FOUNDATIONS OF CONTROL ENGINEERING
Vol. 14 (1989) No. 4

TWO -DIMENSIONAL CUTTING PROBLEM
BASIC COMPLEXITY RESULTS AND ALGORITHMS FOR
IRREGULAR SHAPES

JACEK BLAZEWICZ®*, MACIEJ DROZDOWSKI*, BOLESLAW SONIEWICKI**,
RAFAL WALKOWIAK*

Presented by J. Weglarz

Abstract. This paper deals with two-dimensional cutting problems. Firstly the complexity of
the problem in question is estimated. Then, several known approaches for the regular (rectangular)
and irregular (not necessarily rectangular) cutting problems are described.

1. INTRODUCTION

In this work we present basic results for two-dimensional cutting problem.
This problem consists in cutting a set of pieces from a sheet of material in order
to minimize a waste. The problem arises in various production processes, such
as the glass, steel, wooden, paper or textile industries. The problem is of
combinatorial nature and, thus,’can be analyzed along the lines approporiate
for this class of problems. The basis of such an analysis is always
computational complexity. Following it, one may design an appropriate
algorithm for solving the problem in question. Unfortunately, majority of
cutting problems are strongly NP-hard, thus, unlikely to admit
pseudopolynomial-time algorithms. Hence, they must be solved by
approximation algorithms. One-dimensional and regular two-dimensional
cutting problems allow for the application of approximation algorithms with
a given accuracy (worst case behaviour). Unfortunately, no such method is
known for irregular shapes, thus, heuristic approaches must be used. The above
issues are presented in the following Sections.

* Technical University of Poznan, Institute of Computer Science, Poznan, Poland.
** Center for Agricultural Development, Poznan, Poland.

138 Jacek Blasewicz, Maciej Drozdowski, Boleslaw Soniewicki, Rafal Walkowiak

The organization of the paper is as follows. Section 2 contains problem
formulation and a short introduction into the theory of computational
complexity. Then, basic results for the one-dimensional version of the problem,
are presented. In Section 3 two-dimensional regular (rectangular) problem is
analyzed. A reference to several known algorithms is made here. Section 4 deals
with irregular (not necessarily rectangular) case and several methods solving
this problem are presented. Then, some hints for the use the two algoritms
described in a decision support system are given.

2. BASIC CONCEPTS, DEFINITION AND RESULTS FOR
ONE-DIMENSIONAL CASE

2.1. Problem formulation

One-dimensional cutting problems is the easiest version of the problem. It
can be stated in the following way: given rods of unit length cut them into the
set of elements a;, 0 < a; < 1,i = 1...n, in order to minimize the number of rods
used. This problem has the same nature as memory allocation or
nonpreemptive task scheduling problems for computer systems. References to
this problem can be found in [7, 10, 18]. This is the same as bin-packing
problem.

Two-dimensional regular problem can be formulated as follows: given a set
of rectangles with dimensions y, and x, i = 1..n, distribute them into the
minimal number of rectangular areas dimensioned Yand X. There are variants
of this formulation. For example rectangular area to be filled with elements
may have only one dimension limited while the other is to be minimized,
rotation may be allowed or not, elements may appear once or more times.
Reference to this problem may be found in [4, 5, 6, 7, 8, 9, 11, 13, 16, 17, 21,
26].

Two-dimensional irreguilator problem definition differs from the above
formulation in the fact that any shapes of elements are admitted. The problem
has been discussed in [1, 2, 3, 15].

2.2 COMPUTATIONAL COMPLEXITY ISSUES

As was mentioned the complexity analysis is the basic for further studying
problem. Thus, we will recall basic compexity definitions mainly with respect to
decision problems, ie. those requiring an answer of the “yes”-"no” type.
Bin-packing (cutting) problem may be formulated in this way by asking

Two - Dimensional Cutting Problem... 139

a question if packing elements into the known number of bins is possible. On
the other hand, plenty of optimization problems where some function is to be
minimized (maximized), are known. Bin-packing in the original formulation is
the optimization problem. There exists a close relation between decision and
the optimization problems. If the optimization problem is easy to solve, then
corresponding decision version is easy too. If decision version is difficult, then
optimization problem is also difficult. We are going to use this relation further
on. We consider only time complexity since space limitations are not of the
great importance and may be avoided. Now we present basic definitions.

Decision problem I7 is a set of parameters (sets, graphs, numbers) with
values not necessarily asigned and a question with an "yes’ or "no” answer.
Assigning values to parameters creates instance I of problem IT. Dy is a set of
all instances. Data of I are encoded as a limited string x(J) of symbols from
known alphabet X according to some encoding rules. By an input size N (I) we
understand here the length of string x (I). Only compact and precise encoding
rules are allowed — redundant symbols are excluded, numbers are encoded with
a base greater than 1. In practice N () is assumed to be a number of the most
important objects of the instance (tasks, polygnos, nodes in a graph).

Computational complexity of algorithm A solving problem II one defines as
a function f, (n) = max {t: t is a number of elementary computer steps needed
{o solve the problem for IeD, and n= N(I)}.

Polynomial algorithm has computational complexity function (or
complexity for short) O(p(k)) on deterministic Turing machine — DTM (or
RAM model), where p(k) is a polynomial, k is a size of the instance. Now we
define classes of decision problems.

Class P consists of all problems solvable on DTM in polynomial time.
(Hence, this class contains all problems solvable in polynomial time in
practice).

Class NP consists of all problems solvable in polynomial time by
nondeterministic Turing machine (NDTM). (In practice it is equivalent to the
existence of a polynomial height branching tree in a branch and bound
algorithm solving the problem). By the definition P & NP.

Polynomial transformation of problem IT, to I1, (we denote IT, 1 I1,) is the
function f: Dp, - Dy, satisfying:

1. for every I,eDy, answer is “yes” iff for f(I,} answer is “yes” too;
2. for every I, € Dy, time of computing f on DTM is bounded by polynomial

in N(I,).

