
Divisible load scheduling
in systems with limited memory

M.Drozdowski1, P.Wolniewicz2

Abstract

In this work we consider scheduling divisible loads on a distributed

computing system with limited available memory. The communication

delays and heterogeneity of the system are taken into account. The

problem studied consists in �nding such a distribution of the load that

the communication and computation time is the shortest possible. A

new robust method is proposed to solve the problem of �nding op-

timal distribution of computations on star network, and networks in

which binomial trees can be embedded (meshes, hypercubes, multi-

stage interconnections). We demonstrate that in many cases memory

limitations do not restrict e�ciency of parallel processing as much as

computation and communication speeds.

Keywords: divisible load theory, scheduling, performance evaluation,
communication delays, memory constraints.

1 Introduction

In this work we consider scheduling divisible loads. Divisible computation
can be divided into several independent parts of arbitrary size. Due to the
independence the parts can be processed by a set of distributed computers.
An example of processing a divisible load is searching in a database. The
database �le can be divided with granularity of one record, and can be dis-
tributed between several computers for processing. Usually the database �le
is large, and the records are small. Thus, the assumption on arbitrary di-
visibility of the work is satisfactorily ful�lled. Other applications of divisible
load model can be found in processing big measurement data �les, image

1Institute of Computing Science, Pozna« University of Technology, ul.Piotrowo 3A, 60-

965 Pozna«, Poland. This research was partially supported by KBN grant. Corresponding

author.
2Pozna« Supercomputing and Networking Center, ul.Noskowskiego 10, 61-794 Pozna«,

Poland.

1

and signal processing, molecular dynamics simulations, linear algebra, par-
allel metaheuristics [2, 7]. Communication delays are unavoidable element
of distributed computations. We assume that sending x units of data over
link j takes Sj + xCj units of time, where Sj is a communication startup
time (expressed e.g. in seconds), and Cj is transfer rate (reciprocal of speed,
expressed e.g. in seconds per byte). We also assume that processing x units
of load on processor Pi (i = 0, . . . ,m) takes xAi time units, where Ai is
processing rate (expressed e.g. in seconds per byte). The load is distributed
from processor P0 called originator to a set of parallel processors. The prob-
lem consists in �nding distribution of the load, i.e. amounts αi of work to
be send to processor Pi (i = 0, . . . ,m) such that communication and com-
putation time is the shortest possible. The whole load consists of V units of
work. These assumptions resulted in a tractable model of distributed com-
putations. Even analytical solutions (i.e. closed form solutions expressing
αi's) were found [2, 6] for many computer architectures. Let us observe that
this model can represent not only communications and computations, but
also transportation systems and factories. For example, an ore mine can be
the originator and ore processing plants can play the role of processors.

It was demonstrated that divisible load model can be used in predicting
performance of real computations [4, 7]. However, in clusters of workstations
it appeared [7] that the linear dependence of processing time on the size of
work is satis�ed only if the computations are restricted to the core memory
(RAM). Larger work chunks imply using virtual memory. When virtual
memory is used, the dependence of processing time on the amount of data
becomes more complex. Also the processing speed of the computers is lower.
Hence, for e�ciency reasons it is preferable to avoid using virtual memory and
restrict the load to limited amount Bi of core memory available at processor
Pi. We assume that the critical restriction on the size of memory is put
during the computation phase. It can be the case of problems where small
data sets are unpacked or big data structures arise in computation from small
amount of input data. Therefore, the size of communicated message is not
limited otherwise than by the memory capacity of the receiver.

The problem of scheduling divisible loads in a star (referred to as a single-
level tree) with limited memory was studied in [13]. The communication
startup times were not taken into account in [13]. A fast algorithm called
Incremental Balancing Strategy (IBS) has been proposed. In IBS processors
are loaded incrementally. In each increment distribution of the load is found
for processors with available memory according to the standard divisible

2

load theory methods [2] without taking the memory constraints into account.
Then, the distribution of the load is scaled proportionately such that at least
one bu�er is �lled completely. The remaining available bu�er capacities
are memory sizes in the next increment. This process is continued until
distributing all the load. It has not been proved that IBS algorithm derives
optimal distribution of the load. Also the problem of �nding the optimum
activation sequence in the case of memory limitations has been discussed in
[13]. It has been demonstrated that the rule for optimum processor activation
sequence proposed in [2] does not work in the case with limited memory.

In this work we propose a new method of �nding solutions with guar-
anteed optimality for the problem of scheduling divisible loads in networks
of processors with limited memory and communication startup times. The
method introduces mathematical programming to the realm of divisible load
theory. We analyze two network types: star and binomial tree, in Section 2,
and Section 3, respectively. The implications of memory limitations for the
performance are studied. The problem of �nding the optimum sequence of
activating processors with limited memory in a star network is also solved.
For the convenience of the reader the notation used in this paper is summa-
rized in the appendix.

