
Scheduling of client-server applications

Jacek B lażewicz∗, Paolo Dell’Olmo†, Maciej Drozdowski∗‡

Abstract

In this paper we analyze the problem of deterministic scheduling
of applications (programs) in a client-server environment. We assume
that the client reads data from the server, processes it, and stores the
results on the server. This paradigm can also model a wider class of
parallel applications. The goal is to find the shortest schedule. It is
shown that the general problem is computationally hard. However,
any list scheduling algorithm delivers solutions not worse than twice
the optimum when tasks are preallocated, and three times the opti-
mum when tasks are not preallocated. A polynomially solvable case
is also presented.

Keywords: Deterministic scheduling, multiprocessor tasks, communica-
tion delays, distributed processing.

Introduction

Parallel processing has received a lot of attention for many years. Efficiency
is a crucial part of a parallel computer system success. Hence, there is a
necessity for the development of efficient scheduling algorithms.

In this paper we consider scheduling in a client-server environment (cf.
e.g. (Adler, 1995), (Deux et al.,1991)), (Tanenbaum, 1989). We assume that
the process of cooperation between the server and the client has the following
form. The client reads some amount of data from the server, processes it
and stores the results on the server. It can be an example of processing a
simple transaction in a distributed database. For example, the client reads
a record from a database, updates it and stores the result. This model

∗Instytut Informatyki, Politechnika Poznańska, ul. Piotrowo 3A, 60-965 Poznań,
Poland. The research has been partially supported by a KBN grant and project CRIT2.
†Istituto di Analisi dei Sistemi ed Informatica del C.N.R., Viale Manzoni 30, 00185

Roma, Italy, and Dipartimento di Informatica, Sistemi e Produzione, Università di Roma
“Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy.
‡Corresponding author.

1

can be also applied to a wider class of distributed applications. Though the
roles are different, an analogous situation appears in the master-slave parallel
processing (Jean-Marie et al., 1998), (Aref and Tayyib, 1998). The master
processor sends data to a slave for remote processing and the results are sent
back to the master from the slave. As an example consider a distributed
branch-and-bound algorithm in which the master manages a queue of nodes
to expand, the slaves expand the nodes from the queue and return only
the offspring leading to potentially better solutions (Gendron and Crainic,
1994), (Mitra et al., 1997). Similarly, in parallel implementations of local
search methods such as tabu search, simulated annealing, genetic algorithms
etc. (Garcia et al., 1994), (Porto and Ribeiro, 1995), the master delegates
search in the neighborhood of the current solution(s) to the slaves. The slaves
return the most promising results for selection of the candidates for further
search. Analogous situation appears in the case of a file server shared by a set
of applications distributed in the network (Fleischmann, 1994). Application
roll-in (i.e. unfolding the application code and data) and roll-out (storing
data or results) also can be represented by our client-server model. The
proposed model is applicable also in production environment. The role of the
server can be performed e.g. by a robot delivering parts to other machines.
In the fabrication of integrated circuits certain workstations are revisited a
number of times during the production of a wafer. Such a hub machine is
an equivalent of our server. The production context has been considered
e.g. by Kubiak et al. (1996), Lane and Sidney (1993), and Wang et al.
(1997). For the sake of simplicity in the future discussion we will refer to the
client-server example terminology. Note, that in all the above examples the
communication operation involves simultaneously both the server and the
client.

Now, we define our problem more formally. Server S is connected to set P
of m processors P1, P2, . . . , Pm where client applications are executed. Thus,
by a processor we mean only the machine running applications (tasks). The
interconnection network is a bus or a star where the server can communi-
cate with only one processor at a time. Processors can be characterized by
two features. Firstly, the processors are either dedicated or identical. In
the former case we assume that each task is preallocated and the processing
operation can be performed by a particular processor only. In the latter case
tasks are not preallocated and any processor can execute any task. Secondly,
processors may have limited or unlimited number of buffers. If a processor

2

has only one buffer, data must be sequentially read from the server, pro-
cessed by the processor, and written back to the server. No other sequence
of the operations is possible. For example, two (or more) consecutive read
operations are not allowed. Therefore, the processor cannot execute any
other task during the communication period. When each processor has more
than one buffer, it is possible to perform simultaneously computations and
communications with the server.

Client applications constitute a task system. Set T of tasks consists of n
elements. As was mentioned a task consists of three sequential operations:
reading, processing, writing. This can be represented as a chain of three
operations constituting the task. The times required to execute the above
three operations are given, and will be denoted rj, pj, wj, (j = 1, . . . , n) for
reading from the server, processing, and writing to the server, respectively.
When processors are identical, the three execution times are independent of
the processors. When the processors are dedicated and tasks are preallo-
cated we will denote by φj = Pi that processor Pi is required by task Tj. We
assume, that the activities performed by the server alone in connection with
executing the tasks are included in the communication delays (i.e. in rj or
wj). When the communication times for all tasks are equal we will say that
this is unit communication time (UCT) case. Finally, we assume that pro-
cessing operations are nonpreemptable, i.e. once started, the operation must
be processed continuously till the very end. We also assume, in general, that
communication operations are nonpreemptable. Schedule length (makespan)
is the optimality criterion. The above problem will be called client-server
scheduling problem (CSS).

