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Abstract

In this work the idea of a divisible task is presented. The divisible task is a computation
which can be divided with arbitrary granularity into independent parts solved in parallel by
distributed computers. A simple model of a communication delay and a computation time is
adopted, based on which various computer architectures and communication methods are
analyzed. We review the ways of applying the divisible task concept in the case of a linear
array, star, bus, hypercube, and mesh of processors. Then, the results of an empirical justi-
fication of the analysis are presented. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent developments in network technology and distributed processing have
become an important element of high performance computing. The reduction of the
application (task) execution time by exploiting parallelism and distribution of the
computation is becoming a common practice. Programming environments like
PVM, MPI, Linda, Express etc. enabled load sharing in distributed processing. Still,
there is no mature method achieving an efficient use of the computing power in a
wide range of circumstances. The progress in VLSI technology results in fast
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processors which must communicate with slow memories and even slower I/O de-
vices (such as the network). Hence, the bandwidth of communication channels is a
scarce resource. Numerous approaches have been proposed to achieve minimal
computation time in distributed systems. However, many of them concentrate on
selected elements of the computation process while neglecting others. In this work we
present a simple model capable of dealing with a wide range of the computer ar-
chitectures and communication aspects.

We analyse the problem of scheduling tasks which can be divided into parts of
arbitrary size. Such parts can be processed separately and independently by a dis-
tributed computer system. Tasks with the above features will be called divisible tasks.
The idea of divisible task was first analysed in the context of chains of intelligent
sensors [1]. Then, it was extended to analyse various computer architectures such as
stars and buses [2,3], meshes [4], hypercubes [5]. The proposed model of a compu-
tation process includes both the time of distribution to the remote sites as well as the
processing time. Many important applications can be regarded as divisible tasks. For
example, searching for a record in a database with thousands of records can be done
in parallel by several machines. The processing elements can work individually,
because not much communication is required between them. The database file can be
divided into parts with record size granularity which is quite fine compared to the
total volume of the database. A similar situation takes place while searching for a
pattern in a text, audio, graphic etc. file. Furthermore, sorting, filtering and pro-
cessing of big measurement data volumes can be modelled in this way. Some
problems from linear algebra [6], modelling molecular dynamics, solving partial
differential equations which involve loops processing can be included in divisible task
paradigm as well.

We will outline now the model of a computation process. A distributed computer
consists of m processing elements (PEs). Each of them has a processor, local memory
and is able to communicate in the network. Initially, the whole volume ¥ of data to
be processed (i.e. a task) resides on the first PE called originator (e.g. I/O processor).
The originator processes locally «; units of data, and sends the rest (i.e. ¥ — a;) to its
neighbour(s) for remote processing. PE i intercepts for local processing o; units of
data and sends the rest of the received load to its still idle neighbour(s). The inter-
cepted part of the load is processed with rate 4; (expressed in time units per data unit
e.g. seconds per byte). The transfer of x data units over link j lasts S; + xC;, where S§;
is a startup time required to initiate communication, and C; is the communication
rate (e.g. in sec/byte). The problem we consider is finding a distribution of the load
(i.e. ay,...,q,) such that the completion time (of the task) is minimal.

In this work we present the most important known results for the problem of
divisible task scheduling. To keep the presentation short we examine in detail only
simple cases to give the idea of applying the divisible task method. Then, we show
how to adjust the model to include more complex situations. Later, an empirical
verification of the model is presented. The work has two parts. In Section 2 we re-
view how divisible task concept was applied in different computer architectures. This
section is organised on the base of considered interconnection networks. In Section 3
we present results of verifying divisible task concept in a transputer network.
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2. Application of divisible task concept
2.1. Linear processor array

In a linear processor array PE i is connected with PE i+ 1 by link i
(i=1,...,m—1). PE 1 processes locally o, units of data and sends (¥ — ;) units to
PE 2 which lasts R, + C;(V — a;). PE 2 processes a, units locally and sends to PE 3
(V —a; — ap) data units, etc. Assume that each PE has a communication copro-
cessor. Thus, immediately after the reception of the load the considered PE starts
both processing its share and sending data to its idle neighbour. We assume that the
division into the locally processed part and the part sent further is instantaneous.
Unless stated otherwise, we assume for the rest of the paper that no results are re-
turned to the originator, or that the data return time can be neglected. We will
demonstrate that this restriction can be easily relaxed. When no results are returned
an important observation can be made. Namely, all the processors must finish their
work at the same moment of time [1]. Otherwise, the processor working longer could
be off-loaded and the processor finishing earlier could have received more work
which would result in a shorter schedule. This meaningful observation can be applied
also in the case of other networks, and other communication methods when no
results are returned.