Decision problem II, belongs to the class of NP-complete problems if
1, eNP and for every I1,e NP, IT, A11,. From the definition we conclude that if
there is a polynomial algorithm for any NP -complete problem then any problem
from NP may be solved by polynomial algorithm. This class contains such
problems as 3-dimensional matching, vertex cover, clique, hamiltoruan cycle,

140 Jacek Blazewicz, Maciej Drozdowski, Boleslaw Soniewicki, Rafat Walkowiak

set partition, graph coloring. Despite many trials, no polynomial algorithm
solving any NP - complete problem is known. Thus, we expect these problems
to be solvable only by exponential algorithms (and then P # NP -complete
class of problems).

On the other hand, certain NP - complete problems may be solved (quite
efficiently, e.g. by dynamic programming) for the data appearing in the practice.
Complexity of these algorithms is bounded by a polynomial of two variables
— instance size N (I) and maximum number value (appearing in the instance)
max (I). We call them pseudo - polynomial algorithm. Such an algorithm may
only be constructed for a number decision problem which does not have max (I)
constrained by polynomial function of N(I). we say that problem is
NP - complete in the strong sense if it is in the class NP and there is polynomial
p such that for D limited to these instances only for which max (I) < p(N (1),
the problem remains NP -complete. From the above we see that no
pseudo-polynomial algorithm is possible for the problem being NP-complete
in the strong sense. To prove strong NP-completeness one applies strong
pseudo-polynomial transformation (in which time bound for construction of
function f is allowed to be pseudo-polynomial and some additional constraints
on N(I) and max(I) are imposed) and some known strongly NP-complete
problem.

Now, let us consider again optimization problems. If a decision version of
the problem is NP-complete, then an exact optimization algorithm for the
original (optimization) version must be exponential. In such a case one applies
polynomial approximation algorithms to obtain approximate solution. It is
desired to know how far from the optimum is the solution generated by such
an approximation algorithm, ic. how precise it is.

For the approximation algorithm A and instance I we define ratio

=7 ,;;I& | (for maximization problem). where A(I) is the value of the
objective function obtained by 4 and OPT(I) is the optimal value.

Absolute performance ratio S, for the algorithm A is

v
S,=inflr>1:, , S()<r}

.] ©
Asymptotical performance ratio S, is

v

Sj =inf{r> 1:“3’” IeD,» OPT(D2n S)y<r}

The closer S,, S4 are to the 1 the better algorithm is.

Two - Dimensional Cutting Problem... 141

For some combinatorial problems it can be proved that there is no hope of
finding an approximation algorithm of certain accuracy (ie. this question is as
hard as finding a polynomial-time algorithm for any NP-complete problem).

Analysis of the worst case behaviour of an approximation algorithm may
be complemented by an analysis of its mean behavoiur. This can be done n
two ways. The first consists in assuming that the parameters of the instarices of
the considered problem IT are drawn from certain distribution D and then one
analyzes the mean performance of algorithm A. One may distinguish between
absolute error of an approximation algorithm, which is the difference between
the approximate and optimal solution values and relative error which is the
ratio the two. Asymptotic optimality results in stronger (absolute) sense is quite
rare. On the other hand asymptotic optimality in the relative sense is often
casier to establish [19, 22, 24].

It is rather obvious that the mean performance can be much better than
the worst case behaviour, thus justifying the use of given approximation
algorithm. A main obstacle is difficulty of proofs of the mean performance for
realistic distribution functions. Thus, the second way of evaluating the mean
behaviour of approximation algorithms, consisting of simulation studies, is
stillused very often. In the later approach one compares solutions, in the sense
of the values of a criterion, constructed by a given approximation algorithm
and by optimization algorithm. This comparison should be made for a large
representative sample of instances. There are some practical problems which
follow from the above statement and they are discussed in [23].

Cutting problem
(complexity analysis)

I 1
Easy problem NP-hard problem
Complexity ' l] |
improvments Relaxation Approximaton Exact enumerative
—in the worst case algorithms algorithms
-mean (probabilistic Performance analysis (also pseudo
analysis) —worst case polynomial —
behaviour time)

—mean behaviour
Fig.1l. An analysis of cutting problem - schematic view

The third and last way of dealing with hard cutting problems is to use
exact enumerative algorithms whose worstcase complexity function is
exponential in the input length. However, sometimes, when the analyzed
problem is not NP-hard in the strong sense, it is possible to solve it by
a pseudo-polynomial optimization algorithm whose worst-case complexity
function is bounded from above by the polynomial in the input length and in the
maximum number appearing in the instance of problem. For reasonably small
numbers such an algorithm may behave quite well in practice and it can be

142 Jacek Btazewicz, Maciej Drozdowski, Boleslaw Soniewicki, Rafat Walkowiak

used in computers applications. On the other hand “pure” exponential
algorithms have probably be exluded from application, but they may be used
sometimes for other cutting problems which may be solved by off-line
algorithms.

The above discussion is summarized in a schematic way in Fig. 1.
Definitions from this Section are base for further analsis of our problem.

2.3. One-dimensional problem analysis

One-dimensional problem is the easiest version of the problem considered.
From its analysis we can draw conclusions as to the general problem
complexity.

One-dimensional cutting problem as stated in Section 2.1 is the same as
bin-packing problem so we will refer here to the results for the latter. This
problem is NP-complete in the strong sense for the decision version, this comes
from pseudo-polynomial transformation of 3-partition problem [12]. 3-par-
tition problem is:

Parameters: limit Be Z;q , set A,

A|=3q,q€Z*, value s(a;)e Z* for every
a,€A, B/4 < s(a,) <BJ2, Y. s(a;)= Bg.
i=1
Question: does there exist a partition of A into g disjoint subsets

S1. S3....,5, satisfying " Y s(@,)=B fori=1,...,q?