Here, we survey previous results in the scheduling area pointing out sim-
ilarities and differencies with the proposed model. Our problem bears some
similarity to the reentrant flow-shop considered by Kubiak et al. (1996),
Lane and Sidney (1993), Wang et al. (1997), flexible flow-shop (Hoogeveen
et al., 1996) or the job-shop model in general. Yet, the results known from
the literature do not exactly coincide with the problem we analyze, and only
few results can be applied in our case. Observe, that here the role of the
buffers is different than in the above models. In the job-shop model, while
processing one operation at the first machine (assume it is our ‘server‘) the
other machine (our processor) can process some operation of another task.
However, the first operation of a task can be always performed independently
of the status of the next required machine. It is not always the case here.

3

For example, for the one buffer case communication operations require the
server and the processor simultaneously. Hence, the buffer is required to
perform the first (communication) operation, and the very same buffer is
necessary for the second (processing) operation. Note, that thus the com-
munication requires simultaneously two machines (the server and one of the
processors from P) and this is a special case of the multiprocessor task system
(cf. (B lażewicz et al., 1992), (B lażewicz et al., 1986), (Drozdowski, 1996),
(Du and Leung, 1989), (Veltman et al., 1990)). In particular, scheduling file
transfers was examined by Coffman et al. (1985) and Kubale (1987), but
preallocation of tasks was essential and processing operations were not taken
into account. When the number of buffers is limited (but greater than 1) the
server cannot start sending until a buffer of the processor is released.

On the other hand, when buffers are not a scarce resource (denoted by
buffers = ∞), our problem becomes equivalent to some earlier models.
When tasks are not preallocated and one of the two communication op-
erations (either all reading or all writing operations) have negligible dura-
tion, our problem becomes equivalent with two-stage flexible flow-shop (e.g.
(Hoogeveen et al., 1996)). The complexity results of Hoogeveen et al. (1996)
are applied in this work. When m = 1, buffers = ∞ and wj = 0 for
j = 1, . . . , n our problem is equivalent to two machine flowshop, and hence,
the Johnson’s rule can be applied (cf. e.g. B lażewicz et al.,1996). The
case of preallocated tasks (buffers =∞) is very much alike reentrant shops
considered in (Kubiak et al., 1996), (Lane and Sidney, 1993), (Wang et al.,
1997). In particular, in (Kubiak et al. 1996) it was assumed that the odd
operations in a chain return to one ‘server‘ machine. While using the ‘server‘
by one task a processor could process another operation of some other task
(which is not always the case here). Preallocation was assumed and mean
flow time was the optimality criterion. In (Wang et al., 1997), where sched-
ule length was the optimality criterion, tasks visited the ‘server‘ twice: at
the first and at the last (m + 2)th operation. Processors P1, . . . , Pm were
required to perform, respectively, operations 2nd,. . . ,mth of a task. The
problem is NP-hard already for m = 1. A branch-and-bound algorithm and
a set of dominance properties for the general problem have been presented.
Our problem with m = 1 and unlimited number of buffers is equivalent to the
problem considered in (Wang et al., 1997). Lane and Sidney (1993) also in-
vestigated a problem equivalent to ours when m = 1 and buffers =∞. Two
heuristics were proposed and analyzed for the mean flow time and schedule

4

length criteria. The authors considered baking of semiconductor wafers as
one of the applications for their model. Many wafers can be baked together
in a single batch. Thus, total processing time can be reduced. This is not
possible in our problem. The case of preallocated tasks and unlimited num-
ber of buffers is a special case of a job-shop with tasks comprising at most
three operations. It is well known that job-shop problem with three proces-
sors and tasks comprising at most two operations is strongly NP-hard (e.g.
(Gonzales and Sahni, 1978)). However, the proofs of complexity for these
problems cannot be applied in our case because the routing of operations is
more restricted here. Furthermore, the existence of the third operation in
a task prevents from applying in our problem approximate algorithms and
special polynomial-time cases from two-stage flexible flowshop (Chen, 1993),
(Hall et al., 1996). Thus, some earlier results can be applied in our case and
some other cannot.

The organization of the work is as follows. In Section 2 complexity results
are presented. In Section 3 heuristic algorithms are described and their worst
case performance ratios are analyzed. Finally, Section 4 contains special cases
solvable in polynomial time.

NP-hardness results

In this section we analyze the complexity of the problem under different
assumptions. We start with the case of a limited number of buffers.

Observation 1 For m = 1 and one buffer any schedule introducing no idle
time on the processor is optimal.

Proof. A lower bound on the schedule length is the total duration of
operations involving the processor, i.e.

∑n
j=1(rj + pj + wj). Since the pro-

cessor has one buffer the sequence of the operations on the processor must
be: reading, processing, writing. Any order of executing tasks is feasible.
The lower bound is attained provided that there is no unnecessary idle time
between the operations. 2

Theorem 1 The CSS problem with preallocation is strongly NP-hard even
for m = 2 and one buffer.

5

Proof. We prove strong NP-hardness by reduction of 3-partition to a
decision version of our problem. 3-partition is defined as follows.

3-partition
Instance: Set A of 3q integers aj (j = 1, . . . , 3q), such that

∑3q
j=1 aj = Bq

and B/4 < aj < B/2 for j = 1, . . . , 3q. Without loss of generality we assume
that B > 2q.
Question: Can A be partitioned into q disjoint subsets A1, . . . , Aq such that∑

aj∈Ai
aj = B for i = 1, . . . , q?

The above problem can be reduced to the our one by the following transfor-
mation:

n = 4q
T = X ∪ Y
X : rj = wj = 1, pj = 6B4 +B3, φj = P2 for j = 1, . . . , q
Y : rj = wj = B4, pj = B2aj−q, φj = P1 for j = q + 1, . . . , 4q
y = q(6B4 +B3 + 2).

