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Abstract

In this work we consider the problem of scheduling multiprocessor tasks on parallel processors available only in
restricted intervals of time called time windows. The multiprocessor task model applies to modern production systems
and parallel applications in which several processors can be utilized in parallel. Preemptable tasks are considered.
Polynomial time algorithms are given in three cases: the case of maximum lateness criterion and a fixed number of
processors, the case of schedule length criterion when tasks have various ready times and require either one or all

processors, and in case of schedule length criterion when the sizes of the tasks are powers of 2.
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1. Introduction

In a multiprocessor task system it is allowed for
some tasks to use several processors in parallel.
This assumption is justified by various techno-
logical and efficiency reasons: In fault-tolerant
systems tasks may be duplicated to obtain results
securely [13]. Mutual testing of processors needs at
least two processors working in parallel [16]. In
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parallel computer systems with time-sharing,
co-scheduled parallel applications, i.e. running
on several processors in the same time quantum,
utilize processors with higher efficiency than ap-
plications scheduled according to other policies
[13,18,26]. In bandwidth allocation [1] applications
have to reserve sufficient channel capacity for a
given amount of time in advance. The required
bandwidth plays the role of processors. In the
scheduling literature multiprocessor tasks are also
referred to as parallel, concurrent, or malleable
tasks. The idea of multiprocessor task scheduling
is also conveyed by gang scheduling. For a more
detailed survey of scheduling multiprocessor tasks,
we refer the reader to [3.11,25].

0377-2217/03/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.

doi:10.1016/S0377-2217(02)00760-9



378 J. Blazewicz et al. | European Journal of Operational Research 149 (2003) 377-389

In this work we assume that the availability of
processors is restricted, and some machines are
available only in certain intervals called time
windows. Time windows may appear in case of
computer breakdowns or maintenance periods. In
any multitasking computer system, and in hard
real time systems in particular, urgent tasks have
high priority and are pre-scheduled in certain time
intervals, thus creating time windows of processor
availability. Scheduling in time windows was
considered in e.g. [19,22-24].

Now we shall introduce the notation used in the
paper. We consider a set # = {P,,...,P,} of m >
1 parallel identical processors. Processors are
accessible in time windows. There are / time
windows. Each time window i=1,...,/ is char-
acterized by: s,—its start time, m,—the number of
processors in window 7. The end of one time win-
dow is also the beginning of the succeeding win-
dow. Without the loss of generality we assume that
s1 =0, 8 < si01, m £ my, |, and after time s;,; no
processor is available. Our definition of time win-
dows is equivalent to the so-called staircase pat-
terns of processor availability [23]. In the staircase
pattern processors can be renumbered so that
the intervals available on processor P, are also
available on processor P (cf. Fig. 1b). In this
paper we consider the preemptive schedules, and
any processor availability pattern can be con-
verted to a staircase pattern by renumbering the
processors within the time windows (see Fig. la
and b).

The multiprocessor task setis 7 = {T},..., T, }.
Tasks are preemptable, which means that they
may be suspended and restarted later and possibly
on different processors without incurring any
additional costs. Nonpreemptable tasks must be
continuously executed on the same processor from
the beginning until the very end, i.e. they cannot be
suspended or migrate. Each task 7; € 7 is defined
by: size,—the number of processors required in
parallel, p,—the processing time, r—the ready
time, d;—the due-date. The number of processors
simultaneously required by a task will be called the
size of the task. The set 7 of tasks can be divided
into subsets according to the sizes of the tasks.
Thus, 7 = 7'UZ*U.---UJ™", where I is a set
of the n, tasks which are executed by i processors.
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Fig. 1. Converting restricted intervals of availability. (a) The
original pattern, (b) availability windows converted into a
staircase pattern, (c) availability windows converted into a
staircase pattern when allocation across processor partitions is
not allowed.

Note that n=mn;+n,+---+mn,, and that the
number of tasks with the size next to size; is ngie,.,
(not n;.1). For the conciseness of the text we will
name the tasks of size i as i-tasks. We assume that
tasks are numbered according to their size, i.e.
size; > size, > --- >size,. In case of parallel
computers with hypercube interconnection or in
buddy processor allocation systems [12,17] tasks
may not have arbitrary sizes. To avoid the exce-
ssive fragmentation of the processor set, tasks have
sizes that are multiples of each other. For example,
sizes can be powers of 2. This situation will be
called a cube case. In the cube case only compact
allocations are allowed, i.e. a k-task can be as-
signed only to processors P iy1,...,Px, where
i=1,...,m/k. Compact allocations result in per-
ceiving time windows differently by tasks of dif-
ferent sizes (e.g. see Fig. lc for 2-tasks). This
assumption is discussed in Section 4.
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The optimality criteria we consider in this paper
are: schedule length C, = maxrc, {c;}, and
maximum lateness L.« = maxr.c s {¢; — d;}, where
c; is the completion time of task T, € 7.

We shall denote the analyzed scheduling prob-
lems according to the three-field notation intro-
duced in [15,25] (cf. also [3,11]). Additionally,
symbol win in the processor field denotes the lim-
ited availability of the processors.

