.6: schedule tmp units of TD task in interval [bj ; bj + tmp];update data structures holding free time windows;2.1.2.7: tD := tD � tmp;end;end;2.2: if window j is 3-window thenbegin2.2.1: if t12 + t13 + t23 � pc123 + (ej � bj) then (* enough pc found *)begin2.2.1.1: schedule remaining duoprocessor tasks or their parts in 3-window jand previously memorized 3-windows �nishing at bj+t12+t13+t23�pc123;update data structures holding free time windows;2.2.1.2: t12 := t13 := t23 := 0;endelse (*still not enough pc has been found*)begin2.2.1.3: pc123 := pc123 + (ej � bj); memorize 3-window j for future use;end;end;2.3: j := j + 1; (* analyze the next window *)end;3: Schedule uniprocessor tasks in the remaining time windows such that

98 CHAPTER 5. MULTIPROCESSOR TASKSthere is no idle time before the completion time of the last uniprocessortask on each of the processors;end.High level description. Tripleprocessor task is scheduled in line 1, duopro-cessor tasks in lines 2-2.3, and uniprocessor tasks in line 3. While schedulingduoprocessor tasks, windows are analyzed one by one. 2-windows are consi-dered in lines 2.1-2.1.2.7, 3-windows in lines 2.2-2.2.1.3. Final schedule forduoprocessor tasks is built in lines 2.1.2.1-2.1.2.5 when the last used windowhas 2 processors and in lines 2.2.1-2.2.1.2 if it is 3-window. When the �nalschedule cannot be built �nishing in the current window, a piece of duopro-cessor task is scheduled in 2-window (lines 2.1.2.6-2.1.2.7), or in the case of3-window information about it is stored for future use (2.2.1.3).Optimality of the above algorithm is a result of the following facts: Tri-pleprocessor task cannot be �nished earlier. A duoprocessor task can be�nished earlier only by using time interval of some other duoprocessor taskor of some tripleprocessor task. This is not reducing the length of a schedule(but can increase). The same applies to uniprocessor tasks. The complexityof the algorithm is O(n+ p).It is hard to extend this approach to solve the cases with greater num-ber of processors. For instance, in P4; win j fixj ; pmtn j Cmax, duoprocessortask T 12, beside appropriate 2-windows, can be scheduled in 3-windows com-prising processors fP1; P2; P3g; fP1; P2; P4g, and in 4-windows. The decisionwhere the tasks from T 12 are scheduled in
uences the completion time of theother duoprocessor task types. Hence, a stronger tool seems to be necessaryto solve such problems.Observe that for integer values of processing times and time windowintervals all preemptions take place at integer values of time. Thus, the abovealgorithms can be applied also for unit execution time tasks. We conclude:Corollary 5.3 Problems P2; win j fixj ; pj = 1 j Cmax, P3; win j fixj ; pj =1 j Cmax can be solved in O(n+ p) time.Pm;win j fixj; pmtn; rj j CmaxWhen the number of processors is �xed the problem can be solved in po-lynomial time using linear programming, processor feasible sets and binarysearch. Observe that since tasks are released at di�erent moments and sinceCmax can be smaller than the beginning time of some time window, the pro-cessor feasible sets change with time and Cmax. Only tasks which are already

5.3. DEDICATED PROCESSORS 99released can be included in processor feasible sets. Assume that it is possibleto schedule feasibly all tasks in u time windows. Then we will apply a binarysearch to �nd the smallest possible u. We denote by:Mi the number of processor feasible sets in time window i,xij for i = 1; : : : ;Mj ; j = 1; : : : ; u, a variable denoting processing time ofthe i-th feasible set in window j,Aij the set of processor feasible sets indices in window i which includetask Tj ,Si the set of tasks released in window i,fiq the index of the task released in window i as q-th task,Uiq the set of all processor feasible set indices in window i which includetasks released in window i as q-th, q + 1-th, : : : ; j Sj j-th task, i.e. Uiq =[jSi jj=qAifij .For the considered u linear program LP1(u) is as follows:minimize Cmaxsubject toMjXi=1 xij � ej � bj for j = 1; : : : ; u� 1 (5.17)MuXi=1 xiu � Cmax � bu (5.18)Xh2Ujq xhj � ej � rfjq for q =1;: : :;jSj j; j=1;: : :; u�1 (5.19)Xh2Uuq xhu � Cmax � rfuq for q = 1; : : : ; j Su j (5.20)uXi=1 Xh2Aij xhi � tj for j = 1; : : : ; n (5.21)bu � Cmax � eu (5.22)xij � 0 for i = 1; : : : ;Mj j = 1; : : : ; uInequalities (5.17),(5.18) guarantee that processor feasible sets are notexecuted beyond the end of their windows. Inequalities (5.19),(5.20) guaran-tee that tasks released during a time window will not be executed longerthan the interval from their ready time to the end of the window or till

100 CHAPTER 5. MULTIPROCESSOR TASKSCmax, respectively. Inequalities (5.21) guarantee that tasks are fully execu-ted and (5.22) guarantee that u is the last window used. The above linearprogram has O(pnm) variables. The number of inequalities (5.19) is equal tothe number or ready times. Hence, there are O(n+p) constraints in LP1(u).It can be formulated and solved in polynomial time, provided the numberof processors is �xed. When LP1(u) has a feasible solution it can be veri�edwhether for smaller number of windows a feasible solution exists. On theother hand, when a feasible solution does not exist one may try with biggernumber of windows. Thus, using binary search over u the optimal solutioncan be found by solving O(log2 p) linear programs.Pm;win j setj; pmtn; rj j CmaxWhen tasks have alternative modes of execution (setj model), then while ge-nerating processor feasible sets we have to analyze a wider set of possibilities.Furthermore, to guarantee complete execution of the tasks we have to sumthe percentages of processing times on alternative sets of processors. Thenumber of processor feasible sets remains polynomially bounded. Assumethat each task can be executed on K alternative sets of processors thenthere are no more than O((nK)m) processor feasible sets. Such a numbercould be achieved only if the tasks were executed on two (or more) alterna-tive sets of processors in the same processor feasible set (i.e. the same taskwould be executed simultaneously on several non-intersecting sets of proces-sors) which is forbidden. Since the number of processors m is �xed, K isO(2m) and the number of processor feasible sets is polynomially bounded byO(p(n2m)m). A linear program for problem Pm;win j setj ; pmtn; rj j Cmaxdi�ers from the formulation (5.17)-(5.22) only in the set of inequalities (5.21)which should be replaced byuXi=1 XD2setj Xh2AiD;j xhitDj � 1 for j = 1; : : : ; n (5.23)where AiD;j is the set of the processor feasible set indices including task Tjexecuted on processors from set D in interval i. Then, the problem can besolved in polynomial time analogously to the method of solving Pm;win jfixj ; pmtn; rj j Cmax.

5.3. DEDICATED PROCESSORS 101Figure 5.10: Nonexistence of an on-line optimization algorithm for P2 jfixj ; pmtn; rj j Lmax.Pm;win j fixj; pmtn; rj j LmaxAssuming that "on-line" scheduling is based only on the information abouttasks that already arrived we will show that there is no on-line optimizationalgorithm for this problem. Consider an example.Examplefix1 = fP1; P2g; fix2 = fP1g; t121 = t12 = 3; d1 = 4; d2 = 2; r1 = r2 = 0. SinceT1 and T2 cannot be executed in parallel, they must be executed sequentially.Assume task T2 is started �rst and after this task T1 is executed. Then atmoment r3 = 3 arrives task T3 which has t3 = 5; d3 = 6; fix3 = fP2g. Thebest schedule that can be achieved at that moment is presented in Fig. 5.10aand has Lmax = 5. If T1 were scheduled �rst the best schedule could haveLmax = 4 (Fig. 5.10b). Assume an opposite scenario in which T1 is scheduled�rst, then at r3 = 3 task T3 arrives which has t3 = 5; d3 = 9; fix3 = fP2g andthe best possible schedule has Lmax = 4 (Fig. 5.10b). If T2 were scheduled�rst the schedule could have Lmax = 2 (Fig. 5.10a).We conclude that whatever the sequence of executing the ready tasks is,a scenario is possible which results in not optimal schedule. Thus, there is noon-line optimization algorithm for problem P2 j fixj ; pmtn; rj j Lmax. Thisapplies also in the nonpreemptive case. Next, let us note that EDD (EarliestDue - Date �rst) rule is not optimal (o�-line) for this problem as shown inthe following example.Examplen = 2; fix1 = fP1; P2g; t121 = 3; d1 = 4; fix2 = fP1g; t12 = 3; d2 = 3; p =1; b1 = 3; e1 = 6 and it is 1-window with fP1g free. The EDD schedule ispresented in Fig. 5.11a. It has Lmax = 5. The optimal schedule in Fig. 5.11bhas Lmax = 3.We conclude that the optimization algorithm requires a global look at theschedule. When the number of processors is �xed, the problem can be solvedusing linear programming. The algorithm is similar to the one proposed for

102 CHAPTER 5. MULTIPROCESSOR TASKSFigure 5.11: Nonoptimality of the EDD rule for P2 j fixj ; pmtn j Lmax.problem Pm;win j fixj ; pmtn; rj j Cmax. When building processor feasiblesets for window i one can use only tasks which are present, i.e. set fTj : rj <ei; dj+Lmax > big. Thus, the processor feasible sets change when value Lmaxpasses a point where for some tasks Tj1 ; Tj2 and window i: dj1+Lmax = bi orrj2 = dj1+Lmax. Hence, there are O(np+n2) intervals of Lmax values wherethe processor feasible sets remain unchanged. Consider minimization of Lmaxin u-th such interval, i.e. in the range [Lbu; Leu] of Lmax values. In such aninterval the sequence of all the events in the system (ready times, due-datesincreased by Lmax, windows beginnings and windows ends) is constant. Letus order all such events according to their appearance. We denote:q = 2p+ 2n - the number of events,"i for i = 1; : : : ; q - the time instant at which event i takes place forreleases of tasks, window beginnings and window ends; for a due-date relatedevent "i is appropriate due-date (i.e. "i = dj when event i is related todj + Lmax for some Tj and the current value of Lmax); "1 = 0,fi for i = 1; : : : ; q - the function returning 1 if event i is related to adue-date, and returning 0 otherwise,Mi for i = 1; : : : ; q � 1 - the number of processor feasible sets betweenevents i and i+ 1,xij for i = 1; : : : ;Mj; j = 1; : : : ; q� 1 - the time of executing tasks in i-thprocessor feasible set in interval between events j and j + 1,Aij for i = 1; : : : ; q�1; j = 1; : : : ; n - a set of processor feasible sets indicesbetween event i and i+ 1 which include task Tj .For the considered interval [Lbu; Leu] the linear program LP2(u) is as follows:min Lmaxsubject toMjXi=1 xij �"j+1�"j+Lmax(fj+1�fj) for j = 1; : : : ; q � 1 (5.24)

5.3. DEDICATED PROCESSORS 103q�1Xi=1 Xk2Aji xki � tj for j = 1; : : : ; n (5.25)Lbu � Lmax � Leu (5.26)xij � 0 for i=1; : : : ;Mj ; j=1; : : : ; q�1Inequalities (5.24) guarantee that processor feasible sets are executedbetween appropriate events. Inequalities (5.25) guarantee that tasks are fullyexecuted. Finally, (5.26) guarantees that the order of events is unchangedand processor feasible sets remain valid. There are O(p + n) constraintsand O((p + n)nm) variables. Hence, the above formulation can be solvedin polynomial time for �xed m [150]. When a feasible solution exists thena range of smaller Lmax values can be considered. And vice versa, when nofeasible solution exists a rage of greater Lmax values can be analyzed. Hence,the optimal value L�max can be found by binary search in O(log(np+n2)LP))time, where LP is the complexity of formulating and solving LP2(u).Pk;win j setj; pmtn; rj j LmaxThe method from the previous subsection can be extended to setj modelwhere tasks can be processed by alternative sets of processors. The di�eren-ces come from a wider range of possible task combinations in feasible setsand from the fact that processing time must be accumulated over alternativesets of processors executing a task. Since the number of processor feasiblesets is limited from above by O((n2m)m), the number of variables in thelinear program is bounded polynomially from above by O((p+ n)(n2m)m).The linear program di�ers from LP2(u) in inequality (5.25) which should bereplaced by q�1Xi=1 XD2setj Xh2AiD;j xhitDj � 1 for j = 1; : : : ; n (5.27)where AiD;j is the set of the processor feasible set indices including task Tjexecuted on processors from set D in interval i. The method of �nding L�maxand computational complexity can be derived analogously.In Table 5.2 results on scheduling multiprocessor tasks in dedicated pro-cessors environment are collected. The following abbreviations denote: B&B- branch and bound algorithm, s.g. - scheduling graph, LP - linear program-ming, ILP - integer linear programming, pseudopoly. - pseudopolynomialalgorithm.

104 CHAPTER 5. MULTIPROCESSOR TASKSTable 5.2: Scheduling multiprocessor tasks on dedicated processorsProblem Result ReferenceNonpreemptive schedulingP j fixj j Cmax B&B [48]P j fixj j Cmax and jfixj j= 2 NPh, SLPT = 4(d�1)dSLPT �3 when d � 5SLPT <2 binomial s.g. [130]P j fixj j Cmax and jfixj j= 2 20 cases NPh23 cases polynomial43 < SLS � 3SLS�2 for p�2SLPT = 52 � 1pCDP1max � 3C�max + e" [70]P j fixj j Cmax and jfixj j2f1; 2g 9 cases NPh9 polynomial cases [134]P j fixj j Cmax andP j fixj ; pj = 1 j Cmax experimental study [74]P2 j fixj ; pj = 1 jPwjcj O(n logn) [79]P j fixj jPwjcj ILP+experiment [79]P3 j fixj j Cmax sNPh, Th.5.4,[31, 120]SNS < 43 [31]SNS = 54 [78]SLPT = SSPT = 3 [78]P jfixj; pj = 1 jCmax special cases, bounds [207]O j fixij j Cmax and stages = 2 O(n) [50]O j fixij j Cmax and stages = 3 NPh [50]O jfixij;pij=1 jCmax and stages=r polynomial [50]F j fixij j Cmax and stages = 2 O(n logn) [50]F2 j fixij j Cmax and stages = 3 sNPh [50]J2 j fixij ; pij = 1 j Cmax sNPh [50]J2 j fixij j Cmax and nj � 2 O(n logn) [50]J j fixij j Cmax and n = 2 O(n2 logn) [50]J2 j fixij j Cmax and n = k O(n3k) [50]Pm j fixj ; pj = 1 j fand f 2 fPwjUj ;P �j ;Pwjcjg O(R2RnR+1+and R number of task types +2R(R + m)) [49]Pm j fixj ; pj = 1; rj j fand f 2 fCmax;P cjg O(R2RnR+1+and R number of task types 2R(R + m)) [49]J j fixij ; pij = 1; prec; rj j fand n = k; f 2 fmaxfj;P fjgand fj nondecreasing function of cj O(k2kmPkj=1 njQkj=1 nj) [49]

5.3. DEDICATED PROCESSORS 105Table 5.2 continuedProblem Result ReferenceF j fixij ; pij = 1 j fand stages = rand f 2 fPwjcj;P �j ;PwjUjg O(r22rnr+2 + 2r(r + m)) [49]F j fixij ; pij = 1; rj j fand stages = r; f 2 fP cj ; Cmaxg O(r22rnr+2 + 2r(r + m)) [49]O j fixij ; pij = 1 j fand stages = r O(r3(r!)22rnr!(r+1)+1+and f 2 fPwjcj;P �j ;PwjUjg +2r(r + m)) [49]O j fixij ; pij = 1; rj j fand stages = r O(r3(r!)22rnr!(r+1)+1+and f 2 fCmax;P cjg +2r(r + m)) [49]O j fixij ; pij; prec j fand n = 2; stages = rand f 2 fmaxfj ;Pfjgand fj nondecreasing function of cj O(r2:5) [49]P2; 3; 4 j fixj ; pj = 1 j Cmax O(n) [25]P5 j fixj ; pj = 1 j Cmax O(n2:5) [25]P j fixj j Cmax B&B [25]Pm j fixj ; pj = 1 j Cmax ILP [120]P j fixj ; pj = 1 j Cmax sNPh [120]P2 j fixj ; pj = 1; chain j Cmax sNPh [120]P2 j fixj ; pj = 1; rj j Cmax sNPh [120]Pm j fixj ; pj = 1; rj j Cmax ILP [120]P2 j fixj jP cj NPh [120]P3 j fixj jP cj sNPh [120]P2 j fixj jPwjcj sNPh [120]P j fixj ; pj = 1 jP cj sNPh [120]P2 j fixj ; pj = 1; chain jP cj sNPh [120]P;win j fixj j Cmax NPh, 3 polynomialcases [136]P2 j fixj ; pj = 1 j Lmax O(n) [22]P3 j fixj j Cmax S18 = 76 [102]P2 j fixj j Lmax sNPh [85]P3 j fixj j Cmax and jfixj j= 2 O(n) [138]P3 j fixj ; chain j Cmaxand jfixj j= 2 O(n) [138]P4 j fixj ; pj = 1; chain j fand jfixj j= 2 and f 2fCmax;P cjg sNPh [138]P jfixj; pj = 1 jPcj and jfixj j=2 sNPh [138]P3 jfixj; chain jPcj and jfixj j=2 O(n logn) [138]P4 j fixj jP cj and jfixj j= 2 NPh [138]P j fixj jP cjand jfixj j= 2 and s.g. is 2-star NPh [138]

