
Real-time scheduling of
linear speedup parallel tasks∗

Maciej Drozdowski
Institute of Computing Science,

Poznań University of Technology,
Poznań, Poland

Abstract

In this paper a problem of deterministic scheduling parallel applica-
tions in a multiprogrammed multiprocessor system is considered. We
address the preemptive case. The number of processors used by a task
can change over time. Any task can be executed with linear speedup
on a number of processors not greater than some task-dependent con-
stant. This problem can be solved by a low-order polynomial time
algorithm for the makespan optimality criterion and tasks with differ-
ent release times. The algorithm can be executed on-line.

Keywords: Parallel processing, parallel tasks, preemptive scheduling.

1 Introduction

Parallel computer systems are becoming common in scientific and industrial
applications [4]. However, the advantage of parallelism can only be taken
if the computations are efficiently organised. Hence, there is a demand for
good scheduling algorithms in parallel environment.

A parallel application uses more than one processor at a time. Yet, a
concept of the tasks using more than one processor at a time is quite recent
in the scheduling theory. It has been introduced in [1] as a multiprocessor
task system in which any task can be executed by only one given number
of processors. This has been extended to a parallel task system [6] in which
any task can be executed on any subset of processors, but the execution time
depends on the number of used processors. In the literature (see [2, 10] for
surveys) it was assumed that the number of processors used by a task does
not change during the task execution. This assumption is not so obvious in

∗This research has been partially supported by KBN grant 3P40600106/PI

1

the context of long numerical applications where the load on processors is
balanced and the task can adapt itself to different numbers and speeds of
available processors [11]. In this work it is assumed that the number of used
processors may change during the execution.

Let us define our problem. We consider a set of n tasks to be scheduled
on m parallel identical processors. Each task j requires pj of processing. It
is typical of parallel applications that linear speedup can be maintained only
up to some bounded number of processors [9]. Assigning more processors is
not very efficient. Hence, we assume that task j can be executed with linear
speedup on the number of processors in the range [1, δj], while using more
than δj processors is not allowed. In this work we assume that δj ≤ m. The
number of used processors may change during execution of the task. Tasks
are preemptive, i.e. their execution can be suspended and restarted later
(probably on a different number of processors) without incurring additional
costs. Hence, the schedule has h intervals where the assignment of tasks to
processors is constant. Task j uses prockj processors in k-th such interval of
length tk. In a feasible schedule

∑h
k=1 tkprockj = pj for j = 1, . . . , n. Task j

can be executed only after its release at time rj. The optimality criterion is
schedule length (makespan) Cmax = maxj cj, where cj is task j completion
time.

To denote scheduling problems we will use standard three-field notation
with its extensions [3, 10]. Since the previously existing classification does
not match our problem perfectly, we will use any∗ to denote that speedup
is linear, and δj that it is linear up to δj ≤ m processors. The problem of
scheduling tasks requiring more than one processors at the time has already
been considered in the literature (see [2, 10] for surveys). In [6] it was shown
that when speedup is an arbitrary function, nonpreemptive scheduling on
five processors (P5 | any | Cmax) and preemptive scheduling on an arbitrary
number of processors (P | any, pmtn | Cmax) are strongly NP-hard. Observe,
that when ∀jδj ≥ m and speedup is a nondecreasing function, for Cmax
criterion the problem boils down to scheduling on one processor because it is
always advantageous to use all processors. For the preemptive case, ∀jδj ≥
m, and precedence constraints it has been shown in [5] that the problem is
strongly NP-hard even for n < m and chains of three tasks only. However,
when an optimal schedule is known for the chains longer than the m-th
longest chain, it is possible to merge in polynomial time all the remaining
tasks with such a schedule to obtain an optimal schedule for all the tasks [5].

2

In this work we consider problem P | any∗, δj, rj, pmtn | Cmax, i.e. the case
where δj may have value smaller than m, tasks are ready for processing at
various moments of time and makespan is the optimality criterion. The next
section presents the optimisation algorithm for our problem.

2 The algorithm

The method presented here uses some ideas of the Muntz-Coffman’s algo-
rithm [8] for problem P | pmtn, in − tree | Cmax. This algorithm schedules
tasks according to their level which is the time required to finish all the tasks
along the path from the given task to the root of the tree. In [8] a concept of
processing capabilities has been introduced. Processing capabilities are real
numbers which represent a share of all processors that is assigned to process
a task for some period of time. Processing capabilities can be also considered
as speeds of processing tasks. We will use analogous method to assign pro-
cessors to tasks. We use also McNaughton’s [7] wrap-around rule to schedule
pieces of tasks. The basic idea behind the algorithm we propose for problem
P | any∗, δj, rj, pmtn | Cmax is to build a schedule starting from the interval
where only one task is present and ending with the last interval where all
tasks are ready. The more tasks are executed before this last interval, the
smaller Cmax is. Now, we introduce some useful notation.