Below we shall review the related results on the
preemptable scheduling of multiprocessor tasks.
NP-hard problems will be denoted as NPh, and
strongly NP-hard problems as sNPh. When the
number of processors is a part of the instance in-
put, scheduling multiprocessor tasks is compu-
tationally hard (strictly problem P|size;, pmtn|Cax
is NPh) [10]. Adding precedence constraints
makes problem P3[size;, pmitn, chains|Cy,.x sSNPh,
which follows directly from the complexity of
problem P3|size;, p; = 1, chain|C,,,x [6] for unit
execution time nonpreemptable tasks. Mixing pre-
cedence constraints and task due-dates makes
scheduling multiprocessor tasks sNPh even for
two processors. Hence, P2|size;, pmtn, chain|L,,,y is
computationally hard, which follows from the
proof given for problem P2|size;, p; = 1, chain|Lyx
[7]. Consequently, P2, win|size;, pmtn, chain|Ly,y 1s
sNPh.

When the number of processors is fixed, prob-
lem Pm|size;, pmtn|Cyy, can be solved in poly-
nomial time [2]. Restricting possible sizes of the
tasks to multiples of each other reduces the prob-
lem to case cube which is computationally easier
because matching task sizes to fit in the processor
system is easy [8]. Therefore, the problem of sched-
uling preemptable tasks on identical hypercubes
P|cube;, pmtn|Cpx can be solved in O(n*log” n)
time [27], and scheduling on hypercubes with dif-
ferent speeds (problem Q|cube;, pmin|Cpyy) s
solvable in O(nlogn + nm) time [9]. When the
precedence constraints and ready times are not
present simultaneously, scheduling the multipro-
cessor tasks on two processors is computation-
ally tractable. Thus, problem P2[size;, pmtn, r;|Liax
is solvable in polynomial time using a linear pro-
gramming (LP) formulation, while problem
P2|size;, pmmn, prec|Cpx can be solved in O(n?)
time [4].

In the following sections we present the poly-
nomial time algorithms for three cases of sched-
uling multiprocessor tasks in time windows. We
start with the most general problem Pm, win|size;,
pmitn, rj|Lyax to be considered in Section 2. Then,
we present low-order polynomial time algorithms
for more specialized problems: P,win|size; €
{1, m}, pmin,r;j|Cpnax in Section 3, and problem
P, win|cube;, pmin|C.y, in Section 4.

2. Pm,win|size;, pmtn, rj| Ly,

The method we propose here is based on the use
of LP and the notion of processor feasible sets of
tasks. The processor feasible set of tasks is such a
set of tasks that can be feasibly executed in parallel
on the given number of processors. The number of
different processor feasible sets is at most » ", ()
which is O(n"), and is polynomially bounded with
respect to the input size, provided m is fixed. Let us
consider the tasks which can be executed in parallel
for some given value L of maximum lateness cri-
terion Ly.. According to the definition of the
maximum lateness, 7; cannot be executed after time
d;+ L. We will call this value the deadline of 7;.
Only tasks with ready times smaller than d; + L can
be executed in parallel with 7;. Also the number of
available processors determines the set of tasks
which can be executed in parallel. If, due to a
change of L, deadline of 7; shifts from one window
of processor availability to another, also the ad-
missible processor feasible sets change. Thus, the
collection of processor feasible sets changes with
changing L in two types of cases: when r; =d; + L
for two tasks T;, T}, and when s; = d; 4 L for some
task 7; and window k. The first case may take place
(5) times, the second /n times. This defines
O(n* + nl) intervals [L,, L,.] of criterion L, val-
ues for which the collection of processor feasible
sets is constant. In each of the [L,, L, ] intervals
the sequence of events (ready times, deadlines,
starting a window) is constant and known. The
events are ordered according to the increasing time
of their appearance. Let us assume that we know
that the optimal value of the maximum lateness
satisfies L € [L,,L,.i]. We will denote by ef(i =
l,...,2n+ 1+ 1) the time instant at which event i
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takes place. However, if event i is representing a
deadline of some task 7; then ¢! = d; (value of the
maximum lateness is not added). Let us associate
with each event i/ value g; = 1 when event i repre-
sents a deadline, and g, = 0 otherwise. For each
task 7; it is possible to find index u; of the event
associated with task ready time 7, and index v; of
the event related to 7;’s deadline. Hence, 7; can be
executed only in the interval [e] + gL, e; +g,L].
Let M; denote the family of the processor feasible
sets of tasks existing between a pair (i,i+ 1) of
events, and M, the collection of the indices of
processor feasible sets in this interval which include
task 7;. With a processor feasible set with number &
existing between events (i,i+1) we associate
variable x;, denoting the duration of executing the
processor feasible set. Assuming we know that
value L € [L,, L,,,], our problem can be formulated
as a linear program (LP):
Minimize L

vi—1
subject to sz"k:pf j=1,...,n (1)

i=u; keM;;

|M;]

Y xu<el, — e +Ligini — &)

k=1

i=1,....2n+1 (2)
Lo L L <Ly (3)
e =20 i=1,....2n+1,

k=1,...,|M| (4)