106 CHAPTER 5. MULTIPROCESSOR TASKSTable 5.2 continuedProblem Result ReferenceP2 j setj j Cmax pseudopoly. [23]P3 j setj j Cmaxand 8Tjfixj 6= fP1; P3g pseudopoly. [23]P j setj j Cmax SSPTM = m [23]P j setj j Cmax sNPh, heuristic [26]P2 j fixj jP cj sNPh,SH < 2 [51]P j fixj ; prec j Cmax special cases [77]P2; win j fixj ; pj = 1 j Cmaxand p number of time windows O(n + p) Coro.5.3P3; win j fixj ; pj = 1 j Cmax O(n + p) Coro.5.3Preemptive schedulingP j fixj ; pmtn j Cmaxand jfixj j= 2 sNPh [135]Pm j fixj ; pmtn j Cmaxand jfixj j= 2 LP [135]P2 j fixj ; pmtn j Cmax O(n) [21]P3 j fixj ; pmtn j Cmax O(n) [21]P4 j fixj ; pmtn j Cmax O(n) [21]P4 j fixj ; pmtn; res1 � 1 j Cmax O(n) [21]P2 j fixj ; pmtn j Lmax O(n) Th.5.5P3 j fixj ; pmtn j Lmax interval scheduling Th.5.6,5.7P4 j fixj ; pmtn j Lmax interval scheduling Th.5.8,5.9P j fixj ; pmtn j Cmax and jfixj j= 2s.g. bipartite, unicyclic O(n2) [138]P j fixj ; pmtn j Cmax and jfixj j= 2s.g. candy,caterpillar O(n) [138]P4 j fixj ; pmtn; chain j fand jfixj j= 2 and f 2 fCmax;P cjg sNPh [138]P j fixj ; pmtn jP cj and jfixj j= 2 sNPh [138]P3 j fixj ; pmtn; chain jP cjand jfixj j= 2 O(n logn) [138]P j fixj ; pmtn j Cmaxand jfixj j= 2 and s.g. 2-star,superstar O(n logn) [138]P2 j fixj ; pmtn jP cj O(n logn) [51]Pm j setj ; var j Cmax LP [23]Pm j setj ; var; rj j Lmax LP [19]P2; win j fixj ; pmtn j Cmax O(n + p) Sec.5.3.3P2; win j fixj ; pmtn; rj j Cmax O(n + p) Sec.5.3.3P3; win j fixj ; pmtn j Cmax O(n + p) Sec.5.3.3Pm;win j setj ; var; rj j Cmax LP Sec.5.3.3Pm;win j setj ; var; rj j Lmax LP Sec.5.3.3

Chapter 6Divisible Tasks6.1 IntroductionIn this chapter a new scheduling model applicable in a wide range of parallelarchitectures and parallel applications is presented. We consider schedulingdivisible tasks, i.e. tasks that can be divided into parts of arbitrary size. Fur-thermore, the parts can be processed in parallel independently of each other.In other words, the parallel application includes no precedence constraints(data dependencies) and granularity of parallelism is �ne. Before proceedingto the presentation of the divisible task method, we introduce, in a moreinformal way, basic founding concepts.Many contemporary parallel applications are divisible tasks. Consider,for example, searching for a record in a huge database (thousands or morerecords). This can be done by cooperating processors. The database �le canbe divided into parts with one record granularity. The search can be con-ducted in each part independently of the other parts. Finally, the resultsare reported to some master processor. The same method can be appliedto searching for a pattern in a text, graphical, audio, etc. �le. Similar situ-ation takes place when sorting a database �le in a distributed way. Yet, thiscase is a bit more complex because the sorted �le parts must be merged.Analogously, big measurement data �les can be divided into parts processedindependently in parallel [60]. Further examples of divisible tasks are relevantto data parallelism: simulations of molecular dynamics [3], some problemsof linear algebra with the use of big matrices [27], solving partial di�erentialequations by �nite element method [209] and many other engineering andscienti�c problems [53]. Note that similar assumptions on divisibility of theload were made in loop scheduling and load balancing (cf. Sections 4.2,4.4).107

108 CHAPTER 6. DIVISIBLE TASKSNow, we will outline the process of data dissemination and processing.A parallel computer consists of m processing elements (PEs), each of whichcomprises a processor, local memory, and is capable of communicating in theinterconnection network (either by independent network processor, or by useof software run on the processor). For simplicity reasons names of processorand processing element are equivalent here. Only when a PE has a networkprocessor is it capable of simultaneous computing and communicating. Ini-tially, the whole volume V of data to be processed resides in one processorcalled originator. The originator intercepts for local processing �1 data unitsand sends the rest (i.e. V ��1) to its idle neighbors. Each processing elementintercepts for local processing some data from the received volume and sendsthe rest to the idle neighbors. Thus, PE number i (denoted Pi) interceptsand processes locally �i data units while sending the rest of the obtaineddata to its still idle neighbors. Pi will process its share �i in �iAi units oftime. Following Section 2.1 the transmission time of x data units over linki joining two processors is Si + xCi. Our goal is to �nd such a distributionof task parts (or problem data) that the communications and computationsare �nished in the shortest possible time. The above description still leavesspace for details including, e.g. a communication algorithm tailored to theinterconnection. Observe that when no results are returned to the origina-tor, all the processors must stop working at the same moment of time. Thisobservation can be explained intuitively: when Pi �nishes earlier then it ispossible to o�-load other PEs by moving part of the load to Pi. In this waythe whole length of a schedule would be reduced. This observation has beenproved both for particular interconnections [60, 188] and for a general typeof interconnection [33]. The model can be applied also in the case when someresults are returned. However, the former case simpli�es the presentation.In majority of works on divisible tasks only one application is assumed tobe present in the computer system (i.e. n = 1). Unless otherwise stated weassume in this chapter that the number of tasks is equal to one. Since theactual processing time of a task depends on speeds of communication chan-nels, speeds of PEs, and distribution of the load it is hard to use a singlevalue of processing time as in the previous sections. Hence, in this chapterwe will use volume V of data to be processed as a more natural measure ofwork to be performed.The organization of this chapter is as follows. In Section 6.2 we give anoverview of existing subject literature. In Section 6.3 we present results ofapplying the idea of divisible task to scheduling and performance evaluationof distributed systems. Section 6.3 is divided according to the analyzed inter-

6.2. OVERVIEW OF EARLIER RESULTS 109connection architectures. Section 6.4 contains �nal remarks and conclusions.6.2 Overview of Earlier ResultsTo our knowledge, the �rst work analyzing divisible tasks was [60]. Consi-dering divisible tasks was motivated by the problem of �nding the optimalbalance between parallelism and necessary communication in a network ofintelligent sensors. Linear network of PEs with or without network processorfor store-and-forward commutation mode was examined. Thus, the investi-gated problems can be denoted Q;chain;s&f;no�overlap jn=1;div jCmax orQ;chain;s&f j n= 1;div jCmax. The communication time was assumed to bea linear function of the transferred volume. The startup time was negligible(S = 0). A solution based on reduction to a set of linear equations can beapplied in time proportional to the number of PEs. The same problem wasanalyzed independently in [154]. Closed-form expressions were presented to�nd a distribution of the load. It was also shown that in a homogeneousnetwork with the originator located in the network interior, the whole loadprocessing time is the same when the originator sends data to the left �rstor to the right �rst.In [61] scheduling divisible tasks on a tree network of processors is con-sidered. The analyzed problems can be denoted Q; tree; s&f; no � overlap jdiv; n = 1 j Cmax or Q; tree; s&f j div; n = 1 j Cmax. The sequence of com-munications is assumed to be known a priori. There is no communicationstartup time. For such assumptions the problem can be solved by a set oflinear equations.Scheduling a divisible task on a bus interconnected system has beenanalyzed in [14]. Again, it was assumed that the sequence of communicationsis known and startup time is negligible. Two cases were distinguished: asystem with a master processor which is not computing but is in charge ofcollecting measurements and handling data communications, and a systemwithout the master processor. PEs had no network processors. The tackledproblems can be denoted Q; bus; no� overlap j div; n = 1 j Cmax. The caseof PEs with the network processor (i.e. Q; bus j div; n = 1 j Cmax) wasanalyzed in [13].In [15] problems Q;chain;s&f;no�overlap jdiv;n=1 jCmax; Q;chain;s&f jdiv;n=1 jCmax; Q;tree;s&f;no�overlap jdiv;n = 1 jCmax; Q;tree;s&f jdiv;n=1 jCmax are considered. By the use of the concept of an equivalent proces-sor which is a single-processor equivalent of the original multiprocessor sys-

110 CHAPTER 6. DIVISIBLE TASKStem, the ultimate performance limits are calculated. This analysis is furtherextended in [176]. Also in [100] performance limits of linear networks andstar networks are examined (problems Q; chain; s&f; no� overlap j div; n =1 j Cmax; Q; chain; s&f j div; n = 1 j Cmax; Q; star; s&f; no � overlap jdiv; n = 1 j Cmax; Q; star; s&f j div; n = 1 j Cmax). Closed-form formulaeexpressing the limit of the performance enhancement obtained by using ad-ditional processors are presented. The communication appeared to have asimilar e�ect on speedup as the sequential part of parallel application in theAmdahl's law.In [16] optimal sequencing of communications in a star network is consi-dered. It is shown that for the case with the network processors the optimalsequence of distributing data is the order of decreasing communication speed,speeds of processors are irrelevant. Thus, when the communication links areidentical, the ordering of communications to processors is immaterial. Thesecounterintuitive results are satis�ed for S = 0.Closed-form expressions for the optimal load distribution in a bus andtree networks are given in [12]. The performance of symmetric tree networksis analyzed by collapsing the component processors and links into one equ-ivalent processor.Work [189] analyzes scheduling more than one divisible application in thecomputer system. The PEs were either equipped with network processors ornot so equipped and interconnected by a bus (R; bus; no�overlap j div jCmaxand R; bus j div j Cmax). Tasks were processed in the First-In First-Outfashion.The problem of scheduling a divisible job on a bus system in the pre-sence of background activities is investigated in [190]. It is assumed thatthe speed of processors and communication links is inversely proportionalto the number of tasks sharing a processor or a link. The arrival of a back-ground task reduces the speed observed by the considered application. Themethod of computing deterministically the optimal load distribution is gi-ven for the case in which the arrival times and departures of backgroundtasks are known. When the above parameters of the background tasks areunknown a probabilistic analysis is presented.In [34] the idea of divisible job is applied in scheduling and performanceanalysis for hypercube networks. The startup time was assumed to be negli-gible (S = 0).The �rst paper including startup time S in the model of communicationtime is [33]. For linear networks (chain, ring) and homogeneous hypercubethe optimal distribution of the load can be found in low order polynomial

6.2. OVERVIEW OF EARLIER RESULTS 111
Figure 6.1: Communication and computation in chain interconnection.
Figure 6.2: Communication and computation in star interconnection.time. However, in general case scheduling on arbitrary interconnection graph,and on arbitrary bus system in particular, requires determining the optimalsequence of communications which is sNPh. For a star network polynomialcases are identi�ed. We will describe in more detail chain and star networksas starting points for considerations in the further sections. The Gantt chartof communications and computations in the chain network and in the starnetwork are depicted in Fig. 6.1 and Fig. 6.2. For simplicity of presentationwe assume that no results are returned to the originator. It will be demon-strated later that this restriction can be removed. Assume, that PEs havenetwork processors and the originator is located at the chain's end. In thechain network the part of load which is not processed by the originator issent to the nearest neighbor. The neighbor divides the received data into apart processed locally and re-sends the rest to the next idle processor. Thisprocedure is repeated until the last processor. Since no data is returned all

112 CHAPTER 6. DIVISIBLE TASKSthe processors must stop at the same moment of time [33, 60]. The com-puting time on the PE sending data lasts as long as communication to andcomputing on the receiver (cf. Fig. 6.1). Thus, we can �nd the distributionof the load from the following set of equations:�iAi = Si + (�i+1 + : : :+ �m)Ci + �i+1Ai+1 i = 1; : : : ; m� 1 (6.1)V = �1 + �2 + : : :+ �m�1; �2; : : : ; �m � 0where Si; Ci are parameters describing a link joining Pi and Pi+1, and Aiis processing rate for Pi. The above equation set can be solved in O(m)time. Yet, it may happen that a feasible solution does not exist [33]. Insuch a case less than m processors can solve the problem. The maximumnumber of usable processors can be found by binary search over m. Whenthe results are returned the above equation set must be modi�ed in such away that while Pi computes, the spare data is sent to Pi+1, processed onPi+1; : : : ; Pm and results are returned to Pi. Thus, equations (6.1) have form(for i = 1; : : : ; m� 1):�iAi = 2Si+ (�i+1 + : : :+�m)Ci+ �i+1Ai+1 + �(�i+1 + : : :+�m)Ci (6.2)where �(x) is the amount of results returned for x units of data (in simplecases �(x) is constant or linear function). For the star network it was assumedthat the originator is located in the center of the star, each PE has a networkprocessor and no data is returned. Observe that computing on Pi lasts aslong as communicating to and processing on Pi+1 (cf. Fig. 6.2). Hence, wehave a set of equations from which optimal distribution of the load can befound: �iAi = Si + �i+1Ci+1 + �i+1Ai+1 i = 1; : : : ; m� 1 (6.3)V = �1 + �2 + : : :+ �m�1; �2; : : : ; �m � 0Note that all the communications are performed by the originator in thecenter of the star. Analogous situation takes place in the bus network becausebus cannot be used by multiple communications at the same moment oftime. Therefore, the originator sends the data to the consecutive processorsin sequel and equation set (6.3) can be applied to �nd the data distributionin the bus system.

6.3. APPLYING DIVISIBLE TASK CONCEPT 113Two-dimensional rectangular mesh network with store-and-forward com-munication mode is considered in [35] (P; 2D�mesh; s&f j div; n = 1 jCmax).A better communication algorithm based on circuit-switched communicationmode is applied to distribute computation in [36] (P; 2D�mesh; csw jdiv; n=1 jCmax). In the former work S = 0, and in the latter one S � 0 were assu-med.The problem of scheduling in a star network is tackled again in [17]. Anew data distribution pattern based on pipelining is proposed. The data isdistributed in greater number of small chunks rather than in one big chunkto each processor in sequel. This results in improved performance.In work [18] scheduling in a chain network is considered in which PEsare equipped with 1-port network processors. This means that a PE cancommunicate only over one link at a time. The originator sends the share ofdata to be processed directly to a particular PE. The network processors ofintermediate PEs facilitate these transfers. Thus, any PE can start compu-ting right after receiving its share of data, without waiting for the load tobe re-sent to the following PEs. Again, this improves the performance.A bus system with network processors investigated in [191]. Two criteriaare minimized: computing time and cost Q; bus j div; n = 1 j X . Costof computation is calculated per unit of load. For the minimal cost PEsshould be activated in nondecreasing order of their costs per data unit. Twoalgorithms are proposed: �nding minimal execution time for the given cost,and �nding minimal cost for the given execution time.The results mentioned in this section are collected in Table 6.3.6.3 Applying Divisible Task Concept6.3.1 Chain InterconnectionIn this section a new data distribution scheme based on circuit-switchedcommunication is proposed and compared with the previously known me-thods [60]. In the following we assume that all PEs have network processorsand all PEs can simultaneously transmit over both ports. Hence, we considerproblem Q; chain; csw j div j Cmax. Moreover, we assume that the originatoris located in the center of the chain and results are not returned.Let us repeat after Section 2.1 that in the circuit-switching routing(unlike in the store-and-forward) the time of data transfer does not de-pend signi�cantly on the distance between the sender and the receiver.The same situation takes place for packet-switched communication. Accor-

114 CHAPTER 6. DIVISIBLE TASKSTable 6.1: Number of PEs activated while scattering in a chain.Step number Initially active Activated Finally active1 1 2 32 3 6 93 9 18 27: : : : : : : : : : : :h 3h�1 2 � 3h�1 3h
Figure 6.3: Communication and computation in a chain with circuit-switchedcommutation.ding to conventions adopted in the previous sections when talking aboutcircuit-switching communication we mean all modes with the above mo-del of communication delay. Since communication delay does not dependon distance it can be advantageous to send some data far ahead and thenredistribute it from two (or more) points. Thus, the originator sends datasimultaneously to two distant PEs. In the next step both the originator andthe two previously activated PEs send data to two new processors. The pro-cess is repeated until activating all the PEs after h=dlog3me steps. In Table6.1 we demonstrate how the number of active (i.e. computing) processors isgrowing with consecutive steps of data distributing. The process of datadistributing is depicted in Fig. 6.3 for m = 9. In Fig. 6.3 we present also a

6.3. APPLYING DIVISIBLE TASK CONCEPT 115diagram of communication and computing in a chain with the above com-munication algorithm. When no results are returned, all the PEs must �nishprocessing their parts of data at the same moment of time. The correctnessof this observation has been demonstrated under very general assumptionsin [33]. Here, it can be explained in the following way. Suppose to the con-trary that one PE of the two activated from the same "parent" PE �nishesearlier than the second one. Then, by balancing the load between the twodescendants of the same "parent" PE would reduce the total length of theschedule. This reasoning can be repeated recursively until the originator.The case of non-zero data return time can be easily included as demonstra-ted in equations (6.2). Before proceeding to the solution of the problem letus remind that we denote:V - the whole volume of data to be processed,A - the processing rate of all processors,C - the communication rate of all links,S - the startup time of all links,h - the number of steps in data distribution algorithm,�i - the amount of data assigned to PEs activated in step i=1; : : : ;h.Observe (cf. Fig. 6.3) that time of computing on the sending PE is equalto time of communicating to and computing on the receiving PE. Thus, thefollowing set of equations can be formulated:�h�1A = S + �hC + �hA�h�2A = S + (�h�1 + 2�h)C + �h�1A�h�3A = S + (�h�2 + 2�h�1 + 6�h)C + �h�2A: : :�h�iA = S + (�h�i+1 + 2 iXj=2 3j�2�h�i+j)C + �h�i+1A (6.4): : :�1A = S + (�2 + 2 h�1Xj=2 3j�2�j+1)C + �2AV = �1 + 2 hXj=2 3j�2�j�1; �2; : : : ; �k � 0The above set of equations can be solved in O(log m) time provided a feasiblesolution exists. The solution method uses the �rst h � 1 equations of (6.4)