‘jeli

Proof is easy we see that 3-partition is a special case of bin-packing problem.
Now we know that the problem will not be solved by a polynomial
algorithm (if P # NP), yet for the fixed number of element sizes there exists
linear time solution [7].
Assume p is integer such that sizes of elements are from the set {1/p,
2/p,....p— 1)/p, 1} and we pack them into unit size box. Elementary instance

E is a set of elements satysfying) s(a;) < 1. Data of the instance may be
i=1

written as a p-dimensional vector 7 = [v,,...,v,] where v; is a number of

elements of size i/p. Thus every solution is a set of elementary instaces and the

problem can be stated as a partition of a set of elements into the minimal number

of elementary instances. We see that number K of elementary instances is fixed.

We will denote them as p-dimensional vectors b,, b, ,...,bg called elementary

vectors. Now our problem can be formulated as an integer linear programming:
K K
find), ,,...,o, that minimize) a;, subject to Y a;b,=5 and a, > 0.
i=1 i=1

Two - Dimensional Cutting Problem... 143

A general version of integer linear programming is strongly NP-complete,
but for a fixed number of variables X it can be solved in polynomial time [20].
Using the above transformation of the input data one may solve the problem in
question in linear time. This is rather a theoretical result since a number of
variables for practical situations may be great. Then complexity function
though linear in the number of elements has a large constant before it. This
constant grows exponentialy with K.

There exists a number of approximation algorithms for bin-packing
problem (thus for one-dimensional cutting). We are going to mention only
most important. First fit (FF) algorithm - assigns element to the box with the
lowest possible number. Best fit (FF) algorithm — assigns element to the box
with the minimum remaining capacity.

Let Sgp, Spp denote the absolute performance ratio for the FF and BF
algorithms respectively and C* — a number, of boxes used by an optimal
solution. Then it can be shown [25] that

17 2
SFF = SBF=1—‘O+ 6;
First fit decreasing (FFD) algoritm is a FF algoritm with elements assigned in
nonincreasing order of their sizes. Best fit decreasing (BFD) algorithm is a BF
algorithm for elements scheduled in nonincreasing order of their sizes.
From [14, 18] the asymptotic performance ratios for FFD and BFD are
known (here sizes of the elements a; are drawn from the interval [0, a]):

r
i for xe(4, 1]
71 8 1
SFep(a) = | 8 for ae(s, 5]
¢ for ae(4, 51,
23
30 for ae(4, 1]
.
r%_ for ae(i, 1]
go | % for we(, 3]
BFD(Q)_4 I for ae(d, 8]
6 4> 294>
k-2 1 I |
l+m for aSZ k_E

\

(The last line of Sgp(a) is a proposition only). Some other approximation
algorithms are surveyed e.g. in [10]. In this Section we have shown that
one-dimensional cutting problem in general case is NP-complete in the strong
sense and we should not expect polynomial algorithms. Best approximation

144 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafal Walkowiak

generate solutions worse about 20% than optimum in the worst case, in practice
an average difference is less than 10%.

3. TWO-DIMENSIONAL REGULAR CUTTING PROBLEM

3.1. Introduction

The problem of two-dimensional regular cutting defined in 2.1 has several
variants. For all the cases the common assumptions are
a) pieces can not overlap each other or the edges of material
b) pieces can not be inverted (as in the mirror).

For some cases a raw material may consist of rectangular sheets of
material then the objetive is to minimize its number. Sometimes the ribbon of
material is given then one has to minimize a length while a width is constant.
On the other hand, if the area of the material is one rectangle then the aim is to
pack elements that minimize a weste. Rotations of elements are rather not
considered and if any then 90 degrees rotation are assumed. In some cases only
guillotine cuts are allowed, ie. from edge to edge parallel to the other pair of
edges. We know that one-dimensional version has been already NP-complete
in the strong sense. Thus in such a situation one can construct exponential and
optimal algorithms or polynomial approximation ones. In the following
subsections we describe two optimal algorithms and several approximatin ones
adjusted to the different versions of the problem.

3.2. Iterative combinatorial algorithms

Christofiedes and Whitelock’s branch and bound algorithms [8]. This
algorithm solves a single sheet problem and it is based on a tree — search
procedure. It limits the number of nodes imposing necessary conditions on the
optimality of patterns to be cut. This is done by means of transportation
routine and dynamic programming routine.

Assume A, = (L,, W,) is a sheet of material with dimensions I, (length)
and W, (width). R is a set of rectangles R = {(a,, b,),...,(a,,. b,)}. Every
rectangle has value v, and maximal number of appearances in the resulting
pattern /.. Every number in the problem is integer, cuts are of a guillotine type,

m

and rotations are not allowed. The problem is to maximize z = Y {; v, subject
i=1

to0<(<;,i=1,....m, {;€Z* and there exists a sequence of cuts of 4,

resulting in {; rectangles of the i'th type.

Two - Dimensional Cutting Problem... 145

The algorithm has two steps — generating the tree of all possible cuts and
scanning it for the best solution. Every node of the tree represents a possible cut.
During the generation phase symmetrical cuts are exluded. For example cuting
of rectangle (p, g) in the point e is symmetrical with the cutting in the point p-e.
Such a symmetries are exluded by analyzing in the rectangle (p, g) only points
with x< | p/2 | and y< | p/2 | (where |a] is the greatest integer not
greater than a). Repetitous cuts are eliminated by imposing succession of cuts
— for example if we cut at point x = a then every succeeding cut has to be done at
x 2 a. Only normalized cuts are considered (cf. fig. 2) that is in points which are linear

Q) waste b)

777 7
11 3 4 1 3 4

DO\

Fig2. a) not normalized cut, b) normalized cut

combinations of sizes of elements. This exlude cutting with waste inside
a pattern.

