SH,

s : PARALLEL
A COMPUTING
ELSEVIER Parallel Computing 25 (1999) 381404 —_———

Scheduling divisible loads in a three-dimensional
mesh of processors

Maciej Drozdowski *!, Wlodzimierz Gtazek >*

2 Institute of Computing Science, Poznai University of Technology, ul. Piotrowo 34, 60-965 Pozna#, Poland
Y Department of Informatics, Technical University of Gdansk, ul. Narutowicza 11/12, 80-952 Gdatisk, Poland

Received 15 February 1998; received in revised form 16 August 1998

Abstract

We study distributed processing of a divisible load in a three-dimensional mesh of com-
municating processors. The objective is to find distribution of the load among processors
which guarantees minimal processing time. We describe a family of load distribution algo-
rithms and obtain closed-form formulae for optimal load shares allocated to processors in
each algorithm. Our model takes into consideration communication delays involved in moving
load shares from one processor to another. In large meshes our algorithms attain speedup limit
of 1+ p/p, where p is the number of communication ports used simultaneously by each
processor in data transfer and p is the ratio of processing to communication transfer rate. We
also show a matching upper bound on the speedup in this topology. © 1999 Elsevier Science
B.V. All rights reserved. ;

Keywords: Distributed processing; Divisible load; Mesh network; Scheduling

1. Introduction

Research in parallel computmg has been very active in the last decade as indicated
by thousands of publications in this area. Rapid progress in the design of parallel
computer architectures has been matched by significant refinement of scheduling
techniques. A major part of research on scheduling tasks on parallel computers done
so far concerned indivisible tasks [6,10]. An indivisible task cannot be divided into
smaller subtasks and has to be processed in its entirety. Only recently an alternative

* Corresponding author. E-mail: glazek@eti.pg.gda.pl '
! partially supported by the project CRIT2 and KBN grant.

0167-8191/99/$ — see front matter © 1999 Elsevier Science B.V. All rights reserved.
PI1: S0167-8191(99)00004-6

382 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381—404

model of scheduling divisible loads has been brought under investigation [11]. A
divisible load is characterized by its fine granularity and large volume, in which each
data element requires exactly the same type of processing. Such a load may be
partitioned among processors in the system in an arbitrary way, whereby each part is
processed independently and separately of the other parts. Numerous applications
may be modeled in this way. Processing of long linear data files occurs, for example,
in signal and image processing, cryptography and pattern matching. In each of these
cases data granularity is small in comparison to the data file volume so the problem
of optimal data partitioning may be studied within divisible load paradigm. This
leads to a tractable, continuous model of computation which may be analyzed and
solved with standard methods of linear algebra and recursive analysis.

Study on the problems of this nature was originated in [3,11,12} for linear, tree
and bus-oriented networks of processors. Subsequently, asymptotic results for per-
formance limits in the above architectures were obtained in [7,15,21]. Closed-form
solutions for load shares assigned to the processors were derived in [2,17]. Appli-
cation of pipelining to distributing divisible loads in star networks was investigated
in [4]. Multi-load distribution was considered in [5]. Constant communication setup
time was first included in communication delay in work [8]. Scheduling divisible
loads in networks with the circuit-switched routing was studied for the first time in
[9]. The considered network topology was a two-dimensional mesh. A recursive
distribution algorithm for a three-dimensional mesh of processors with the same
method of routing was proposed recently in [13]. However, in neither of these last
two works were closed-form solutions for load shares assigned to particular pro-
cessors obtained.

In this paper we study processing a divisible load in a three-dimensional mesh of
homogeneous processors, We assume message-passing system architecture and cir-
cuit-switched routing model. Each processor, equipped with local memory and a
network front-end, may compute and communicate at the same time. Moreover, p
communication ports can be used simultaneously by each processor. In the circuit-
switched routing model the time to communicate a message of length L between two
processors located d links apart from each other is usually modeled as
Teom = S + dd + LC, where S denotes communication setup time and C stands for
inverse transfer rate of a single communication link (e.g. seconds per byte). Pa-
rameter J, representing the time to commute a switch, is usually very small in
comparison to setup time and will be neglected in further considerations.

We describe a family of load distribution algorithms and find closed-form solu-
tions for optimal load shares allocated to the processors in each algorithm. We
obtain an analytic formula for computation speedup which, in rather general cir-
cumstances, is symmetric to Amdahl’s Law. It has been observed before [15] that
communication delays have a similar effect on the performance of distributed
computation in linear and star networks as the sequential portion of a parallel
program has on the speedup according to this law. Our result provides theoretical
explanation of these phenomena in the case of mesh networks. Next, we use closed-
form solutions to demonstrate that the limit of speedup in a mesh network under the
considered load distribution scheme is equal to 1 + p/p, where p = C/4 and A4 is the

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 383

inverse processing rate of one processor (e.g. in seconds per byte). Finally, we prove a
matching upper bound on speedup of processing in this topology. Although our
investigations concern three-dimensional meshes, we note that the presented solu-
tions also apply directly to the load distribution method in two-dimensional meshes
studied in [9]. ‘

The rest of this paper is organized as follows. In Section 2 we present a principle
for the recursive partitioning of the network and design load distribution algorithms
based on this principle. In Section 3 we develop mathematical model of the load
partition and obtain closed-form solutions for the load shares assigned to particular
processors. In Section 4 we derive performance characteristics of the mesh network
executing the considered computation scheme. In Section 5 we prove a general upper
bound on computation speedup in the mesh network. Finally, in Section 6 we
summarize our results.