116 CHAPTER 6. DIVISIBLE TASKS
Figure 6.4: Communication and computation diagram in chain with pipeli-ning and circuit-switched commutation.to reduce �h�i (i = 1; : : : ; h � 1) to a linear function of �h, i.e. �h�i =kh�i�h + lh�i. Coe�cients kh�i; lh�i are (from (6.4)):kh�i = CA (kh�i+1 + 2 iXj=2 3j�2kh�i+j) + kh�i+1lh�i = SA + CA (lh�i+1 + 2 iXj=2 3j�2lh�i+j) + lh�i+1While �h is found from the last equation of (6.4):�1 = V � 2Phi=2 3i�2li � l12Phi=2 3i�2ki + k1The communication pattern can be further improved by applying pipe-lining of communications as proposed for star network in [17]. The commu-nication and computation diagram for such a case is presented in Fig. 6.4.Note that now the data distribution consists of g pipeline stages each ofwhich consists (as previously) of h steps. Let us denote by �i;j the amountof data processed by each of PEs activated in step i of data distributionand in pipeline stage j. Since results are not returned, for the last stage itcan be observed that all PEs must �nish simultaneously. Hence, computingon the sender must last as long as communicating to and computing on thereceiver. According to [17] we assume that PEs activated in step i of stagej (j = 1; : : : ; g � 1) of pipelining must compute as long as sending data insteps i+ 1; : : : ; h of stage j and steps 1; : : : ; i of stage j + 1. In other words,PEs are processing the current portion of the load exactly until receiving the

6.3. APPLYING DIVISIBLE TASK CONCEPT 117next portion of data. This assumption can be motivated as follows: Supposeit receives less, then there is an idle time and the schedule could be madeshorter by avoiding the idle time. Suppose it receives more, then the PEsactivated in the next step wait for data longer than necessary and start com-puting later than it is possible, thus increasing the idle time. The originatorcomputes as long as all the communication lasts plus the time of computingthe �h;g, i.e. when all PEs compute only and no communication takes place.This discussion can be summarized in the set of equations:�h�1;gA = S + �h;gC + �h;gA: : :�h�i;gA = S + (�h�i+1;g + 2 iXj=2 3j�2�h�i+j;g)C + �h�i+1;gA: : :�2;gA = S + (�3;g + 2 h�2Xj=2 3j�2�j+1;g)C + �3;gA: : :�h�i;jA = hXp=h�i+1[S + C(�p;j + 2 h�pXq=1 3q�1�p+q;j)] ++ h�iXp=2[S + C(�p;j+1 + 2 h�pXq=1 3q�1�p+q;j+1)] (6.5): : :�1A = gXj=2 hXp=1(S + C(�p;j + 2 h�pXq=1 3q�1�p+q;j)) + �h;gAV = �1 + 2 gXj=1 hXi=2 3i�2�i;j�i;j � 0The above equation set can be solved analogously to (6.4) by expressing allthe unknowns as linear functions of �h;g . Thus, �i;j = ki;j�h;g + li;j and fori = 2; : : : ; h kh�i;g = CA (kh�i+1;g + 2 iXj=2 3j�2kh�i+j;g) + kh�i+1;glh�i;g = SA + CA (lh�i+1;g + 2 iXj=2 3j�2lh�i+j;g) + lh�i+1;g

118 CHAPTER 6. DIVISIBLE TASKS
Figure 6.5: Comparison of the algorithms based on store-and-forward andon circuit-switched commutation in a chain network.and for i = 2; : : : ; h; j = 1; : : : ; g� 1:kh�i;j = CA hXp=h�i+1(kp;j +2 h�pXq=2 3q�1kp+q;j) + h�iXp=2(kp;j+1+2 h�pXq=1 3q�1kp+q;j+1)lh�i;j= hXp=h�i+1[SA+CA(lp;j+2h�pXq=23q�1lp+q;j)]+h�iXp=2[SA+CA(lp;j+1+2h�pXq=13q�1lp+q;j+1)]and k1 = CA gXj=1 hXp=2(kp;j + 2 h�pXq=1 3q�1kp+1;j) + 1l1 = gXj=1 hXp=2(SA + CA (lp;j + 2 h�pXq=1 3q�1lp+1;j))We compared the above two methods based on circuit-switching routingwith a method proposed in [60] and based on store-and-forward routing. Theresults are collected in Fig. 6.5 where times of processing various size tasks

6.3. APPLYING DIVISIBLE TASK CONCEPT 119on a network of 27 PEs with A = 1�s=byte; C = 0:01�s=byte; S = 10�sare juxtaposed. The �gure presents times for store-and-forward routing andfor circuit-switched routing. For both commutation methods two pipeliningschemes are considered g = 1 (no pipelining), and g = 5. Not for all sizesthe above patterns are feasible. When g = 5 only for big volumes com-puting on all 27 PEs is possible using store-and-forward. For smaller sizesthe computation is �nished on smaller number of PEs before the furthestones are activated. Such situations are not included in Fig. 6.5. As it canbe seen the algorithm based on circuit-switched routing is signi�cantly bet-ter. Pipelining gives much smaller reduction (about 10%) in computing timethan replacing the old algorithm using store-and-forward with the new oneexploiting circuit-switched commutation (reduction by about 50%).6.3.2 Star and Bus InterconnectionsIn this section we consider star and bus interconnections. It has been ob-served earlier [33] that star and single bus networks can be viewed in thesame way. Thus, we will use here only the star name. The star intercon-nection is an attractive model of distributed computations, e.g. of the PVMmaster-worker concept. Hence, in the following discussion names origina-tor and master are equivalent. We begin this section with some theoreticalpoints. Next, we analyze some on-line scheduling algorithms. Finally, wepractically verify the considered model.Though the complexity of problem Q; star j div; n = 1 jCmax, i.e. sche-duling a divisible task on a star is not established when the startup times arenonzero, the optimal solution can be found from the following mixed linearprogramming formulation.minimize Cmaxsubject toCmax = �1A1 (6.6)Cmax = jXk=2 mXi=1 xki[Ci�i + Si] + mXi=1 xjiAi�ij = 2; : : : ; m (6.7)V = mXi=1 �i (6.8)

120 CHAPTER 6. DIVISIBLE TASKS1 = mXi=1 xij j = 1; : : : ; m (6.9)1 = mXj=1 xij i = 1; : : : ; m (6.10)xij 2 f0; 1g i; j = 1; : : : ; m (6.11)�1; �2; : : : ; �m � 0In the above formulation xij = 1 denotes that Pj is activated as the ith in thesequence. xij = 0 denotes the opposite situation. Equation (6.6) demandsthat P1 computes all the time, equations (6.7) that the communication to theprocessor activated as the jth immediately follows activating of the previousone. Furthermore, computing on all processors �nishes at the end of theschedule. Equations (6.8) impose processing of the whole load, (6.9) thateach PE is activated, (6.10) that each position in the activations sequence is�lled. The above formulation may have no feasible solution if it is not possibleto activate all PEs before processing the whole load on a smaller number ofPEs. In such a case one may reduce the value of m in the formulation untila feasible (and optimal) solution is found. We proposed a solution basedon mixed linear programming for the case without returning results (cf.equations (6.3)). Yet, it would not be a di�cult task to reformulate it andinclude returning results.Divisible Task Scheduling in Distributed Batch SystemIn [7, 91] the problem of �nding the optimal set of processors to execute adistributed application is considered. This problem is related, for example,to distributed batch schedulers like NQS, LL, LSF, PRM, etc. The systemassumed in [7, 91] allows for executing only one application on a processorat a time. Changing the assigned processors during the execution is not allo-wed. The application is submitted to a scheduler which runs it on availableprocessors such that the completion time is minimized. The central scheduler"knows" which processors are available and the moments when the busy pro-cessors will become available. Immediate starting of the application on smallnumber of available processors may not be optimal. Furthermore, delayingthe start time until more processors are available may reduce the completiontime. In [7, 91] the set of processors and the starting moment was selec-ted using ECT (Earliest Completion Time) rule. In the above publicationsno communication overhead was considered. In the following we examine

6.3. APPLYING DIVISIBLE TASK CONCEPT 121such a computing system using divisible task concept. Let us denote by bi(i = 1; : : : ; m) the moment of time at which processor Pi becomes available.Without loss of generality we assume b1 � b2 � : : :� bm+1 = VA1+C1+b1+S1,where bm+1 is an upper bound on the schedule length introduced to simplifythe presentation. For the sake of simplicity we assume that results are notreturned.Consider the case when before bi communication to Pi is not possible,after bi both communication and processing on Pi are possible. An immediateapproach to this problem is to follow the lines of [7, 91] and use the ECTrule. The scheduler starts communication to processors fP1; : : : ; Pig (i =1; : : : ; m) at the some moment bi for some selected i. Distribution of theload and the completion time can be calculated using (6.3). This can bedone in O(m) time for each i, which results in O(m2) complexity.A di�erent approach is allowing for successive activating PEs as they be-come available. Thus, P1 would start computing �rst after receiving its shareof data, then P2 would be activated etc. In this case minimal execution time isdetermined by the processing capacity available on the activated processors.Let us denote by ei the time moment at which communication to processorPi stops and computation begins. At ei communication to Pi+1 can beginprovided that bi+1 � ei. Hence, Pi can process �i = Cmax�maxfei�1;big�SiCi+Aiunits of data, where ei = maxfei�1; big + �iCi + Si (i = 1; : : : ; m) ande0 = b1. For the given Cmax the total amount of load that can be processedis Pji=1 �i, where bj < Cmax � bj+1. By binary search over j the earliestinterval for which the total amount of load that can be processed is gre-ater than or equal to V and where the optimal length of the schedule is,can be determined in O(m logm) time. This procedure can be further ap-plied to �nd the optimal schedule length C�max. Suppose " is the precisionof C�max calculation. Then, the complexity of the binary search would beO(m(logm+log maxjfbj � bj�1g� log ")). We cannot use equations (6.3) inthis case because there are intervals when the processor activated earlier (sayPi) is not communicating with the originator while the processor activatedas the next one (Pi+1) cannot start communicating because it is not availableyet. Thus, to solve the problem with a perfect precision a stronger tool se-ems necessary. Before going into further details let us assume that the aboveprocedure has been applied and it is determined that C�max 2 [bj ; bj+1]. Theminimal length of the schedule and distribution of the load can be foundfrom the following linear program.minCmax

122 CHAPTER 6. DIVISIBLE TASKSsubject toCmax � ei + Ai�i for i = 1; : : : ; j (6.12)ei � ei�1 + Ci�i + Si for i = 2; : : : ; j (6.13)ei � bi + Ci�i + Si for i = 1; : : : ; j (6.14)jXi=1 �i � V (6.15)e1;: : : ; ej ; �1;: : : ; �j; Cmax�0In the above formulation equations (6.12) guarantee that computing times�t in the available time intervals, equations (6.13), (6.14) guarantee thatthe proper sequence of communications is preserved and no communicationstarts before the processor becomes available. Equation (6.15) ensures com-plete processing of the task. The above formulation has at most 2m + 1variables and 3m constraints and can be formulated and solved in polyno-mial time. Hence, the problem is polynomially solvable.Now, consider a situation when PEs have network processors with sa-tisfactory bu�ers allowing for sending new data to processor Pi while itis still computing the pervious task. Then, communication is allowed evenbefore bi, but processing is allowed only after this time. This case can besolved similarly to the previous one. The amount of load processed by pro-cessor Pi depends on the starting time of the computations. The startingtime for computations is either bi if the communication to Pi �nishes beforethe processor becomes available or it is the moment when the communica-tion to Pi �nishes, i.e. ei. In the �rst case Pi processes �i = Cmax�biAi . Sinceei = ei�1 + �iCi + Si � bi this case implies ei�1 � bi � CiAi (Cmax � bi) � Si.In the second case Pi computes �i = Cmax�ei�1�SiCi+Ai . Thus, for a given Cmaxthe number of used processors j can be determined from conditions bj <Cmax � bj+1. Then, the capacity for processing the load can be found as asumPji=1 �i, where �i are calculated according to the two above cases. Thisresults in O(m logm) complexity binary search procedure determining theset of required processors for load V: As before, one can extend this proce-dure to �nd the optimal length of the schedule with some accuracy. Whenperfect precision is required one may use linear program (6.12)-(6.15) withequations (6.13) in range i = 1; : : : ; j and e0 = 0, while (6.14) should bereplaced with ei � bi for i = 1; : : : ; j:Thus, also this case can be solved in polynomial time.

6.3. APPLYING DIVISIBLE TASK CONCEPT 123On-line AlgorithmsThe methods of data distribution presented above are well suited for com-puter systems dedicated to one application only where the processing speedand communication speed are stable. Yet, in distributed computations basedon LAN/MAN/WANs stability of these parameters is hard to be guaranteed.Thus, a di�erent adaptive scattering algorithm seems to be required. By an"adaptive" algorithm we mean here a method which makes no assumptionson the speed of computer and communication media. The Ai parametersdepend on the background loading of processors and on the application withits current data. Therefore, it is hard to use some standard benchmark toestimate Ais. Note that the same problem appears in loop scheduling (cf.Section 4.4). On the other hand, the application itself is a good benchmark.Thus, we conclude that the best way of calculating Ais is doing it whileexecuting the particular application for the particular data set. The commu-nication algorithm proposed in [61, 100] for processing divisible tasks causesthat a lot of data is sent to the PE activated as the �rst one. Consequently,the �rst communication time is very long. In the meantime, the other PEsare unnecessarily idle. It is more e�cient to send small chunks of data to allPEs and let them start computing earlier. Thus, the communication patternshould be based on pipelining as the one proposed in [17]. With the aboveobservations in mind we propose the following scheduling algorithm.Distribution Algorithm 1 (DA1)1: Send to all processors the same initial amount �i = � of data to process.2: While there is anything to send, send to idle processor Pi amount �0i = �i ��of data to process, where �i is the amount of data sent in the previousactivation of Pi, � is the required length of the interval between accesses tothe originator and � is the observed interval between two accesses.In the above algorithm the PE that returns results earlier is sent a biggerchunk of data than the PE that returns the results later. The key idea behindthe above algorithm is to obtain a �xed interval � between the accesses ofdi�erent PEs to the originator. This reduces the contention in accessing theoriginator. Below, we analyze the behavior of DA1.Without loss of generalitywe assume that the amount of returned results is equal to the amount ofdata to process. Furthermore, we assume that originator is not computing(performs only control and communication functions) and the number ofslave processors is m.

124 CHAPTER 6. DIVISIBLE TASKSLemma 6.1 In the contention-free situation and for stable parameters ofcommunication links and PEs, the interval between the accesses to the ori-ginator in DA1 converges to � .Proof In the assumed contention-free situation the access to the origina-tor of some processor does not coincide with the access of any other processor.Let us denote by �, �0, �00 the time between three consecutive accesses of Pito the originator. Let �, �0, �00 denote the amounts of data sent to Pi in thethree respective accesses. Remember, that we assume the amount of returnedresults being equal to the amount of data. Observe that � = �(2Ci+Ai)+2Si,�0 = �0(2Ci + Ai) + 2Si, �00 = �00(2Ci + Ai) + 2Si. Now, let us calculate�00��0 = �00(2Ci+Ai)+2Si��0(2Ci+Ai)+2Si = (�00��0)(2Ci+Ai). Onthe other hand, �0 = � �� = �2Ci+Ai+ 2Si� and �00 = �0 ��0 = �2Ci+Ai+ 2Si�0 . Thus,�00� �0 = 2�Si(2Ci+Ai)(1�� 1�0)(2Ci+Ai+ 2Si�0)(2Ci+Ai+ 2Si�) = 2�Si(2Ci+Ai)(1���)�(2Ci+Ai+ 2Si�0)(2Ci+Ai+ 2Si�) .From the above we can infer about the direction of �00, �0 changes. Suppose�� > 1 then �0 > � and �0 > �. Furthermore, �00 > �0 and �00 > �0. Thus,the amount of data sent to Pi is increased in two consecutive steps. For�� < 1 the amount of data sent to Pi is gradually decreased. This can beinductively extended to all accesses to the originator. Note that directionof changes is constant. Hence, the time between two consecutive accessescannot become greater than � if it was smaller than � initially. And viceversa, if the interval between the accesses was greater than � initially thenit cannot become smaller than � .Finally, consider the distance from � in consecutive data distributionsteps. We will calculate how the distance from � changes. (�00��)�(�0��) =�00 � �0. For �� < 1 the data chunks are decreasing and the distance from �is decreasing in consecutive steps. For �� > 1 the data chunks are increasing.The time between the accesses is approaching � from below and distances(�0��) and (�00��) are negative values. Thus, in the latter steps the distanceis "less negative" and the absolute value of deviation from � decreases. Weconclude that in the conditions stated above the time between the accessesto the originator monotonically converges to � . 2In the following lemma we discuss the execution time of an applicationwith DA1 assuming that access intervals of all PEs are equal to � . This is aslight simpli�cation because the initial adjusting of data chunks is neglected.Furthermore, we assume that communications take place immediately oneafter another (cf. Fig. 6.6).