Possible cuts of rectangle (p, q) resulting in the elements of set R are entries
of set 57 for cutting in Ydirection and 7% for X direction. Now we describe how
to find $¢, T? is found in the same way. We use function Ja(X) to generate S7.
This function can be computed recursively as follow (rectangles are ordered
according to nonincreasing value of b,): for i=1,...,m x = 0,....L

1,69 = min { £ 1(x), max {b, fi- (= ja)} } j = 1..min(l, | x/a,])if x > g,

-

fix)=fio 1(x) if x <a;, f(x) = .

State of a node in the tree is described by the list Lof rectangles cut on the
path from the root. rectangle is represented on that list by vector (p, g, x, y),
(P, q) being sizes of a current rectangle and x, y are describing the following cuts
if the rectangle is chosen. In order to find an optimal solution, for every node,
an upper bound estimation of the objective function is computed. This
estimation is computed in two ways. Suppose H o € L is a list of rectangles
that will not be cut any more. Estimation z may be computed as a total flow in
a special transportation problem that assigns elements from the set R to H o-
Upper bound estimation for nodes with still possible cuts can be computed by
dynamic programming procedure for relaxed version of the problem - not
considering limits /; [13]. If computed value z* is better than previously found
z, then one substitutes previous solution with the current one and the
algorithm proceeds to the next node.

146 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafal Walkowiak

Wang’s combinatorial algorithm [26,21]. This algorithm is a combinatorial
one that generates guillotine cutting patterns by successive adding pieces of
groups pieces to each other. These cut patterns are normalized in the sense of
the previous algorithm. To avoid explosive growth of number of partial
solutions the algorithm rejects solutions with a waste exceeding some
percentage of stock sheet area or for the second version with a waste exceeding
a percentage of the area of a partial solution.

Let us denote by S, a partial solution generated at iteration k, by F, —a list
of all partial solutions generated during iteration k, by I, — a list of all partial
solutions generated until iteration k and by § — rejection parameter 0<p<l.
Wang’s algorithm can be formulated as follows

choose f:
I, Fy: =R;
k:=0;
while F, not empty do
k:=k+1;
Fy:= } >
generate all partial solutions S, adding elements of Fy_,, to all
elements of L, _,;
for each §, do
if S, fits in the stock sheet
and the number element i appears in S, is not greater than I
and the waste in S, is not greater than BL, W,
then F,:=F,uS§,;
Lei=Ly_ OF,;
M=k;
choose the element of L, with the least total waste.

I =

It is shown in [26] that if the waste of the best pattern is not greater than
B Ly W, then this pattern is optimal (there is no pattern with a smaller waste).
A modification of the above algorithm (described in [21]) is done by means of
dynamic programming algorithm for unconstrained number of elements [14]
and it improves the way expected waste for partial solution is computed. Thus,
worse solution are rejected earlier.

3.3. Approximation algorithms

There are many approximation algorithms. We describe only some, which,
in our opinion, are the most important. If not stated otherwise the unit width of
the stock sheet is assumed, a length is to be minimized, and rotations are

Two - Dimensional Cutting Problem... 147

not allowed. For a given list L of rectangles an approximation algorithm
generates solution with stock sheet length A (L) while optimum is OPT (L). We
use the absolute performance ratio

AL) <20PT(D
and an asymptotic one

A(L) < OPT(L) + B
Let us pass now to the algorithms.

Bottom left decreasing (BLD) algorithm. Rectangles given on the list Lare
ordered according to nonincreasing sizes. Put the next element from Las low
and as much to the left as possible. For every L: BLD (L) < 20PT (L). thus
algorithm BLD generates worst case solution 100% worse than optimal one.

The following two algorithms [11] are so called level oriented algorithms.
The level-oriented name comes from the fact that pieces are located in layers.
The first layer bottom is a bottom of the stock sheet, the following are marked
by the top of the first (that is highest) element in the preceding layer. Elements
on L are ordered according to nonincreasing height.

Next fit decreasing height algorithm (NFDH) - if there is not enough
room at the current (top) level to place a rectangle considered, then create
a new level (Fig. 3).

6 |
3 [4T5]

112

Fig.3. An example solution by NFDH algorithm

First fit decreasing height algorithm (FFDH) — puts rectangles at the lowest
possible level and if it is not possible creates new one (Fig. 4).

3 56|
T 12

4

Fig4. An example solution by FFDH algorithm
Asymptotic performance ratio for NFDH is
NFDH(L) < 20PT(L)+ 1,
for FFDH
FFDH(L) <1.70PT(L)+ 7.3

148 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafat Walkowiak

and for sizes of elements not exceeding A

FFDH(L)<(1 + 1/m)OPT(L)+ (2 + 1/m), where m= [1/1] ,
for squares

3
FFDH(L) < OPT(L) +2

Spilt fit algoritmh (BF) {11]. Let m > 1 be the greatest integer such that all
rectangles have widths not greater than 1/m. The list of pieces is ordered
according to the nonincreasing heights. Spilt L into two lists L, L,. I, consists
of elements of widths greater than 1/(m + 1), L, contains the remaining
elements. First, put L, rectangles with FFDH algorithm then move the layers
wider than (m + 1)/(m + 2) to the bottom of the pattern down under layers
thinner than (m + 1)/(m + 2). Thus, there is a free rectangular area 1/(m + 2)
wide. Put into this area L, elements using FFDH algorithm. Place remaning L,
rectangles above the pattern for L, (Fig. 5).

m+] _1_
m+2 me+2
)

1

]
1 L2

L

! |

Fig.5 SF algorithm layout

Asymptotical performance ratio for SF algorithm is
m+ 2
SF(L)< ——OPT(L) + 5.
(L)< ~JOPTW)+

Up down algorithm (UD) [4]. this algorithm is equivalent to NFDH
algorithm for rectangles thinner than 1/5; for the wider several strategies are
mixed. This algorithm is a bit more sophisticated than previously mentioned
and we will only give its brief outlinc. The algorithm splits the stock into the
five regions numbered from the bottom of the stock to its upper part. In the
regions 1 <i<4 rectangles being wide 1/(i + 1) trough 1/i are packed
according to BL (bottom left) algorithm. Thus, there remains some free area in
the right top corner. Thus more rectangles can be placed in the column from
the top down. When all elements wider than 1/5 are placed in regions

Two - Dimensional Cutting Problem... 149

LITPERTITRTTETY

col.
alqg.