2 Star

In this section we analyze a star network of processors. The star network
can be viewed as a tree with a root and a set of leaves. The originator is
located in the root of the tree. The processors are located in the leaves.
This topology conveniently represents computations on a bus network or
master-slave model of parallel computations in a cluster of workstations [7].
We assume that the originator both communicates and computes, and that
simultaneous computation and communication is possible. For the simplicity
of mathematical models it is assumed that the time of returning the results
is negligible. It was demonstrated [2, 5, 11] that this assumption does not
limit generality of the considerations, and returning of the results can be
easily included in mathematical models. In the star network originator sends
chunk αi of load to processor Pi. Immediately after receiving its load Pi starts
computing, while the originator immediately starts the communication with
the next processor. Let Cmax denote the length of the schedule. The process
of communication and computation is presented in Fig.1. insert

Fig.1

here
3

2.1 The linear program method

Here we assume that the sequence of sending the load to the processors is
P1, . . . , Pm, and is �xed. Our problem can be formulated as a linear program
LP1:

LP1:

minimize Cmax
subject to:

αiAi +
i∑

j=1

(Sj + αjCj) ≤ Cmax i = 0, . . . ,m (1)

αi ≤ Bi i = 0, . . . ,m (2)
m∑
i=0

αi = V (3)

αi ≥ 0 i = 0, . . . ,m (4)

Let us explain the above formulae. We are to minimize schedule length
Cmax by �nding values of variables αi, Cmax such that: by equations (1) each
processor completes not later than at Cmax, by equations (2) no processor
is assigned more load than the size of its memory, according to equation
(3) all the load fractions add up to the total load V . In the equation (1)
for i = 0 we have

∑0
j=1(Sj + αjCj) = 0. Linear programming is a method

of modeling and solving engineering problems [9, 14, 15]. LP1 has m + 2
variables and 3m + 4 constraints. The solution of LP1 is a point in m + 2-
dimensional space. Constraints (1), . . . , (4) restrict the area of admissible
solutions to a convex polytope. It is known that the optimum solution is
located in one of the polytope corners. Unfortunately, the location of the
optimum depends on the problem instance and no closed-form expression of
αi seems possible. The linear programs can be solved in polynomial time,
e.g. in O(m3.5L) time [12, 14] using the interior point methods, where L is
the length of the string encoding all the parameters (Ai, Ci, Si, Bi, V) of LP1.
Linear programs can be solved by many public domain and licensed codes.
All linear programming formulations in this paper were solved by lp_solve

ver. 2.0 [1], a public domain linear programming code. Our method is more
time-consuming but it is also more robust than the algorithm proposed in
[13]. Consider Example 3 from [13].

Example. m = 4 (i.e. we have originator and 4 additional processors). Pro-
cessing rates are: A0 = 1, A1 = 5, A2 = 4, A3 = 3, A4 = 2. Available memory

4

sizes are: B0 = 10, B1 = 20, B2 = 45, B3 = 15, B4 = 30. Communication
rates are C1 = 4, C2 = 3, C3 = 2, C4 = 1. All startup times are Si = 0, for
i = 1, . . . , 4. V=100. By solving LP1 we obtain:

processor Bi αi comm. completion computation completion
P0 10 10 0 10
P1 20 15 60 135
P2 45 30 150 270
P3 15 15 180 225
P4 30 30 210 270

This schedule has Cmax = 270, and is shorter than the one found by IBS
algorithm in [13]. This is so because the optimality of LP formulation is
guaranteed, whereas IBS is a fast heuristic. The length of the schedule is
determined by the completion of computations on processors P2 and P4.
P1, P2 memory is not fully utilized. Note that in the interval [10,210] P0 is
not computing but only communicating. 2

2.2 Performance modeling

Now, we will discuss the in�uence of memory size on the performance of star
networks.

We modeled a system of initiator and 9 identical processors with Ai =
A=1E-6, connected by identical communication links with startup Si = S =
0.001, Ci = C=1E-6, and Bi = B. The sizes of available memory were equal
on all processors and the originator. A feasible solution of LP1 may not exist
when the sum of bu�er capacities is smaller than V . When a feasible solution
existed we recorded the best solution for one of the number of processors from
the range 1, . . . , 10 (including the originator). The results of modeling are
collected in Fig.2. On the horizontal axis we have size of the problem V , on
the vertical axis we have schedule length Cmax. Plots for memory sizes from
B = 10 to B =1E9 are presented. As it can be veri�ed with B = 10 we
can solve problems with size up to V = 100 on ten processors. Two more
lines denoted "sat" and "inf" are depicted in Fig.2. Line "sat" represents
a system with total memory sizes exactly equal to V . This means that
B = V

m+1
and memory bu�ers are saturated. Schedule length in a saturated

system is Csat
max =

∑m
j=1(S + V

m+1
C) + V

m+1
A. Line "inf" represents schedule

length Cinf
max in a system with unlimited memory. In this case memory size is

5

big enough to hold any loads and we can calculate the distribution of the load
according to the classical divisible load theory methods [2, 5]. The plots of
processing times for particular memory sizes are located between lines "inf"
and "sat". As it can be seen line "sat" approaches line "inf" at V ≈1E4. For
bigger volumes the two lines form a kind of tunnel in which schedule length
for the particular memory size must �t. The width of this tunnel shows
in�uence of memory limitation on the schedule length because its upper line
represents the system which has just as much memory as needed to hold the
load, while the lower line represents a system which has unlimited available
memory. From the results presented in Fig.2 it can be concluded that for big
problems (where V is big), memory limitations are not as important as the
communication and computation speeds. insert

Fig.2
here

In order to demonstrate the in�uence of memory size constraints on Cmax
we collected in Fig.3 values of "inf" and "sat" cases for various processing
rates A. A system with A =1E-9 has the fastest, while the system with
A = 1 has the slowest processors. The plots for A = 1 are so close that
they are drawn one on another. Also the lines for the saturated systems
with A =1E-9 and A =1E-6 are so close that they are indistinguishable. For
small A schedule length in saturated system is dominated by communications
which last

∑m
j=1(S + V C

m+1
). Therefore, the lines for A =1E-9 and A =1E-6

in saturated system are very close. The increase of A results in lines "inf"
going up in the Fig.3. The "sat" lines must be located above "inf" lines.
As A increases the di�erence between "inf" and "sat" decreases such that
eventually for A = 1 they are indistinguishable. It can be observed that for
computationally intensive applications which have big A, and big volumes V
the di�erence between "sat" and "inf" cases is small and schedule length is
dominated by communication and processing speeds. insert

Fig.3
here

Now we will calculate width of the tunnel, i.e. the ratio of schedule
lengths in the saturated and unlimited memory cases, on a set of identical
processors for big problem sizes. In the following we denote by ρ = C

A
, and

σ = S
A
.