In the above LP equalities (1) guarantee that tasks
receive the required processing time. Inequalities
(2) ensure that processor feasible sets defined for
the interval between events (i,i+ 1) are not ex-
ecuted beyond this interval. The above LP also
defines a feasible schedule because in the interval
between events (i,i + 1) only a processor feasible
set with x; > 0 is executed. The LP has O(n" (n* +
nl)) variables and O(n + [) constraints (not in-
cluding constraints (4)). Thus, LP can be formu-
lated and solved in polynomial time provided that
m is fixed. To identify the interval [L,, L, ;1] Of Ly
values which contains the optimal value of maxi-
mum lateness (cf. constraint (3)) one needs to
perform O(logn + log /) binary search steps solv-
ing a linear program of the type described above.
Since the processor system has restricted avail-

ability, a feasible solution may not exist. In this
case LP is not feasible even in the last acceptable
interval of L, values.

3. P, win|size;e{1, m}, pmtn, r;|Cyax

In this section we examine the problem of pre-
emptively scheduling multiprocessor tasks with
two possible sizes: 1 or m. Tasks have different
ready times. The optimality criterion is schedule
length.

Before we go into any further details we give an
informal description of the algorithm. When new
tasks appear at some ready time, the algorithm
must decide which of the ready tasks to execute. In
any feasible schedule, if an m-task can be executed
in some earlier time interval occupied by 1-tasks,
then swapping the m-task with the 1-tasks is fea-
sible and does not change the schedule length.
Therefore, m-tasks can be executed as soon as they
are ready and m processors are available. 1-tasks,
on the other hand, must be scheduled more care-
fully, because the longest 1-task, and the sum of
processing requirements of I-tasks in the last oc-
cupied window determine the schedule length. The
algorithm given by Muntz and Coffman [21] is
capable of minimizing these two values before
reaching the last occupied interval. The algorithm
assigns to the tasks processing capacities f =
[\, -.,p,] which can be intuitively understood as
fractions of the available processing capability.
The capacities are calculated on the basis of the
task height. The height A(j) of task 7; is the pro-
cessing time required to complete it. Initially
h(j) = p;, for T, € 7. The ready times, and win-
dow beginnings are events in the system. Let us
sort all ¢ </ + n+ | events according to their time
value, i.e. ey = 0<er < ey -+ <e,. In the following
algorithm we denote by 4 the set of 1-tasks ready
by time ¢, by B the set of m-tasks ready by time ¢,
and by p, the number of processors available in
interval (e, e ).

An  Algorithm  for

pmtn, ;| Crax

1: #;=0; B i=0: A :=0;

2:fork:=1toqg—1do

begin

P,win|size; € {1, m},
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3: :=BU{T|T; & B,size; = m,r; < t};
4 c=min{d ;pp,a —al; e=1
5: if 1 # 0 and p, = m then
begin (*m-tasks are ready and interval & has
enough processors™*)
6: while B # () and ¢ > 0 do
if ¢ > p; then begin execute p; units of T;
in [eq, e +1); e:=¢—p;; B:=B—{T;}
end
else begin execute ¢ units of 7; in
lex,ex +1; p; :=p;, — & & := 0; end;
7: t:=t+r1;
end;
8: A:=AU{T|T; € A,size; = 1,r;< t};
9: order tasks in 4 according to nonincreas-
ing h(j);
10:  while (e;.; > ¢) and (37 .4(j) > 0) do
begin
11:  CAPABILITIES(A, k, f);
12:  calculate times:
7' := min {oo,min { )~ BU+1) :
J ﬁ./ B ﬁ,/‘H
T/: T/'fl € A’ﬂ/ 76 /}/th(j) > h(j+ 1)}}
(*7' 1s the shortest time required for two
1-tasks T;, T;., with
different heights to become equal with re-
spect to their height*) if f, >0 then
t" = h(|4])/ B4 else T" := oo;
(*7” is the time to the earliest completion
of any I-task¥)
13: T :=min{t, 1", e — t};
14: for 7; € 4 do schedule a piece of length
©fB; of task T; in interval [z, + 1] accord-
ing to McNaughton rule [20];
15: for T; € 4 do
begin 4(j) :=h(j) —tf,; if h(j)=0
then 4 := A4 — {T;} end;
16: t:=t+71;
end;
end;
procedure CAPABILITIES(in:X, k;out:ﬁ);
begin
17:  fp:=0; avail := p,; (*u, is the number of

free processors in interval £*)

18:  while avail > 0 and |X| > 0 do

begin
19: Y: =the set of the highest tasks in X;
20: if |Y| > avail then
21: begin for 7, €Y do f,:= avail/|Y|;

avail := 0; end;
else (*tasks in Y cannot use all avail
processors¥)
22 begin for 7, €Y do B, := l;avail :=
avail — |Y|; end;
23: X =X-Y7;
end; (*of while loop*)
end; (*of procedure CAPABILITIES*®)

Theorem 1. The above algorithm constructs an op-
timal schedule for problem P, win|size; € {1, m},
pmin, r;|Cuax and has time complexity O(n*> + nl).