-

GNFDH

BL L

algorithm

Fig.6. UD algorithm allocation layout

1 <i <4, then the remaining rectangles are put into the slot between elements
located by BL and column algorithm (cf. Fig. 6). This is done by means of
generalized next fit decreasing algorithm (GNFDH). Asymptotic worst case
behaviur for rectangles not exeeding height H is

5 53
UD(L) < {OPT() + 4 H.

Algorithms described above have to work “off line” since it is necessary to
know the set of rectangles before the start, and more over these pieces have to
be sorted. For certain applications however this is not possible to wait until ali
parts are known to sort them. For example we can not wait for the arrival of all
parts to computer their allocations in the warehouse area. There are certain
so-called shelf algorithms predestined to work “on line” without initial sorting
of elements or even knowing them. These algorithms are modifications of
NFDH and FFDH algorithms. additional free space is created to handle the
elements of bigger size expected to come later. The parameter r is a measure of
that additional space. Every created shelf has value r* (for some k), and an
element of height h, 7**! < h < r* has to be packed into the shelf of r* height.

Next fit shelf algorithm with parameter r (NFS,) — puts rectangle as far to
the left on the highest (last) shelf as possible, and if this is not possible, a new
shelf is created.

First fit shelf algorithm with parameter r (FFS,) - puts rectangle at the
lowest possible shelf as to the left as possible, and if this is not possible, a new
shelf is created.

It can be shown [6] that for 0 < < 1 and rectangles not higher than H

150 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafat Walkowiak

NFS, = zOPT(L) + L,
T rir—1)

H
rir—1)

For the case with multiple stock sheets of the same limited sizess the
objective is to minimize a number of sheets used. There exists [9] HFF
algorithm for this purpose. HFF is a mixture of FFDH and FFD. First,
according to FFDH a patern with levels in the unlimited height stock is
constructed, then levels are assigned to the stock sheets according to FFD
algorithm. Asymptotic performance ratio for HFF is

HFF (L) < lgzOPT(L) +5.

FFS, = lrl OPT(L) +

In this chapter a very short insight into the group of the algorithms dealing
with two-dimensional regular cutting has been presented. There are two main
groups of algorithms — optimal exponential combinatorial ones and those
based on approximation approaches with the worst case bounds known. Due
to the progress in the computer hardware speed the sizes of problems that can
be solve by optimal algorithms are growing [21]. On the other hand average
behaviour for realistic cases of approximation algoritmhs is much better than
the worst case estimates suggest.

4. IRREGULAR TWO-DIMENSIONAL CUTTING PROBLEM

4.1. Introduction

This problem admits any shapes of elements. Strong NP-completeness of
decision version of the problem implies the lack of the polynomial optimization
algorithm. Worse still, as far as we know, there are neither algorithms with
known worst case behaviour bounds nor algorithms computing optimal
solution in any way. In practice, only experimental evaluation and comparison
on the base of some objective function (waste, time), is possible. The only
method optimal in some sense has been proposed by Adamowicz [1]. This
metod involves iterative solution of an integer programming problem followed
by an adjusting procedure, which generate new constraints for the next
iteration until an optimal solution is constructed. However, this approach is so
complex that experimental program is either not completely usable or
implements very simplified version of the method.

The other methods known for the problem in question are heuristics using
diffcrent approaches to the problem. These algorithms though polynomial and

Two - Dimensional Cutting Problem... 151

approximate consume a lot of time involving hard numerical computations.
From this fact we can draw conclusions: there is a trade-off between the
solution time and quality of the solution. In this context the importance of
hybrid - semiautomatic methods increases, where tentative solution is
automatically generated and the interactive improvements are allowed by
conversational display unit.

We outline below ideas of four methods: by Adamowicz and three
heuristics [2, 3, 15]. The first and the second heuristics have been implemented
in the program described in Section 5.

4.2. Algorithm by Albano-Sapuppo

This algorithm [2] is based on the search method for optimal solution in
the directed graph of all partial solutions using several heuristic techniques that
increase the search power. Pieces are assumed to be irregular polygons without
holes, the sheet is a rectangle. Discretized step rotations are allowed. The goal
is to minimize the waste or (better) the length of produced packing.

Many problems in artificial intelligence and operations research are solved
by a technique based on searching through a "space” of candidate solutions.
The above approach utilizes this technique. The set of states reachable from the
initial state can be seen as a directed graph with nodes— states of allocation and
arcs — allocation operations. The solution is a search process for a path from
the initial state to the member of the set of final nodes. Search process can be
organized in the following way:

1. Put the start node on the list GENERATED.

2. if GENERATED is empty exit with failure.

3. Select a node from GENERATED according to some rule R and put it on
a list EXPANDED, call it n.

4. If n is a final node exit with a solution path.

5. Expand n, that is generate all its successors. If there are no successor go to 2,

otherwise put them on GENERATED and go to 2.

Usually rule R selects a node with the smallest evaluation function which is
a sum of an estimate of the cost of the path from the starting to the current one
and estimate of the cost of the path from the current node to the final one.

Let us consider A, — an initial allocation containing no elements. A; is
a final allocation if there are no more elements to allocate. Added waste for the
allocation A; of piece p; is defined as follows

added_waste (A4;) = space (4; - ;) — (space (A4;) + area_of (p,)),

where space (A;) is the area on the right side of the profile (rightmost borders of
rightmost pieces), i.e. the area which may be used to allocate piece p, (Fig. 7).