Using the above observation we conclude that communication from PE i to PE
i + 1 lasts as long as the difference between the computing time on PE 7 and com-
puting on PE i + 1 (cf. Fig. 1). Thus, a set of linear equations can be formulated
from which «; (i =1,...,m) can be found [1,7,8]:
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Fig. 1. Data distribution pattern in a linear array of processors.
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oudy =81+ (o + - + o) C1 + 24>

ad; = Si + (o1 + - + ) Ci + 21 di

(1)

am—lAm—l = Sm—l + am(cm—l +Am)

V=o+: -+ 0n
If a feasible solution exists (note that only «; >0 is reasonable), equation set Eq. (1)
can be solved in O(m) time. When no feasible solution exists the originator and some
closest processors are able to process the whole load before the last processor re-
ceives any data. In such a case the maximum usable set of processors can be found in
O(m log m) time by testing Eq. (1). Using the obtained values of &; (i=1,...,m)
parameters such as speedup S, = VA;/a4; = V /oy and utilization U, =S,/m =
V /ma; can be found. On the base of speedup and utilization the performance of
architecture and communication method can be evaluated [9-11].

Now, consider the case without communication coprocessors [1,8]. In this case
simultaneous communication and computation is not possible. Hence, PE i can
process its share of the load after sending the load to PE i + 1, in the interval when
PE i + 1 communicates to PE i + 2 and processes ;1. Eq. (1) is now as follows:

d,’Ai =Si+2+(Oti+2+~-+ocm)C,-+oc,-+1A,~+1 for i = l,...,m—2, (2)

O Am-1 = mAm-
The speedup here is S,, = V4, /(o dy + (V — a;)C1 + S1).

Let us analyse the case where some results are returned and each PE has com-
munication coprocessor [1,7]. In such a situation PE i processes its part of the load in.
the interval in which PE i + 1 receives the load (for PEs: i + 1,...,m), processes o;,1,
and returns results (from PEs: i+ 1,...,m). Thus, Eq. (1) is modified to (for
i=1,...,m—1)

ad; = Si+ (G + -+ %) Ci + tip1dins + 8+ f(oi1 + -+ %) G (3)
where f(x) is the amount of results obtained for x units of data. In the simple cases
f(x) = B, (decision problems e.g. search for a pattern), or f(x) = f,x, (e.g. sorting,
processing measurement data etc.), where 8, , € R*.

This methodology can be extended to deal with other communication methods
such as circuit switched [12,13] or pipelined [13,14] load distribution.

2.2. Star and bus networks

A star interconnection can be an attractive model for master—slave computations
because the parameters of a communication link can represent not only the physical
layer but also all the software layers. In star network PE 1 is connected with PE {
over link i. No other links exist. For the star interconnection all the load resides
initially on PE 1 in the center of the star. For the bus the load initially resides in PE 1.
Due to the fact that for the star only PE 1 has connection with other PEs and that for
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the bus there is only one bus which cannot be used simultaneously, both intercon-
nections can be analysed in the same way and the communication pattern is the
same: PE 1 sends data to PE 2 over link 2, then to PE 3 over link 3, etc. Since no
results are returned the Gantt chart of communication and computation looks as in
Fig. 2. Thus, &; (i = 1,...,m) can be found from equations [2,3,7]:

nd =S+ dz(Cz +A2)

o d; = Sip1 + 01 (Cipt + A1) 4)

am—lAm—l = Sm + am(cm +Am)