Proof. We start with the proof of schedule feasi-
bility. Only the tasks in set 4 and B are executed.
Task T; is added to one of these sets only if the
current time is bigger than r; (lines 3 and 8). Thus,
ready times are observed. m-tasks are executed
only in windows with a sufficient number of
available processors (line 5). Partial schedules for
1-tasks (built in line 14) are feasible because 18, <t
for 7; € 4, and 3, _, B;7 <yt by the formulation
of the procedure capaBILITIES. Hence, the con-
ditions set in the McNaughton rule [20] are satis-
fied. A task is removed from the respective set 4 or
B, and stops being processed only when the sum of
the pieces of work on the task is equal to the task
processing requirement (lines 6, 15). Thus, the
schedule is feasible.

Now, we prove the optimality of the schedules.
The schedule length is determined by the last
completion time of a task finished in the last used
window. m-tasks are processed as soon as they
appear in the system and a free window is avail-
able. Thus, m-tasks are completed in the earliest
possible time. 1-tasks executed in the last occu-
pied window are scheduled according to the
McNaughton rule [20]. Therefore, the completion
time for the tasks in the last window depends on:
the longest remaining piece of a single 1-task, and
the sum of the processing requirements of all re-
maining 1-tasks. By lines 19 to 22 the highest (i.e.
the longest) I-tasks always receive the biggest
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processing capabilities. By calculation of 7’ in line
12 an initially higher task may not reduce its
height below some initially lower task. Thus, the
remaining processing requirement of the longest
I-task is reduced in the biggest feasible way
before reaching the last occupied window. By
line 18 no processor remains idle when a task
ready to use the processor exists. Thus, also the
sum of the remaining processing requirements is
minimized in the maximum possible way before
reaching the last used window. We conclude that
the length of the schedule in the last occupied
window is the shortest possible and the schedule
is optimal.

The computational complexity of the algorithm
can be calculated as follows: Loop 2 is executed
O(n + ) times. Lines 3-8 can be executed in time
O(n). Line 9 can be executed in O(n?) total time
over all algorithm run. This is a result of sorting 1-
tasks once and merging the arriving tasks with
tasks in set 4. The procedure CAPABILITIES is
executed in O(n;) time (assuming p, <ny). Lines
12-15 are done in O(ny) time. Thus, loop 10 is
executed in time O(n;). The total running time of
the algorithm is O(n* +nl). O

When a feasible solution does not exist due to
insufficient capacity of the processor system, the
algorithm stops with 4 # () or B # (). The above
algorithm can be executed on-line because we only
need information about the ready tasks, and the
time of the next event.

4. P, win|cube;, pmtn|Cyax

In this section we consider scheduling tasks the
sizes of which are multiples of each other. This
implies that m is a multiple of the greatest task size.
Only compact task assignments are allowed. The
schedule length is the optimality criterion. Ready
times and due-dates are not taken into account.
For the sake of the presentation simplicity we as-
sume that the sizes of the tasks and m are powers
of 2. The method we use bears some similarity
to the one used in [5,9] to solve problems

Qlsize; € {1, k}, pmtn|Cyax, Olcube;, pmtn|Cpay, and
in [14] to solve Q|pmin|Ci.y.

As mentioned earlier, only compact assignments
are allowed, i.e. k-tasks can be assigned only to
processors Pry_1jxi1, - - - Pu, Where a = 1,... ,m/k.
This assumption has both theoretical and practical
justifications. Any interval of a feasible schedule
for problem P,win|cube;, pmtn|Cn,y can be con-
verted to a compact assighment by renumbering
the processors within the interval. In real computer
systems [12,18] processor partitions are used to
eliminate the fragmentation of the resources, and
assigning tasks across the partition border is im-
possible. This may lead to different windows
available for tasks of different sizes. For example,
when the pattern presented in Fig. la is converted
to a staircase pattern in Fig. 1b, window [1,4] is
available for 2-tasks. This window comprises three
subintervals in which different real processors are
available. If the processor partitions are {P, P>},
{P;, B4}, then interval [2,3] is not accessible for
2-tasks because it is an assignment across the
partition border. Consequently, when the task
assignment across the processor partitions is for-
bidden, the availability windows depend on the
size of the tasks and the bigger the size of the tasks
is the more restricted a window can be. Yet, the
algorithm presented below can also be applied in
this situation. The schedules are optimal because
Theorem 3 (presented in the sequel) holds and
the amount of processing capacity left after as-
signing a task of a certain size is the biggest pos-
sible.

