Multi-installment Divisible Load Processing
in Heterogeneous Systems with Limited Memory

M.Drozdowski'* and M.Lawenda?

! Institute of Computing Science, Poznan University of Technology,
ul.Piotrowo 3A, 60-965 Poznan, and Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznan, Poland
Maciej.Drozdowski@cs.put.poznan.pl
2 Poznan Supercomputing and Networking Center,
ul.Noskowskiego 10, 61-704 Poznan, Poland
Marcin.Lawenda®@man.poznan.pl

Abstract. Optimum divisible load processing in heterogeneous star sys-
tem with limited memory is studied. We propose two algorithms to find
multi-installment load distribution: Exact branch-and-bound algorithm
and a heuristic using genetic search method. Characteristic features of
the solutions and the performance of the algorithms are examined in a
set of computational experiments.

1 Introduction

Divisible load model represents computations with fine granularity, and negligi-
ble dependencies between the grains of computations. Consequently, the compu-
tations, or the load, can be divided into parts of arbitrary sizes, and these parts
can be processed independently in parallel. Divisible load theory (DLT) proved
to be a versatile vehicle in modeling distributed systems [3, 4, 10].

In this paper we assume a star communication topology. Heterogeneous
processors (or workers, clients) receive load from a central server (or an orig-
inator, master) only. The load is sent in multiple small chunks, rather than in
one long message. Since the amount of processor memory is limited, the accumu-
lated load cannot exceed the memory limit. The problem is to find the sequence
of processor communications, and the sizes of the load chunks such that the
length of the schedule is minimum. We propose two algorithms for this problem.
Exact branch and bound algorithm, and a heuristic based on genetic search.

Similar problems have already been studied. Multi-installment distribution
was proposed in [2, 3], but the sequence of communications was fixed, and mem-
ory limits were not considered. Memory limitations and single installment com-
munications were studied in [5-7,9]. For a fixed communication sequence a fast
heuristic was proposed in [9], and an optimization algorithm based on linear
programming was given in [5]. A hierarchic memory system was studied in [6].

* This research has been partially supported by the Polish State Committee for Sci-
entific Research.

A multi-installment load distribution with a fixed communication pattern was
proposed to overcome out-of-core memory speed limitations. It was shown in [7]
that finding optimum divisible load distribution in a system with limited mem-
ory sizes and affine communication delay is NP-hard. In [11] multi-installment
divisible load processing with limited memory was studied, but the computer
system was homogeneous and communication sequence was fixed. In this paper
we assume that the sequence of communications can be arbitrary. The load is
processed in multiple chunks by a heterogeneous system. To our best knowledge,
none of the already published papers addressed the exact problem we study.

The rest of the paper is organized as follows. In Section 2 problem is formu-
lated, in Section 3 solution methods are outlined, and results of computational
experiments are reported in Section 4.

2 Problem Formulation

A set of processors { Py, ..., Py, } is connected to a central server Py. By a proces-
sor we mean a processing element with CPU, memory, and communication hard-
ware. Each processor P; is defined by the following parameters: communication
link startup time S;, communication transfer rate C;, processing rate A;, and
memory limit B;. The time to transfer x load units from Py to P; is S; + zC;.
The time required to process the same amount of load is xA;. Let n denote
the number of load chunks sent by the originator to the processors. We will
denote by o; the size of chunk j. The total amount of load to process is V.
Hence, Z?’Zl a; = V. The problem consists in finding the set of used proces-
sors, the sequence of their activation, and the sizes of the load chunks «; such
that schedule length C,,4., including communication and computations, is the
shortest possible. For the sake of conciseness we will mean both selecting the
set of processors and their activation sequence while saying activation sequence.
The optimum activation sequence must gear to the speeds of the processors, and
available memory. Let d; be the index of the destination processor for load chunk
j,and d = (dy,...,d,) a vector of processor destinations.

It is assumed that the amount of memory available at the processor is limited.
If the new chunks arrive faster than the load is processed, then the load may
accumulate in the processor memory. The method of memory management has
influence on the conditions that must be met to satisfy memory limitations.
Below we discuss some options. In all cases we assume that memory is allocated
before the communication with the arriving load starts.

1) When load chunk j starts arriving, a memory block of size a; < By, is al-
located. After processing chunk j the memory block is released to the operating
system. This approach was assumed in the earlier papers [5-7,9,11]. Unfortu-
nately, though each chunk uses less memory than By;, the total accumulated
memory consumption may be bigger. Hence, this method is not very effective in
the case of multi-installment processing.

2) When load chunk j starts arriving, many small blocks of memory are
allocated from the memory pool. The size of each small block is equal to the size

of the grain of parallelism. The total allocated memory size is ;. As processing
of the load progresses, the memory blocks are gradually released to the operating
system. This method of memory management is illustrated in Fig.la.