We ask whether for the above task set a schedule of length at most y exists.
Please note that this transformation will be also used in the proof of the next
theorem. Now, we have to prove that a feasible schedule of length at most
y exists if and only if the answer to 3-partition is positive. Suppose the
answer to 3-partition is positive, then a feasible schedule of length y looks
like the one in Fig.1. Insert Fig.1

hereSuppose the answer to our scheduling problem is positive. Since each
processor has only one buffer the communication from the viewpoint of the
processor must always follow the pattern: reading, writing, reading, writing,
. . ., writing. The sum of communication and processing times of tasks in
set X preallocated to P2 is exactly equal to y. Hence, tasks from X must
be executed one by one on P2 during the whole length of the schedule as
depicted in Fig.1. While tasks in X are processed on P2, the server is free in
q intervals of length 6B4+B3 each. Only in these intervals can tasks from set
Y use the server. In each of these intervals exactly 6 communications with
the server must be done by tasks in set Y , otherwise no schedule of length y
exists. Since the pattern reading/writing must be observed, exactly 3 tasks
must be fully executed in each of the considered intervals. We see that no
processing can be executed on P1 in parallel with set X task communications.
Thus, in each of q intervals there remain B units of free time on P1 where
processing must be performed. Since the amount of free time on P1 is exactly

6

what is required by tasks in Y the answer for 3-partition must be positive.
2

Theorem 2 The CSS problem without preallocation is strongly NP- hard
even for m = 2 and one buffer.

Proof. The transformation in this case remains the same as in the proof
of Theorem 1 except for the fact that the processing can be done on an
arbitrary processor. When the answer to 3-partition is positive a feasible
schedule of length y is the same as in Fig.1.

Observe, that in the feasible schedule the server can be idle only B3q units
of time, while both processors can be idle at most 2q units of time. Thus, the
server cannot start with sending operation to a task from set Y because this
would result in at least B4 > 2q units of idle time on the other processor.
Hence, the server must start sending to a task from set X. Furthermore,
communications with tasks from set Y must be executed in parallel with
processing tasks from set X.

Suppose the server sends data to task Th from setX first, and immediately
after this, again to task Ti from set X. Since there is only one buffer on each
processor and the pattern of reading, writing must be observed on both
processors, the server must idle until the writing operation of the first task.
The idle period lasts as long as processing operation of the first task minus
duration of the reading operation of the second task. This would result
in 6B4 + B3 − 1 > B3q units of the server being idle. Thus, consecutive
sending operations to two tasks from set X are not allowed. Suppose that
between reading operations of the two tasks from set X exactly one task
of set Y is processed. This would result in the server being idle at least
6B4 +B3−2B4−1 > B3q units of time between the reading and the writing
operation of Th. Thus, more than one task from Y must be executed while
processing a task from X. Suppose two tasks from Y are processed between
two consecutive reading operations of tasks from X. Again, this would result
in the server being idle at least 6B4 + B3 − 4B4 − 1 > B3q units of time
between the reading and writing operation of Th. Hence, at least three tasks
from Y must follow a sending to a task from X. Suppose four tasks from Y
follow the sending to a task from X. In this case the processing operation of
the task from X ends before or coincides with performing reading operation
of the fourth task from Y . Then, the processor which processed the task

7

from X would have to wait for the end of the communication to the fourth
task of Y . Thus, at least 7B4 +B2(aj + ak + al)− (6B4 +B3) > 2q idle time
would be created on the processor. We conclude that exactly three tasks
from Y must be executed while processing a task from X.

Consider the amount of processing the three tasks Tj, Tk, Tl ∈ Y receive.
Assume that the sum of processing times is greater than B3, i.e. B2(ai +
aj + ak) ≥ B3 + B2. This would result in the processor which processed a
task from X being idle at least B2 > 2q units of time. Such a situation is not
allowed because 2q is the maximum allowed idle time on both processors and
B > 2q. This reasoning can be applied to each triplet of tasks out of set Y
executed in parallel with some processing operation of an X set task. Since∑3q

i=1 ai = qB and for each of q triplets B2(ai + aj + ak) ≤ B3, we conclude
that the three tasks of each triplet must be processed in B3 time. Hence, a
positive answer to 3-partition. 2

Let us consider now the case of the unlimited number of buffers.

Theorem 3 The CSS problem is NP-hard even for m = 1 and unbounded
number of buffers.

Proof. The proof is similar to the one given by Rinnoy Kan (1976). We
prove this theorem by reduction from Partition:

Partition
Instance: Set A of q numbers aj (j = 1, . . . , q), such that

∑q
j=1 aj = 2B.

Question: Can A be partitioned into two disjoint subsets A1, A2 such that∑
aj∈A1

aj =
∑

aj∈A2
aj = B?

The instance of our problem can be built as follows:

n = q + 1
rj = wj = 0; pj = aj for j = 1, . . . , q
rn = pn = wn = B
y = 3B.

A feasible schedule of length y is depicted in Fig.2. Since operations of Tn
must be executed continuously, two time slots B units long remain available
on P1. Since no idle time is allowed and operations are nonpreemptable,
no feasible schedule of length y can exist without positive answer to the
partition problem. 2 Insert Fig.2

here

8

Theorem 4 The CSS problem with preallocation and unbounded number of
buffers is strongly NP-hard for m=2.

Proof. We prove the theorem by reduction from 3-partition. We as-
sume (w.l.o.g.) that B > 2q, B > 4. The instance of CSS can be constructed
as follows:

n = 4q + 1
rj = aj, pj = B3aj, wj = 1, φj = P1 for j = 1, . . . , 3q
r3q+1 = 1, p3q+1 = B4 +B,w3q+1 = 1, φ3q+1 = P2

rj = B4, pj = B4 +B,wj = 1, φj = P2 for j = 3q + 2, . . . , 4q
r4q+1 = B4, p4q+1 = 4q, w4q+1 = 1, φ4q+1 = P2

y = q(B4 +B + 4) + 2.