Let us outline the main stages of the algorithm
before presenting the details. First the algorithm
calculates a lower bound on the schedule length.
Then tasks are scheduled in the order of descend-
ing size. The tasks with the same size are scheduled
in the order of nonincreasing processing time.
When a feasible schedule exists, then its length is
equal to the lower bound and thus it is optimal.
When a feasible solution does not exist, then there
is some task 7; which needs additional processing
capacity. In such a case the schedule length is ex-
tended so that the processing requirement of 7; can
be met. In the following we describe each stage of
the algorithm.
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4.1. Lower bound on the schedule length

As already stated, we consider windows of the
processor availability which are staircase patterns.
Therefore, P, is the processor capable of accom-
modating the biggest processing requirement.
Processor P, has the least processing ability. Let us
call by processing capacity PC(i,t) the amount of
work that can be performed on processor P; until
time ¢. To calculate the processing capacity of a
processor we use function g(i,k, ) which is free
processing time that can be used on P, in window &
until time ¢, defined as follows:

0 if i>mort<s;

glik,t) =< t =5 if i<my; and s; <t< 854

Skl — Sk if i<my; and s, <t

The processing capacity is PC(i, 1) = ZZ:I gli k. 1).
Due to the staircase pattern we have PC(1,7) >
PC(2,t) = --- = PC(m,t) for all ¢.

For the simplicity of the presentation let us as-
sume that size; > size,--- >size,, and py.| = --- =
Phin» Where b= Zt‘;ﬁ(lé’:“ . is the number of
tasks with the size bigger than k. A k-task can be
assigned only to processors P, 1y, .-, P, exist-
ing in the staircase pattern, where a = 1,...,m/k.
Hence, the processing capacity available for k-tasks
until time ¢ is defined by PC(ka,?), where a =
1,...,m/k. The value of the lower bound on the
schedule length must guarantee that the longest
task fits on the processor with the greatest pro-
cessing capacity, the two longest tasks can be ac-
commodated on two processors with the greatest
processing capacity, etc. (cf. inequalities (5)). The
total processing requirement must fit in the total
available processing capacity (cf. (6)). For the com-
pleteness of the following argument, and without
the loss of generality we assume that n;, > m/k. Let
C, be the value of the lower bound calculated solely
for k-tasks. The above observations can be for-
mulated as the following requirement:

b+a

> _PC(ki.C) = >
i=1

j=b+1

a=1,..., (m/k)—1 (5)

m/k bny

ZPC(ki. AP (6)

J=b+1

Inequalities (5) and (6) determine the capacity
available for k-tasks. However, there are tasks of
various sizes in our problem. To deal with sizes
greater than k we propose to substitute each task 7}
of size; > k, with size;/k artificial k-tasks with the
processing requirement p;. Let pyy = py = - =
Piik be the processing times of the real k-tasks and
the artificial tasks obtained by the reduction to size
k.nj, = Y"1%" | ny2'/kis the total number of such
tasks. Then, the lower bound on the schedule
length for the original k-tasks and the artificial
ones can be found as the minimum C; satisfying
the following inequalities:

iPC(ki. G) = (ZIP/A--,
i=l j=1
a=1,..., (m/k)—1 (7)

m/k

> PC(ki.C) = Y pi (8)
i=1 j=1

The lower bound lon the schedule length can be
0gy m

found as C = max, ;" {Cx}. Let us illustrate the
above concepts by means of an example.

Example 1. Task data: n =8

Task T] Tz T} T4 Tg T(1 T7 T},
Size 4 4 4 2 2 2 1 1
Processing 4 2 1 3 2 2 4 2
time
Processor window data: / =4
Window 1 2 3 4 5
number
s; 0 2 4 6 00
m; 6 4 8 6 0

The following table presents the processing
capacities PC(i,z) available on the consecutive
processors P, by time .
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Interval
of ¢

=)
89,

[2,4] [4, 6] [6, 0]

SO~ s

SO S~

T

B i T oF = 51 W =
N

Now, we calculate the lower bound on the sched-
ule length. We have C; = 5.5, because PC(4,5.5) +
PC(8,5.5) = pi + p» + p; = 7. For the calculation
of C> we have the following processing times of the
original and artificial tasks of size 2: 4, 4, 3, 2, 2, 2,
2, 1, 1. ¢, must be in interval [6,00] to accom-
modate this amount of work. For this inter-
val we have PC(2,C,) +PC (4,C,) + PC(6,C,) +
PC(8,C,) = 3C, > 21, i.e. processing capacity is at
least equal to the total processing requirement of
real and artificial 2-tasks. Hence, we have C, > 7.
The processing times of real and artificial 1-tasks
are: 4,4,4,4,4,3,3,2,2,2,2,2,2.2.22 1,1,1,
1. To accommodate this amount of work ¢ must be
in interval [6, o0]. In case of C| and inequality (8)
processing capacity Zi, PC(i,t) = 6C;, must be
at least equal to 48. Hence C; =8 = C.

Let us analyze the time complexity of calculat-
ing bound C. The construction of artificial tasks
requires creating at most nm tasks of size 1, nm/2
tasks of size 2, etc. Thus, there will be O(nm) ar-
tificial tasks altogether. From these tasks we have
to select a the longest ones for inequalities (7). This
can be done in O(nm) time for all sizes because a is
O(m). Thus, the construction of data for the right-
hand side of inequalities (7), (8) needs O(nm) time.
Functions g(i, k, t) can be calculated in O(m/) time.
The processing capacity PC(i,¢), as a piecewise-
linear function of time ¢ can be constructed in O(/)
time. The calculation of C; in each of inequali-
ties (7) and (8) requires O(/) time. All inequali-
ties can be verified in O(ml/) time. Hence, the
running time of calculating the lower bound is
O(nm + ml).