3) As in the first case, memory block of size «; is allocated when chunk j
starts arriving. It is released after processing chunk j. However, it is required
that the total memory allocated on the processor never exceeds limit Bg,. This
method of memory management is illustrated in Fig.1b.

[] [communicafiony ¢ [] [comimunicafiony ;

HY

a) b)

memory usage
memory usage

Fig. 1. Memory usage for a) management method 2, b) management method 3.

For the sake of simplicity of mathematical representation, in this work we
use the second method of memory management. For the same reason we as-
sume that: the time of returning the results of computations is negligible, and
that processors cannot compute and communicate simultaneously. Consequently,
computations are suspended by communications. We assume that the sequence
of processor destinations d is given. Hence, we know number n; of load chunks
sent to processor P;, and function g(i, k) € {1,...,n} which is the global number
of a chunk sent to processor P; as k-th for k =1,...,n;. Let t; denote the time
moment when sending load chunk j starts. We will denote by x;; the amount of
load that accumulated on processor P; at the moment when communication k to
P; starts. The problem of the optimum chunk size selection can be formulated
as the following linear program:

min Chaz

tj—f—de—l—Oédej <111 j=1...,n—1 (1)
totik) — (tgik—1) + Si + Ciag(i k—1))
Tik—1 + Qg(ik—1) — 9Ck) o DAA 9GhD) < gy,
i=1,....mk=2,...,n; (2)
Tik + g k) < Bi i=1,....mk=1,...,n;, (3)

tg(i,ni) +5; + Ciag(i,ni) =+ Ai(ag(i,ni) + .137"7) < Chge ©= L...,m (4)

Ya;=v (5)

i1 = 0,2, >0 t=1,....mk=2,...,n; (6)
tj,ajzo jZ].,...,TL (7)

In the above formulation inequality (1) guarantees that communications do not
overlap. The amount of load accumulated on P; at the moment when chunk &
starts arriving must satisfy inequality (2). By inequality (3) memory limit is not
exceeded. Computations finish before the end of the schedule by constraint (4),
and the whole load is processed by equation (5). The above formulation can be
adjusted to the case when simultaneous receiving a new load chunk and compu-
tation on the previous one is possible. In such a situation the following constraint
should be added: ;1 > ay(; k—1) — A%(tg(i7k) — (tg(i,k—1) +5i + Ciagik—1)). We
conclude that the optimum load distribution can be found provided that the
sequence of processor communications d is given. In the next section we propose
two methods of constructing d.

3 Selecting Processor Activation Sequence

3.1 Branch and Bound Algorithm

Branch-and-bound (BB) algorithm is an enumerative method that generates
and searches the space of possible solutions while eliminating these subsets of
solutions which are infeasible or worse than some already known solution.

The search space consists of possible sequences d. Solutions are generated
expanding partial sequence M = (dy,...,d;), for i < n, by adding all possible
destinations d; 1 € {1,...,m}, until obtaining complete sequences of length n.
The generation of the sequences can be imagined as a construction of a tree
with at most m™ leaves. Some branches of the tree can be pruned. Therefore, for
each partial sequence d(i) a lower bound on the length of all d(i)’s descendants
is calculated. The lower bound is Cj,q, obtained from linear program (1)-(7)
by assuming that each load chunk ¢ + 1,...,n is sent to an ideal processor.
An ideal processor P;; has all the best parameters in the processor set, i.e.
Aig = min? 1 {4;}, Ciqg = min]* ;1 {C;}, Siqg = min]*1{S;}, Big = max",{B;}. If
the lower bound is greater than or equal to the length of some already known
solution then there is no hope that any of d(i) descendants will improve the
schedule. If the resulting linear program (1)-(7) is infeasible then it means that

volume V' is greater than the available processor memory. In both cases d(i) is
not expanded, and in this way the search tree is pruned.

3.2 Genetic Algorithm

Genetic algorithm (GA) is a randomized search method which implicitly discov-
ers the optimum solution by randomly combining pieces of good solutions [8].
Here we present basics of our implementation of GA only.

A set of G solutions is a population. Solutions are encoded as strings d =
(dy,...,d,) of chunk destinations. The quality of solution d is the schedule length
Cimaz(d) obtained as a solution of the linear program (1)-(7) formulated for d.

Solutions of the population are subject of genetic operators. We used three
operators: crossover, mutation, and selection. Single-point crossover was applied.