6.3. APPLYING DIVISIBLE TASK CONCEPT 125Figure 6.6: Computation - communication diagram for DA1.Lemma 6.2 When access intervals for all PEs are equal to � , whereV (2C1+ A1) + 2S1 � � � Pmi=1 2Si(1� 2Ci2Ci+Ai)1�Pmi=1 2Ci2Ci+Aithe application execution time is�b VPmi=1 ��2Si2Ci+Ai c+C1 ��2S12C1+A1+S1+Px�1i=2 (2Ci ��2Si2Ci+Ai+2Si)+Cx ��2Sx2Cx+Ax +Sx+�where x satis�esPxi=1 ��2Si2Ci+Ai � V � b VPmi=1 ��2Si2Ci+Ai cPmi=1 ��2Si2Ci+Ai .Proof First, let us comment on the conditions set in the lemma. When� is longer than the execution time on a single processor, i.e. � � V (2C1 +A1) + 2S1, then the execution time remains constant and equal to V (2C1+A1) + 2S1. On the other hand, when � is too short it may be impossibleto communicate to all m processors. This is the case when communica-tions are longer than � . Since access intervals of all PEs are equal to � , Piprocesses amount of load equal to �i = ��2Si2Ci+Ai . Thus, � � Pmi=1(2Ci�i +2Si) = Pmi=1(2Ci ��2Si2Ci+Ai + 2Si), from which we obtain that � must satisfy� � Pmi=1 2Si(1� 2Ci2Ci+Ai)1�Pmi=1 2Ci2Ci+Ai in order to make DA1 realizable. The execution timeof the application under DA1 consists of two phases. In the �rst one allprocessors one by one are repetitively accessing the originator. The num-ber of repetitions is y = b VPmi=1 �i c = b VPmi=1 ��2Si2Ci+Ai c. Thus, the �rst phaselasts �b VPmi=1 ��2Si2Ci+Ai c units of time. In the second phase only some proces-sors are activated. Let us denote by x the number of processors activa-ted in this phase. It must be big enough to accommodate the remainingvolume of data. Hence, Pxi=1 �i � V � yPmi=1 �i. From which we obtainPxi=1 ��2Si2Ci+Ai � V � b VPmi=1 ��2Si2Ci+Ai cPmi=1 ��2Si2Ci+Ai . In this phase processorsP2; : : : ; Pm return results from the last cycle of the �rst stage, while onlyprocessors P1; : : : ; Px are activated for the last time. Thus, the last phaseincludes the time of sending data to P1, receiving results from, and sen-

126 CHAPTER 6. DIVISIBLE TASKSding data to P2, ... receiving results from, and sending data to Px, timeof processing data on Px and returning results from Px. Other communica-tions and data processing activities take place in parallel with the aboveactions (cf. Fig. 6.6). The last sending to Px, computing on it and re-turning results lasts � units of time. Hence, the total processing time is�b VPmi=1 ��2Si2Ci+Ai c+C1 ��2S12C1+A1+2S1+Px�1i=2 (2Ci ��2Si2Ci+Ai+2Si)+Cx ��2Sx2Cx+Ax+Sx+�which is the amount of time speci�ed above. 2From Lemma 6.2 we can conclude that when the number of cycles is bigthe �rst phase of DA1 dominates and the �rst term in the execution timeformula dominates. Furthermore, when startup times are small in relationto � then the total execution time tends to VPmi=1 12Ci+Ai . Hence, under theabove conditions the total processing time does not depend on � which isthe only parameter that can be modi�ed in the algorithm.Corollary 6.1 When the number of iterations is big and startup times aresmall the execution time under DA1 does not depend on � .We compared DA1 with an algorithm in which the data chunk is constantfor all processors:Distribution Algorithm 2 (DA2)While there is anything to send, send �xed amount v of data to a free PE.In Fig. 6.7 and Fig. 6.8 we compared relative execution times of ap-plication executed under DA1 and under DA2 as a function of � and v,respectively. Relative execution time is a ratio of the actual execution timeand the execution time for the case when all PEs receive data in one chunkas described in [61, 100]. The results were calculated in a series of simula-tions. There were m = 8 PEs, the processing rate was A1 = : : : = A8 = 1,in the �rst experiment, A1 = : : : = A8 = 0:1 in the second, and A1 = : : : =A8 = 0:01 in the third one. The communication links were identical withC1 = : : : = C8 = 0:001, S1 = : : : = S8 = 0:1 which is a typical relation be-tween transfer rate and startup time (cf. Table 2.1). DA1 guarantees betterperformance than DA2 in the worst case. Yet, for big values of � the execu-tion time becomes unstable: for growing � it �rst increases, then decreasesand increases again (cf. Fig. 6.7). This anomalous behavior is a result of toobig value of � . To keep the interval between the accesses equal to � one of theprocessors intercepts a big chunk of load. This results in the load imbalancewhich dominates the execution time. When � is big the load remaining forthe dominating last chunk is smaller than for small � , because for big � the

6.3. APPLYING DIVISIBLE TASK CONCEPT 127
Figure 6.7: Execution time for DA1 - simulation.chunks sent earlier were also bigger. Thus, increasing � may reduce execu-tion time. As it can be seen for small chunk sizes, where communication timedominates, the bigger the speed of processors, the worse DA2 is.In Fig. 6.9 and 6.10 we present results of applying DA1 and DA2 in acluster of six (including the originator) SUN workstations cooperating by useof PVM [88]. The distributed application consisted in distributed search fora pattern in a text �le. The size of the �le was V =5760kB. In the observedrange of intervals between accesses to the master processor DA1 has betterstability than DA2 and better worst-case performance. This situation is inaccordance with simulations for small values of � . As it can be observedDA2 exposes bad performance when chunk size is too small. This behavioris analogous to the one observed in simulations.Though algorithm DA1 exposes good qualities in certain conditions (cf.Lemma 6.1, Corollary 6.1), it has also weaknesses when the value of � ischosen badly. The drawbacks of DA1 are visible in Fig. 6.7. These are imba-lances which contribute to a longer than necessary execution time. Hence,we proposed a new algorithm which adjusts value of � .Distribution Algorithm 3 (DA3)Apply the DA1 algorithm with two exceptions:1) if the originator is constantly busy in the second access cycle or later,then set � := � �m;

128 CHAPTER 6. DIVISIBLE TASKS
Figure 6.8: Execution time for DA2 - simulation.

Figure 6.9: Execution time for DA1 in a workstation cluster.

6.3. APPLYING DIVISIBLE TASK CONCEPT 129
Figure 6.10: Execution time for DA2 in a workstation cluster.2) if some PE wants to take more than 1m of the remaining load and one ofthe two is true: master is not continuously occupied, or it is the �rst datadistribution cycle, then contract � := �m .Let us comment on DA3. The �rst exception prevents communicationsand queuing to the master from dominating the whole execution time. Thesecond exception is intended to prevent the imbalances. Observe that the twoexceptions cannot take place simultaneously. We assume that initially masteris not idle. The same simulations were performed for DA3 as depicted in Fig.6.7 for DA1. The results are collected in Fig. 6.11. As it can be observedDA3 has better stability on average. However, for certain combinations ofcomputer system parameters and the history of data distribution the set ofconditions included in DA3 to prevent instability is not satisfactory. Thisresults in "glitches" as e.g. in Fig. 6.11 for the initial value of � = 200.The three data distribution algorithms are compared in one more wayin Fig. 6.12. This chart presents dependence of the variance in processingtime on changing speed of PEs. The following parameters were assumed:m = 8; Ci = 0:001; Si = 0:1; V = 105. The processing rate Ai remains withuniform probability in the interval [0:5; 1:5]. The rate remained unchangedduring random number of accesses to the PE. The number of accesses wi-thout change in speed was uniformly distributed in interval [1; 5]. Each pointin the chart presents variation (i.e. standard deviation) of 20 experiments.As it can be observed DA1, DA2 are more stable than DA3 for small chunk

130 CHAPTER 6. DIVISIBLE TASKS
Figure 6.11: Execution time for DA3 vs. initial values of � - simulation.size, resp. � . For big values of these parameters processing dominates in thetotal execution time, and hence changes of processing rates signi�cantly in-
uence total execution time. Variance of processing time for DA3 is similarover all (initial) values of � . Hence, it can be claimed that on average DA3is more impervious to the changes of the processing rate.Veri�cation in Transputer SystemIn the following paragraphs we present results of a practical veri�cation ofthe divisible task concept in a star architecture.The basic star model of e.g. [61] assumed that the results are returnedin the inverted order of sending data. Here, we assumed that the results arereturned in the same order as the data was sent (cf. Fig. 6.13). In such asituation the time of processing on processor Pi and returning results fromthis processor must be equal to the time of sending to Pi+1 and processingon Pi+1. Hence, the basic equation set (6.3) must be modi�ed as follows�iAi+Si+�(�i)Ci = Si+1+�i+1(Ci+1+Ai+1) i=1;: : :; m�1 (6.16)V = �1 + �2 + : : :+ �m�1; �2; : : : ; �m � 0where �(x) is the amount of results returned for x units of data. The abovemethod has been practically applied in a T805 transputer network depictedin Fig. 6.14a. As it can be veri�ed in Fig. 6.14a the underlying topology is

6.3. APPLYING DIVISIBLE TASK CONCEPT 131
Figure 6.12: Variance of processing time when processing rate is changing.
Figure 6.13: Communication and computation in a star. The sequences ofdata distribution and the results collection are the same.
Figure 6.14: The transputer testbed: a) topology b) data distribution pathsin the experiment with eight processors.

132 CHAPTER 6. DIVISIBLE TASKSnot a star. Thus, by a star we mean a logical interconnection observed inscattering. The communication algorithm is based on wormhole routing. Theconsidered application was a search for a pattern in a text �le. In all experi-ments the returned results �t in one 1000-byte packet. Hence, �(�i) = 1000.For simplicity of the experiment we assume that computations and commu-nications do not overlap. Parameters Ai were measured for each PE as anaverage of 100 tests consisting in searching in 300000-byte �le. ParametersCi; Si were calculated using linear regression from a set of transmission timemeasurements where the originator (labeled 0) sent to Pi messages of size1; : : : ; 100 packets (which is range 2000; : : : ; 102584 of bytes with step 1016bytes). The �rst experiment considered only a pair: the originator plus thePE labeled 11 and consisted in transferring and processing 300000 bytes ofdata. The di�erence between execution time measured experimentally andcalculated was below 0.5%. In the next experiment we used three proces-sors labeled 6, 9, 11, respectively. For only three computing processors theinterconnection can be considered as a star. Fig. 6.15 presents an absolutevalue of relative di�erence between the expected and measured executiontime. Every point is an average of 100 experiments. As it can be seen in Fig.6.15 the di�erence decreases fast and for V � 40000 it is smaller than 10%while for V � 300000 it is below 1%. In the following experiment we triedto use eight processors. Yet, it turned out that the construction of a routingtable caused that PEs were simultaneously computing and processing. Thisresulted in approx. 25% di�erence between the measurement and the expec-tation. Such a big discrepancy was caused by the fact that parameters Ai nolonger re
ected the speed of processing because on routing PEs the routingprocess competed for processing power with the application. We changedthe data distribution sequence in accordance to the routing table such thatthe routing process is not activated together with application process. Thetopology of data distribution paths is depicted in Fig. 6.14b. We activatedthe PEs in the following order: 6, 2, 5, 1, 11, 7, 3, 4. As in [61] the resultswere returned in the inverted order of sending the data. In this way, we avo-ided simultaneous routing and processing by PEs. In Fig. 6.16 we presentthe di�erence between the expected and measured execution time. As it canbe veri�ed the di�erence is in the range [�1:5%; 1:5%].We conclude that thepractical veri�cation proved viability of the proposed theory.

6.3. APPLYING DIVISIBLE TASK CONCEPT 133
Figure 6.15: A relative di�erence between the expected and measured exe-cution time for three processors.
Figure 6.16: A relative di�erence between the expected and measured exe-cution time for eight processors.

134 CHAPTER 6. DIVISIBLE TASKS6.3.3 HypercubeIn this section we present data distribution methods based on divisible taskconcept for hypercube interconnection. Previous works on this architecture[34] assumed no communication startup costs and store-and-forward commu-nication. Here we consider methods using circuit-switched communication forthe system where simultaneous communication over all available PE links ispossible (i.e. for d-dimensional hypercube PEs are d-port). PEs have networkprocessors so that simultaneous communication and computation is possible.Furthermore, we assume that network processors are able to re-route datastream without additional intervention of the sender after transferring some�xed amount of data. Finally, all PEs and communication links are identical.Let us remind that PEs of hypercube interconnection can be labeled suchthat the connected PEs di�er in exactly one bit. In the following discussion asa measure of the distance of PEs from the originator we will use Hammingdistance of the PE label and the originator label. Let us name by layerof processors the set of PEs activated simultaneously in the same step ofdata distribution. Moreover, as it was in [33, 34], we assume that layersconsist of PEs di�ering in exactly one bit. For quick reference we will numberlayers according to the Hamming distance from the originator (number of1 bits in a PE label, in other words). Note that the layer number may notcoincide with the sequence of activating PEs. We will try to take advantageof circuit-switched communication for which the costs of sending data to thelayers distant from the originator is similar to sending to a very close layer.We will present several methods of data distribution. However, due to spacelimitation only some of them are described in �ne detail. The considereddata distribution methods are illustrated in Fig. 6.17, where sequence ofcommunications between layers is depicted.Hypercube Distribution Algorithm 1 (H1) [33, 34]In H1 all the data for layers 1; : : : ; d is sent from the originator (layer 0)to a layer 1. On the receipt of all that data PEs in layer 1 start processingtheir share of data and sending the rest of data to the following layers. Datafor layers i; : : : ; d (i = 2; : : : ; d�1) are sent from layer i�1 to layer i. Havingreceived all data for layers i; : : : ; d, PEs in layer i start computing their partof data and sending the rest to layer i + 1. H1 is based store-&-forwardcommunication.Hypercube Distribution Algorithm 2 (H2)H2 is a modi�cation of H1. The sequence of activating layers is as in H1.Yet, the PEs in consecutive layers �rst receive their part of the load and

6.3. APPLYING DIVISIBLE TASK CONCEPT 135
Figure 6.17: Data distribution methods for hypercube: a) H1,H2, b) H3, c)H4.immediately start computing. The rest of data is re-routed by the networkprocessors to the next layer without storing.Hypercube Distribution Algorithm 3 (H3)H3 is a modi�cation of H2. As in H2 the PEs are activated right afterreceiving their share of data, while the rest of data stream is re-routed tothe next layer. Yet, the data for layers dd=2e; : : : ; d are sent from layer 0 to"antipodes" of the hypercube, i.e. to layer d PE �rst. Then, the layers areactivated from the opposite "ends" of the hypercube.Hypercube Distribution Algorithm 4 (H4)H4 is a modi�cation of H3. The data for layers bd=2c; : : : ; d is sent fromlayer 0 to layer d� 1. Then, layer d and layers dd�12 e; : : : ; d� 2 are fed fromlayer d� 1. Layers 1; : : : ; bd�12 c are supplied with data via the layers closerto the originator.Hypercube Distribution Algorithm 5 (H5)In the H5 method PEs are activated one by one. For each of them data issupplied over d non-intersecting paths. The d paths can be built as follows.Consider a PE with i bits equal to 1 in the label at positions a1; a2; a3; : : : ; ai.The �rst path goes via PEs with label bits equal to 1 in positions: a1, thenin positions a1; a2, next a PE with bits equal to 1 in positions a1; a2; a3;: : : a1; a2; a3; : : : ; ai. The second path is routed via PEs with bits equal to1 in positions: a2; a2; a3; a2; a3; a4; : : : a2; a3; : : : ; ai; a1; a2; a3; : : : ; ai. In ananalogous way the rest of i di�ering paths can be routed. Suppose bi is oneof d� i bits equal to 0 in the address of a target PE. The next d� i paths canbe routed as follows: Reach the PE with bit bi equal to 1, then route via PEs

136 CHAPTER 6. DIVISIBLE TASKSwith label bits set to 1: bi; a1; bi; a1; a2; bi; a1; a2; a3; : : : bi; a1; a2; a3; : : : ; ai.H5 method is logically equivalent to distributing in a star.Hypercube Distribution Algorithm 6 (H6)H6 algorithm divides a hypercube into hypercube-shaped subcubes of asmaller dimension. The originator sends data to several neighbors which inturn become originators for distributing in the subcubes. The subcubes aredivided into a next level subcubes, etc. This dividing into smaller subcubescontinues until activating all the PEs.In the following we describe the methods for �nding the amounts of datato be processed by particular layers. Let us denote by �i the amount of loadto be processed by one PE of layer i, by A processing rate of PEs and byC; S parameters of the communication links. For the sake of simplicity weassume that no data are returned to the originator. Hence, all the PEs muststop computing at the same moment of time. Then, the time of computingon the sending PEs must be equal to the time of data transmission to thereceiving PEs plus the computing time on the receiver. The solution methodfor H1 has been given in [33, 34].H2: Since the time of computing on the sender PE must be equal to thetime of computing on the receiver plus the communication time, we have thefollowing set of equations from which data distribution can be found.A�0 = S + �1 d1 ! Cd + A!A�1 = S + �2 d2 ! Cd + A!: : :A�i�1 = S + �i di ! Cd + A! (6.17): : :A�d�1 = S + �d(Cd + A)V = dXi=0 di !�iIn the above equations term �i � di �Cd stands for communication time tolayer i from the originator over its d links simultaneously. Note that the �rstset of d links from layer 0 to layer 1 is limiting the speed of data transferbecause in the following layers data is fairly distributed among the links of

6.3. APPLYING DIVISIBLE TASK CONCEPT 137a PE. The number of links from layer i to layer i + 1 is � di �(d � i) [33]which at least equals to d. Equations (6.17) can be solved in O(d) time by amethod analogous to that used to solve sets of equations (6.4), (6.5). Whena solution with �i�0 (i=0;: : :;d) does not exist then the maximum feasiblenumber of layers can be found in O(d logd) time by a binary search over d .H3: In this algorithm data distribution starts by sending data from theoriginator to layer d. Then distribution from the originator and layer d issymmetric because the topology of a hypercube observed from both direc-tions is the same. Hence, we conclude that �i = �d�i for i = 1; : : : ; bd=2c.The distribution of the load can be found from the equation set:A�0 = S + Cd �d + d�1 + : : :+ �bd=2c2d+1mod2 dbd=2c !!+ �dAA�d = S + �1(C +A)A�i�1 = S + �i di ! Cd + A! for i = 2; : : : ; bd=2c�1 (6.18)A�bd=2c�1 = S + �bd=2c dbd=2c ! Cd2d+1mod2 +A!�i = �d�i for i = 1; : : : ; bd=2cV = dXi=0 di !�iIn the �rst equation of (6.18) and in the equation number bd=2c + 1 term2d+1mod2 plays any role only for the hypercubes of even dimension. In suchhypercubes the central layer is fed from the originator and from the "anti-podes". Since both directions are symmetric, half of data is received fromthe direction of the originator and half from layer d. (6.18) can be solvedanalogously to equation sets (6.4), (6.5). Observe that the number of datadistribution steps is smaller in H3 than in H1, H2. However, this reductionis at the cost of transferring big part of data to the "antipodes" �rst whichis a potential bottleneck.H4: The number of data distribution steps is bd�12 c + 1 instead of d.The communication pattern for the last activated layer is di�erent for odddimension d of the hypercube and for even d. For even d there are twoseparated layers which are activated in the last cycle: layer bd�12 c fed fromthe originator and layer dd�12 e fed from layer d � 1. For odd d there is one

138 CHAPTER 6. DIVISIBLE TASKSlayer of PEs which are activated in the last step of data distribution fromlayers d�12 � 1 and d�12 + 1. We will describe both cases in the sequel. Letus denote by p = bd=2c. When d is even �i (i = 0; : : : ; d) can be found fromthe following set of linear equations:A�0 = S + Cd �d + d�d�1 + : : :+ dp !�p!+ �d�1AA�p�i = S + �p�i+1 dp� i+ 1 ! Cd + A! for i=2;: : :; p�1A�p+i = S + �p+i�1 dp+ i� 1 ! Cd(d� 1) +A! for i=1;: : :; p�1A�d�1 = S + �d(Cd + A)A�d�1 = S + �1(C +A) (6.19)V = dXi=0 di !�iEquations (6.19) can be solved in O(d) time similarly to (6.4), (6.5). �p+ifor i = 1; : : : ; p� 1 can be expressed as a linear function of �p, i.e. �p+i =kp+i�p + lp+i, where kp+i = (1 + Cd(d�1)A (dp+ i� 1))kp+i�1 and lp+i =SA + (1 + Cd(d�1)A (dp+ i� 1))lp+i�1. In the same manner �p�i for i =2; : : : ; p � 1 can be expressed as a linear function of �p�1, i.e. �p�i =kp�i�p�1 + lp�i, where kp�i = (1 + CdA(dp� i+ 1))kp�i+1 and lp�i = SA +(1+ CdA(dp� i+ 1))lp�i+1. From the penultimate equation of (6.19) we get�p= 1kd�1 (SA + (CA + 1)l1�ld�1 + �p�1(CA + 1)k1). Using this relation we canexpress all �i's as a linear function of �p�1 and from the last equation of(6.19) one may �nd the value of �p�1.When d is odd, layer p receives data both from layer p�1 and from layerp + 1. Let us denote by �0p the amount of data received by a PE of layer pfrom PEs of layer p� 1 and by �00p received from layer p+1. In the followingdiscussion we assume that only when all its data already arrived can a PEstart computation. The subsequent lemma establishes relation between themoments when receiving from layers p+ 1 and p� 1 should be �nished.