Lemma 1 In the star interconnection limV→∞,ρ→0
Cinfmax

Csatmax
= 1.

Proof. In the saturated case Csat
max =

∑m
i=1(S + V C

m+1
) + AV

m+1
= mS +

V (mC+A)
m+1

. It was proved [2] that when results are not returned, and memory
is unlimited, all processors must stop computing in the same moment of
time. From this observation we can infer that time Aiαi of computing on

6

processor Pi activated earlier is equal to time Si+1 + αi+1(Ai+1 + Ci+1) of
sending the load to processor Pi+1 activated later and computing on Pi+1.
As we consider identical processors we have: Aαi = S +αi+1(A+C). αi can
be expressed as a linear function of αm: αm−i = αm(1 + ρ)i + σ

ρ
((1 + ρ)i− 1)

for i = 1, . . . ,m. All αis must add up to V . Therefore, V =
∑m
i=0 αi =

αm
(1+ρ)m+1−1

ρ
+ σ

ρ2
((1+ρ)m+1−1−ρ−mρ). From which αm, and C

inf
max = Aα0

can be calculated: Cinf
max =

A[V− σ
ρ2

((1+ρ)m+1−1−ρ−mρ)]ρ(1+ρ)m

(1+ρ)m+1−1 + Aσ
ρ
((1+ρ)m−1).

Finally, we have the desired ratio for big V :

lim
V→∞

Cinf
max

Csat
max

=
(m+ 1)ρ(ρ+ 1)m

(mρ+ 1)((ρ+ 1)m+1 − 1)
. (5)

For computation intensive applications A � C and ρ → 0. After applying

de l'Hospital rule we obtain limV→∞,ρ→0
Cinfmax

Csatmax
= limρ→0

(m+1)ρ(ρ+1)m

(mρ+1)((ρ+1)m+1−1)
H
=

limρ→0
(m+1)[(ρ+1)m+mρ(ρ+1)m−1]

m((ρ+1)m+1−1)+(mρ+1)(m+1)(ρ+1)m
= 1. 2

We conclude that in the case of big sizes V and computationally intensive
applications executed on a set of identical processors, memory limitations are
not as restrictive, for the schedule length, as computation and communication
speeds. This observation is con�rmed by Fig.2, and Fig.3. On the other hand
it should not be forgotten that this result applies to homogeneous computing
systems. In heterogeneous systems, the di�erence between Cinf

max and Csat
max

can be arbitrarily big. For example, when a fast processor has small memory
bu�er and a slow processor has a large bu�er then the equivalent speed of the
system is dominated by the slow processor in the "sat" case. Furthermore,
parameters A,C, S may change with the amount of the assigned load [7].

From equation (5) a width of the tunnel for �xed ρ, and m tending to
in�nity can be derived:

Lemma 2 In the star interconnection

lim
V→∞,m→∞

Cinf
max

Csat
max

=
e

1
k

(e
1
k − 1)(k + 1)

.

where k = A
C(m+1)

.

Proof. The above formula can be derived from (5) when assuming that
C
A
= ρ = 1

k(m+1)
, and after observing that limx→∞(1 +

1
x
)x = e. 2

7

We �nish this section with an observation on the way of activating the
processors in the solutions of LP1. Activation of the processors is ruled by
two e�ects: memory limitations and schedule length minimization. When
memory size on one processor is small then more processors must be used,
though it is not as e�cient as it would be in unlimited memory case. On the
other hand, when computation times are short in relation to communication
times then it is advantageous to use few processors. Hence, for A =1E-6 less
machines were used for some given volume V than for A =1E-3.

2.3 Optimal activation sequence in star

In this section we address the problem of �nding the optimal sequence of
activating processors in a star network when memory bu�ers have limited
sizes and communication delays include startup times. In the preceding
discussion it was assumed that the sequence of activating processors is �xed.
Here we relax this restriction and allow for selecting the best sequence of
activating processors. This problem was raised in [13].