The number of offspring generated by the crossover is Gpc, where p¢ is a tunable
parameter which we will call crossover probability. Mutation changes Gnpys
randomly selected chunk destinations in the whole population. p,s is a tunable
parameter which we call mutation probability. In the selection operation a new
population is assembled. The best half of the old population solutions is always
preserved. For the second half of the population some solution @ is selected with
probability ﬁ(d—) / Zle ﬁ(d—) The populations are modified iteratively.
The number of ité]rations is bounéled by an upper limit on the total number
of iterations, and an upper limit on the number of iterations without quality
improvement.

4 Computational Experiments

4.1 Experiment Setting

BB and GA were implemented in Borland C++ 5.5 and tested in a set of com-
putational experiments run on a PC computer with MS Windows XP. Linear
programs were solved using simplex code derived from lp_solve [1]. Unless
stated otherwise the instance parameters were generated with uniform distri-
bution from ranges [0,2] for parameters A4, C, S, and [0, 2X] for parameter B.
Infeasible instances with (nmax?,{B;}) < V were discarded. We applied the
following GA tuning procedure. 100 random instances with m = 4, and n = 8
were generated and solved by BB and GA. The average relative distance of GA
solutions from the optimum calculated by BB was a measure of the tuning qual-
ity. First, population size G = 40 was selected as increasing G beyond 40 did not
improve solution quality significantly. Second, crossover probability pc = 50%,
and then mutation probability pa; = 5% were selected for which best quality
was obtained in minimum number of iterations. Finally, the limits of iteration
numbers 100 (without quality improvement), and 1000 (in total) were selected
for which solution distance from optimum was better than 0.1%.

| PPy Py+Py| PP, | PP, Py+P [commuhications ;
P1 memory usage
SES
3ES5
14ES t
P, memory usage
3ES

t
41E6 63E6 90E6 11.2E6 139E6 160E6 184E6

Fig. 2. Solution for m = 2,n = 6,V =2E6, A1 = A, = 8.98,C; = (> = 7.39,5, =
2.01, S2 = 3.02, By =5E5, By =3E5.

E 1E+3
1E+3 -
NS
—IE+ /

/ - GA

= BB

[

—

execution time
GRS
execution time [s] E
o)

o

1E-

x

4 6 8 10,2 14 16 1820

—

s 2 k35

w.

Fig. 3. Execution time vs. n, for m = 4. Fig. 4. Execution time vs. memory size,
for m =4,n =8,V = 1E6.

Now let us discuss features of the optimum solutions. In Fig.2 an optimum
schedule constructed by BB algorithm is presented. It is a typical situation that
memory buffers are filled to the maximum capacity. We observed that if the num-
ber of messages is small then memory buffers were empty when a new message
arrived (i.e. x;; = 0). With the increasing number of messages n we observed
an increase in the number of the optimum solutions in which the old load is
not completely processed on the arrival of the new load (x;; > 0). Intuitively,
this seems reasonable because when 7 is small each message must carry nearly
a maximum load. If a message sent to processor P; carries maximum load B;,
then the old load must be completely processed before receiving a new chunk.

4.2 Running Times

Dependence of the BB and GA execution times on n, B are shown in Fig.3, Fig.4,
respectively. Each point in these diagrams is an average of at least ten instances.
The worst case number of leaves visited in a BB search tree is m™. Thus, the
execution time of BB is exponential in n for fixed m (Fig.3). The execution time
of GA grows with n because the length of the solution encoding and sizes of
linear programs increase with n (Fig.3). GA running time dependence on m is
weaker: 10-fold increase of m resulted in 60% increase of the execution time.
In Fig.4 dependence of the running time on memory size is shown. For this
diagram processor memory sizes (B;) were generated with uniform distribution
from range [0, ﬁ%], where « is shown along horizontal axis. With growing « the
size of available memory is growing on average. Consequently, more solutions are
feasible, less branches can be cut in BB, and BB execution time grows. When &
is big, infeasibility of a solution becomes rare, and it is not limiting BB search
tree. Hence, dependence of BB execution time on k levels-off.

13 9 145 13
" 140

L7 135
o SN
<R
N /A\Am \ L
o / | 1154 f\‘/j \/ NP
L0 e)_‘_‘/A T 110 * —— WORST 5

—— WORST
4 RND
12 & GA

I

(=}
GA, RND
5A, RND
WORST

2
$.\ WORST
&

Cm ax

) 1 4~ RND
A 105 & GA
H—A—l—l—l—l—l——l—l
1.00 1 14 R - s s al
1E3 IE2 3 1E-1 1E0 E+l 1E2 1E37 5 1E+H4 1E+5
C ‘B

Fig. 5. Quality of the solutions vs. range Fig. 6. Quality of the solutions vs. range
of C, m=4,n=8V = 1E6. of memory sizes, m = 4,n =8,V = 1F6.