4.2. Task scheduling rule

Tasks are assigned to processors in descending
order of sizes and processing times. The processing
capacity that remains after assigning tasks of a
certain size is utilized by the tasks of smaller sizes.
Therefore, the tasks of bigger sizes should use as
little processing capacity as possible. Let us sup-
pose tasks of sizes m, ..., 2k are already scheduled,
and tasks of size £ are about to be assigned to the
processors. Let PC(1) > --- > PC(m) denote the
remaining processing capacities of the processor
system for the schedule length C. Without the loss
of generality we assume that n, > m/k. For the
existence of a feasible assignment of k-tasks only
(tasks with smaller sizes are not taken into ac-
count) it is necessary and sufficient that the fol-
lowing inequalities hold:

b+a

iPC(ki) > p oa=1,...(m/k) -1 (9)

Jj=b

m/k b+ny

zPC(ki) > p (10)

=

where b = Zf‘:(k;'; 1)+1 12+ The necessity of satisfy-
ing the above inequalities is obvious. The suffi-

ciency is demonstrated in the following discussion.

Scheduling rule R

In order to schedule k-task 7; find pair
(Puy, Pe(ws1)) of processors satisfying: PC(kw) >
p; > PC(k(w+1)).

Fill processors Pyi1y ..., Prpwi1y With PC(k(w +
1)) units of task 7; in the windows available
on Pk(\\v+[).

Assign the remaining processing requirement of
T; equal to p;, —PC(k(w+1)) to processors
Piw1)s1y- .-, P from left to right in the win-
dows which are not occupied by 7; on proces-
SOTS Poyit, - - Prpwsr), and are available on P,
(cf. Fig. 2a).

Update the remaining processing capacities:
PC(kw — j) := PCkw — j) — (p; = PC(k(w+ 1)),
for j=0,...,k— 1. Construct new composite
processors from the remaining intervals of
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Fig. 2. Scheduling rule. (a) Assignment of a k-task to the
processors, (b) restoring of the staircase pattern.

availability on pairs of processors Py,1)—; and
PCyips2)-j» for j=0,...,k—1 (cf. Fig. 2b).
PC(k(w+2)—j):=PC(k(w+2)—j)+PC(k(w+
1) —j)— PC(k(w+1)),for j=0,...,k— 1. Re-
move processors Pii,..., P+ from data
structures holding information about the avail-
able processing capacity. Renumber processors
Prgisiyaise:: 5P t0 Popyise - s 5:Pm—ks TESPECtIVELY.
Rebuild the windows to respect staircase pat-
terns, if necessary.

Let us comment on the above rule. The as-
signment of task 7 is feasible because 7} receives
the required processing and is executed exactly on
k processors. The rule has a special form when
PC(m) = p;. If this is the case we assume that
PC(m + k) =0, and apply the rule as described
above. Since multiprocessor tasks require several
processors simultaneously, some intervals in the
windows on Pi_1)+1;- -, Pewer)—1 Mmay remain
idle, because processors P, and Py, determined
the processing capacity available for a k-task.
After the assignment of 7; some intervals on

Pivity - -+ Peerr)—) may still be free but unavailable
on Piu—1)+1s - - - » P (cf. Fig. 2b). Such free inter-
vals must be moved to Py,_1)+1, - . -, Pu, In order to

restore the staircase pattern. The scheduling rule
violates neither inequalities (9) nor (10) as shown
in the following theorem.

Theorem 2. Inequalities (9) and (10) are invariant
when assigning k-tasks, according to scheduling rule
R.

Proof. Let us suppose that initially inequalities (9)
and (10) were satisfied, and 7, was assigned to
Pk(n'—l)-Hv i i ,P/m and P/\.“-*l, . 7Pk(n'+l) by rule R.
We begin with the proof of the invariance of in-
equalities (9).

Due to applying rule R the number of inequal-
ities in (9) is reduced to (m/k) — 2. The initial
processor Py, is removed from data structures
holding information about the available process-
ing capacity. Values of PC(k),...,PC(k(w—1))
are the same as before applying rule R. The new
PC(kw) is equal to the initial PC(kw)+
PC(k(w+ 1)) — p;. The new values of PC(k(w+ i))
are the old values PC(k(w+i+1)) for i=
l,...,(m/k) —w—2.

As T, was the longest k-task, its processing time
p; is subtracted on the right-hand side of all in-
equalities (9). It remains to be shown that the left-
hand side is not reduced by more than p; in any of
inequalities (9). Values of PC(k),...,PC(k(w—1))
did not change. Hence, inequalities (9) hold for
a=1,...,w—1, because the left-hand side did not
change. In the new value of the sum on the left-
hand side of (9), for a=w,..., (m/k) —2, only
the new PC(kw) is different than before apply-
ing rule R, and is equal to the initial PC(kw)+
PC(k(w+ 1)) — p;. Hence, the left-hand side did
not decrease more than p;, and inequalities (9)
hold for a =i,...,(m/k) — 2.