We ask whether a schedule not longer than y exists. If a 3-partition exists a
feasible schedule of length y may look like the one in Fig.3. Note, that P1 can
start processing tasks immediately after the first reading operation and some
idle time may appear on P1 after three consecutive processing operations.
However, for the sake of presentation clarity we assumed in Fig.3 that P1

is idle during reading operations. Mind that it is not prerequisite for the
existence of a feasible schedule when a 3-partition exists. There can be
also other schedules not longer than y when a 3-partition exists. Insert Fig.3

hereSuppose, a feasible schedule not longer than y exists. The server must
communicate all the time because the sum of communication times is equal
to y. The total processing on P2 is q(B4 + B + 4) and the shortest reading
and writing operations last two units of time. Thus, P2 must compute all
the time with the exception of two units of time: the first and the last unit
of time in the schedule. Moreover, T3q+1 must start the schedule and T4q+1

must finish the schedule, otherwise P2 is idle longer than two units of time.
The total processing requirement on P1 is qB4. Hence, after including the
first reading operation and the last writing operation of the server, P1 can
be idle at most q(B + 4) time units. To avoid idling on P2 the second task
executed on P2 must start reading its data at time B + 1 at the latest.
Therefore, no more than three reading operations for the tasks executed on
P1 can be done. Also, no less than three communications to P1 can be
done. Suppose it is otherwise and (w.l.o.g.) exactly two tasks Ti, Tj are
started on P1, Ti is started first. Then, there would be excessive idle time
on P1 since the end of Tj processing operation till the end of the reading

9

operation of the task processed by P2. B4 + aj is the span of the interval
from the completion of Ti reading operation till the end of reading operation
of the task processed by P2. B

3(ai + aj) is the time of processing operations
which can be executed on P1 in this interval. The idle time on P1 would
be at least B4 + aj − B3(ai + aj). Since B > 2q and B > 4 we have
B4 + aj −B3(ai + aj) > B4 −B3(B − 1) = B3 > B2 +B2 > qB + 4q, while
the idle time on P1 cannot be greater than q(B + 4).

The sum of processing times of the three tasks allocated to P1 must
be equal to B4. If it is less, then it is at most B4 − B3 which results in
B3 > q(B + 4) idle time on P1 while reading operation of the second task
allocated to P2. Suppose it is more, then their reading operations last longer
than B and the reading operation of the second task allocated to P2 cannot
start in time, which results in additional idle time on P2. Consequently,
schedule of length y cannot exist. We conclude that the three tasks must be
processed in exactly B4 time units.

The same reasoning can be applied to the following tasks assigned to
P2. The reading operations of these tasks cannot be started later than by
1 + iB4 + (i + 1)B for i = 1, . . . , q − 1. This creates free time interval for
at most three reading operations for tasks assigned to P1. Also no less than
three tasks can read from server otherwise there will be excessive idle time on
P1 during the next reading operation of a task assigned to P2. The processing
times of the three tasks must be equal exactly B4, otherwise either P1 or the
server must be idle. We conclude that for each triplet of tasks Ti, Tj, Tk
assigned to P1 the processing time satisfies B3(ai + aj + ak) = B4. Hence, a
positive answer to 3-partition problem. 2

Theorem 5 The CSS problem without preallocation, and with unbounded
number of buffers is strongly NP-hard even for m = 2.

Proof. When ∀j∈T rj = 0 our problem boils down to the two-machine
flexible flowshop shown to be strongly NP-hard in (Hoogeveen et al., 1996).
2

Theorem 6 The CSS problem without preallocation, and with unbounded
number of buffers, unit communication times is NP-hard for m = 2 and
NP-hard in the strong sense for arbitrary m>2.

10

Proof. The proofs we present are analogous to the ones for nonpreemp-
tive multiprocessor scheduling (Karp, 1972), (Garey and Johnson, 1978). We
give our versions for the completeness of the presentation. First, we tackle
NP-hardness for two machines. The transformation is done from partition
problem defined in Theorem 3. The instance of CSS can be defined as follows:

n = q
m = 2
rj = wj = 1 for j = 1, . . . , q
pj = B2aj for j = 1, . . . , q
y = B3 + 2q.

We assume additionally that B > 2q. Suppose, the answer to partition is
positive, then by scheduling processing operations of the tasks correspond-
ing to A1 on P1, processing operations of the remaining tasks on P2, and
performing communications in any order (but without idle time) we get a
schedule of length y. Suppose, the answer is positive to CSS problem, then
processing operations on P1 and P2 last (both) at most B3. Hence, a positive
answer to the partition problem.

Next we prove, by transformation from 3-partition, that the problem
is NP-hard in the strong sense when the number of processors is not fixed.
The 3-partition problem is defined as in the proof of Theorem 1. Addi-
tionally we assume (w.l.o.g.) that B > 6q. The corresponding instance of
our scheduling problem is defined as follows:

n = 3q
m = q
rj = wj = 1 for j = 1, . . . , 3q
pj = B2aj for j = 1, . . . , 3q
y = B3 + 6q.