Height h(j) of task j is the shortest time required to complete j. h(j)
is the remaining required processing divided by δj. h(j) is pj

δj
initially, it

decreases while processing j, and h(j) = 0 means that j is completed. We
say that two tasks are equal if their heights are equal. Let us assume that
there are l ≤ n different values of release times, and r1 = 0 < r2 < . . . < rl.
We introduce also rl+1 =∞. In the algorithm we will denote by:

k - index of interval [rk, rk+1], k = 1, . . . , l,
Rk - the set of tasks ready in interval k,
τ - the length of the current processing capabilities assignment,
t - the beginning time of the current processing capabilities assignment;
β - a vector of n processing capabilities for tasks 1, . . . , n.

The algorithm
1: t := 0; group tasks with release time rk in set Rk, order tasks in Rk

according to nonincreasing heights, k = 1, . . . , l;

3

2: for k := 1 to l do
begin

2.1: order tasks in Rk according to nonincreasing values of h(j) for j ∈ Rk;
2.2: while (rk+1 > t) and (∃j∈Rkh(j) > 0) do

begin
2.2.1: find capabilities(Rk, β);
2.2.2: calculate times:

if ∃j,j+1∈Rkh(j) > h(j + 1) then

τ ′ := minj,j+1∈Rk{
h(j)−h(j+1)
βj
δj
−
βj+1
δj+1

: βj
δj
6= βj+1

δj+1
, h(j) > h(j + 1)} else τ ′ :=∞

- the shortest time required for two tasks j, j + 1 with different heights
to become equal;
τ ′′ := h(|Rk|)

δ|Rk|
- the time to the earliest completion of any task;

2.2.3: τ := min{τ ′, τ ′′, rk+1 − t};
2.2.4: schedule τβj piece of task j in interval [t, t+ τ] according to

McNaughton’s wrap-around rule for j ∈ Rk;
2.2.5: h(j) := h(j)− τβj

δj
for j ∈ Rk;

2.2.6: t := t+ τ ;
end;

2.3: if (∃j∈Rkh(j) > 0) then Rk+1 := Rk+1 ∪ {j : j ∈ Rk, h(j) > 0};
end; (* end of the algorithm *)

procedure find capabilities(in:X;out:β); (* X - a set of tasks *)
begin

3.1: β := 0; avail := m; (* avail is the number of free processors *)
3.2: while avail > 0 and | X |> 0 do

begin
3.2.1: construct set T of the highest tasks in X with h(j) > 0;
3.2.2: if

∑
j∈T δj > avail then

begin
3.2.3: βj := δj

avail∑
j∈T δj

for task j ∈ T ; avail:=0;

end
else (* tasks in T can use at most avail processors *)
begin

3.2.4: βj := δj for j ∈ T ; avail := avail −∑
j∈T δj;

end;
3.3: X := X − T ;

4

end; (* of while loop *)
end; (* of procedure find capabilities *)

High level description. Intervals [rk, rk+1] are considered consecutively in
lines 2-2.3. In these intervals, subintervals are created in lines 2.2-2.2.6 where
processing capabilities assignment is not changing. Tasks are assigned pro-
cessors in line 2.2.1 in a way analogous to the one proposed in [8]. High tasks
are given preference (line 3.2.1). When there is more processors than can
be simultaneously required by the ready tasks, a maximal possible number
of processors is assigned in line 3.2.4. Otherwise, processors are shared (line
3.2.3) by equal tasks such that their heights decrease at the same pace (cf.
line 2.2.5). The length of the current assignment is calculated in line 2.2.3.
The assignment of processors to tasks changes in three cases: h(j) for some
initially higher task becomes equal to h(j + 1) of some initially lower task
and processing capacities must be recalculated such that equal tasks decrease
their heights with the same speed (calculated as τ ′ in line 2.2.2), the lowest
task in Rk finishes (τ ′′), or the end of interval is encountered and tasks in
Rk+1 must be considered. In line 2.3 tasks from Rk not completed by the end
of interval k are added to Rk+1 to be considered also in the next interval.

Lemma 1 The algorithm for P | any∗, δj, rj, pmtn | Cmax is correct.