Inequality (10) holds because p; has been sub-
tracted on both sides of the inequality. [J

The longest k-task can be feasibly scheduled
because (9), (10) hold. The above reasoning can be
applied inductively to the following k-tasks. Thus,
tasks of size k£ can be feasibly scheduled provided
inequalities (9), (10) hold.

After the assignment of k-tasks the processing
capacities of the remaining processor system will
be used by the tasks of the smaller sizes. The ex-
istence of a feasible schedule for these tasks de-
pends on satisfying inequalities (9) and (10) for the
new, smaller size tasks. Therefore, the values of the
remaining processing capacities on the left-hand
side of inequalities (9) and (10) should be as large
as possible. In the next theorem we demonstrate
that there is no rule which leaves more processing
capacity than rule R. For the purposes of the
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theorem let PCy (i) denote the processing capacity
remaining on P, after assigning k-tasks according
to our rule R, and PCy(i) according to some al-
ternative method O, while PC(i) is the processing
capacity available for both rules before assigning
any k-task.

Theorem 3. There is no rule O for assigning k-tasks
such that the remaining processing capacities satisfy

> PCo(ki) > > PCq(ki) (11)
i=1 i=1
for at least one a € {1,...,(m/k)—1}.

Proof. Let us suppose, on the contrary, that such
a rule exists and it assigns task 7; to processors
Pyiry ..., Pyyk. Our rule assigns 7; to processors
P/\r(,\- Daigsias ,P/m- and 1)/‘"v+|, $ %5 ’Pk(u-+l).

If ¢ <w then Y [ PCo(ki) < Y7  PCr(ki) for
a=g¢q,...,w+1, and rule O is not better. If
¢ = w + 1 then the schedule built by an alternative
rule O is infeasible because p; > PC(k(w+
1)) = PC(kq).

Let us suppose O assigns 7; to more than &
processors, Piy_1)+1, - - -, Py, are the last processors
used by T; according to O, and ¢ > w+ 1. O may
feasibly execute at most PC(k(w + 1)) units work
on Puity... Py Thus, x=p, —PCk(w+1))
units of work must be assigned to processors
Py, ..., P,. If rule O uses any of processors P, ...,
Py,1) then rule R is better for a=1,...,w—1
because these processors are not used by our rule.
For a = w rule O may not be better than R because
amount x units of work assigned to P,...,P,, by
O is at least equal to the amount p; — PC(k(w + 1))
assigned by R. For a=w+1,...,g—1 rule
O is not better because any smaller (than by
rule R) consumption of processing capacity on
Pig-1)+1, - - Py according to O must have been
compensated for by the use of processing capacity
on P],. . sPA(\r—H-

Consequently, rule O is either infeasible, or in-
equality (11) is not satisfied. The induction over
the tasks of size k completes the proof. [J

The above theorem shows that rule R leaves the
biggest possible processing capacity for the tasks
of other sizes. Tasks of sizes smaller than & can

consume all the processing capacity remaining
after scheduling .7, because k is a multiple of all
the smaller sizes. Tasks with a bigger size may not
access all the processing capacity remaining after
the assignment of the k-tasks because only com-
pact assignments are allowed. Therefore, our rule
guarantees the existence of a feasible schedule for
smaller size tasks, provided that a feasible schedule
exists for the current schedule length. As a result,
the tasks should be scheduled in order of descend-
ing sizes.

Let us calculate the time complexity of the
above scheduling method. Finding a collection of
processors with sufficient processing capacities re-
quires O(logm) time. The schedule for some task
may have at most / + 1 preemptions. Restoring the
staircase pattern may require the change of the
position of at most O(/) windows. Thus, all tasks
can be scheduled in O(n(/ + logm)) time.

4.3. Dealing with infeasible schedules

Rule R builds a feasible schedule provided that
such a schedule exists for the given schedule
length. However, the method of calculating lower
bound C is not sufficient to grasp the interactions
between the tasks of different sizes. Consequently,
schedule with length C may be infeasible. Consider
an example.

Example 2. Let /=1, 51=0, s, =00, m =4.
There are n = 3 tasks defined as follows: size, =
size; =2, sizes =1, py =2, pp =1, py =2. From
inequalities (7) and (8), we obtain C,=C; =
C = 2. The schedule for 2-tasks is shown in Fig. 3a.

Processing capacities that remain in the system
after scheduling the 2-tasks are PC(1) = PC(2) =
1. Inequalities (9) are not satisfied and 73 cannot
be scheduled. There is enough processing capacity
to accommodate 73, yet the capacity is located on
two processors in parallel and cannot be exploited
by a I-task. The deficiency of the processing ca-
pacity for T; is p; — PC(1) = 1.