When the answer to the 3-partition is positive a feasible schedule may look Insert Fig.4
herelike the one in the Fig.4. Assume, the answer to our scheduling problem is

positive. Let us analyze the amount of processing the tasks receive on one
processor. Suppose, it is greater thanB3. Then it is at leastB3+B2 > B3+6q
and a feasible schedule may not exist. Assume it is less than B3. Then it is
at most B3 − B2 and on some other processor the tasks must be processed
longer than B3 and a feasible schedule does not exist. Thus, the tasks on
each processor are executed exactly B3 units of time. By choice of values

11

B/4 < aj < B/2 (j = 1, . . . , q) in the 3-partiton exactly three tasks must
be executed by each processor in B3 units of time. Hence, the answer to
3-partition is positive. 2

Now, let us comment on the case with preemptable communications
(which seem to be closer to computer reality). The problems with unlim-
ited buffers and identical processors are NP-hard for m = 2 and strongly
NP-hard for arbitrary m > 2 as the underlying parallel processor schedul-
ing problems have such complexity (cf. Theorem 6). Moreover, Theorem 3
through Theorem 6 are valid even if communications are preemptable. The
case with one buffer, preemptable communications, and dedicated processors
remains open.

Approximation algorithms

In this section we analyze the performance of list scheduling algorithms.
We show that any list scheduling algorithm performs relatively well. By a
list scheduling algorithm we mean here a greedy heuristic which leaves no
processor idle if it is possible to process some task on it. The algorithms can
be defined as follows.

SERVER:
while there is something to process do
begin
1: if it is possible to receive anything – receive it;
2: if it is possible to send anything – send it;
end

PROCESSOR:
while there is something to process do
begin
1: read data;
2: process a task;
3: write results back;
end

Note, that this description matches a wide range of list scheduling meth-
ods. The above algorithm can be implemented to run in O(n) time. Now, we
will analyze the worst case performance of list scheduling algorithms. Let us

12

denote by E the length of the schedule built by our heuristic, and by OPT
the length of the optimal schedule.

Theorem 7 The worst case performance ratio of any list scheduling algo-
rithm for CSS problem and preallocated tasks satisfies

E

OPT
≤ 2

and this bound is tight.

Proof. First, let us observe that in the schedule built by a greedy heuris-
tic we can distinguish two types of time intervals. In the intervals of the first
type the server is communicating. In the intervals of the second type the
server is idle because it is waiting for completion of processing operations on
at least one processor or for the completion of the last processing operation
on the processors. The total length of the first type intervals is equal to
the total requirement for communication. The server may not wait longer
for the completion of the last processing operation on any processor than
the processing on the most loaded processor minus the amount of processing
performed in the intervals where all processors work and the server is idle.
Thus, the total length of the second type intervals may not be greater than
the processing time on the most loaded processor P∗. Thus, the length E of
the schedule built by a greedy heuristic is bounded from above by

E ≤
n∑

j=1

(rj + wj) +
∑
j∈T∗

pj

where T∗ is the set of tasks assigned to P∗. Since both
∑n

j=1(rj +wj) ≤ OPT

and
∑

j∈T∗ pj ≤ OPT we have E ≤ 2OPT and E
OPT
≤ 2.

Now, we will demonstrate that this bound is tight. Consider the following
example: m = 3, n = x + 1, where x ∈ Z+ and x is even, rj = wj = 1 for
j = 1, . . . , n, pj = 1, φj = P2+(j−1) mod 2 for j = 1, . . . , n−1, pn = 2x, φn = P1.
The optimal schedule is presented in Fig.5a and has length equal to the total
communication time, i.e. OPT = 2x + 2. The schedule built by a greedy
heuristic may look like the one in Fig.5b which has length E = 4x+2. Thus,
limx→∞

E
OPT

= 2. Note, that only one buffer is used on each processor. The
bound is attained despite the fact that processors may have more buffers.
2 Insert Fig.5

here

13

Theorem 8 The worst case performance ratio of any greedy heuristic for
CSS problem and non-preallocated tasks satisfies

E

OPT
≤ 3

and this bound is tight.

Proof. As in the previous proof, we can distinguish two types of time
intervals in the schedule built by a greedy heuristic. In the intervals of the
first type the server is communicating, in the intervals of the second type the
server is idle because it is waiting for a writing operation from any processor.
The total length of the first type intervals is equal to

∑n
j=1(rj +wj). Among

the intervals of the second type two sub-types can be distinguished. In the
intervals of the first sub-type the server is idle and all processors are working.
In the intervals of the second sub-type the server is idle but not all processors
are working because there are no more tasks to be started. Total length of
the first sub-type intervals may not be greater than

∑n
j=1

pj
m

which is the case
in which the whole load is evenly distributed among the processors. The
length of the second sub-type intervals may not be greater than the longest
processing operation. Thus, length E of the schedule built by our heuristic
is bounded from above by

E ≤
n∑

j=1

(rj + wj) +
n∑

j=1

pj
m

+ max
1≤j≤m

{pj}

Since both
∑n

j=1(rj +wj) ≤ OPT and
∑n

j=1
pj
m

+ max1≤j≤m{pj} ≤ 2OPT we

have E ≤ 3OPT and E
OPT
≤ 3.

To demonstrate that the bound is tight consider the following instance.
We assume that processors have at least two buffers. Let k, l ∈ Z+ be two
integers such that l is even, l > m > 2, k(m− 2) is a multiple of the number
of processors m. Furthermore let:

n = k(m− 2) + 1 + (klm+ 2(m− 2)(1− k))/2
T = X ∪ Y ∪ Z
X : r1 = w1 = 1, p1 = klm+ 2(m− 2) = a
Y : rj = wj = 1, pj = lm for j = 2, . . . , k(m− 2) + 1
Z : rj = wj = 1, pj = 1

for j = k(m− 2) + 2, . . . , k(m− 2) + 1 + (klm+ 2(m− 2)(1− k))/2.