6.3. APPLYING DIVISIBLE TASK CONCEPT 139Lemma 6.3 In the case of circuit-switched communication and PEs re-ceiving data asynchronously from many identical links, the data transfersshould �nish simultaneously.Proof Let us consider some PE receiving data from two links asyn-chronously. In a circuit-switched communication we can change the sizes ofmessages sent to the considered PE without a�ecting the PEs activated ear-lier. Let us consider two cases: one link is �nishing communication � unitsof time earlier, both links are �nishing communication simultaneously. Sup-pose the total time of communication to the considered PE and computingon it is T . Let C denote transfer rate, S startup, A processing rate, and�ij amount of data received by Pj in case i. Thus, in the �rst case we getT = A(�11 + �12) + �11C + � + S and T = A(�11 + �12) + �12C + S.Hence, �11 + �12 = 2(T � S � 2�)(2A + C). In the second case we haveT = A(�21+�22)+�21C+S and T = A(�21+�22)+�22C+S. From whichwe obtain �21+�22 = 2(T �S)=(2A+C) which is bigger than �11+�12. Weinfer that in the second case more load can be processed in the given time.Consequently [33], given load is processed in the shortest time when datatransfers are �nished simultaneously. This reasoning can be applied also tomore than two links and to links which are not identical. 2The results of Lemma 6.3 can be used to �nd distribution of the load asa solution to the following equations:A�0 = S + Cd �d + d�d�1 + : : :+ dp !�0p!+ �d�1AA�p�i = S + �p�i+1 dp� i+ 1 ! Cd + A! for i=2;: : :; p�1A�p�1 = S + dp ! C�0pd +A(�00p + �0p)A�p+i = S + �p+i�1 dp+ i� 1 ! Cd(d� 1) +A! for i=2;: : :; p�1A�p+1 = S + dp ! C�00pd(d� 1) +A(�00p + �0p)A�d�1 = S + �d(Cd + A)A�d�1 = S + �1(C +A) (6.20)

140 CHAPTER 6. DIVISIBLE TASKSV = p�1Xi=0 di !�i + dp ! (�0p + �00p) + dXi=p+1 di !�iEquation set (6.20) can be solved in O(d) time analogously to equations(6.19). Loads �p+i; �p�i for i = 1; : : : ; p�1 can be expressed as a linearfunctions of �0p and �00p . Then, the penultimate equation can be used to �ndlinear relation between �0p and �00p . The rest of the procedure is analogous.H6: The H6 method is based on a recursive dividing a hypercube intosubcubes of a smaller dimension. Unfortunately, this approach does not scalewell with the dimension of the network. For example, a hypercube of dimen-sion 6 has 4 subcubes of dimension 4, and 8 subcubes of dimension 3. Thus,one can feed from the originator 4 subcubes of dimension 4 using 4 links (outof 6) simultaneously, or feed 8 subcubes of dimension 3 but not simultane-ously. In H6 we accepted the �rst choice, i.e. simultaneous activating of thesame size subcubes. Furthermore, in the H6 algorithm it seems impossible toapply re-routing of the messages as, e.g. in H2. This is because the links thatwere used to feed originator of subcube e.g. Z are needed to distribute inother subcubes in the following scattering steps. Thus, these links cannot bekept occupied with the transfer to the sub-subcubes in Z via the originatorof Z. Table 6.2 describes behavior of H6 along with the dimension of thehypercube. The originator �rst sends data to the number of PEs speci�ed inthe second column. Then, these PEs and the originator become sources fordistribution in the subcubes which number is in the third column. In each ofthe following scattering steps all active PEs are sources of data for subcubesof decreasing dimension. The pattern of communications in the subcube ofsome dimension is the same as for hypercube of this dimension. Observe thatin H6 PEs in the same layer may have di�erent distance from the originator.The last column gives the numbers of PEs activated in consecutive stepsof scattering. The distribution of the load can be found from the followingequation set:A�i = S+C(�i+1+ hXj=i+2m(i+1)j�j)+�i+1A for i=0;: : :; h�1 (6.21)V = hXi=0 ki�iwhere:mij= kjPil=0 kl - the number of PEs in layer j fed from one PE in layers 0;: : :;i,

6.3. APPLYING DIVISIBLE TASK CONCEPT 141Table 6.2: Numbers of PEs activated by H6No. of No. of size of No. of No. of PEs in layersd originator's 1st-step 1st-step distribution 0; : : : ; dsending links subcubes subcubes steps1 1 1 1 1 1,12 1 2 2 2 1,1,23 3 4 2 2 1,3,44 3 4 4 3 1,3,4,85 3 4 8 3 1,3,12,166 3 4 16 4 1,3,12,16,327 7 8 16 4 1,7,24,32,648 7 8 32 4 1,7,24,96,1289 7 8 64 5 1,7,24,96,128,25610 7 8 128 5 1,7,56,192,256,51211 7 8 256 5 1,7,56,192,768,102412 7 8 512 6 1,7,56,192,768,1024,204813 7 8 1024 6 1,7,56,448,1536,2048,409614 7 8 2048 6 1,7,56,448,1536,6144,819215 15 16 2048 6 1,15,112,896,3072,12288,1638416 15 16 4096 7 1,15,112,896,7168,12288,32768h - the total number of layers (the 2nd column from right in Table 6.2),ki - the number of PEs in layer i (ith position in the rightmost column (andthe proper row) of Table 6.2).We compared our data distribution algorithms for hypercube in a se-ries of simulations. Fig. 6.18 presents execution times for an applicationwith V = 106 bytes, for di�erent dimension hypercubes with A = 1�s,C=100ns/byte, S = 0:1ms (typical values of Table 2.1) executed under theabove data distribution algorithms. The presented values are all ratio of theactual execution time and the execution time of H1 for the same d. As itcan be observed H2 is the best algorithm. For d > 10, however, H2 is notable to feed all the PEs before completing all the computations on smallernumber of processors. On the other hand H3, H4 for small dimensions are ra-ther cumbersome, while for bigger dimensions perform better. Furthermore,for d � 12 H3, H4 are still able to supply with data all the PEs. On theother hand, it cannot be considered as an advantage because it is a sign oflonger communications. For big dimension hypercubes H4 is better than H3because more PEs are activated earlier in H4 than in H3. Both H3 and H4su�er from the fact that the �rst step of distribution consists in sending bigchunk of data to the "antipodes" of the hypercube. H5 performs satisfactoryfor small hypercubes. For big ones the startup times of numerous consecutive

142 CHAPTER 6. DIVISIBLE TASKS
Figure 6.18: Execution times under di�erent data distribution modes.communications limit applicability of this method. H6 performs worse thanH1,...,H4. The curve of the H6 performance is irregular because the numbersof PEs activated in a given step of scattering can change radically with d.Moreover, in Fig. 6.18 a ratio of H6 execution time to H1 execution time ispresented. Performance of H6, expressed e.g. as speedup is smoother.We conclude this section with some remark on practical aspects of apply-ing the above algorithms. The method of �nding the routes in H5 has beendescribed before. In the remaining �ve algorithms it is possible to calculatethe amounts of data to be shifted from a PE of one layer to a PE of thenext layer over one link. This can be used to partition the load into chunksaccording to all the di�erent paths reaching some PE. Such chunks, beforeleaving the originator should be properly grouped. For example in H1 PE oflayer 1 receives data for itself and for d� 1 PEs of layer 2. In the chunk ofa layer 2 PE there is data for itself and for d� 2 PEs of layer 3, etc. At thedestination data received from di�erent directions can be (if needed) resto-red to the original order. This requires also sending additional informationto the network processors about the size and destination of the data chunk.Such an approach to applying H1,...,H4,H6, though possible, can be hardto implement in practice for big hypercubes, especially when one takes intoaccount that data comes to the last PE overm di�erent paths. Yet, in manyapplications it is possible to consider data chunks as "nameless". In such

6.3. APPLYING DIVISIBLE TASK CONCEPT 143a case no reinstantiating of the original order of data at the destination isnecessary. Hence, it is not necessary to establish at the originator the desti-nation of each chunk of data. Only the amount of data to be intercepted ineach layer is necessary. Any PE reads from the incoming data streams dueamount of data and re-routes the rest in equal shares to the outgoing links.This can be implemented in far less coding.6.3.4 3D-meshIn this section we consider divisible job applications executed in three-dimensional meshes or tori (3DMesh in short). In the following we present�ve methods of recursive distribution (scattering) in such architectures andanalyze their performance. The methods di�er in the number p of a PEports used simultaneously. The algorithms are based on repetitive executionof three types of moves in submeshes of decreasing size. The PEs activatedin the same move of scattering will be called a layer. The three consecutivemoves will be called a step. The PEs activated in the same step of scatteringwill be said to constitute a basic cube. Each step activates all the PEs ofthe basic cube. Then, each of the active PEs becomes a source of furtherdistribution in the basic cube of a smaller size. The size of the basic cubedecreases after each step by 1=(p+ 1). In the proposed methods each moveincreases the number of activated PEs p times. Note that this is the maxi-mum possible because the number of ports used simultaneously is limited top. Initially only the originator is active. Thus, after k distribution moves thenumber of working PEs is (p+1)k. Accordingly, the number of PEs activatedby a step of scattering (i.e. three moves) is (p+ 1)3. In Fig. 6.19, and Fig.6.20 the data distribution patterns are presented.Let us describe more precisely the distribution methods. For p = 1 andp = 2, each move of a step activates p PEs neighboring along a di�erentdimension. In a 3-port system the originator activates three PEs locatedin the same two-dimensional cross-section of a basic mesh (say, along theplane y0z). Next, the four active PEs send data along the third dimension(x dimension). In the last move each active processor sends data to theneighbors along the hull of basic cube and to one neighbor to the insideof a basic cube. For the 4-port system the �rst move sends data from theoriginator to four processors located along one dimension (e.g. z). Then,each PE actives other PEs located in a two-dimensional cross-section of abasic cube (along the plane x0y) as it was proposed in [36, 167]. In the5-port system (cf. Fig. 6.20) the originator located at coordinates (x0; y0; z0)

144 CHAPTER 6. DIVISIBLE TASKS

Figure 6.19: Scattering patterns in 3-dimensional meshes or tori for p=1; 2; 3; 4:

6.3. APPLYING DIVISIBLE TASK CONCEPT 145
Figure 6.20: Data distribution pattern in 3-dimensional tori for 5-port PEsa) z0 � 3; z0 � 1; z0 + 1 b) z0 � 2; z0; z0 + 2.activates PEs at coordinates (x0+1; y0�1; z0�3); (x0; y0; z0�2); (x0+1; y0�1; z0�1); (x0+1; y0�1; z0+1); (x0; y0; z0+2). The communication systems ofPEs at z coordinate values equal, respectively, to z0�3; z0�2, and z0�1; z0,and z0 + 1; z0 + 2, cooperate in pairs in the moves two and three. Each ofthe three pairs perform the same communications. Each PE activated in the�rst move sends data to �ve neighbors with the same value of z coordinate.For that purpose four PEs are activated using only links of the PEs in thevery one two-dimensional cross-section (the same z coordinate), and onePE is activated using the links of the pairing two-dimensional cross-section.Thus, in each two-dimensional cross-section there are 5 active processorsafter move two. In the third move each active PE activates 4 more PEs in thesame two-dimensional cross-section and one in the pairing two-dimensionalcross-section. A method of scattering in 6-port toroidal 3-dimensional meshhas been proposed in [6]. In [166] a broadcasting method for d-dimensionaltoroidal mesh with 2d-port PEs and edge size (2d+ 1)k has been proposed(where k 2 Z+). This method activates (2d+ 1)kd PEs in kd moves. Thus,the methods proposed in this section can be extended to toroidal meshes ofarbitrary dimension when p = 2d+ 1.Now, we evaluate our data distribution methods. As in the previoussections we assume for simplicity reasons that nothing is returned to theoriginator. Let us denote by �i the amount of data to be processed by a PE

146 CHAPTER 6. DIVISIBLE TASKS
Figure 6.21: Speedup for 3-dimensional tori.activated in the move i of scattering, and by k = logp+1m the number ofmoves. The volumes of data can be found from the following set of equations(p 2 f1; : : : ; 6g):A�k�1 = S + (A+ C)�kA�k�i = S + C(�k�i+1 + p iXj=2�k�i+j(p+ 1)i�2) +A�k�i+1for i = 2; : : : ; k (6.22)V = �0 + p kXi=1(p+ 1)i�1�iThe speedup of systems with 1-port to 6-port PEs have been comparedin Fig. 6.21. It was assumed that A = 1�s/byte, C = 3:3ns/byte, S = 8:57�s,V = 1Mb (the communication parameters are typical of CRAY T3D). As itcan be observed the bigger the number of ports is the bigger speedup thecomputer system can sustain. It is because the more ports work in parallel themore data can be transferred in a unit of time, and hence the communicationsystem introduces less overhead.Finally, let us comment on the communication patterns proposed forthe 3DMesh. Observe that the scattering methods for p = 1 and p = 2can be extended to more dimensions than three. For d-dimensional mesh d

6.3. APPLYING DIVISIBLE TASK CONCEPT 147moves would be necessary to activate basic cube of (p+ 1)d PEs. Whetherequivalent or more e�cient methods exist for d � 4 and p � 3 is an openproblem. The methods proposed are optimal in that sense that the numberof activated processors in the allowed number of steps is the biggest possible.Using message pipelining may result in further reduction of data distributionand total processing times. Note that in the above scattering methods thefollowing equation is satis�ed for a basic cube: (p + 1)k = xd, where p isthe number of ports per a PE, k is the number of moves per step, x is thelength of one edge of the basic cube, and d is the number of dimensions. Itis an interesting problem which solutions of this equation lead to a feasibletessellation of moves in a basic cube. It was shown in [166] that for meshesnot all solutions lead to a feasible tessellation. A similar problem is existenceof moves tessellations for shapes other than cube.6.3.5 Multistage InterconnectionIn this section we apply the divisible task concept in the multistage archi-tecture. As examples we consider multistage cube network (MCN) and IBMSP-2 high performance switch (HPS) network [1, 195].We will analyze the multistage cube network in the form introduced inFig. 2.2f. Note that since PEs are 1-port, the distribution of the load couldbe found from equations (6.22) provided that a feasible scattering methodusing all ports of all active PEs existed. We present such a method in thefollowing. Let k = log2m denote the number of stages in the network. Themethod of activating PEs is the following:Scattering in MCN1: P0 activates Pm�1;2: z := m� 2;3: for i := k downto 2 dobegin4: for j 2 f0 : : :2k�i�1g [fm� 2k�i: : :m�1g paralleldoPj activates Pjxor z ;5: z := m xor 2k�i+1;end;Phrase for index paralleldo body demands that body block be performedin parallel for all values of index. For example, when m = 16 the followingsequence of distributions takes place (x! y means x activates y, ';' separatesactions not performed simultaneously): 0! 15; 0! 14; 15! 1; 0! 12; 1!