This deficiency must be compensated for by
extending schedule length by ¢. Suppose the in-
crease of the processing capacities of all processors
can be accumulated to compensate for the defi-
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a) 0 1 2

Ie

T 15,
b) 0 0.5 2 25

Fig. 3. Example 2. (a) Infeasible schedule, (b) optimal schedule.

ciency. Thus, mé = 1, and C = 2.25. However, the
schedule with C = 2.25 is infeasible, and we have
to extend it again by 1/8. On the other hand, as-
sume that only one processor produces the ca-
pacity which will compensate for the deficiency.
Then 6 = 1, and C = 3, but a schedule with this
length is not optimal. The optimal schedule is
presented in Fig. 3b.

From Example 2 we conclude that there are
cases where no feasible schedule with length C
exists. The total processing capacity is at least
equal to the total processing requirement of the
tasks. However, not all this capacity can be used to
schedule tasks of a certain size. To calculate the
minimum extension making the schedule feasible
we have to know the number of processors m’
which will produce additional processing capacity
usable for compensating the deficiency of pro-
cessing capacity.

As soon as the tasks of sizes m, . . ., 2k have been
scheduled, the infeasibility of the schedule for -
tasks can be identified by verifying inequalities (9).
By Theorem 2 a feasible schedule for tasks of size &
exists if inequalities (9) hold. Hence, in the case of
infeasibility, we have to increase schedule length
by some amount ¢ such that the above inequalities
become valid. We calculate the deficiencies of

processing capacity in inequalities (9): DP(a,k) =
S p— S0 PC(ki) for a=1,...,(m/k)— 1.
Suppose inequality for the index « is violated in
(9). Then, the extension is 6 = DP(a,k)/m’. If
there are more violated inequalities, then we ex-
tend the schedule iteratively to satisfy the in-
equalities one by one. Note that inequality (10) is
satisfied by the way of calculating C.

To calculate 6 we have to determine m'. For k-
tasks m' is in the set {1,...,m/k}. If m' is too
small, then the new deficiency of processing ca-
pacity is DP'(a,k) < 0, and the schedule is not
optimal. If m’ is too big then DP'(a,k) > 0 and, if
perfect precision of the calculations is possible, the
search for a feasible schedule never stops. When
the number is right, then the violated inequality in
(9) will be satisfied with equality. This means that
the exactly required amount of processing capac-
ity is created. Thus, a wrong number m’ can be
easily recognized. The value of m’ results from the
number of processors contributing to PC(47). This
number is a result of creating composite processors
by rule R. Since tracing interactions between tasks
and windows in rule R is hard we propose to use a
binary search over integers in set {1,...,m/k}, to
find m'. A faster, but more involved algorithm of
determining m’ has been proposed in [9].

To verify the correctness of this method observe
the following facts: Any increase of processing
capacity is created on the processors and the value
of the increase accumulated on the left-hand side
of inequalities (9) is a multiple of . As schedule
length increases, also the left-hand sizes of (9) in-
crease because the capacity on the real processors
increases, while tasks of size m, ..., 2k require the
same amount of work as before the schedule ex-
tension.

Let us analyze the worst-case running time of
the approach described above. Each extension
made to accommodate a k-task requires resched-
uling tasks of sizes m, . .., 2k, which can be done in
time O(n/ +nlogm) (see Section 4.2). For each
violated inequality in the formulation (9), O(logm)
trials must be made to find m'. The number of
violated inequalities can be calculated as a sum of
geometric sequence. Hence, no more than 2m in-
equalities can be violated over all the task sizes.
The extensions may require O(n(/ + logm)m logm)
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time in total which is also the worst-case running
time of the whole algorithm.

4.4. The algorithm

We summarize the algorithm described above
by presenting its pseudocode. In the following
formulation we denote by 4 the set of the violated
inequalities (9).

Algorithm for P, win|cube;, pmtn|Ci,y

l: C:=max{C,,...,Ci}; (*C is the lower

bound on the makespan*)

2:  for f := log, m downto 0 do (*assignment of

2/ -tasks*)
begin
3:  ifinequalities (9) do not hold for a € 4 then
begin
4: for each a € A do begin (*loop over vio-
lated inequalities™)
begin
5 calculate DP(a,2/); m, :==m/2/;m’' :=
m,/2;m; = 1; flag : = true;
6: while DP(a,2/) > 0 and flag do
begin (*binary search for the number of
processors m'*)
7 6 :=DP(a,2/)/m'; C' := C + §;
8: schedule tasks of sizes m,...,2/*! in
windows contained in the interval
[0, C"] using rule R;
9: calculate new deficiency of processing
capacity DP'(a,2/);
10: if DP'(@,2") > 0 then m, := m’ else
11: if DP'(a,2") < 0 then m; := m' else
12: begin flag : = false; C := (’; end;
13: m o= M
end; (*of binary search for the number
of processors*)
end; (*of the search for the extension ac-
commodating 2/ -tasks*)
end;
14: assign size 2/ tasks using the scheduling rule
R;
end;

5. Conclusions

In this work we have considered scheduling
multiprocessor tasks in the windows of processor

availability. A polynomial time algorithm based
on linear programming has been proposed for the
general case of the problem and L, criterion
when the number of processors is fixed. Low-order
polynomial time algorithms were proposed for
problems P, win|size; € {1,m}, pmtn,r;|Cp. and
P, win|cube;, pmtn|Cpyy.
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