14

The optimal schedule is depicted in Fig.6a. This schedule has a particular
structure. Task T1 is started first, processed on processor (w.l.o.g.) Pm,
and its writing operation completes the schedule. Tasks from set Y are
performed in k blocks of m − 2 tasks occupying processors P1, . . . , Pm−2.
Let us assume that tasks from set Y are started in the order of their in-
dices, and their processing operations are assigned consecutively to pro-
cessors P1, P2, . . . , Pm−2, P1, P2, . . . etc. The reading operations in the first
block of Y tasks are performed with a unit delay. In the last time unit
of task T2 processing operation a new reading operation is started for task
Tm. Both T2 and Tm are processed by P1. After this reading operation
the writing operation of T2 is initiated. Analogously on the following pro-
cessors and in the following blocks of Y tasks, first reading operations are
executed for the tasks to be started, then the writing operations of the
completed tasks are done. The final writing operations of the tasks from
set Y are also executed with unit delays. The free time slots remaining
on the server after performing communication operations for tasks from
set X and Y are filled by communication operations of the tasks from set
Z. Note that the number of such free time slots is even and equal to
a− 2 | Y |= klm+ 2(m− 2)− 2k(m− 2) = klm+ 2(m− 2)(1− k) = 2 | Z |.
The communications in the free time slots are done according to the pattern:
reading, reading, writing, writing. When the number of tasks in set Z is not
even then the last two communication operations for the task from set Z are
reading, writing. Processing operations for tasks from set Z are executed
on Pm−1. The total length of the optimal schedule is equal to the required
amount of communications, i.e. OPT = a+ 2.

A schedule built by a list scheduling algorithm may be as the one in
Fig.6b. First, the tasks from set Z are processed which saturates the server.
Then, tasks from set Y are executed in blocks of m tasks which saturates the
processors. Task T1 is started as the last one immediately after the processing
operation of task Tl – the first task from set Y in the last block of set Y tasks
(cf. Fig.6b). Tasks from set Z continuously occupy the server during time
interval of length b = 2 | Z |= klm + 2(m − 2)(1 − k). The time from
starting the first reading operation of a task from set Y till the end of task Tl
processing operation is equal to c = lm |Y |

m
+ 1 = lmk(m−2)

m
+ 1 = klmm−2

m
+ 1.

The length of the period from starting the processing operation of T1 till the
completion of its writing operation is d = a + 1 = klm + 2(m − 2) + 1. In
what follows we are going to demonstrate that in the limit values of b, c, and

15

d can be made very close to each other and to OPT . The total length of the
schedule in this case is:
E=b+ c+ d =klm+ 2(m− 2)(1− k) + klm(1− 2

m
) + 2 + klm+ 2(m− 2).

Thus limk,l,m→∞
E

OPT
= limk,l,m→∞

3klm+2(m−2)(1−k)−2kl+2+2(m−2)
klm+2m−2 = 3. 2

Observation 2 When tasks are non-preallocated and the number of buffers
is unbounded the Longest Processing Time (LPT) heuristic applied to pro-
cessing operations builds schedules with the worst case performance ratio not
greater than 7

3
− 1

3m
.

Proof. Explanation of the above observation is the following: Build a
schedule for processing operations only using LPT heuristic. Before process-
ing operations, processors read all data in an arbitrary order. After pro-
cessing operations, processors write results in an arbitrary order. Reading
and writing operations are always executed sequentially, and therefore may
not last longer than OPT . Processing operations may not last longer than
(4
3
− 1

3m
)Q, where Q is the length of the shortest schedule for the processing

operations considered alone (Graham, 1969), (B lażewicz et al., 1996). Since
Q ≤ OPT , a schedule built in the above way is not longer than OPT (7

3
− 1

3m
).

2

Special case solvable in polynomial time

In this section we consider UCT non-preallocated tasks. Unfortunately, the
case of computational complexity for UCT preallocated tasks remains open.

Theorem 9 The case of UCT non-preallocated tasks with identical process-
ing operations can be solved in polynomial time.

Proof. Let k denote the duration of the identical processing operations,
i.e. pj = k for j = 1, . . . , n. We will examine four different cases separately.

Case k ≤ m − 1. An example of the optimal schedule is depicted in
Fig.7. The server performs repetitively dke+1 sending, and dke+1 receiving Insert Fig.7

hereoperations. This pattern should be changed when n mod (dke + 1) 6= 0.
In such a case, the server should receive and send n mod (dke + 1) times,
and then receive dke + 1 times at the end of the schedule. Note, that the

16

server is saturated and the schedule cannot be made shorter. One buffer is
enough to implement the schedule, and only dke+ 1 processors are required
to process the tasks. Thus, all processors take part in computations when
m− 2 < k ≤ m− 1.

Case m− 1 < k, buffers = 1
In this case repetitive pattern of reading from the server and writing

results back is obligatory for the processors. Therefore, the server should
first send to all m processors. Then, for each processor with ready results the
server should perform a pair of operations: receiving from the processor and
sending to the processor (cf. Fig.8). The schedule ends with a series of writing Insert Fig.8

hereoperations. To verify that such schedules are optimal consider schedule length
from the viewpoint of the server. The schedule must start with the first
reading operation and must finish with the last writing operation. Between
these two other communication operation are executed. In all other time
intervals the server is idle. The idle time on the server is unavoidable in
three cases:
1. Until the first writing operation server can send to m processors, in the
rest of time it is unavoidably idle.
2. Analogously, after the last reading operation the server is idle with the
exception of at most m writing operations.
3. When all processors have been already activated the idle time between
reading by some processor and writing by the same processor can only be
filled by at most 2(m− 1) communication operations of other processors.
Note, that our method introduces idle times of the above three types only.
For k ≤ 2(m−1) the server is continuously busy with the exception of at most
2(k −m + 1) units of time at the beginning and at the end of the schedule.
For k > 2(m − 1) the server is idle also between other reading and writing
operations of the same processor. Yet, the processors are continuously busy.