152 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafal Walkowiak

/ L/ /
2 wasfe %
piece \

Pi
L

I space (A)

\— profile

Fig.7. Partial solution pattern

The wasteAd, is recursively defined as waste(A4,) =0,

. _ |waste(4;-,) + added_waste(4,) if 4, is not final -
waste(4,) = {w‘l — Y area_of(p,) otherwise

In order to transform the optimal allocation problem into the search of an
optimal path in a state space, an initial state corresponds to A, the cost of an
arc from S, to §;,, is the added waste produced by allocation A, ;. The
procedure to implement the heuristic search method can be stated as follow:

begin
initial conditions;
input pieces and stock sheet descriptions;
let the CURRENT_NODE be the initial state;
while CURRENT_NODE + final node do
for all pieces left to be allocated do
for all orientations do
apply placement policy; (waste computation)
apply evaluation function and
append successor to the list GENERATED
end
end:
set the CURRENT_NODE EXPANDED;
let the CURRENT_NODE be the "best” successor in GENERATED;
end;
plot solution;
end

There are some techniques to increase heuristic search power because the
above procedure can not be applied to any realistic applications without
rejecting "bad” nodes.

Two - Dimensional Cutting Problem... ‘ 153

1. Evaluation function — the problem is how to evaluate cost from the
current to final node. It should always be lower than the waste that would
result in the optimal solution if the piece in question were to be included.
A possibility is 0, but it has been prefered to drop the admissible property
because the optimality of the solution is not critical and "good”will be enough.
Thus the authors suggest a constant percentage of unplaced elements as an
estimation of the cost.

2. Successor limitation — since the step of evaluation for all pieces and
orientations is one consuming the most of the time, several limitations have
been added.

a) From unplaced pieces only the one which produces the leftmost lowest
allocation will be considered in step b).

b) Only the fixed number of leftmost allocated pieces are preserved for step c).

c) For allocation from b) only the fixed number of successors will be
generated.

d) When the list of generated nodes becomes full, the tree is pruned by
erasing the node with the highest evaluation functions.

3. Evaluation function discretization — continuation of the search along
paths ‘with small differences is allowed only within some precision.

4. Expansion band — when the search is at the k-th level, the next node to
be expanded has to be at level at most k-t where ¢t is given threshold.

5. Termination condition — at the end of the routine after the first final
node is found the procedure develops all the posible secarch trees within the
expansion the band and the final solution will be th best one.

6. Profile simplifications — at each step the profile is simplified in order to
exlude all the areas on the left side of the vertical line through the leftmost
point of the last allocation pieces.

There are several notions related to this algorithm important especially in
finding piece allocations.

No-fit-polynon (NFP) for a pair A,B of pieces — completely describes all
those positions where the reference point of B may be placed in order to have
B touching 4 without overlapping (Fig. 8).

ALCe g
\rsference

point of B

Fig8. NFP for A and B

154 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafal Walkowiak

q
allocation |
region !

|

reference
point

Fig9. Allocation region
Allocation region for a given resource and piece — the area in which the
reference point of the piece can validly fall (Fig. 9).
This algorithm has been tested thorughly and its performance and
reliability indicates that it favourably compares with some others.

43. Algorithm by Art

This algorithm [3] is very similar to the Albano-Sapuppo algorithm in the
way of handling geometrical entities. It was the base to create previous
algorithm. Here, more stress is put to geometrical problems while before
mainly heuristic search organization has been considered. This Section may be
both description of independent algorithm and supplement for
Albano-Sapupppo algorithm. There are the following assumptions made

1. There is distinguished piece direction (orientation) parallel to the
distinguished direction of the material let us say X axis. Thus rotation are not
allowed.

2. Flipping of pieces is not allowed (mirror symmetry).

3. The stock sheet is a rectangle with given width, and its length is to be
minimized.

Every piece is defined by the sequence of line sections approximeting its
edge with a precision required. We exlude here any curve edges because of the
growth of computational complexity. Distinguished element direction is
parallel to X axis. There is a distinguished point in the sequence of vertices
called reference point and its location defines uniquely the element position.
Both concave and convex polygnos are admitted but because of higher
computational complexity concave objects are exluded and approximated to
the convex equivalent.

Important notion is the envelope — it is a sequence of line sections defined
for every piece type. This is a trace of reference points created during moving
element around allocation region in contact with its border. At the start of
algorithm envelope is a rectangle but succesively after alocation of any element
it is modified with the no-fit-polygnos (NFP — Section 4.2) (Fig. 10). Envelope
can be understood as a border of an allocation region.

Two - Dimensional Cutting Problem... 155

allocation K
region :
I
reference envelope ||
POIIH*\ ______________ -
B
NFP of B around A Initial envelope for B
allocation
region
envelope
—\
A

Fig.10. Modyfication of element B envelope after allocation of element A4

Process of allocation is deterministic and sequential. Reference point
defining element location is to be placed on the envelope — this guarantees
contact with other elements without overlap. In order to minimize total waste,
elements are allocated from the left side to the right according to the following
heuristic rules:

1. Place element with the minimal envelope X dimension value first.

2. Place element in a certain place with minimal added, waste.

3. Split big groups of elements into the smaller one or into the separate

elements to put in certain places separately.

4. Place clement with greater area first.

5. Place element minimizing stock sheet length first.

Position on this list do not reflect importance of rules, it should be rather
experimentially adjusted to typical problem instances.

4.4. Optimal algorithm by Adamowicz

This algorithm [1] allows the most general version of the problem to be
solved. Various elements and stock sheets as well as multiple linear, logical and
geometrical constraints associated with them are considered. Solution is
obtained by iterative application of a two-stage procedure. The first is a linear
programming problem; its solution minimize linear objective function subject
to linear constraints. The second, geometrical, stage checks if the set of
elements can be allocated feasibly satysfying geometrical constraints. If the
solution does not exist, then new linear constraints resulting from the
information obtained in the second step are enerated for the new iteration.