Proof. First we prove that the algorithm stops. Procedure find capabilities
stops because in each execution of while loop in lines 3.2-3.3 at least one task
is removed from X. Equal tasks reduce their heights with the same speed
(cf. line 2.2.5). Hence, once two tasks become equal they remain equal until
their completion. Height of initially higher task cannot fall below the height
of an initially lower task, which is guaranteed by calculation of τ ′ in line
2.2.2. Thus, two tasks can become equal at most n− 1 times. We conclude
that while loop of lines 2.2-2.2.6 can be executed only a limited number of
times. As a result of this, the algorithm stops.

Now, we consider feasibility of the obtained schedule. Tasks are not
scheduled before their release times because any task released at rk can be
considered in sets Rk, . . . , Rl, not R1, . . . , Rk−1. No task j is ruled out from
consideration as long as h(j) 6= 0. This means that j is no longer considered
only when it received required processing. In each subinterval built in lines
2.2-2.2.6:

5

(i) no task j is assigned more than δj processing capabilities which is
result of lines 3.2.3 and 3.2.4 in procedure find capabilities. McNaughton’s
wrapping-around procedure uses a new processor for a task only if the pre-
vious processor is filled completely. Hence, no more than δj processors can
be used by any task.

(ii) the sum of processing requirements of tasks is
∑
j∈Rk τβj = τ(

∑
j∈R′

k
δj+∑

j∈Rk−R′k

δj(m−
∑

i∈R′
k
δi)∑

i∈Rk−R
′
k
δi

) = τ m, where R′k ⊆ Rk is a set of tasks which

received processing capabilities in line 3.2.4 of procedure find capabilities.
Thus, the sum of processing requirements for the subinterval does not ex-
ceed its capacity.

(i) and (ii) ensure that in the subinterval created in lines 2.2-2.2.6 a fea-
sible schedule can be obtained by McNaughton’s wrap-around rule. 2

Theorem 1 A2 is an optimisation algorithm with complexity O(n2).

Proof. In each subinterval created in lines 2.2-2.2.6 either all m proces-
sors are occupied, or as many processors are occupied as possible. Hence, ca-
pacity of interval [rk, rk+1], k = 1, . . . , l−1, is maximally exploited. Thus, the
total processing requirement moved to Rk+1 is minimal possible. Since tasks
with the longest expected execution time are preferred, also maxj∈Rk h(j) is
maximally decreased. The above arguments hold inductively for intervals
[rk, rk+1] (k = 1, . . . , l− 1). Thus, also Rl has tasks with the lowest possible
maxj∈Rl h(j) and their total processing requirement

∑
j∈Rl h(j)δj is minimal.

Now, we will show that max{maxj∈Rl h(j), 1
m

∑
j∈Rl h(j)δj} is the length

of the schedule in the last interval. Note, that no shorter schedule in the last
interval can exist than maxj∈Rl h(j) - the longest time required to complete
some task, and 1

m

∑
j∈Rl h(j)δj - the time required to process all tasks when

processors are equally loaded. We can distinguish two cases. If
∑
j∈Rl δj ≤ m

then tasks are always assigned processing capacity δj in line 3.2.4. Hence,
also δj processors are used by the tasks. This leads directly to a schedule of
length maxj∈Rl h(j). Consider the case of

∑
j∈Rl δj > m. Let us remind that

tasks are ordered according to nonincreasing height. There must exist some
task j′ such that

∑j′−1
j=1 δj < m and

∑j′

j=1 δj ≥ m.
Tasks with height greater than h(j′) are assigned processing capacity δj

and are executed with the greatest possible speed. As soon as the height of

6

some of them drops to the level of h(j′) (detected by calculation of τ ′ in line
2.2.2) it is treated in the same way as tasks with height h(j′).

Tasks with the height equal to h(j′) share processors (line 3.2.3).
Tasks with height smaller than h(j′) are not executed until the height of

h(j′) drops to their level. From such moment on these tasks share processors
with other tasks of height h(j′). Consequently, all tasks of height h(j′) (and
lower initially) are completed in the same subinterval created in lines 2.2-
2.2.6. Until such a moment the schedule in the last interval has no idle
time. If after that there are still tasks with height greater than h(j′) = 0
then such tasks have been always assigned δj processors, the schedule cannot
be shorter, and its length is determined by maxj∈Rl h(j). In the opposite
case, there is no more tasks with height greater than h(j′) and a schedule
without idle time, i.e. of the length 1

m

∑
j∈Rl h(j)δj, has been built. Thus, we

conclude that the schedule in the last interval has a minimal possible length.
Consequently, the whole schedule is optimal.