Case m−1<k≤2m−1, buffers ≥ 2.
Processing operations are too short to fill two buffers on all processors

before the end of any processing operation. However, it is possible to read
to two buffers despite that one of them may become ready for writing oper-
ation (cf. Fig.9). Thus, 2m series of reading operations fill two buffers on all Insert Fig.9

hereprocessors. Before the end of the second series of reading operations all pro-
cessors have at least one buffer ready for writing. After a series of m writing
operations processors have also the second buffer ready for writing. In 4m
units of time the server works without any idle time. A schedule built in the

17

above way saturates the server. Hence, it is optimal if n mod 2m = 0. When
n mod 2m 6= 0 one should change the final series of reading/writing opera-
tions analogously to case k ≤ m− 1. Namely, after repeating b n

2m
c− 1 times

2m series of reading and then 2m series of writing operations, the last cycles
should consist of 2m read operations, n mod 2m write operations, n mod 2m
read operations, and finally 2m write operations (cf. Fig.9). Without losing
optimality, all processors may start processing operations in discrete mo-
ments of time.

Case k > 2m− 1, buffers ≥ 2.
When k > 2m − 1, it is possible to fill two buffers on each processor

before the first writing operation. After completion of processing operations
storing the results on the server and refilling the buffers with new data is
possible without idle time on the processors. Thus, two series of m reading
operations of consecutive processors start the communication. Then series of
m writing and m reading operations follow. Finally, two series of m writing
operations complete the communications. Note, that all processors work
without breaks between processing operations and the schedule cannot be
made shorter. Two buffers are sufficient in this case.

The schedules can be executed in O(n) time. However, the pattern of the
schedule can be identified in shorter time. Observe that all the schedules in
this case are determined by two factors: Relation of k to m, and the number
of full repetitions activating tasks on all processors with some additional
”odd” tasks activating some processors only (e.g. in the case of k ≤ m − 1
the number of ”odd” tasks is n mod (dke+ 1)). The relation of k and m can
be identified in O(max{logm, log k}) time. The existence of the ”odd” tasks
can be verified in O(log n+ logm) time. Thus, the optimal schedule can be
identified and executed in time polynomial in the size of the input. 2

Corollary 1 The case of UCT non-preallocated tasks with processing oper-
ations not longer than m−1 where m>1 can be solved in polynomial time.

Proof. From the discussion of case k ≤ m− 1 in Theorem 9 we conclude
that when processing times are not longer than m − 1, a schedule can be
built in which the server is saturated. Therefore, the same method can be
applied. 2

Corollary 2 The optimal schedule on one processor can be found in poly-
nomial time for UCT when either pj ≤ 1 for j = 1, . . . , n or pj > 1 for

18

j = 1, . . . , n.

Proof. It is a consequence of cases m − 1 < k ≤ 2m − 1, buffers ≥ 2
and k > 2m− 1, buffers ≥ 2 in Theorem 9 and of Observation 1 which, in
particular, deals with buffers = 1 case. 2

Conclusions

In this work we considered the problem of deterministic scheduling applica-
tions running on separate processors but requiring access to the server for
initial reading the data and final storing the results. We proved that the
problem is NP-hard in the strong sense when there is only one buffer at the
processors. It is also strongly NP-hard when the number of buffers is un-
limited. We have shown that any list scheduling algorithm builds schedules
with the length not worse than twice the optimal length in the preallocated
case and three times the optimal length in the non-preallocated case. Special
cases solvable in polynomial time have been identified. Yet, some challenging
problems remain open: Do polynomial algorithms exist for UCT tasks with
arbitrary processing times, m = 1 with finite or infinite number of buffers?
Is the UCT case computationally hard for preallocated tasks? Further re-
search may include, considering other optimality criteria, other server and
interconnection topology characteristics.

References

Adler, R.M. (1995) Distributed Coordination Models for Client/Server Com-
puting. IEEE Computer 28, 14-22.

Aref, M.M. and Tayyib M.A. (1998) Lana-Match algorithm: a parallel ver-
sion of the Rete-Match algorithm. Parallel Computing 24, 763-775.

B lażewicz,J., Dell’Olmo, P., Drozdowski, M. and Speranza, M.G. (1992)
Scheduling multiprocessor tasks on three dedicated processors. Infor-
mation Processing Letters 41, 275-280. Corrigendum: (1994) Informa-
tion Processing Letters 49, 269-270.

19

B lażewicz, J., Drabowski, M. and Wȩglarz, J. (1986) Scheduling multi-
processor tasks to minimize schedule length. IEEE Transactions on
Computers C-35, 389-393.

B lażewicz, J., Ecker, K., Pesch, E., Schmidt, G. and Wȩglarz, J. (1996)
Scheduling Computer and Manufacturing Processes, Heidelberg: Sprin-
ger.

Chen B. (1993) Analysis of a heuristic for scheduling two-stage flow shop
with parallel machines, Econometric Institute, Erasmus Univ. Rotter-
dam, Report 9338/A.

Coffman Jr., E.G., Garey, M.R., Johnson, D.S. and LaPaugh, A.S. (1985)
Scheduling file transfers, SIAM Journal on Computing 3, 744-780.