156 Jacek Btazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafal Walkowiak

This method allows elements and stock to be holed, irregular and even not
continuous. There are geometrical constraints of the two types: absolute — that
bound locations on the stock area and relative — defined in relation to the other
elements. Logical and linear constraints are for example number of elements of
certain type required, a maximal number of types of elements, a ratio of
quantities in which two types of elements are cut and others. The algerithm can
be stated as an iterative application of the three following procedures.

1. A solution of a linear programming problem with rejection of
redundant constraints.

2. Checking if the linear programming solution satisfies geometrical
constraints and if not saving an information about feasible allocations.

3. Creating new linear constraints, including information gained in step 2.

Elements and material area are defined by sequence of vertices on its
polygonal border. If the element is not compact (i.e. includes holes) it has to be
defined as a group of compact elements with an additional relative location
constraint. A location of an element is given by parameters: x, y and rotation
angle from an initial orientation. During the processing phase of geometrical
constraint an evelope (see section 4.3) for absolute constraints and NFP
(Section 4.2) for relative constraints, are computed.

Linear programming phase gets into the consideration:

— linear constraints of the number of types of elements;
— logical constraints on the presence of types of clementes,
this can be converted into linear constraints as well;
~ geometrical consraints on the relative location of certain types of elements
— since this is inherently nonlinear mainly geometrical phase of algorithm deals
with kind of constraints;

- linear objective function maximizing income or number of elements
allocated, density of allocation and/or minimizing the cost, waste etc.
As a result of linear programming phase solution one gets a set of elements to
be allocated. Geometrical phase checks if allocation of elements chosen in the
previous phase is possible. The elements are considered according to their
nonincreasing areas. This procedure searches in the space of all possible

locations of elements maximizing number of elements allocated.

As we can see this algorithm is very complex and rather difficult to handle
in practice. Experimental programs are either completely inoperable or are
simplified versions of the method. Let us note that the computational
complexity of the geometrical phase grows exponentialy in the number of
objects and orientations due to the search of candidate allocations, thus this
method is rather a theoretical one.

Two - Dimensional Cutting Problem... 157

4.5. Algorithm by Gurel

Every element is represented in this method [15] as a node in the graph.
There is an arc between nodes if the corresponding elements are touching each
other (or in other words are in contact). Rectangular area of the stock is
represented as a disk called marker disk. Nodes corresponding to pieces in
contact with the stock border are on the circle of marker disk, while nodes
inside it correspond to elements without common points with edges of the raw
material. In this way, a graph reflecting elements allocation inside the marker
disk, has been created. There are vertical paths (strings of nodes) inside marker
disk with at least one node on the border of that disk. The first string of that
type corresponds to pieces in contact with the left border of material; we
denote it boundary break — BB1 for short. The second string of that type
consists of nodes in contact with the right border of the stock area and will be
denoted BB2. All other vertical strings of nodes between BB1 and BB2 we
name intermediate breaks (IBn - for short, n being IB number). Interesting
feature of the solution is that in the final layout there must be at least one
horizontal string of pieces forming horizontal break. This will be called
cobreak. Cobreaks as well as breaks may either lay along the boundary of
marker circle or cross the marker disk by joining BB1 and BB2. Therefore
there are boundary cobreaks or intermediate cobreaks. During the
implementation of the method it has been observed that the biggest waste is
created at the (right side) and of the layout. Therefore IBs are allocated
according to minimal waste from both ends of the layout to the center of area.
Thus, the method by Gurel can be formulated as follow
1. Initial computations.

2. Create boundary break BB1 and them BB2.

3. While not allocated elemens exist, create an internal break IB and move it to
the right or left group of breaks.

4. join left and right groups of breaks.

The algorithm requires come additional parameters a, b, ¢, s. Coefficients
ab,c are used create four groups of elements relative to their areas. Let us
denote by P,,, arca of the largest element and by P an area of element
considered. There are the folowing groups of pieces (depending on the areas):

L1: abP,, <P,

L bP,.. < P < aP,,,,
M: €Prox < P < bP s,
S: P < cP,,,-

Elements from L1 are prefered in BB1, from L2 and L1 —in BB2, M — in
IBs. Elements from § are not allocated by this algorithm and should be placed
interactively by an operator. This follows an observation that big differences of
elements sizes reduce quality of the solution. In practical cases a, b, c are set to

158 Jacek Blazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafat Walkowiak

a:40 =+ 85%, b:25 =~ 60%, c:0 = 25%. The bigger the differences in area sizes
are, the greater a, b, ¢ should be. This method admits rotations of elements with
a given step. Now, in the short outline we describe some procedures of the
algorithm.

During the initial phase, for every element and every orientation the
following parameters are computed:
— area,
reference point,
coordinates of boundary points BP,,...,BPg (Fig. 11),
— waste areas d,,...,0g,
— waste T,,,...,Tc, fOr appropriate sweeping directions

T41=57+58+61+62+53, TA2=53+64+65+56+67’
Ty =05 + 86+ 0, +0g + 8y, Tp =0, +d,+ 03+, + s,

TC1=67+58+61’ TC2=53+6¢+65,
BP, BP,
d7 b6 Js
BP . 8P,
g element 54

8P —7] BFa

S 1 d-2 \/ d.3
BP, BP,

Fig.11. Object’s boundary points and waste areas in Gurel’s algorithm

During the initial phase elemens are assigned to groups L, L,, M, S.

In order to create BB1 and BB2 we choose groups of elements minimizing
waste between the borders of stock and element. Bigger pieces from BB1, BB2
are considered first. In order to check if the element fits into the BB1 or BB2 we
evaluate how deeply the element in question may coincide with elements
previously allocated in the string and compare the result with the width of
element and width of a "slot” in the string. Internal breaks (IBs) are created
a little bit easier only with comparisons of wastes 13, 1c4- The components of
IB are moved to each other in the vertical direction. In order to minimize the
waste indside IB, pieces are moved horizontally within some band with a given
step s.