Let us denote by a binary variable xij, for i, j = 1, . . . ,m, the order of
activating the processors. xij = 1 denotes that Pj is activated on ith position
in the sequence. xij = 0 denotes the opposite situation. The problem of op-
timally activating the processors and distributing the load can be formulated
as a mixed nonlinear programming problem:

MNP1:

minimize Cmax
subject to:

Cmax ≥ α0A0 (6)

Cmax ≥
i∑

k=1

m∑
j=1

xkj(αjCj + Sj) +
m∑
j=1

xijαjAj

i = 1, . . . ,m (7)

1 ≥
m∑
i=1

xij j = 1, . . . ,m (8)

1 ≥
m∑
j=1

xij i = 1, . . . ,m (9)

xij ∈ {0, 1} i, j = 1, . . . ,m (10)

8

V = α0 +
m∑
j=1

m∑
i=1

xijαj (11)

Bj ≥ αj ≥ 0 j = 0, . . . ,m (12)

The above MNP1 formulation is a mixed problem because we have both
binary variables xij, and continuous variables αi, Cmax. MNP1 is nonlinear
because in equations (7), (11) we have multiplication of the variables. Equa-
tions (6) and (7) demand that all processors �nish computing before Cmax.
In equations (7) term

∑i
k=1

∑m
j=1 xkj(αjCj +Sj) is the time of sending to the

processor activated as i-th in the sequence, and
∑m
j=1 xijAjαj is the computa-

tion time of the i-th processor in the sequence. Equations (8)-(10) guarantee
that the sequence of activating the processors is correct: each PE is activated
at most once by (8), each position in the activation sequence is occupied by
at most one processor by (9). Due to weak inequalities some processors may
remain idle. Equation (11) guarantees processing of the whole load. Observe
that some machines may be missing in the activation sequence, and xij = 0
for i, j = 1, . . . ,m is a valid solution for constraints (8)-(10). Yet, it would
not be a valid solution because appropriate communication time would not
appear in equations (7). In order to prevent such a situation term

∑m
i=1 xijαj

in equation (11) guarantees that only the chunks sent to the processors are
counted as really processed. Equations (12), guarantee that the load can be
feasibly assigned to the processors. Let us apply the above formulation to
solve Example 3 from [13].

Example. We have the same data as in the previous example: m = 4, V =
100, A0 = 1, A1 = 5, A2 = 4, A3 = 3, A4 = 2, B0 = 10, B1 = 20, B2 =
45, B3 = 15, B4 = 30, C1 = 4, C2 = 3, C3 = 2, C4 = 1, Si = 0, for i = 1, . . . , 4.
Ms.Excel ver.7.0 managed to obtain the following solution to MNP1:

processor Bi αi communication computation
order completion completion
P0 10 10 0 10
P2 45 35.2941 105.8824 247.0588
P4 30 30 135.8824 195.8824
P1 20 12.3529 185.2941 247.0588
P3 15 12.3529 210 247.0588

The sequence of activating the processors, according to the solver we used,
is P2, P4, P1, P3. Schedule length is Cmax = 247.0588, and it is better than

9

the one found in [13]. The reasons for this were given earlier. For the same
instance with V = 50 (also considered in [13]) the following solution was
obtained for MNP1:

processor Bi αi communication computation
order completion completion
P0 10 10 0 10
P4 30 24.277 24.277 72.832
P3 15 9.711 43.699 72.832
P2 45 4.162 56.185 72.832
P1 20 1.850 63.584 72.832

Thus, the sequence found is P4, P3, P2, P1, and Cmax = 72.832. 2

The computational complexity of the general purpose mixed nonlinear
solvers applied to MNP1 is high. These codes are capable of solving hard
computational problems such as traveling salesman problem, quadratic as-
signment problem, and even more involved ones. It has been shown [8]
that the problem of scheduling divisible loads in a star network with limited
processor memory bu�ers and communication startup times is computation-
ally hard (strictly NP-hard). According to the current state of knowledge
[10] only algorithms with computational complexity growing exponentially
with the size of the problem are known for this kind of problems. Thus,
the codes �nding optimal solutions of MNP1 have the worst-case execution
time growing exponentially e.g. with the number of binary variables xij. As
exponential functions increase explosively with the value of the argument,
exponential-time algorithms are in practice restricted to small instances of
the solved problem. This leaves space for heuristic methods which �nd good
solution fast, and this is the advantage of IBS strategy proposed in [13].

3 Binomial trees

In this section we consider computer interconnections allowing for embedding
a binomial tree. This is the case of hypercubes [11], meshes [3, 5, 11], mul-
tistage interconnections [5], and chains [5] with wormhole routing or circuit-
switched routing. By a binomial tree of degree p we mean a graph which
is acyclic and each node on levels 0, . . . , i has p successors on level i + 1.
Processors are the nodes of the binomial tree, and p is the number of proces-
sor ports which can communicate simultaneously. In Fig.4 the main idea of

10

scattering in the binomial tree is illustrated: First the load is sent very far,
and in the subsequent steps it is redistributed in smaller area of the network.
It is assumed that all processors are identical and are able to communicate insert

Fig.4

here.
and compute simultaneously. Also the communication links are identical.
All processors on level i are activated simultaneously in i-th iteration of load
scattering algorithm and will be called a layer i. We assume that the num-
ber of layers is h, and 0 is the layer of the originator. A great advantage of
binomial trees is that the number of active processors grows exponentially
with the number of layers. In a binomial tree of degree p layer i > 0 has
p(1 + p)i−1 processors.