Deux, O. et al. (1991) The O2 system. Communications of the ACM 34,
34-48.

Drozdowski, M. (1996) Scheduling multiprocessor tasks - An overview, Eu-
ropean Journal of Operational Research 94, 215-230.

Du, J. and Leung, J.Y-T. (1989) Complexity of scheduling parallel task
systems, SIAM J. Discrete Mathematics 2, 473-487.

Fleischmann, A. (1994) Distributed Systems: Software Design & Implemen-
tation. Springer-Verlag, Heidelberg.

Garcia, B.-L., Potvin, J.-Y. and Rosseau, J.-M. (1994) A parallel imple-
mentation of the tabu search heuristic for vehicle routing problems
with time window constraints. Computers and Operations Research
21, 1025-1033.

Garey, M.R., and Johnson, D.S. (1978) Strong NP-completeness results:
motivation, examples and implications, J. Assoc. Comput. Mach. 25,
499-508.

Gendron, B. and Crainic, T.G. (1994) Parallel branch-and-bound algo-
rithms: Survey and synthesis. Operations Research 42, 1042-1066.

Graham,R.L. (1969) Bounds on multiprocessing anomalies. SIAM J. Appl.
Math. 17, 263-269.

20

Gonzales, T. and Sahni, S., (1978) Flowshop and jobshop schedules: Com-
plexity and approximation, Operations Research 26, 36-52.

Hall, N.G., Potts, C.N. and Sriskandarajah, C. (1996) Parallel machine
scheduling with a common server, PMS’96 The Fifth International
Workshop on Project Management and Scheduling, Abstracts, April 11-
13, Poznań, Poland, pp. 102-106.

Hoogeveen, J.A., Lenstra, J.K. and Veltman, B. (1996) Preemptive sched-
uling in a two-stage multiprocessor flow shop is NP-hard. European
Journal of Operational Research 89, 172-175.

Jean-Marie, A., Lefebvre-Barbaroux, S. and Liu, Z. (1998) An analytical
approach to the performance evaluation of master-slave computational
models. Parallel Computing 24, 841-862.

Karp, R.M. (1972) Reducibility among combinatorial problems. In Com-
plexity of computer computation, eds. R.E. Miller and J.W. Thatcher
(pp.85-104) New York:Plenum Press.

Kubiak, W., Lou, S.X.C. and Wang,Y. (1996) Mean flow time minimization
in reentrant job-shops with a hub, Operations Research 44, 764-776.

Kubale, M. (1987) The complexity of scheduling independent two-processor
tasks on dedicated processors, Information Processing Letters 24, 141-
147.

Lane, E.L., and Sidney J.B. (1993) Batching and scheduling in FMS hubs:
flow time considerations, Operations Research 41, 1091-1103.

Mitra, G., Hai, I. and Hajian, M.T. (1997) A distributed processing al-
gorithm for solving integer programs using a cluster of workstations.
Parallel Computing 23, 733-753.

Porto, S. and Ribeiro, C. (1995) Parallel Tabu Search Message-Passing Syn-
chronous Startegies for Task Scheduling Under Precedence Constraints.
Journal of Heuristics 1, 207-223.

Rinnoy Kan, A.H.G. (1976) Machine scheduling problems: Classification,
complexity and computations, The Hague:Martinus Nijhoff.

21

Tanenbaum, A.S. (1989) Computer Networks. Prentice-Hall International,
Englewood Cliffs.

Veltman, B., Lageweg, B.J. and Lenstra, J.K. (1990) Multiprocessor sched-
uling with communications delays, Parallel Computing 16, 173-182.

Wang, Y., Sethi, S.P., van de Velde, S.L. (1997) Minimizing makespan in a
class of reentrant shops, Operations Research 45, 702-712.

22

List of figures

Fig. 1 Proof of Theorem 1.

Fig. 2 Proof of Theorem 3.

Fig. 3 Proof of Theorem 4. Arrows indicate direction of data transfer.

Fig. 4 Proof of Theorem 6.

Fig. 5 Proof of Theorem 7: a) the optimal schedule b) a greedy schedule.

Fig. 6 Proof of Theorem 8: a) the optimal schedule b) a greedy schedule.

Fig. 7 Schedule for UCT tasks, case k ≤ m− 1.

Fig. 8 Schedule for UCT tasks, case k > m− 1, buffers = 1.

Fig. 9 Schedule for UCT tasks, case m− 1 < k ≤ 2m− 1, buffers = 2.

23

...B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4 B4B4

B a2 i B a2 j B a2 k

1 11 11 1

6B +B4 3 6B +B4 3

I II q

Fig.1

P1

S
P2

BB B

Fig.2

P1

S rn wn

pn... ...a1 akaj al

Fig.3

P1
...

...
...ai apaj asak arB4 B4

B +B4 B +B4

Ba3 i Ba3 p Bas3 Ba3 rBa3 j Ba3 k Ba3 z

1 111 11 11I II q

S

P2

. .
.

. .
.

... ...

..
.

B a2 jB a2 i B a2 k

Fig.4

P1

S

P2

Pq

B3

1 11 1

Fig.5a Fig.5b

P1

S

P2

P3
2x 2x2x

TnTn

Fig.6a

a
T1

T2 TmP1

S

P2

P3
P4

Fig.6b

b c d

Tl T1T2

Tm

P1

S

P2

P3
P4

1 k

Fig.7

P1

S

P2
P3
P4

P5

1 k

P1

S

P2

P3

Fig.8

1 k

Fig.9

P1

S

P2

P3
P4