V=o+ 4oy
Solution of equation set (4) can be found in O(m) time provided a feasible solution
exists. When a feasible solution does not exist for m and the sequence of commu-
nications is fixed the maximum usable set of processors can be found in O(m log m)
time. In the case of bus interconnection equations (4) can be slightly modified by
assuming that V;(S; = R, C; = C) because the bus interconnection is the same for all
PEs. ~

Yet, in general the complexity of establishing the optimal sequence of commu-

pications is unknown. For simple cases (S; = 0 or identical communication links)
such a sequence can be found in polynomial time. Surprisingly, when there is no
startup time (S; = 0) then the optimal order of activating PEs is the order of de-
creasing link speed and does not depend on the PEs’ speeds. When there are no
communication coprocessors, Eq. (4) should have as the first equation [2,3]:
A0y = A0, This approach can be extended to trees [3,9,15] (no startup time),
pipelined data distribution [14], variable link and/or PE speed [16], many tasks
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Fig. 2. Data distribution pattern in a star network.



92 J. Blazewicz et al. | Parallel Computing 25 (1999) 87-98

served in FIFO order [17]. However, for many buses and non-zero startup time this
problem is strongly NP-hard [7].

2.3. Regular mesh

In this section we demonstrate how to a find distribution of the load in a two-
dimensional square mesh of processors (cf. Fig. 3). The solution of the problem is
tightly connected with a data scattering method. For the store-and-forward com-
munication mode it has been analysed in [4]. For the circuit-switched communication
mode an efficient scattering method based on broadcasting algorithm from [18] can
be applied. In the scattering method we assume that the mesh has dimensions
54 x 59, where d = log,s m € Z*. Moreover, it is assumed that the opposite end PEs
are connected, i.e. the mesh is a torus. The scattering algorithm repetitively applies
two moves (cf. Fig. 3) from each activated PE: a ‘knight’ move (like in the chess
game), and a ‘cross’ move. The distance covered decreases in the consecutive pairs of
moves. The advantage of this method is that in each move the number activated PEs
grows four times, which is maximum possible. Thus, after i moves 5 PEs are active.
In the following we assume that all PEs and communication links are identical, with
parameters 4,C, and S, respectively. By a layer we mean the set of PEs activated in
the same move. Each PE of layer i computes «; units of data. The distribution of the
load can be found from the following equations [19]:

|

-—

[ |

Fig. 3. Scattering in two-dimensional mesh using the method from Ref. [17].
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og_iA =S+ C(“d—i+1 + 4de—i+j5j_2> + Aoy i=1,...,d, (5
=2
, j
V=0+4) e (6)
i=1

As previously, using all layers may be infeasible when computing on the few first
layers lasts shorter than activating the last layer. The maximum number of layers can
be found by binary search in O(log m log log m) time. Again, this method gives rise
to performance evaluation of the architecture with particular scattering algorithm
[4,19]. This approach can be extended to three-dimensional meshes [13] and even
arbitrary dimension meshes basing on broadcasting method from [20].

2.4. Hypercube

PEs of a dimension d = log, m hypercube can be labelled using binary numbers in
such a way that the connected PEs have labels exactly one bit different. Again, we
assume that PEs and communication links are identical and have communication
coprocessors. Here we present a simple communication method based on store-and-
forward routing. Initially originator holds all the load. It intercepts ao units of data
for local processing. The rest is sent in equal parts to its d neighbours establishing
layer 1. Each PE of layer 1 intercepts o, units of data and sends the rest of the
obtained load to its d — 1 still idle neighbours. These neighbours constitute layer 2.
This distributing to the nearest neighbour is continued until activating the single

processor in layer d. Note, that there are ‘f PEs in layer i which receive data from

i neighbours and send the unused load to d — i neighbours. Thus, distribution of the
load can be found from the equations [5]:

T
(9)@-9
v = (d)oc ) ®)

From the above equation set the maximum number of usable layers and distribution
of the load among them can be found in O(d log d) time. This approach can be
extended to other data distribution patterns [13].