148 CHAPTER 6. DIVISIBLE TASKS
Figure 6.22: An SP-1/-2 interconnection: a) 16-PE frame, b) 64-PE/4-frame.13; 15 ! 3; 14 ! 2; 0 ! 8; 1 ! 9; 2 ! 10; 3 ! 11; 15 ! 7; 14 ! 6; 13 !5; 12! 4.Lemma 6.4 A multistage cube network of m = 2k processors can be acti-vated in k steps by the above algorithm of scattering in MCN.Proof Note that in each step of the MCN distribution the number ofactive PEs duplicates. Hence, we have to show only, that all the concurrentcommunications are contention-free. The message in the MCN is switched"swap" in ith layer switch if the source and the destination di�er in theiraddresses in position i. Otherwise, the message goes "straight". "Straight"means that a message entering the switch at the lower input leaves the switchfrom the lower output, a message entering at the higher input departuresfrom the higher output (cf. Fig. 2.2f). "Swap" is the opposite case. Duringthe distribution each PE communicates to a PE with the binary addressbeing the sender address xor'ed with z. All the sending PEs addresses arechanged in the same bits to obtain the destination. Hence, the messagesare switched in the same way in all the respective layers of multistage cubenetwork. A contention may arise only when two messages arrive at the sameswitch and one message wants to go "straight", while the other needs to be"swapped". This means that the two messages are di�erently switched in thesame layer which contradicts the earlier observations. Thus, communicationsare contention free. 2Analogous reasoning can be conducted for multistage interconnectionof IBM SP-1/SP-2 computers which are using bi-directional switches. The

6.4. DISCUSSION AND CONCLUSIONS 149data distribution pattern di�ers slightly in this case. 16 PEs interconnectedby HPS constitute a frame presented in Fig. 6.22a. Frames can be linkedwith each other in a variety of ways [195] including e.g. fat-tree networks,SW-Banyan. There are at least 4 usable paths between each pair of nodes,except for node pairs that are directly attached to the same HPS (4-PEgroups P0:::P3;P4:::P7 etc.) In this section we assume that each PE has asingle port attachment to the HPS (p = 1). Hence, each PE can activateonly one additional PE in a distribution step. This pattern can be appliedin a multi-frame SP-1/-2 releases. Assuming that f is the number of framesand that each frame can be connected with any other frame by at least onecontention-free route, all the frames can be activated in log2 f steps. Then,PEs of a frame can be activated starting from a single PE as in the followingdescription. The distribution for a single frame can be 4-step (cf. Fig. 6.22):1:P0!P8;2:P0!P4; P8!P12;3:P0!P2; P4!P6; P8!P10; P12!P14;4:P0!P1;P2!P3; P4!P5; P6!P7; P8!P9;P10!P11; P12!P13;P14!P15.In a multi-frame machine (Fig. 6.22b) the above four steps could bepreceded by two more steps:1:Frame0P0 :!Frame1P0;2:Frame0P0 :!Frame2P0, Frame1P0 :!Frame3P0.Then, the distribution of the load can be found analogously to a multi-stage cube network case using equations (6.22) for p = 1.6.4 Discussion and ConclusionsIn this section we comment on the granularity of data, summarize this chap-ter as well as discuss some possible further extensions of divisible task con-cept. The results of this chapter are collected in Table 6.3. Column "Result"shows (among the others) computational complexity of the algorithm �ndingdistribution of the load.Let us observe that the assumption on in�nite divisibility can be hardto justify in practice. In real applications data usually has some unit ofgranularity e.g. record in a database �le, a
oating point number, etc. Itis still possible to calculate bounds on performance of computer systemsor to use the above described methods as good approximations. The datadistribution calculated from solutions of equations e.g. (6.1), (6.3), (6.4),(6.16) can be rounded up to the nearest unit of granularity. This results in a

150 CHAPTER 6. DIVISIBLE TASKSschedule longer than calculated. Yet, the increase of the schedule length canbe bounded from above. For the case of not returning results this bound isequal to �(A + kC), where � is the maximal increase of the load for a PE(equal to the granularity unit), A - is the processing rate of the target PE, C- is the communication rate (homogeneous communication links assumed),k - is the biggest number of times the data chunks including the load forthe target PE are transferred from one PE to another PE. k is a constantdepending on the scattering method and the communication network. Thus,the deviation from the expectation is bounded from above. When returningthe results is considered, parameter k should include also the biggest numberof data transfer operations during returning the results.The analysis performed here usually included two steps: devising a scat-tering algorithm and solving a set of linear equations. The scattering algori-thm included and hid the underlying hardware/software details (i.e. archi-tecture). The sets of linear equations include two types of equations: �rstly,equations linking processing time and communication time of the senderand the receiver PEs or of the consecutively activated PEs, and secondly, anequation expressing that all the load must be processed. Although this me-thod has been applied to analyze quite wide range of computer architecturesstill many questions remain open. One of them is the complexity of problemQ; star j div; n = 1 j Cmax or Q; bus j div; n = 1 j Cmax when startup timesare non-zero. Similar question can be raised for tree networks of processors.In this publication and in the previous works on divisible task theoryit was assumed that the computation time depends linearly on the volumeof processed data. But, for example, distributed sorting has nonlinear de-pendence of the processing time on the size of processed data. This can beincluded in our equations (e.g. (6.1), (6.4), (6.16), etc.) as a nonlinear pro-cessing time function depending on the amount of processed data. In sucha case, however, the sets of equations would be by far harder to solve. Thisproblem can be even more di�cult than solving a set of nonlinear equations.Consider, for example, distributed multiplication of two matrices. To pro-duce one entry in the resulting matrix a column from one input matrix anda row from another must be known. A possible approach here is to send acolumn and a row to a PE each time a �nal entry is calculated. Then, thedivisible task concept can be used as presented in the earlier sections. Yet,it is not di�cult to observe that this method is not optimal because manycolumns and rows would be sent several times. The minimum number ofcommunications is achieved when the PEs compute square submatrix of theproduct matrix. It is because square is a rectangle with minimal length of

6.4. DISCUSSION AND CONCLUSIONS 151edges for the given area. Hence, to �nd an optimal distribution of the loadit may be necessary to �nd partitioning of the product matrix into squares,possibly of di�erent sizes. Note that this is a cutting problem - one of thehardest computational problems.In the scattering algorithms presented in this chapter PEs received datafrom one link only. An interesting direction of further research can be con-sidering the case when PEs receive data via several non-identical paths. Asfar as scattering algorithms are considered, perplexing problem is the qu-estion of their optimality. To our knowledge there are no general methods ofproving time optimality of the scattering algorithms. To demonstrate supe-riority of the scattering algorithm direct comparison is applied. Hence, thedescription of the methods proposed here ended in performance evaluation.Another interesting issue for further research is including in the model alimited sizes of bu�ers on the communication paths and at the destinationPEs, applying divisible task concept in dynamic distributed load balancing,or considering multiple applications (instead of one) issued by multiple ori-ginators.Observe that divisible task approach can be also applied to analyze theproduction-transportation systems. In such a system the transportation sys-tem is an equivalent of the computer interconnection network, while produc-tion facilities are equivalent to processors.Finally, let us note that divisible task and multiprocessor task conceptscan be used together at di�erent levels of scheduling. For example, multipro-cessor task scheduling can be applied to assign processors or partitions toapplications, while divisible task scheduling can be applied to �nd the bestcomputation distribution for the application.

152 CHAPTER 6. DIVISIBLE TASKSTable 6.3: Scheduling divisible tasksProblem Result, remarks ReferenceQ;chain;s&f;no�overlap jdiv;n=1jCmax O(m) [15, 60, 100][154, 176]Q;chain; s&f jdiv;n=1jCmax O(m) [15, 60][100, 154]Q;tree;s&f;no�overlap jdiv;n=1jCmax O(m) [12, 15, 61]Q;tree; s&f jdiv;n=1jCmax O(m) [12, 15, 61]Q;bus; no�overlap jdiv;n=1jCmax O(m) [14]Q;bus jdiv;n=1jCmax O(m) [12, 13]Q;star;s&f;no�overlap jdiv;n=1jCmax O(m) [16, 100]Q;star; s&f j div;n=1jCmax O(m) [16, 100]R;bus; no�overlap jdiv jCmax O(m),FIFO [189]R;bus jdiv jCmax O(m),FIFO [189]P;hypercube; s&f j div;n=1jCmax O(logm) [33, 34]Q;chain; s&f j div;n=1 jCmax O(m logm); S 6=0 [33]Q;conn; s&f j div;n=1 jCmax NPh,S 6=0 [33]Q;bus jdiv;n=1jCmax NPh,S 6=0 [33]Q;star; s&f j div;n=1jCmax polynomial cases,S 6=0 [33]Q;hypercube; s&f j div;n=1jCmax O(logmloglogm); S 6=0 [33]P;2D�mesh; s&f j div;n=1jCmax performance bounds [35]P;2D�mesh; csw jdiv;n=1jCmax O(logmloglogm) [36]Q;star; s&f jdiv;n=1jCmax pipelining [17]Q;chain; 1�port; s&f jdiv;n=1jCmax O(m) [18]Q;bus;jdiv;n=1jX two criteria [191]P;chain; csw jdiv;n=1jCmax performance bounds Sec. 6.3.1Q;star j div; n=1 jCmax MILP Sec. 6.3.2Q;star; win1 j div; n=1 jCmax polynomial,LP Sec. 6.3.2P;hypercube; csw jdiv;n=1jCmax O(logmloglogm);S 6=0 Sec. 6.3.3P;3D�mesh; csw jdiv;n=1jCmax O(logmloglogm);S 6=0 Sec. 6.3.4P;multistage; csw jdiv;n=1jCmax O(logmloglogm);S 6=0 Sec. 6.3.51) Processors become continuously available after certain moments of time.

Chapter 7ConclusionsIn this work we considered selected methods of scheduling in multiprocessorcomputer systems. With the advent of modern computer systems it turnedout that classical scheduling methods in many cases are not satisfactory (cf.Sections 4.6, 5.1). Therefore, two new scheduling models were analyzed here:multiprocessor tasks and divisible tasks.Multiprocessor tasks require several processors simultaneously, thus allowfor expressing task parallelism at high level of abstraction. This results informulation of more tractable scheduling problems which in classical form arecomputationally hard. Divisible task model assumes that work is in�nitelydivisible and parallelizable. This model allows for �nding simple solutionsof problems which in other setting are again intractable. Moreover, divisibletask concept permits introducing computer architecture context which in theclassical approach is often highly generalized to make problems manageable.In this way scheduling problems have been combined with communicationoptimization problems. Thus, a method has been proposed which links thesetwo research areas.The results of this work are collected, together with the previous publi-cations on the subject, in tables: 5.1,5.2,6.3. To sum up the results of thispublication, the most important in our opinion are:� Formulation of algorithms for scheduling preemptive multiprocessortasks with linear speedup on parallel processors.� Formulation of low-order complexity algorithms for scheduling preemp-tive multiprocessor tasks on dedicated processors with Lmax criterion.� Formulation of polynomial-time algorithms for scheduling preemptive153

154 CHAPTER 7. CONCLUSIONSmultiprocessor tasks on dedicated processors in time windows.� Formulation of divisible job scheduling algorithms for a variety of com-puter architectures (including 3-dimensional meshes, hypercubes, mul-tistage interconnections)This work has not exhausted the resource of scheduling problems in mul-tiprocessor systems. Further research can include for example:� Scheduling multiprocessor tasks on parallel processors available in timewindows.� Scheduling multiprocessor tasks with linear speedup for mean comple-tion time criterion.� Scheduling divisible tasks on other architectures.� Scheduling multiple divisible tasks in a system with many originators.� Further practical verifying divisible task concept for other applicationsand other architectures.

Streszczenie w j¦zykupolskimNowoczesne systemy komputerowe s¡ systemami wieloprocesorowymi. Ichefektywno±¢ zale»y od metod zarz¡dzania wykonywanymi pracami. Szybkiewykonanie równolegªych aplikacji jest mo»liwe jedynie wtedy, gdy poszcze-gólne jej elementy s¡ odpowiednio uporz¡dkowane w czasie i przestrzeni.St¡d wynika znaczenie poprawnego szeregowania zada« w wieloprocesoro-wych systemach komputerowych.W niniejszej rozprawie rozwa»ne s¡ zagadnienia deterministycznego sze-regowania zada«. Klasyczna teoria szeregowania zada« zakªada, »e zadaniew jednej chwili czasu wymaga dokªadnie jednego procesora. W ostatnich la-tach zaªo»enie to jest podwa»ane, zwªaszcza w kontek±cie aplikacji dla rów-nolegªych i rozproszonych systemów komputerowych. Praca po±wi¦cona jestzagadnieniom szeregowania tego typu aplikacji zwanych dalej zadaniami wie-loprocesorowymi. Przedstawiono analiz¦ zªo»ono±ci obliczeniowej otwartychproblemów szeregowania zada« wieloprocesorowych. Zaprezentowano algo-rytmy szeregowania zada« podzielnych zachowuj¡cych liniowe przyspieszeniena procesorach równolegªych. Analizie poddano problemy podzielnego sze-regowania zada« wieloprocesorowych na procesorach dedykowanych z kryte-rium maksymalnego opó¹nienia.Wiele aplikacji równolegªych ma tak regularn¡ struktur¦, »e mo»liwy jestpodziaª oblicze« na cz¦±ci o dowolnych rozmiarach i wykonywanie ich na nie-zale»nych procesorach. Tego typu aplikacje nazwiemy zadaniami jednorod-nymi. Dla zada« jednorodnych zaprezentowano metod¦ znajdowania opty-malnego rozdziaªu oblicze« w rozproszonym systemie wieloprocesorowym.Koncepcja zada« jednorodnych umo»liwia prost¡ analiz¦ obszernej klasy sys-temów komputerowych (m.in. architektur takich jak 3-wymiarowa krata,hiperkostka, magistrala itd.), uwzgl¦dniaj¡c¡ wiele szczegóªowych aspek-155

156 CHAPTER 7. CONCLUSIONStów oblicze« równolegªych. Metoda ta pozwala tak»e na ocen¦ efektywno±ciwieloprocesorowych systemów komputerowych; przedstawiono przykªady ta-kiej oceny. Koncepcja zadania jednorodnego umo»liwia uwzgl¦dnienie wieluaspektów komunikacyjnych, stanowi tym samym pomost pomi¦dzy teori¡szeregowania zada« a teori¡ optymalizacji komunikacji w sieciach kompute-rowych.Praca zawiera wyniki przedstawione na tle aktualnego stanu bada« wrozpatrywanej dziedzinie. Uzyskane rezultaty, przedstawione w ujednoliconejformie, wskazuj¡ dalsze kierunki badawcze.

Bibliography[1] T. Agerwala, J.L. Martin, J.H. Mirza, D.C. Sadler, D.M. Dias, andM. Snir. SP2 system architecture. IBM Systems Journal, 34(2), 1994.http://www-i.almaden.ibm.com/journals/sj/agerw/agerw.html.[2] M. Ahuja and Y. Zhu. An O(n logn) feasibility algorithm for preemptivescheduling of n independent jobs on a hypercube. Information ProcessingLetters, 35:7{11, June 1990.[3] W. Alda, W. Dzwinel, J. Kitowski, J. Mo�sci�nski, and D.A.Yuen. Penetrationmechanics via molecular dynamics. Research Report UMSI 93/58, Universityof Minessota Supercomputing Institute, April 1993.[4] D. Alpert and D. Avnon. Architecture of the Pentium microprocessor. IEEEMicro, 13(3):11{21, June 1993.[5] G.M. Amdahl. Validity of the single processor approach to achieving largescale computing capabilities. In AFIPS Conference Proceedings (Atlantic CityApr.18-20, 1967), volume 30, pages 483{485. AFIPS, April 1967.[6] T. Armitage and J.G. Peters. Circuit-switched broadcasting in 3-dimensionaltoroidal meshes. manuscript, 1995.[7] M.J. Atallah, C.L. Black, D.C. Marinescu, H.J. Siegel, and T.L. Casavant.Models and algorithms for coscheduling compute-intensive tasks on a networkof workstations. Journal of Parallel and Distributed Computing, 16:319{327,1992.[8] A. Avizienis, G.C. Gilley, F.P. Mathur, D.A. Rennels, J.A. Rohr, and D.K.Rubin. The star (self-testing and repairing) computer: An investigation of thetheory and practice of fault-tolerant computer design. IEEE Transactions onComputers, 20(11):1312{1321, 1971.[9] R.G. Babb II, editor. Programming parallel processors. Addison - Wesley,1988.[10] K.R. Baker. Introduction to sequencing and scheduling. John Wiley & Sons,1974. 157

158 BIBLIOGRAPHY[11] E. Bampis, J.C. Konig, and D. Trystram. Optimal parallel execution of com-plete binary trees and grids into most popular interconnection networks. Rap-port APACHE 5, Institut IMAG, December 1993.[12] S. Bataineh, T.-Y. Hsiung, and T.G. Robertazzi. Closed form solutions forbus and tree networks of processors load sharing a divisible job. IEEE Trans-actions on Computers, 43(10):1184{1196, October 1994.[13] S. Bataineh and T.G. Robertazzi. Bus-oriented load sharing for a network ofsensor driven processors. IEEE Transactions on Systems, Man, and Cyberne-tics, 21(5):1202{1205, September 1991.[14] S. Bataineh and T.G. Robertazzi. Distributed computation for a bus networkwith communication delays. In Proceedings of the 25-th Conference on In-formation Sciences and Systems, The John Hopkins University, Baltimore,pages 709{714, March 1991.[15] S. Bataineh and T.G. Robertazzi. Ultimate performance limits for networksof load sharing processors. CEAS Technical Report 623, State University ofNew York at Stony Brook, April 1992.[16] V. Bharadwaj, D. Ghose, and V. Mani. Optimal sequencing and arrangementin distributed single-level tree networks with communication delays. IEEETransactions on Parallel and Distributed Systems, 5(9):968{976, September1994.[17] V. Bharadwaj, D. Ghose, and V. Mani. Multi-installment load distribution intree networks with delays. IEEE Transactions on Aerospace and ElectronicSystems, 31(2):555{567, April 1995.[18] V. Bharadwaj, D. Ghose, and V.Mani. An e�cient load distribution strategyfor a distributed linear network of processors with communication delays.Computers Math. Applic., 29(9):95{112, 1995.[19] L. Bianco, J. B la_zewicz, P. Dell'Olmo, and M. Drozdowski. Preemptive sche-duling of multiprocessor tasks on the dedicated processors system subject tominimal lateness. Information Processing Letters, 46:109{113, 1993.[20] L. Bianco, J. B la_zewicz, P. Dell'Olmo, and M. Drozdowski. Preemptive multi-processor task scheduling with release times and time windows. Technical Re-port RA-94/013, Institute of Computing Science, Pozna�n University of Tech-nology, 1994.[21] L. Bianco, J. B la_zewicz, P. Dell'Olmo, and M. Drozdowski. Scheduling pre-emptive multiprocessor tasks on dedicated processors. Performance Evalu-ation, 20:361{371, 1994.[22] L. Bianco, J. B la_zewicz, P. Dell'Olmo, and M. Drozdowski. SchedulingUET multiprocessor tasks. Foundations of Computing and Decision Scien-ces, 19(4):273{283, 1994.