Two di�erent ways of activating the layers have been proposed: The
natural order of the layers called Nearest Layer First (NLF) [3], and the
order of decreasing number of processors in the layer called Largest Layer

First (LLF) [11]. Fig.5 and Fig.6 show diagrams of communication and
computation for strategies NLF, LLF, respectively. In NLF (cf.Fig.5) layers
receive the load for themselves and for their descendants in the binomial tree.
Immediately after receiving the load processors start processing their share
of the load, while the rest is sent to the following layers. Thus, processors
start computing in the order of the layer number. In LLF strategy (cf. Fig.6)
the layers start computing in the order h, h−1, . . . , 1. To activate some layer
i the intermediate layers 0, . . . , i− 1 transfer the load to layer i, but do not
compute. In the two following sections we study NLF and LLF strategies. insert

Fig.5

and

Fig.6

here

3.1 Nearest Layer First

The problem of determining optimal distribution of load V in binomial tree of
degree p under NLF strategy can be solved by the following linear program:

LP NLF:

minimize Cmax
subject to:

αiA+
i∑

j=1

(S + Cαj + Cp
h∑

k=j+1

(p+ 1)k−j−1αk) ≤ Cmax i = 0, . . . , h (13)

α0 + p
h∑
i=1

(1 + p)i−1αi = V (14)

B ≥ αi ≥ 0 i = 0, . . . , h (15)

11

In LP NLF αi, for (i = 0, . . . , h), are variables denoting the amount of load
assigned to each processor in layer i. In equations (13) term

∑i
j=1(S+Cαj+

Cp
∑h
k=j+1(p + 1)k−j−1αk) is the communication time spent until activating

layer i. Note that layers 1, . . . , i receive load not only for themselves but
also the load to be redistributed to layers i+1, . . . , h. Equations (13) ensure
that all layers stop computing before the end of the schedule Cmax. By
equation (14) all the load is processed, and by (15) assignments of the load
can be accommodated in the memory bu�ers of the processors. LP NLF
is formulated with the assumption that all h layers are working. However,
it may happen that fewer layers will process all the load. In such a case
some layers are not assigned any load, but still communication startup time
appears in inequalities (13). This case is easy to recognize: some layers
receive 0 load, and decreasing h reduces Cmax. Hence, less layers should be
used. By binary search over the admissible numbers of layers the appropriate
value of h can be found.

Now, we will study performance of NLF algorithm in a binomial tree of
degree 4, and 7 layers (m = 78125 processors). This tree can be embedded in
a 2-dimensional toroidal mesh [3]. We modeled a system with A = C =1E-6,
S =1E-3, and memory sizes from B = 10 to B=1E9. The schedule lengths
Cmax vs. size of the problem is depicted in Fig.7. Line "inf" represents a
system with unlimited memory. Line "sat" represents a system with total
memory size equal V . Thus, in saturated case each processor has memory
bu�er of size B = V

(p+1)h
. Schedule lengths for "sat" and "inf" cases are very

close to each other in the case of big volumes V . As it was in the case of star
topology, the two lines form a tunnel in which plots for particular memory
sizes are located. In Fig.8 only "sat" and "inf" cases are depicted for various
processing rates A. The behavior is similar to the star topology: For big
load volumes V the two lines are parallel. As A increases (e.g. because
the application is computationally intensive) the "inf" line moves up until it
overlaps with line "sat". Now we are going to calculate the relative width of
the tunnel for big V and A. insert

Fig.7

and

Fig.8

here

Lemma 3 Under NLF strategy in binomial tree limV→∞,ρ→0
Cinfmax

Csatmax
= 1.

Proof. We will give a formula for the ratio of schedule length Csat
max

in the saturated case and Cinf
max in the unlimited memory case. In the sat-

urated case all processors are assigned the same load equal to the bu�ers

12

size B = αi = V
(p+1)h

, for i = 0, . . . , h. Csat
max is determined by the dura-

tion of all communications plus processing on layer h (cf. Fig.5). Thus,
Csat
max = hS + CV

m

∑h
j=1(1 + p

∑h
k=j+1(p+ 1)k−j−1) + AV

m
, where m = (p+ 1)h

is total number of processors. This formula can be reduced to Csat
max =

hS + V A
m

+ V C((p+1)h−1)
mp

. The formula expressing Cinf
max has been given in

[11]: Cinf
max = A(V + σ

p+ρ
)p(p+ρ+1)−h+ρ

p+ρ
+ σ(hp−1)

p+ρ
. Hence,

Cinf
max

Csat
max

=
A(V + σ

p+ρ
)p(p+ρ+1)−h+ρ

p+ρ
+ σ(hp−1)

p+ρ

hS + V A
m

+ V C((p+1)h−1)
mp

(16)

It can be veri�ed that limV→∞,ρ→0
Cinfmax

Csatmax
= limρ→0

p(p+ρ+1)−h+ρ
p+ρ

1
m
+
ρ((p+1)h−1)

mp

=
p(p+1)−h

p
1

(p+1)h

=

1. 2.

Thus, in binomial trees spanned in homogeneous computer networks, un-
der NLF strategy, when size V of the problem is big, and the problem is
computationally intensive (ρ → 0), the in�uence of the limited memory is
insigni�cant.

3.2 Largest Layer First

In this section we consider a di�erent strategy of activating the layers. Ac-
cording to LLF strategy h is the �rst layer, and 1 is the last layer activated.
We will give a linear program solving the problem of distributing the load
optimally in binomial tree under LLF. Then, we compare the results of mod-
eling performance of systems with LLF and NLF scattering methods.