(X,'A=S+

+ di_HA. (7)

3. The experiments
3.1. The testbed

In the following paragraphs we present results of a practical verification of the
divisible task concept in a star architecture. The basic star model (cf. e.g. [3])
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assumed that the results are returned in the inverted order of sending data. Here, we
also examined the case when the results are returned in the same order as the data
were sent (cf. Fig. 4). For simplicity of implementation and experimentation we
assumed that overlapping computation and communication on the same PE is not
possible. In such a situation the time of processing on PE i and returning results from
this processor must be equal to the time of sending to PE i + 1 and processing on PE
i + 1. Hence, the basic equation set (4) must be modified as follows:

wd; + 8+ f(0)Ci = Sie1 + 01 (Civ1 +4ip1) i=1,...,m— 1
V=o+o+: -+ 0n (9)
“l)a27-"a(xm>0-

where f(x) is the amount of results returned for x units of data.
The above method has been practically applied in a T805 transputer network
depicted in Fig. 5(a). As it can be verified in Fig. 5(a) the underlying topology is not

JEIE |++[5: (oG [eperCet |5t | = [S]/09G S| SC19Gis S fom)
oy 4 ; :
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Fig. 4. Communications and computations in a star. The sequences of data distribution and collection of
the results are the same.

b)

Fig. 5. The transputer testbed: (a) topology; (b) data distribution paths in an experiment with eight
processors.
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a star. Thus, by a star we mean here a logical interconnection observed in scattering.
The communication algorithm is based on the wormhole routing. The considered
application was a search for a pattern in a text file. In all experiments the returned
results fit in one 1000-byte packet. Hence, f(a;) = 1000. Parameters 4; were mea-
sured for each PE as an average of 100 tests consisting in searching in 300 000-byte
file. Parameters C;, S; were calculated using linear regression from a set of trans-
mission time measurements where the originator (labelled 0) sent to PE i messages of
size 1,...,100 packets (which is in the range 1000,...,101 584 of data bytes with
step 1016 bytes).

3.2. The results

The first experiment considered only a pair of processors: the originator plus the
PE labelled 11. It consisted in transferring and processing 300 000 bytes of data. The
difference between execution time measured experimentally and calculated was be-
low 0.5%. In the next experiment we used the three PEs labelled 6, 9, 11, respectively.
For three PEs the interconnection can be considered as a star. Fig. 6 presents an
absolute value of relative difference between the expected and measured execution
time. Every point represents an average of 100 experiments. As it can be seen in
Fig. 6 the difference decreases fast and for ¥ > 40 000 it is smaller than 10% while for

10

0.17

0.017%

relative difference

0.001 7

1E-4 —t— T
1E4 1ES 1E6
volume [bytes]

Fig. 6. A relative difference between the expected and measured execution time for three processors.
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V = 400 000 it is below 1%. In the following experiment we tried to use eight pro-
cessors. Yet, it turned out that the construction of the routing table caused that PEs
were simultaneously computing and processing. This resulted in approximately 25%
difference between the measurement and the expectation. Such a big discrepancy
was caused by the fact that parameters 4; no longer reflected the speed of pro-
cessing because on routing PEs the routing process competed for processing power
with the application. Analogously, parameters C;,S; were no longer valid. We
changed the data distribution sequence according to the routing table such that the
routing process is not activated together with the application process. The topology
of data distribution paths is depicted in Fig. 5(b). We activated the PEs in the
following order: 6, 2, 5, 1, 11, 7, 3, 4. As in [3] the results were returned in the
inverted order of sending the data. In this way, we avoided simultaneous routing
and processing by PEs. In Fig. 7 we present the difference between the expected and
measured execution time. As it can be verified the difference is in the range [-1.5%%—
1.5%]. We conclude that the practical verification proved viability of the divisible
task concept.

4. Conclusions

In this work we presented the idea of a divisible task. A crucial element
related to it is the data distribution method which hides the interconnection and
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Fig. 7. A relative difference between the expected and measured execution time for eight processors.
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other architectural issues. The divisible task concept provides a simple meth-
odology for modelling computations in distributed computer systems. Hence, it
can be used to evaluate performance of the computers and their communication
systems. The experiments confirm applicability of this concept in real-life situ-
ations. Further research may include more sophisticated communication methods
as well as other applications of the divisible task concept in distributed com-
putations.
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