BIBLIOGRAPHY 159[23] L. Bianco, J. B la_zewicz, P. Dell'Olmo, and M. Drozdowski. Scheduling mul-tiprocessor tasks on a dynamic con�guration of dedicated processors. Annalsof Operations Research, 58:493{517, 1995.[24] L. Bianco, J. B la_zewicz, P. Dell'Olmo, and M. Drozdowski. Linear algorithmsfor preemptive scheduling of multiprocessor tasks subject to minimal lateness.Discrete Applied Mathematics, 72(1-2):25-46, January 1997.[25] L. Bianco, P. Dell'Olmo, and M.G. Speranza. Nonpreemptive scheduling ofindependent tasks with prespeci�ed processor allocations. Naval Research Lo-gistics Quarterly, 41:959{971, 1994.[26] L. Bianco, P. Dell'Olmo, and M.G. Speranza. Scheduling independent taskswith multiple modes. Discrete Applied Mathematics, 62:35{50, 1995.[27] J.-Y. Blanc and D. Trystram. Implementation of parallel numerical routi-nes using broadcast communication schemes. In E. Burkhart, editor, Lec-ture Notes in Computer Science 457, CONPAR 90-VAPP IV, Joint Inter-national Conference on Vector and Parallel Processing, Proceedings, Zurich,Switzerland, September 10-13, 1990, pages 467{478, Berlin, September 1990.Springer-Verlag.[28] J. B la_zewicz. Z lo_zono�s�c obliczeniowa problem�ow kombinatorycznych. WNT,Warszawa, 1988.[29] J. B la_zewicz, P.Bouvry, F.Guinand, and D.Trystram. Scheduling completein-trees on two uniform processors with communication delays. InformationProcessing Letters, 58:255{263, 1996.[30] J. B la_zewicz, W. Cellary, R. S lowi�nski, and J. W�eglarz. Badania operacyjnedla informatyk�ow. WNT, Warszawa, 1983.[31] J. B la_zewicz, P. Dell'Olmo, M. Drozdowski, and M.G. Speranza. Schedulingmultiprocessor tasks on three dedicated processors. Information ProcessingLetters, 41:275{280, April 1992. Corrigendum: IPL 49, 1994, 269-270.[32] J. B la_zewicz, M. Drabowski, and J. W�eglarz. Scheduling multiproces-sor tasks to minimize schedule length. IEEE Transactions on Computers,35(5):389{393, May 1986.[33] J. B la_zewicz and M. Drozdowski. Scheduling divisible jobs with communica-tion startup costs. Discrete Applied Mathematics, 1997, to appear.[34] J. B la_zewicz and M. Drozdowski. Scheduling divisible jobs on hypercubes.Parallel Computing, 21:1945{1956, 1995.[35] J. B la_zewicz and M. Drozdowski. Performance limits of two-dimensional net-work of load-sharing processors. Foundations of Computing and DecisionSciences, 21(1):3{15, 1996.

160 BIBLIOGRAPHY[36] J. B la_zewicz, M. Drozdowski, F. Guinand, and D. Trystram. Scheduling underarchitectural constraints. Technical Report RA-003/95, Institute of Compu-ting Science, Pozna�n University of Technology, 1995.[37] J. B la_zewicz, M. Drozdowski, G. Schmidt, and D.de Werra. Scheduling in-dependent two processor tasks on a uniform duo-processor system. DiscreteApplied Mathematics, 28:11{20, 1990.[38] J. B la_zewicz, M. Drozdowski, G. Schmidt, and D.de Werra. Scheduling in-dependent multiprocessor tasks on a uniform k-processor system. TechnicalReport R92/030, Institute of Computing Science, Pozna�n University of Tech-nology, 1992.[39] J. B la_zewicz, M. Drozdowski, G. Schmidt, and D.de Werra. Scheduling in-dependent multiprocessor tasks on a uniform k-processor system. ParallelComputing, 20:15{28, 1994.[40] J. B la_zewicz, M. Drozdowski, D.de Werra, and J. W�eglarz. Scheduling inde-pendent multiprocessor tasks before deadlines. Discrete Applied Mathematics,65(1-3):81{96, March 1996.[41] J. B la_zewicz and K. Ecker. Scheduling multiprocessor tasks under unit reso-urce constraints. In Proceedings of International Conference on OptimizationTechniques and Applications, Singapore, pages 161{169, April 1987.[42] J. B la_zewicz and K. Ecker. Scheduling in computer and manufacturing sys-tems. Technical Report 114, Dagstuhl Seminar Report, 1995.[43] J. B la_zewicz, K. Ecker, E. Pesch, G. Schmidt, and J. W�eglarz. SchedulingComputer and Manufacturing Processes. Springer Verlag, Heidelberg, NewYork, 1996.[44] J. B la_zewicz, J.K. Lenstra, and A.H.G. Rinnoy Kan. Scheduling subject toresource constraints: classi�cation and complexity. Discrete Applied Mathe-matics, 5:11{24, 1983.[45] J. B la_zewicz and Z. Liu. Scheduling multiprocessor tasks with chain constra-ints. European Journal of Operational Research, 94:231{241, 1996.[46] J. B la_zewicz, J. W�eglarz, and M. Drabowski. Scheduling independent2-processor tasks to minimize schedule length. Information Processing Let-ters, 18:267{273, 1984.[47] T. B�onniger, R. Esser, and D. Krekel. CM-5, KSR2, Paragon XP/S: A com-parative description of massively parallel computers. Parallel Computing,21:199{232, 1995.[48] G.Bozoki and J.-P. Richard. A branch-and-bound algorithm for the continu-ous-process job-shop scheduling problem. AIIE Transactions, 2(3):246{252,September 1970.

BIBLIOGRAPHY 161[49] P. Brucker and A.Kr�amer. Polynomial algorithms for resource constrainedand multiprocessor task scheduling problems with a �xed number of tasktypes. Osnabr�ucker Schriften zur Mathematik, Reihe P Preprints Heft 165,Fachbereich Mathematik/Informatik, Universit�at Osnabr�uck, May 1994.[50] P. Brucker and A.Kr�amer. Shop scheduling problems with multiprocessor ta-sks and dedicated processors. Annals of Operations Research: Mathematics ofIndustrial Systems I, 57:13{27, 1995.[51] X. Cai, C.-Y. Lee, and C.-L. Li. Minimizing total
ow time in multiprocessortasks systems with prespeci�ed allocations, private communication, March1996.[52] Ch. Calvin. Optimisation du surcoût des communications dans la pa-rall�elisation des algorithmes num�eriques. PhD thesis, INPG Grenoble France,1995.[53] W.J. Camp, S.J. Plimpton, B.A. Hendrickson, and R.W. Leland. Massivelyparallel methods for engineering and science problems. Communications ofthe ACM, 37(4):31{40, April 1994.[54] N.J. Carriero, D. Gelertner, T.G. Mattson, and A.H. Sherman. The Linda al-ternative to message-passing systems. Parallel Computing, 20:633{655, 1994.[55] T.L. Casavant. Architectures for massively parallel computers. In ISIP-CALA'93 Drafts of Papers, pages 1{49, 1993.[56] T.L. Casavant and J.G. Kuhl. A taxonomy of scheduling in general-purposedistributed computing systems. IEEE Transactions on Software Engineering,14(2):141{154, February 1988.[57] V. Chaudhary and J.K. Aggarwal. A generalized scheme for mapping pa-rallel algorithms. IEEE Transactions on Parallel and Distributed Systems,4(3):328{346, 1993.[58] G.-I. Chen and T.-H. Lai. Preemptive scheduling of independent jobs on ahypercube. Information Processing Letters, 28:201{206, July 1988.[59] G.-I. Chen and T.-H. Lai. Scheduling independent jobs on partitionable hy-percubes. Journal of Parallel and Distributed Computing, 12:74{78, 1991.[60] Y.-C. Cheng and T.G. Robertazzi. Distributed computation with commu-nication delay. IEEE Transactions on Aerospace and Electronic Systems,24(6):700{712, November 1988.[61] Y.-C. Cheng and T.G. Robertazzi. Distributed computation for a tree networkwith communication delays. IEEE Transactions on Aerospace and ElectronicSystems, 26(3):511{516, May 1990.

162 BIBLIOGRAPHY[62] M.-S. Chern, G.H. Chen, and P. Liu. An LC branch-and-bound algorithm forthe module assignment problem. Information Processing Letters, 32:61{71,1989.[63] A.N. Choundhary, B. Narahari, D.M. Nicol, and R. Simha. Optimal proces-sor assignment for a class of pipelined computations. IEEE Transactions onParallel and Distributed Systems, 5(4):439{445, April 1994.[64] P. Chr�etienne. A polynomial algorithm to optimally schedule tasks on a vir-tual distributed system under tree-like precedence constraints. European Jo-urnal of Operational Research, 43:225{230, 1989.[65] P. Chr�etienne. Task scheduling with interprocessor communication delays.European Journal of Operational Research, 57:348{354, 1992.[66] P. Chr�etienne. Tree scheduling with communication delays. Discrete AppliedMathematics, 49:129{141, 1994.[67] P. Chr�etienne and C. Picoleau. Scheduling with communication delays: Asurvey. In P. Chretienne, E.G. Co�man Jr., J.K. Lenstra, and Z. Liu, editors,Scheduling Theory and its Applications. J. Wiley, 1995.[68] E.G. Co�man Jr. (editor). Computer and Job-Shop Scheduling Theory. Wiley& Sons, New York, 1976.[69] E.G. Co�man Jr. and P.J. Denning. Operating Systems Theory. Prentice-Hall,Englewood Cli�s, 1973.[70] E.G. Co�man Jr., M.R. Garey, D.S. Johnson, and A.S. LaPaugh. Scheduling�le transfers. SIAM Journal on Computing, 3(14):744{780, August 1985.[71] E.G. Co�man Jr. and R.J. Graham. Optimal scheduling for two-processorsystems. Acta Informatica, 1(3):200{213, 1972.[72] J.Y. Colin and P. Chretienne. C.p.m scheduling with small communicationdelays and task duplication. Operation Research, 39(4):680{684, July 1991.[73] D.H. Cornett and M.A. Franklin. Scheduling independent tasks with commu-nications. In Proceedings of 17th Allerton Confernce, pages 624{633, 1979.[74] G.L. Craig, C.R. Kime, and K.K. Saluja. Test scheduling and control for vlsibuilt-in self-test. IEEE Transactions on Computers, 37(9):1099{1109, Sep-tember 1988.[75] Cray Research Inc. Cray T3D, Technical summary, 1993.[76] A.L. Decegama. The Technology of Parallel Processing. Parallel ProcessingArchitectures and VLSI Hardware Volume I. Prentice-Hall Inc., EnglewoodCli�s, 1989.

BIBLIOGRAPHY 163[77] P. Dell'Olmo and M.G. Speranza. Graph models for multiprocessor schedulingwith precedence constraints. Foundations of Computing and Decision Scien-ces, 21(1):17{30, 1996.[78] P. Dell'Olmo, M.G. Speranza, and Z. Tuza. Easy and hard cases of a schedu-ling problem on three dedicated processors, private communication, 1993.[79] G. Dobson and U.S. Karmarkar. Simultaneous resource scheduling to mini-mize weighted
ow times. Operations Research, 37(4):592{600, July 1989.[80] F. Douglis and J. Ousterhout. Transparent process migration: Design alter-natives and the sprite implementation. Software - Practice and Experience,21(8):757{785, August 1991.[81] M. Drabowski. Szeregowanie zada�n w systemach wielomikroprocesorowych.PhD thesis, Pozna�n University of Technology, 1985.[82] M.A. Driscoll and W.R. Daasch. Accurate predictions of parallel program exe-cution time. Journal of Parallel and Distributed Computing, 25:16{30, 1995.[83] M. Drozdowski. Problemy i algorytmy szeregowania zada�n wieloprocesoro-wych. PhD thesis, Pozna�n University of Technology, 1992.[84] M. Drozdowski. Scheduling multiprocessor tasks on hypercubes. Bulletin ofthe Polish Academy of Sciences, Technical Sciences, 42(3):437{445, 1994.[85] M. Drozdowski. On complexity of multiprocessor tasks scheduling. Bulletinof the Polish Academy of Sciences, Technical Sciences, 43(3):381{392, 1995.[86] M. Drozdowski. Real-time scheduling of linear speedup parallel tasks. Infor-mation Processing Letters, 57:35{40, 1996.[87] M. Drozdowski. Scheduling multiprocessor tasks - an overview. European Jo-urnal of Operational Research, 94:215{230, 1996.[88] M. Drozdowski and Z. Kluczy�nski. Algorytmy szeregowania zada�n jednorod-nych w systemach rozproszonych. Technical Report RB-96/001, Institute ofComputing Science, Pozna�n University of Technology, 1996.[89] M. Drozdowski and W. Kubiak. Scheduling parallel tasks with sequential he-ads and tails. Technical report, Faculty of Business Administration, MemorialUniversity of Newfoundland, 1995.[90] J. Du and J.Y-T. Leung. Complexity of scheduling parallel task systems.SIAM Journal on Discrete Mathematics, 2(4):472{478, November 1989.[91] K. Efe and V. Krishnamoorthy. Optimal scheduling of compute - intensivetasks on a network of workstations. IEEE Transactions on Parallel and Di-stributed Systems, 6(6):668{673, 1995.[92] J.A. Ellis. Embedding rectangular grids into square grids. IEEE Transactionson Computers, 40(1):46{52, 1991.

164 BIBLIOGRAPHY[93] D.G. Feitelson and L. Rudolph. Gang scheduling performance bene�ts for�ne-grain synchronization. Journal of Parallel and Distributed Computing,16:306{318, 1992.[94] L. Finta and Z. Liu. Scheduling of parallel programs in single-bus multipro-cessor systems. Technical Report 2302, INRIA, Centre Sophia Antipolis, May1994.[95] M.J. Fisher and A.R. Mayer. Boolean matrix multiplication and transitiveclosure. In Twelfth Ann. Symposium on Switching Automata Theory, EastLansing, Mich., pages 129{131, 1971.[96] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE,54:1901{1909, 1966.[97] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to theTheory of NP-Completeness. Freeman, San Francisco, 1979.[98] E.F. Gehringer, D.P. Siewiorek, and Z. Segall. Parallel Processing: The Cm�Experience. Digital Press, Bedford, 1987.[99] D. Ghosal, G. Serazzi, and S. Tripathi. The processor working set and itsuse in scheduling multiprocessor systems. IEEE Transactions on SoftwareEngineering, 17(5):443{453, May 1991.[100] D. Ghose and V. Mani. Distributed computation with communication delays:Asymptotic performance analysis. Journal of Parallel and Distributed Com-puting, 23:293{305, 1994.[101] W.K. Giloi. Parallel supercomputer architectures and their programming mo-dels. Parallel Computing, 20:1443{1470, 1994.[102] M.X. Goemans. An approximation algorithm for scheduling on three dedica-ted processors. Discrete Applied Mathematics, 61:49{59, 1995.[103] T. Gonzalez and S. Sahni. Preemptive scheduling of uniform processor sys-tems. Journal of the ACM, 25:92{101, 1978.[104] A. Goscinski. Distributed Operating Systems. Addison-Wesley Publishing Co.,Sydney, 1991.[105] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnoy Kan. Optimiza-tion and approximation in deterministic sequencing and scheduling: A survey.Annals of Discrete Mathematics, 5:287{326, 1979.[106] A.Y. Grama, V. Kumar, and V.N. Rao. Experimental evaluation of load ba-lancing techniques for hypercube. In D.J. Evans, G.R. Joubert, and H. Liddell,editors, Parallel Computing '91, pages 497{514. Elsevier Science PublishersB.V., 1992.

BIBLIOGRAPHY 165[107] A.S. Grimshaw, J.B. Weissman, E.A. West, and E.C. Loyot Jr., Metasys-tems: An approach combining parallel processing and heterogeneous distri-buted computing systems. Journal of Parallel and Distributed Computing,21:257{270, 1994.[108] F. Guinand. Ordonnancement avec communications pour architectures multi-processeurs dans divers model�es d'ex�ecution. PhD thesis, LMC-IMAG, Insti-tut National Polytechnique de Grenoble, June 1995.[109] F. Guinand and D. Trystram. Optimal scheduling of UECT trees on twoprocessors. Apache 3, Institut IMAG, November 1993.[110] A.K. Gupta and S.E. Hambrusch. Embedding complete binary trees into but-ter
y networks. IEEE Transactions on Computers, 40(7):853{863, July 1991.[111] J.R. Gurd, C.C. Kirkham, and I. Watson. The manchester prototype data
owcomputer. Communications of the ACM, 28(1):34{52, 1985.[112] J.L. Gustafson. Reevaluating Amdahl's law. Communications of the ACM,31(5):532{533, May 1988.[113] S. L. Hakimi and A. T. Amin. Characterization of connection assignment ofdiagnosable systems. IEEE Transactions on Computers, 23(1):86{89, 1974.[114] W.A. Halang and K.M. Sacha. Real-Time Systems, Implementation of Indu-strial Computerised Process Automation. World Scienti�c Publishing, London,1992.[115] T.R. Halfhill. Intel's P6. Byte, 20(4):42{58, 1995.[116] S.M. Hedetniemi, S.T. Hedetniemi, and A.L. Liestman. A survey of gossipingand broadcasting in communication networks. Networks, 18:319{349, 1988.[117] R.W. Hockney. Performance parameters and benchmarking of supercompu-ters. In J.J. Dongarra and W. Gentzsch, editors, Computer Benchmarks, pages41{63. Elsevier Science Bv., 1993.[118] R.W. Hockney. The communication challenge for mpp: Intel Paragon andMeiko CS-2. Parallel Computing, 20:389{398, 1994.[119] C.P.M. van Hoesel. Preemptive scheduling on a hypercube. Technical Re-port 8963/A, Erasmus University, P.O.Box 1738-3000 Rotterdam, The Ne-therlands, March 1989.[120] J.A. Hoogeveen, S.L. van de Velde, and B. Veltman. Complexity of schedulingmultiprocessor tasks with prespeci�ed processor allocations. Discrete AppliedMathematics, 55:259{272, 1994.[121] A.L. Hopkins, J.M. Lala, and T.B. Smith. FTMP - a highly reliablefault-tolerant multiprocessor for aircraft. Proceedings of the IEEE, 66(10),1978.