Two - Dimensional Cutting Problem... 159

This method seems to be faster than previously described due to its graph
theoretic approach and good heuristic methods to carry on computations. This
is done with a little reduction of effieciency in area usage. There are several
factors influencing efficiency of algorithm, for instance number of elements,
number of types of elements, parameters a, b, c, s, width of the stock sheet etc.
This method seems to fit well into semiautomatic approach requirements.

5. CONCLUSIONS

In the paper, after preliminary complexity investigations, we have
described four methods for irregular two-dimensional cutting. The first three of
them are a bit similar in the geometrical notions used. We think that
Adamowicz approach though difficult to handle in practice, shows interesting
directions to create more general systems for cutting problem. The three
remaining methods are applicable in practice and broadly described in
references. In the following paper a decision suport system, using the two of the
described methods, will be described.

REFERENCES

[1] Adamowicz M., The Optimal Two-Dimensional Allocation of Irregular Multiply-Connected
Shapes with Linear logical and Geometric Constraints, N.Y. Uniw. of Tech. Report 403-9,
New York 1969.

[2] Albano A., Sapuppo G., Optimal Allocation of Two-Dimensional Shapes Using Heuristic
Search Methods, IEEE Trans. an Systems, Man and Cybernetics, vol. SMC-10, no. 5, May 1980,

[3]1 Art RCJr, An Apprach to the Two-Dimensional Irregular Cutting Astock Problem,
IBM Report 20-2006, Cambridge 1966.

[4] Baker BS., Brown DS, Katseflf HP., i Algorithm for Two-Dimensional Packing, J. of
Algorithms, 2 (1981), 348-368.

[5] Baker B.S,, Coffman E.GJr., Rivest R.L., Orthogonal Packings in Two Dimensions, SIAM J.
Comput. 9 (1980), 846-855.

[6] Baker BS., Schwartz G.S., Shelf Algorithms for Two-Dimensional Packing Problems, SIAM
J. Comput., 12 (1983), 508-525.

[7] Blazewicz J., Ecker K. A Linear time Algorithm for Restricted Bin-Packing and Scheduling
Problems, Operations Research Letters 2, no. 2, 1983, 80-83.

[8] Christofides N. Whitelock C, An algorithm for two-dimensional Cutting Problems,
Operations Research 25, 1977, 30-44.

[9] Chung F.R.K., Garey M.N,, Johnson D.S., On Packing Two-Dimensional Bins, SIAM J. Alg.
Dis. Math. 3 (1982) no. 1, pp.66-76.

160 Jacek Btazewicz, Maciej Drozdowski, Bolestaw Soniewicki, Rafal Walkowiak

[10} Coffiman E.G.Jr., Garey M.R,, Johnson -).3, Appruximation Algorithms for Bin-Packing
- an updated survey in G. Ausiello, M. Lucertin, P. Serafini (eds.), Algorithms for Computer
Systems Design, Springer Verlag, Wien 1984, 49-106.

[11] Coffmen E.G.Jr, Garey MR, Johnson D.S, Tarajan R.E, Performance bounds for
Level-Oriented Two-Dimensional Packing Algorithms, SIAM J. Comput. 9 (1980), 808-826.

[12] Garey M.R,, Johnson D.S,, "Strong” Np-Completeness Results, Motivation, Examples and
Implications, J. ACM 25, no. 4, 1978, 499-508.

[13] Gilmore P.C., Gomory R.E., Multistage Cutting Stock Problems of Two and More
Dimensions, Operations Research 13 (1965), 94-120.

[14] Gilmore P.C., Gomory R.E., The theory and Computation of Knapsack Functions, Operation
Research 15 (1967), 1045-1075.

[15] Gurel O., Circular Grapf of Marker Layout, IBM Data Processing Division, New York
Scientific Center Report, no. 320-2965, Feb. 1969.

[16] Israni S.S, Sanders J.L., Two-Dimensional Cutting Stock Problem Research: Areview and
a New Reétangular Laypout Algorithm, Journal of Manufacturing Systems 1 (1982), 169.

[17] Israni S.S, Sanders J.L., Performance Testing of Rectangular Parts Nesting Heuristics, Int. J.
Prod. Res., 23 {1985), 437-456.

[18] Johnson D.S., Near-Optimal Bin-Packing Algorithms, Ph. D. Thesis, Massachusetts Institute
of Technology, Electrical Department, 1974.

[19] Karp. R.M,, Lenstra J.K.,, McDiarmid C.J.H,, Rinnooy Kan A.H.G., Probabilistic Analysis of
Combinatorial Algorithms: An Annotated Bibliography, in M.Oh Eigearthaigh, J. K. Lenstra
and AH.G. Rinnooy Kan (eds), Combinatoriai Optimization: Annotutsd Bibliographies,
J. Wiley, Chichester, 1984.

[20] Lenstra H.W.Jr., Integer Programming With a Fixed Number of Variables, Math. Oper. Res.
8, 1973, 538-548.

[21] Oliviera J.F., Ferreira I.S., Solving Two-Dimersional Cuiting Problems nd Zompurirg
Different Approaches, unpublished paper, Instituto de Engenhariz de Sisicmas »~ Com
-putadores, Largo Mompilher 22, 4000 Porto Portugal.

{22] Rinnooy Kan A H.G, Probabilistic analysis of algorithms, Annals of Discrete !« hematics
31 (1987), 1-60.

(23] Silver EA,, Vidal R.V,, de Werra D, A tutorial on heuristic methods, European Journa! of
Operational Research 5, 1980 153-162.

[24] Slominski L., Probabilistic analysis of combinatorial algorithms: a bibliography with selected
annotation, Computing 28 (1982), 257-267.

{25] Ullman J.B., The Performance of a Memory Allocation Algorithm, Tech. Rept., no. 100,
Princeton Univ., Electrical Engineering Department, 1971.

[26] Wang PY., Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems,
Operation Research 31 (1983), 573-586.

Received December 12, 1989