The complexity of the algorithm can be estimated as follows. Group-
ing tasks according to their release times in line 1 can be implemented in
O(n log n) time. There are O(n) values of k considered in loop 2-2.3. Or-
dering tasks according to their heights is equivalent to sorting and requires
O(n log n) time in line 1 and O(n) time in line 2.1 (merging of Rk and Rk−1).
Procedure find capabilities can be executed in O(n) time because it assigns
processing capabilities to at most n tasks. Lines 2.2.2-2.2.6 require O(n)
time. Thus, the total complexity is O(n2). 2

Note, that no information about tasks in Rk+1, . . . , Rl is necessary to
schedule tasks with release times smaller than rk+1. Hence, the above al-
gorithm can be run on-line i.e. it builds optimal schedules using only the
information about tasks that have been already released. In the above al-
gorithm it was assumed that the cost of preemption (or a contex switch) is
negligible. In practical situations the schedule loses its optimality when the
context switch lasts some time. Yet, we are able to estimate the worst case
lengthening of the schedule from the number of preemptions. The number of
preemptions can be determined by the number of subintervals where process-
ing capabilities are constant and the preemptions within such subintervals.
There can be at most 3n subintervals and at most two context switches are
associated with each task within the subinterval. Hence, there are at most
6n2 + 3n context switches on any processor in the schedule.

7

Consider a problem of scheduling parallel tasks for maximum lateness
criterion i.e. P | any∗, δj, pmtn | Lmax. There are also l different due-dates:
d1 ≤ d2 ≤ . . . ≤ dl. This problem can be solved by a modification of the
above algorithm. For problem P | any∗, δj, pmtn | Lmax we have to guarantee
that task j is feasibly executed in interval [0, dj +Lmax] and Lmax is minimal
possible. For problem P | any∗, δj, rj, pmtn | Cmax we have to schedule
task j in interval [rj, Cmax] and minimise Cmax. Thus, for instance I of
P | any∗, δj, pmtn | Lmax we can construct equivalent instance I ′ of problem
P | any∗, δj, rj, pmtn | Cmax by assuming r′j = dl − dl−j+1 for j = 1, . . . , l.
Schedule S ′ for I ′ should be read from the end at C ′max to the beginning to
be schedule S for P | any∗, δj, pmtn | Lmax, i.e. each time instant t′ in S ′ has
equivalent t = C ′max − t′ in S.

3 Conclusions

In this work we analysed a problem of preemptive scheduling parallel applica-
tions which preserve linear speedup only up to some limited number δj ≤ m
of processors. Tasks were assumed to be ready for processing at various mo-
ments of time, makespan is optimality criterion. Low order polynomial-time
on-line algorithm has been proposed for this problem.

References

[1] J.B lażewicz, M.Drabowski, J.Wȩglarz, Scheduling multiprocessor tasks
to minimize schedule length, IEEE Trans. Comput. C-35 (1986) 389-
393.

[2] J.B lażewicz, M.Drozdowski, J.Wȩglarz, Scheduling multiprocessor tasks
- a survey, International Journal of Microcomputer Applications 13
(1994) 89-97.

[3] J.B lażewicz, K.Ecker, G.Schmidt, J.Wȩglarz, Scheduling in Computer
and Manufacturing Systems (Springer Verlag, New York, 1993).

[4] W.J.Camp, S.J.Plimpton, B.A.Hendrickson, R.W.Leland, Massively
Parallel Methods for Engineering and Science Problems, Comm. ACM
37 (1994) 31-41.

8

[5] M.Drozdowski, W.Kubiak, Scheduling parallel tasks with sequential
heads and tails, Faculty of Business Administration, Memorial Univer-
sity of Newfoundland, working paper, April 1995.

[6] J.Du, J.Y-T.Leung, Complexity of scheduling parallel task systems,
SIAM J.Discrete Math. 2 (1989) 473-487.

[7] R.McNaughton, Scheduling with deadlines and loss functions, Manage-
ment Science 6 (1959) 1-12.

[8] R.R.Muntz, E.G.Coffman Jr., Preemptive scheduling of real-time tasks
on multiprocessor systems, Journal of ACM 17 (1970) 324-338.

[9] K.C.Sevcik, Application scheduling and processor allocation in multi-
programmed parallel processing systems, Performance Evaluation 19
(1994) 107-140.

[10] B.Veltman, B.J.Lageweg, J.K.Lenstra, Multiprocessor scheduling with
communication delays, Parallel Computing 16 (1990) 173-182.

[11] R.D.Williams, Performance of dynamic load balancing algorithms for
unstructured mesh calculations, Concurrency: Practice and Experience,
3 (1991) 457-481.

9