Before formulating a linear program for LLF strategy consider duration
of the communication from the originator to layer i. There are p(p + 1)i−1

processors in layer i. First the originator sends over each of its p communica-
tion links p(p+1)i−2αi load units to layer 1. The remaining load p(p+1)i−2αi
will be sent to layer i via direct successors of the originator in layers 2, . . . , i
(cf. Fig.6). Each processor in layer j < i − 1 sends p(p + 1)i−j−2αi units
of data to layer j + 1. The remaining p(p + 1)i−j−2αi is sent from layer j
to layer i via j's direct binomial tree successors in layers j + 1, . . . , i. Fi-
nally, layers 0, . . . , i − 1 send αi load units to layer i. Note that all layers
communicate synchronously, and the same amounts of load are sent from
active layers to the next activated layer. Total communication time is equal

13

to Si+Cαi(1 + p
∑i−2
j=0(p+ 1)i−j−2) = Si+Cαi(p+ 1)i−1. The problem can

be solved by a linear program:

LP LLF:

minimize Cmax
subject to:

αiA+
h∑
j=i

(Sj + C(p+ 1)j−1αj) ≤ Cmax i = 0, . . . , h (17)

α0 + p
h∑
i=1

(1 + p)i−1αi = V (18)

B ≥ αi ≥ 0 i = 0, . . . , h (19)

In LP LLF equations (17) guarantee that all processors �nish computing
before the end of the schedule. By equation (18) all the load is processed, and
by equations (19) all processors are able to accommodate the assigned load.
It may happen that the assumed number of layers h is too big. Reduction
of h results in shorter schedule. Yet, the problem becomes more involved
because we send to the larger layer �rst. A solution of LP LLF may activate
layers non-continuously. Some layers may receive load for processing, while
the remaining layers would still contribute startup time S in inequalities (17),
though they receive nothing. We observed that in the solutions of LP LLF
layers with higher index (i.e. with more processors) are assigned some load
�rst in consecutive manner (without gaps). Thus, for given h it is possible
to check LP LLF only with the last layers h, . . . , h − j. The best number
of utilized layers can be found by binary search over the range of h. In the
worst case this procedure must be repeated for various values of h. Hence,
the total number of calls to LP LLF needed to �nd optimum distribution of
the load is O(h log h), where h = logp+1m, and m is the number of available
processors. In the following we prove that this strategy leads to optimal
solutions because it is alwys pro�table to activate layer i + 1 (with more
processors) before layer i.

Lemma 4 Let Ci
max denote schedule length for some volume V assigned to

layer i but not to layer i+1, and Ci+1
max, when V is assigned to i+1, but not

to i. Then, Ci
max > Ci+1

max.

Proof. Let us calculate length of the schedule when layer i is used to
process V , but layer i+1 is not exploited. Layer i has p(p+1)i−1 processors.

14

Thus, Ci
max = S + C(p + 1)i−1 V

p(p+1)i−1 + AV
p(p+1)i−1 = S + CV

p
+ AV

p(p+1)i−1 .

Analogously, Ci+1
max = S + CV

p
+ AV

p(p+1)i
. Hence, Ci

max > Ci+1
max for i > 0. 2.

By the above lemma it is pro�table to activate the layers consecutively
from the layer with more processors to the layer with less processors (without
gaps in between).

We studied the performance of a computer network with embedded bino-
mial tree under LLF strategy. In order to �nd the shortest processing time
over various orders of activating layers we used the result of Lemma 4, and
increased the number of active layers from the last one to the �rst. The solu-
tion with the smallest schedule length was selected. In general, the behavior
of Cmax under changing V,B,A is very similar to the case of NLF behavior.
Schedule lengths in the saturated system and in the system with unlimited
memory is presented in Fig.9. Also here a tunnel between "inf" and "sat"
cases can be observed. In the following lemma we will show that for big vol-
umes and computation-intensive applications the relative di�erence is very
small. insert

Fig.9

hereLemma 5 Under LLF strategy in binomial tree limV→∞,ρ→0
Cinfmax

Csatmax
= 1.

Proof. Schedule length in the saturated case is Csat
max =

∑h
j=1(Sj+

V C
m
(p+

1)j−1) + AV
m

= S(h+ 1)h/2 + V
m
(Cm−1

p
+A), where m = (p+ 1)h is the total

number of processors. The formula for Cinf
max has been given in [11]:

Cinf
max =

AV

M
+
Aσp

ρM

h∑
j=1

cπ(j) − 1

P π
j

(
j∑
i=1

(h− i+ 1)P π
i−1),

where: M = 1 + p
ρ
(1 − 1

Pπ
h
), cπ(j) = 1 + ρ(p + 1)h−j, cπ(0) = 1, and P π

j =∏j
i=0 cπ(i). Thus in LLF strategy,

Cinf
max

Csat
max

=

AV
M

+ Aσp
ρM

∑h
j=1

cπ(j)−1
Pπj

(
∑j
i=1(h− i+ 1)P π

i−1)

S(h+ 1)h/2 + V
m
(Cm−1

p
+ A)

(20)

When the volume of load is big and the application is computationally in-
tensive, we have:

lim
V→∞,ρ→0

Cinf
max

Csat
max

= lim
V→∞,ρ→0

V A
1+ p

ρ
(1− 1

Pπ
h
)

V A
m
(ρm−1

p
+ 1)

=

15

lim
ρ→0

m

(1 + p
ρ
(1− 1

Pπ
h
))(ρm−1

p
+ 1)

= lim
ρ→0

m

1 + p
ρ
(1− 1

Pπ
h
)
H
= 1

since limρ→0 P
π
h = 1, we applied de l'Hospital rule and obtained:

limρ→0

p(1− 1
Pπ
h
)

ρ

H
= limρ→0

p(
∑h−1

i=0
(p+1)i+2ρ((p+1)3+...+3ρ2((p+1)6+...)