4.3 Quality of the Solutions

We observed that GA is very useful in deriving optimum, and near-optimum
solutions. Over 55% of the instances were solved to the optimality by GA. The
biggest observed relative distance from the optimum was 1.2%.

In Fig.5, Fig.6 we show dependence of the solutions quality on the range of
C, B, respectively. Along the vertical axis a relative distance from the optimum
is shown for three kinds of solutions: an average for the genetic algorithm (de-
noted GA), an average for a randomly selected sequence of destinations (RND),
and for the worst case sequence ever observed (WORST). Load distributions for
RND, WORST sequences were found from (1)-(7). A dedicated axis is used for
the relation WORST. RND, and WORST are indicators of the characteristic fea-
tures inherent in the problem itself. For Fig.5, the communication rates C; were
generated from range [1 — A¢, 1+ A¢]. The remaining parameters were generated
as described above. Thus, with growing Ac heterogeneity of the communication
system was growing. Values of A\¢ are shown along the horizontal axis. As it can
be seen in Fig.5 with growing heterogeneity of parameter C' the quality of both
random and the worst case solutions is decreasing. Note, that this dependence is
growing especially fast when C variation (A¢) is big. For Fig.6 the memory sizes
were generated from range [% — AB, % + Ap], for fixed value of V. The value
of A\p is shown along the horizontal axis. A trend of decreasing solution quality
can be observed for growing A\p. Note that in Fig.6 the distance from the opti-
mum of RND, and WORST solutions is bigger than in Fig.5. Similar distance
has been observed in the case of varying A. This demonstrates that narrowing
the diversity of the system parameters simplifies obtaining a good solution, and
communication rate C is a key parameter in performance optimization. Further-
more, the distance between WORST, RND, and GA or BB solutions can be used
as an estimate of the gain from finding the optimum, or near-optimum, sequence

of processor activations. It can be inferred that this kind of gain is ~ 10-40% on
average (RND), and ~ 10-fold in the worst case.

5 Conclusions

In this paper we studied optimum multi-installment divisible load processing in
a heterogeneous distributed system with limited memory. A linear programming
formulation has been proposed for a fixed processor activation sequence. T'wo
algorithms were proposed to find an optimum, or near optimum processor ac-
tivation sequences. The algorithm running times, and quality of the solutions
were compared in a series of computational experiments. It turned out that the
proposed genetic algorithm is very effective in finding near-optimum solutions.
The impact of the system heterogeneity on the solution quality has been also
studied. It appears that with growing system heterogeneity good solutions are
harder to be found. Especially small communication speed diversity simplifies
obtaining good solutions.

References

1. Berkelaar, M.: 1lp_solve - Mixed Integer Linear Program solver.
ftp://ftp.es.ele.tue.nl/pub/lp_solve (1995)

2. Bharadwaj, V., Ghose, D., Mani, V.: Multi-installment Load Distribution in Tree
Networks With Delays, IEEE Transactions on Aerospace and Electronic Systems
31 (1995) 555-567

3. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads in
parallel and distributed systems. IEEE Computer Society Press, Los Alamitos CA

1996

4.]()rozcgowski, M.: Selected problems of scheduling tasks in multiprocessor computer
systems,. Poznani Univ. of Technology, Series: Monographs, No 321, Poznan (1997).
Downloadable from http://www.cs.put.poznan.pl/mdrozdowski/txt/h.ps

5. Drozdowski, M., Wolniewicz, P.: Divisible load scheduling in systems with limited
memory. Cluster Computing 6 (2003) 19-29

6. Drozdowski, M., Wolniewicz, P.: Out-of-Core Divisible Load Processing. IEEE
Trans. on Parallel and Distributed Systems 14 (2003) 1048-1056

7. Drozdowski, M., Wolniewicz, P.: Optimum divisible load scheduling on heteroge-
neous stars with limited memory, accepted for publication in European Journal of
Operational Research (2004)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley (1989)

9. Li, X., Bharadwaj, V., Ko, C.C.: Optimal divisible task scheduling on single-level
tree networks with buffer constraints. IEEE Trans. on Aerospace and Electronic
Systems 36 (2000) 1298-1308

10. Robertazzi, T.: Ten reasons to use divisible load theory, IEEE Computer 36 (2003)
63-68

11. Wolniewicz, P., Drozdowski, M.: Processing Time and Memory Requirements for
Multi-installment Divisible Job Processing. In R.Wyrzykowski (et al. eds.): Pro-
ceedings of 4th Int. Conf. PPAM 2001. Lecture Notes in Computer Science, Vol.
2328. Springer-Verlag, Berlin Heidelberg New York (2002) 125-133