166 BIBLIOGRAPHY[122] G. Horton. A multi-level di�usion method for dynamic load balancing. ParallelComputing, 19:209{218, 1993.[123] G.D. Hutchenson and J.D. Hutchenson. Technologia i koszty w przemy�slep�o lprzewodnikowym. �Swiat Nauki, (3):32{38, March 1996. (Polish edition ofScienti�c American, January 1996).[124] J.-J. Hwang, Y.-C. Chow, F.D. Anger, and C.-Y. Lee. Scheduling precedencegraphs in systems with interprocessor communication times. SIAM Journalon Computing, 18(2):244{257, 1989.[125] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Progra-mability. McGraw-Hill, New York, 1993.[126] R. Jain, K. Somalwar, J. Werth, and J. C. Browne. Scheduling parallel i/ooperations in multiple bus systems. Journall of Parallel and Distributed Com-puting, 16:352{362, 1992.[127] A. Jakoby and R. Reischuk. The complexity of scheduling problems withcommunication delays for trees. In O. Nurmi and E. Ukkonen, editors, LectureNotes in Computer Science 621. Algorithm Theory, SWAT92, pages 165{177.Springer Verlag, 1992.[128] J.Liu, V.A.Saletore, and T.G.Lewis. Safe Self-Scheduling: A parallel loop sche-duling scheme for shared-memory multiprocessors. International Journal ofParallel Programming, 22(6):589{616, 1994.[129] Y.M. Kim and T.-H. Lai. The complexity of congestion-1 embedding in ahypercube. Journal of Algorithms, 12:246{280, 1991.[130] H. Krawczyk and M. Kubale. An approximation algorithm for diagnostictast scheduling in multicomputer systems. IEEE Transactions on Computers,34(9):869{872, September 1985.[131] R. Krishnamurti and E. Ma. An approximation algorithm for scheduling ta-sks on varying partition sizes in partitionable, multiprocessor systems. IEEETransactions on Computers, 41(12):1572{1579, December 1992.[132] R. Krishnamurti and B. Narahari. An approximation algorithm for preemptivescheduling on parallel-task systems. SIAM Journal on Discrete Mathematics,8(4):661{669, 1995.[133] P. Kruger, T.-H. Lai, and V.A. Dixit-Radiya. Job scheduling is more impor-tant than processor allocation for hypercube computers. IEEE Transactionon Parallel and Distributed Sysytems, 5(5):488{497, May 1994.[134] M. Kubale. The complexity of scheduling independent two-processor tasks ondedicated processors. Information Processing Letters, 24:141{147, February1987.

BIBLIOGRAPHY 167[135] M. Kubale. Podzielne uszeregowania zada�n dwuprocesorowych na proceso-rach dedykowanych. Zeszyty Naukowe Politechniki �Sl�askiej, Seria:Automatykaz.100, Nr kol. 1082, pages 145{153, April 1990.[136] M. Kubale. Podzielne uszeregowania zada�n dwuprocesorowych na proceso-rach dedykowanych. Zeszyty Naukowe Politechniki �Sl�askiej, Seria:Automatykaz.110, Nr kol. 1176, pages 69{76, 1992.[137] M. Kubale. Introduction to Computational Complexity. Wydawnictwo Poli-techniki Gda�nskiej, Gda�nsk, 1994.[138] M. Kubale. Preemptive versus nonpreemptive scheduling of biprocessor ta-sks on dedicated processors. European Journal of Operational Research,94:242{251, 1996.[139] D. J. Kuck. A survey of parallel machine organization and programming.ACM Computer Surveys, 9(1):29{59, 1977.[140] M. Kumar. Measuring parallelism in computation-intensive scienti�c/engi-neering applications. IEEE Transactions on Computers, 9(37):1088{1098,September 1988.[141] V. Kumar and A. Gupta. Analysis of scalability of parallel algorithms andarchitectures: A survey. In Proceedings of 1991 International Conference onSupercomputing 1991, pages 396{405, New-York, 1991. ACM Press.[142] T. Kunz. The in
uence of di�erent workload descriptions on a heuri-stic load balancing scheme. IEEE Transactions on Software Engineering,17(7):725{730, July 1991.[143] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnoy Kan, and D.B. Shmoys. Sequen-cing and scheduling: Algorithms and complexity. In Handbook in OperationResearch and Management Science. North-Holland, Amsterdam, 1993.[144] C.-Y. Lee and X. Cai. Scheduling multiprocessor tasks without prespeci�edallocations, private communication, January 1996.[145] T. Leighton. Methods for message routing in parallel machines. TheoreticalComputer Science, 128:31{62, 1994.[146] C.E. Leiserson. Fat-trees: Universal networks for hardware-e�cient supercom-puting. IEEE Transactions on Computers, 34(10):892{901, 1985.[147] J.K. Lenstra, M. Veldhorst, and B. Veltman. The complexity of schedulingtrees with communication delays. Journal of Algorithms, 20:157{173, 1996.[148] J.-F. Lin and S.-J. Chen. Scheduling algorithm for nonpreemptive multipro-cessor tasks. Computers Math. Applic., 28(4):85{92, 1994.[149] E.L. Lloyd. Concurrent task systems. Operations Research, 29(1):189{201,1981.

168 BIBLIOGRAPHY[150] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Interior point methods for linearprogramming: Computational state of the art. ORSA Journal on Computing,6(1):1{14, 1994.[151] R. L�uling and B. Monien. Load balancing for distributed branch & bound.In Proceedings of 6th International Parallel Processing Symposium, pages543{548, 1992.[152] P.-Y. R. Ma, E.Y.S. Lee, and M. Tsuchiya. A task allocation model for distri-buted computing systems. IEEE Trans. on Computers, 31(1):41{47, 1982.[153] V.F. Magirou and J.Z. Millis. An algorithm for the multiprocessor assignmentproblem. Operations Research Letters, 8:351{356, 1989.[154] V. Mani and D. Ghose. Distributed computation in linear networks:Closed-form solutions. IEEE Transactions on Aerospace and Electronic Sys-tems, 30(2):471{483, April 1994.[155] E.P. Markatos and T.J. LeBlanc. Using processor a�nity in loop schedulingon shared-memory multiprocessors. IEEE Transactions on Parallel and Di-stributed Systems, 5(4):379{400, April 1994.[156] E. McLellan. The Alpha AXP architecture and 21064 processor. IEEE Micro,13(3):36{47, June 1993.[157] R. McNaughton. Scheduling with deadlines and loss functions. ManagementScience, 6:1{12, 1959.[158] T. Muntean and E.-G. Talbi. A parallel genetic algorithm for process - pro-cessor mapping. In M. Durand and F. El Dabaghi, editors, High PerformanceComputing II, pages 71{82. Elsevier Science Publishers B.V., 1991.[159] R.R. Muntz and E.G. Co�man Jr. Preemptive scheduling of real-time taskson multiprocessor systems. Journal of the ACM, 17(2):324{338, April 1970.[160] M.W. Mutka. Estimating capacity for sharing in a privately ownedworkstation environment. IEEE Transactions on Software Engineering,18(4):319{328, April 1992.[161] W.G. Nation, G. Saghi, and H.J. Siegel. Properties of interconnection ne-tworks for large-scale parallel processing systems. In ISIPCALA'93 Drafts ofPapers, pages 51{82, 1993.[162] B.C. Neuman and S. Rao. The Prospero Resource Manager: A scalable frame-work for processor allocation in distributed systems. Concurrency: Practiceand Experience, 6(4):339{335, 1994.[163] L.M. Ni and P.K. McKinley. A survey of warmhole routing techniques in directnetworks. Computer, 26(2):62{76, February 1993.

BIBLIOGRAPHY 169[164] C.H. Papadimitriou and M. Yannakakis. Towards an architecture-independentanalysis of parallel algorithms. SIAM Journal on Computing, 19(2):322{328,1990.[165] Parasoft Corp. Express 3.1, Transputer 3L C, 1991.[166] J.L. Park and H. Choi. Circuit-switched broadcasting in torus mesh networks.IEEE Transactions on Parallel and Distributed Systems, 7(2):184{190, Febru-ary 1996.[167] J.G. Peters and M. Syska. Circuit-switched broadcasting in torus networks.IEEE Transactions on Parallel and Distributed Systems, 7(3):246{255, 1996.[168] C. Picoleau. New complexity results on scheduling with small communicationdelays. Discrete Applied Mathematics, 60:331{342, 1995.[169] J. Plehn. Preemptive scheduling of independent jobs with release times anddeadlines on a hypercube. IPL, 34:161{166, April 1990.[170] S.G.N. Prasanna and B.R. Musicus. Generalized multiprocessor schedulingfor directed acyclic graphs. In Proceedings of Supercomputing 1994, pages237{246. IEEE Press, 1994.[171] F.P. Preparata, G. Metze, and R.T. Chien. On the connection assignmentproblem of diagnosable systems. IEEE Transactions on Electronic Computers,16(6):848{854, December 1967.[172] C.C. Price and M. Salama. Optimal task allocation in hypercube multipro-cessor ensambles. Computers & Mathematics with Applications, 26(12):17{24,1993.[173] QNX Software Systems Ltd. QNX: We work in real time, 1994.[174] V.J. Rayward-Smith. The complexity of preemptive scheduling given inter-processor communication delays. Information Processing Letters, 25:123{125,1987.[175] V.J. Rayward-Smith. UET scheduling with interprocessor communication de-lays. Discrete Applied Mathematics, 18:55{71, 1987.[176] T.G. Robertazzi. Processor equivalence for a linear daisy chain of loadsharing processors. IEEE Trans. on Aerospace and Electronic Systems,29(4):1216{1221, October 1993.[177] Y. Saad and M.H. Schultz. Data communication in parallel architectures.Parallel Computing, 15(11):131{150, 1989.[178] W. Schr�oder-Preikschat. Design principles of parallel operating systems. InISIPCALA'93 Drafts of Papers, pages 51{82, 1993.

170 BIBLIOGRAPHY[179] K. Schwan and H. Zhou. Dynamic scheduling of hard real-time ta-sks and real-time threads. IEEE Transactions on Software Engineering,18(8):736{748, August 1992.[180] Ch.L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22{33,January 1985.[181] K.C. Sevcik. Application scheduling and processor allocation in multiprogram-med parallel processing systems. Performance Evaluation, 19:107{140, 1994.[182] C.-C. Shen and W.-H. Tsai. A graph matching approach to optimal taskassignment in distributed computing systems using a minimax criterion. IEEETransactions on Computers, 34(3):197{203, 1985.[183] X. Shen and E.M. Reingold. Scheduling on a hypercube. Information Proces-sing Letters, 40:323{328, December 1991.[184] T. Shepard and J.A. Martin Gagne. A pre-run-time scheduling algorithmfor hard real-time systems. IEEE Transactions on Software Engineering,17(7):669{677, July 1991.[185] A. Silberschatz, J.L. Peterson, and P.B. Galvin. Operating Systems Concepts.Addison-Wesley Publishing Co., 1991. In Polish: Podstawy system�ow opera-cyjnych, WNT, Warszawa, 1993.[186] Silicon Graphics Computer Systems. Symmetric multiprocessing systems,1993. Technical Report.[187] J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem.ORSA Journal on Computing, 2(1):33{45, 1990.[188] J. Sohn and T.G. Robertazzi. Optimal load sharing for a divisible job on abus network. In Proceedings of the 1993 Conference on Information Sciencesand Systems, pages 835{840, The John Hopkins University, Baltimore, MD,March 1993.[189] J. Sohn and T.G. Robertazzi. A muli-job load sharing strategy for divisiblejobs on bus networks. Technical Report 697, Department of Electrical Engi-neering, SUNY at Stony Brook, Stony Brook, New York 11794, August 1994.[190] J. Sohn and T.G. Robertazzi. An optimum load sharing strategy for divisiblejobs with time-varying processor speed and channel speed. Technical Report706, Department of Electrical Engineering, SUNY at Stony Brook, StonyBrook, New York 11794, January 1995.[191] J. Sohn, T.G. Robertazzi, and S. Luryi. Optimizing computing costs usingdivisible load analysis. Technical Report 719, Department of Electrical En-gineering, SUNY at Stony Brook, Stony Brook, New York 11794, October1995.

BIBLIOGRAPHY 171[192] J.A. Stankovic, M. Spuri, M. Di Natale, and G.C. Buttazzo. Implications ofclassical scheduling results for real-time systems. Computer, 28(6):16{25, June1995.[193] L.A. Steen (editor). Mathematics Today, Tweleve Informal Essays.Springer-Verlag, Berlin, 1979. in Polish: Matematyka wsp�o lczesna, Dwana�scieesej�ow, WNT, Warszawa, 1983.[194] M. Stroi�nski and J. W�eglarz. Problemy rozwoju sieci komputerowych z per-spektywy globalnej infrastruktury informacyjnej. In Miejskie Sieci Kompute-rowe w Nauce, Gospodarce i Administracji, POLMAN'96, pages 9{16, 1996.[195] C.B. Stunkel, D.G. Shea, D.G. Grice, P.H. Hochschild, and M. Tsao. TheSP1 high-performance switch. In Proceedings of Scalable High-PerformanceComputing Conference '94, pages 150{157, 1994.[196] V.S. Sunderam, G.A. Geist, J. Dongarra, and R. Manchek. The PVM con-current computing system: Evolution, experiences, and trends. Parallel Com-puting, 20:531{545, 1994.[197] T. Thompson. When silicon hits its limits: What's next? Byte, 21:44{54, April1996.[198] B. Veltman. Multiprocessor scheduling with communication delays. PhD the-sis, Technical University Eindhoven, 1993.[199] B. Veltman, B.J. Lageweg, and J.K. Lenstra. Multiprocessor scheduling withcommunications delays. Parallel Computing, 16:173{182, 1990.[200] V.G. Vizing. About schedules observing dead-lines (in Russian). Kibernetika,(1):128{135, 1981.[201] V.G. Vizing. Minimization of the maximumdelay in servicing systems with in-terruption. U.S.S.R. Computatioanl Mathematics and Mathematical Physics,22(3):227{233, 1982.[202] V.G. Vizing. Optimal choice of job execution intensities for a convex functionof penalties for intensity (in Russian). Kibernetika (Kiev), (3):125{127, 1982.[203] V.G. Vizing, L.N. Komzakowa, and A.V. Tarchenko. About one algorithmfor selecting the intensity of jobs in a schedule (in Russian). Kibernetika,(5):71{74, 1981.[204] D. Walker. The design of a standard message passing interface for disrtibutedmemory concurrent computers. Parallel Computing, 20:657{673, 1994.[205] Q. Wang and K.-H. Cheng. List scheduling of parallel tasks. InformationProcessing Letters, 37:291{297, March 1991.[206] Q. Wang and K.-H. Cheng. A heuristic of scheduling parallel tasks and itsanalysis. SIAM Journal on Computing, 21(2):281{294, April 1992.

172 BIBLIOGRAPHY[207] D.de Werra, P. Hell, T. Kameda, N. Katoch, Ph. Solot, and M. Yamashita.Graph endpoint coloring and distributed processing. Networks, 23:93{98,1993.[208] J. W�eglarz. Scheduling under continuous performing speed vs. resource amuntactivity models. In R. S lowi�nski and J. W�eglarz, editors, Advances in ProjectScheduling, pages 273{295. Elsevier Science Publisher B.V., Amsterdam, 1989.[209] R.D. Williams. Performance of dynamic load balancing algorithms forunstructured mesh calculations. Concurrency: Practice and Experience,3(5):457{481, October 1991.[210] C.M. Woodside and G.G. Monforton. Fast allocation of processes in distri-buted and parallel systems. IEEE Transactions on Parallel and DistributedSystems, 4(2):164{174, 1993.[211] J. Xu and K. Hwang. Heuristic methods for dynamic load balancing in amessage-passing multicomputer. Journal of Parallel and Distributed Compu-ting, 18:1{13, 1993.[212] J. Xu and D.L. Parnas. On satisfying timing constraints in hard-real-timesystems. IEEE Transactions on Software Engineering, 19(1):70{84, January1993.[213] J. Zahorjan, E.D. Lazowska, and D.L. Eager. The e�ect of scheduling disci-pline on spin overhead in shared memory parallel systems. IEEE Transactionson Parallel and Distributed Systems, 2(2):180{199, April 1991.[214] Y. Zhu and M. Ahuja. On job scheduling on a hypercube. IEEE Transactionson Parallel and Distributed Systems, 4(1):62{69, January 1993.[215] J.R. Zorbas, D.J.Reble, and R.E. van Kooten. Measuring the scalability ofparallel computer systems. In Proceedings of Supercomputing 1989, pages832{841, New York, 1989. ACM Press.

Indexa�nity scheduling, 45algorithmcomplexity, 31exponential, 31LS, 52optimization, 35polynomial, 31pseudopolynomial, 33allocation, 38anyj , 25application, 23batch load, 18broadcasting, 46bus, 12chunk self-scheduling, 44class NP, 32class NPc, 32class P, 32class sNPc, 33code parallelism, 11commutationbu�ered wormhole, 15packet-switched, 15circuit-switched, 15virtual-cut-through, 15wormhole, 15competition graph, 85congestion, 40coscheduling, 19, 50

�j , 25DAG, 24data parallelism, 11data-
ow machine, 11dedicated processors, 21di�usion, 41dilatation, 40DTM, 31due-date,deadline, 26duplication, 42EDD, 59embedding, 40execution pro�le, 37execution time, 25expansion, 40factoring, 44fat-tree, 13fixj , 24
it, 15frame, 149gang scheduling, 19, 50gathering, 46gossiping, 46granularity, 11guided self-scheduling, 44heuristic, 35performance ratio, 35hypercube, 13173

174 INDEXincompatibility graph, 70layer of processors, 134load balancing, 40load sharing, 40message passing, 12metacomputer, 20metasystem, 20MISD,MIMD,SISD,SIMD, 11MPP, 13multicomputer, 12multiprocessor, 12multistage cube network MCN,13, 147multistage network, 13NDTM, 32nearest neighbor averaging, 41network processor, 22notation of schedulingproblems, 27originator, 108overlap, 13, 23p-port system, multiport system,14, 23parallel processors, 22parallelism signature, 25, 36partition, 19, 51PE, 12point-to-point networks, 12precedence constraints, 23processing element, 12, 22, 108processor feasible set, 53ready time, 26routing, 45safe self-scheduling, 45

scalability, 37scattering, 46schedule, 26optimality criteria, 27scheduling graph, 70self-scheduling, 44setj , 24shared-memory, 12SISD,SIMD,MISD,MIMD, 11sizej , 25speedup, 36SPMD, 12store-and-forward, 14task, 23compatible, 70dependent, 24divisible, 10, 24height, 61, 64incompatible, 70independent, 24multiprocessor, 9nonpreemptable, 23preepmtable, 23pro�le, 24size of, 25width of, 25task graph, 24, 39thread, 17, 23time window, 92transformationpolynomial, 32polynomial Turing, 34pseudopolynomial, 33trapezoid self-scheduling, 44