(Pπ
h
)2

= m− 1. 2

A similar conclusion can be drawn as in the star interconnection and
under NLF strategy. In binomial trees spanned in homogeneous computer
networks, under LLF strategy, when size V of the problem is big, and the
problem is computationally intensive (ρ → 0), then the relative in�uence of
the limited memory on the processing time is negligible.

In our modeling of LLF strategy we observed several interesting facts:

• It was shown in [11] that LLF strategy is optimal in a system with
unlimited memory. In the saturated system it is not, because LLF has
greater number of communication startups than NLF. This communi-
cation overhead is not compensated for by a better distribution of the
load and shorter computation time.

• In the earlier publications on divisible load theory [3, 11] systems with
unlimited memory were considered (i.e. case 'inf'). LP formulations
had more restricted form and e.g. inequality (17) had form of equation.
As a result in LLF strategy, when volume V is small and available
memory is not restricted, only few layers can be activated (even if we
have many layers) to satisfy the classical version of LP LLF. Thus,
small increase of V may be satisfactory to activate more layers and in
this way reduce schedule length. This is demonstrated in the example
presented below. Consequently, with V increasing Cinf

max may decrease.
This is evident in Fig.9 where lines for 'inf' case and A = 1E-3, and
A = 1 are not smooth for small V .

• The above irregular behavior was not observed in the LP NLF model.

• We observed that for A ≈ C only the last layer was populated. When
A� C the layers closer to the originator were populated more often.

• None of NLF, LLF strategies dominates the other in all cases. However,
for big volumes and LLF shorter schedules were obtained.

Example. Consider a system with h = 2, p = 4, A = 1E-3, C = 1E-6,
S =1E-3, V = 20. In the system with unlimited memory [11] equations

16

describing distribution of the load have positive solution only for one layer
(5 processors altogether). Schedule length in this case is Csat

max ≈ 0.0048.
However, when V = 24 all 25 processors can be activated, and Csat

max ≈ 0.003.
Using LP LLF, and only the last layer we obtain Cmax ≈ 0.0029 in the �rst,
and Cmax ≈ 0.0031, in the second case. 2

4 Conclusions

In this paper we analyzed divisible load distribution in systems with lim-
ited memory. Interconnection topologies of a star, and binomial tree under
two di�erent distribution strategies were studied. It appeared that in homo-
geneous systems and big computationally intensive applications mainly the
processor and communication speeds limit performance of the systems. The
problem of optimal order of activating the processors in the heterogeneous
star has been addressed.

In our discussion we assumed that only the size of the receiver memory is
restricting distribution of the load. The communication system is not limiting
the size of the message. This may not be the case in practice. Therefore,
a system with limited communication system capacity can be a subject of
further work.

References

[1] M.Berkelaar, lp_solve - Mixed Integer Linear Program solver,
ftp://ftp.es.ele.tue.nl/pub/lp_solve, 1995.

[2] Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divis-
ible loads in parallel and distributed systems. IEEE Computer Society
Press, Los Alamitos CA (1996)

[3] J.Bªa»ewicz, M.Drozdowski, F.Guinand, D.Trystram, Scheduling a di-
visible task in a 2-dimensional mesh, Discrete Applied Mathematics 94(1-
3), 1999 (June), 35-50.

[4] Bªa»ewicz, J., Drozdowski, M., Markiewicz, M.: Divisible task schedul-
ing - concept and veri�cation. Parallel Computing 25 (1999) 87�98

17

[5] Drozdowski, M.: Selected problems of scheduling tasks in mul-
tiprocessor computer systems. Pozna« University of Technol-
ogy Press, Series: Rozprawy, No.321, Pozna« (1997). Also:
http://www.cs.put.poznan.pl/�maciejd/txt/h.ps

[6] M.Drozdowski, W.Gªazek, Scheduling divisible loads in a three-
dimensional mesh of processors, Parallel Computing 25 (1999) 381-404.

[7] M.Drozdowski, P.Wolniewicz, Experiments with Scheduling Divisible
Tasks in Clusters of Workstations, in: A.Bode, T.Ludwig, W.Karl,
R.Wismüller (eds.), Euro-Par 2000, LNCS 1900, Springer-Verlag,
(2000), 311-319

[8] M.Drozdowski, P.Wolniewicz, On the complexity of divisible job schedul-
ing with limited memory bu�ers, Technical Report RA-001/2001, Insti-
tute of Computing Science, Pozna« University of Technology, 2001.

[9] R.Fourer, Linear Programming Frequently Asked Questions, 2000,
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html,

[10] M.R.Garey, D.S.Johnson, Computers and Intractability: A guide to the

theory of NP-completeness, Freeman, San Francisco, 1979.

[11] W.Gªazek, Algorithms for Scheduling Divisible Tasks on Parallel Ma-

chines, 1998, Ph.D. Thesis, Dept. of Electronics, Telecommunication
and Computer Science, Technical University of Gda«sk, Poland.

[12] J.Gondzio, T.Terlaky, A computational view of interior-point methods
for linear programming, in: Beasley (ed.), Advances in Linear and Inte-

ger Programming, Oxford University Press, Oxford 1996, 107-146.

[13] X.Li, V.Bharadvaj, C.C.Ko, Optimal divisible task scheduling on single-
level tree networks with bu�er constraints, IEEE Trans. on Aerospace

and Electronic Systems 36, No. 4, 2000, 1298-1308.

[14] I.J.Lustig, R.E.Marsten, D.F.Shanno, Interior point methods for linear
programming: Computational state of the art, ORSA J. on Computing

6, No. 1, 1994, 1-14.

[15] G.L.Nemhauser, L.A.Wolsey, Integer and Combinatorial Optimization,
John Wiley & Sons, New York, 1988.

18

Appendix: Notation summary

A - processing rate in a homogeneous system,
Ai - processing rate of processor Pi in heterogeneous system,
Bi - size of memory bu�er of processor Pi in heterogeneous system,
C - transfer rate in a homogeneous system,
Cj - transfer rate of link j in heterogeneous system,
Cmax - schedule length,
Cinf
max - schedule length in a system with unlimited memory,

Csat
max - schedule length in a system with total memory size equal to V ,

h - number of layers in a binomial tree
m - number of processors,
p - degree of a node in a binomial tree,
ρ = C

A
- de�ned only for homogeneous systems,

σ = S
A
- de�ned only for homogeneous systems,

S - communication startup time in a homogeneous system,
Sj - communication startup time for link j in heterogeneous system,
V - total size of the load.

19

Figure captions

Fig. 1 Communication and computation in a star.

Fig. 2 Schedule length for a star network for various problem and memory
sizes.

Fig. 3 Schedule length for a star network with unlimited and saturated
memory for various processing rates.

Fig. 4 The idea of scattering in a binomial tree. p = 2.

Fig. 5 Communication and computation in a binomial tree under NLF strat-
egy.

Fig. 6 Communication and computation in a binomial tree under LLF strat-
egy.

Fig. 7 Schedule length in a binomial tree under NLF strategy for various
problem and memory sizes.

Fig. 8 Schedule length in a binomial tree under NLF strategy with unlimited
and saturated memory

Fig. 9 Schedule length in a binomial tree under LLF strategy with unlimited
and saturated memory

20

Fig.1

communication

computation

computationP1

P0

S + C1 1 1a S + C2 2 2a S + Cm m ma

a0 0A

a1 1A

a
m

A
m-1 -1

a
m

A
m

Pm-1

Pm

...

...

time

Cmax

Fig.2

1E-6

1E-4

0.01

1

100

1E4

ti
m

e

1 100 1E4 1E6 1E8 1E10

V

1E1 1E2 1E3 1E5

1E7 1E9 sat inf

Fig.3

1E-10

1E-5

1

1E5

1E10

ti
m

e

1 100 1E4 1E6 1E8 1E10
V

A=1E-9, sat A=1E-9, inf A=1E-6, sat A=1E-6, inf

A=1E-3, sat A=1E-3, inf A=1, sat A=1, inf

Fig.4

step 3

distance in the network

step 2

step 1

0

0

0

1

1

1

1

1

2

2

2
2

2
2

2
2

2
2

2

2

3
3

3
3

3
3

3
3

3
3

3
3
3
3
3
3
3

1

3

Fig.5

communication

communication

communication

computation

computation

computation

computation

...

time

la
y
er

s
o
f

p
ro

ce
ss

o
rs

S+C +p p+1(())a a
1 2

S
h

j= j

j-2 S+C +p p+1(())a a
2 3

3
S
h

j= j

j-

S+C +p p+1(())a a
2 3

3
S
h

j= j

j-

S+Ca
h

S+Ca
h

S+Ca
h

a0A

a1A

ah- A1

ahA

...

...

0

0

1

h-1

h

Cmax

Fig.6

communi
cation

communication

computation

computation

computation

... ...

...

time

la
y
er

s
o
f

p
ro

ce
ss

o
rs

a0A

a1A

a2A

ahA

... ...

... ...

0

0

1

2

h-1

h

S+ Cp p+1a
h

h-
()

2
S+ Cp p+1a

h

h-
()

3

S+ Cp p+1a
h

h-
()

3

S+ Ca
h

S+ Ca
h

S+ Ca
h

S+ Ca
1S+ Ca

2S+ Cpa
2

S+ Ca
2

Cmax

Fig.7

1E-6

1E-4

0.01

1

100

1E4

1E6

1E8

ti
m

e

1 100 1E4 1E6 1E8 1E10 1E12 1E14
V

1E1 1E2 1E3 1E6 1E9 sat inf

Fig.8

1E-10

1E-8

1E-6

1E-4

0.01

1

100

1E4

1E6

1E8

1E10

ti
m

e

1 100 1E4 1E6 1E8 1E10 1E12 1E14
V

A=1E-9,sat A=1E-9,inf A=1E-3,sat

A=1E-3,inf A=1,sat A=1,inf

Fig.9

1E-10

1E-8

1E-6

1E-4

0.01

1

100

1E4

1E6

1E8

1E10

1 100 1E4 1E6 1E8 1E10 1E12
V

A=1E-9,sat A=1E-9,inf A=1E-3,sat

A=1E-3,inf A=1,sat A=1,inf

ti
m

e

1E14

Authors biographies

Maciej Drozdowski Received M.Sc. in control engieering in 1987, and
Ph.D. in computer science in 1992. In 1997 he defended his habilitation in
computer science. Currently, he is an associate professor at the Institute of
Computing Science, Poznan University of Technology. His research interests
include design and analysis of algorithms, complexity analysis, combinato-
rial optimization, scheduling, computer performance evaluation. Member of
IEEE Computer.

PaweªWolniewicz Graduated from Poznan University of Technology
and received M.Sc. in computer science in 1997. Currently, he works for
Poznan Supercomputing and Networking Centre, Poznan, Poland. He is
Ph. D. Candidate in departament of computer science Poznan University
of Technology. His research interests include metacomputers, distributed
environments and scheduling