2. Load distribution scheme

In this section we describe a family of recursive algorithms SCATTER(p), 1 <p <5,
for distributing a divisible load in three-dimensional meshes and tori. Mesh and
torus networks belong to the class of point-to-point networks. Formally, a three-
dimensional mesh (or torus) has n = kskik; nodes, k; along each dimension
i, 0<i<2, where k; >2. Each node x is identified by three coordinates,
ex(x), ¢1(x), co(x), where 0< ¢;(x) <k; — 1. In a three-dimensional mesh, two nodes
x and y are neighbors if and oaly if ¢;(x) = ¢;(y) for all i, 0<i<2, except one, j,
where |c;(x) — ¢;(y)| = 1. Nodes have from 3 to 6 neighbors, depending on their
location in the mesh. In a three-dimensional torus, two nodes x and y are neighbors
if and only if ¢;(x) = c;(y) for all i, 0<i<2, except one, j, where |c;(x) — ¢;(y)] =1
or fc;(x) — ¢;(y)| = k; — 1. Thus, a three-dimensional torus differs from a three-di-
mensional mesh only in wrap-around links in each dimension. Thus, all nodes have
exactly six neighbors.

2.1. Principle of recursive network partition

The proposed load distribution algorithms are based on tiling of a mesh and take
advantage of the fact that in the circuit-switched routing mode communication delay
is virtually independent of the covered distance. This property allows each active
processor to transfer chunks of load far away to a set of carefully selected processors,
instead of sending data to its immediate neighbors. Subsequently, newly activated
processors become load redistributors and together with their activator repeat the
same scattering procedure in their non-overlapping vicinities. The common feature
of all these algorithms is that each processor receives only one load shipment con-
taining data addressed not only for an immediate receiver but also for all its suc-
cessors in the scattering.

Each algorithm in the family repetitively executes three types of distribution
moves in submeshes of decreasing size. The algorithms differ in the number of

384 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404

communication ports p used simultaneously and in the way of selecting processors in
successive moves. A set of processors accessed in the same move of scattering is
called a layer. Three consecutive moves, each of different type, are called a step. A set
of processors accessed in the same step of scattering is called a basic cube. Each step
activates all processors of a basic cube. Then each of the active processors becomes a
source of further distribution in the basic cube of a smaller size. The size of the
activated basic cube decreases after each step by a factor of 1/(p + 1). Also, each
move increases the number of active processors p times, which is maximum possible
as the number of communication ports used simultaneously is at most p. Initially,
only one processor is active, after 1 distribution move there are p + 1 active pro-
cessors, etc., until after k distribution moves the number of cooperating processors is
(p + 1)*. The maximum number of moves # is at most log,,,#, where n is the number
of processors in the network.

2.2. Algorithms Scarter(p)

It follows from the above description that in order to completely specify each
algorithm it is sufficient to describe in details the three moves of one scattering step in
which each load distribution algorithm SCATTER(p), 1 < p < 5, activates a basic cube
of processors. Distribution patterns are shown in Figs. 1 and 2. The simplest case is
for p=1 and p =2 when each move of a step activates p processors along a different
dimension.

In the 3-port system the originator activates three processors located in the same
two-dimensional cross-section of the basic cube (say, along the plane y0z). Next, the
four active processors send data along the third dimension (in this case dimension x).
In the last move each active processor sends data to the neighbors along the hull of
the basic cube and to one neighbor to the inside of the basic cube.

For the 4-port system the first move sends data from the originator to four
processors located along one-dimension (e.g. z). Then each processor activates other
processors located in a two-dimensional cross-section of a basic cube (along the
plane x0y) [19].

In the 5-port system the originator located at coordinates (xo, yo, Zo) activates
processors at coordinates (xo+ 1, o — 1, 20— 3), (Xo,30, 20—2), (xo+1, o —1,
zo—1), (xo+ 1, yo— 1, 2o+ 1) and (xo, 3, 2o + 2). The communication systems of
processors at z coordinate values equal, respectively, to zy — 3, zo —2 and z — 1, 2o
and zy + 1, 2z + 2, cooperate in pairs in the moves two and three. Each of the three
pairs performs the same communications. In the second move each processor acti-
vated in the first move sends data to five neighbors with the same value of z coor-
dinate. For that purpose four processors are activated using only links of the
processors in one two-dimensional cross-section (the same z coordinate), and one
processor is activated using links of the pairing two-dimensional cross-section. Thus,
in each two-dimensional cross-section there are five active processors after move
two. In the third move each active processor activates four more processors in the
same two-dimensional cross-section and one in the pairing two-dimensional cross-
section.

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404 385

p=3
moves 2 3

7]

N ar
1 v;

Fig. 1. Load distribution patterns in a basic cube of three-dimensional mesh for p = 1,2,3,4.

386 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404

move 1 moves 2, 3 T L T

Fig. 2. Load distribution pattern in a basic cube of three-dimensional mesh for p=5.

A method of scattering in a 6-port toroidal three-dimensional mesh has been
proposed in [1,20].

Note that in the above scattering algorithms the following equation is satisfied for
the basic cube: (p + 1)* = x4, where k is the number of moves per step, x is the length
of one edge of the basic cube, and d is the number of dimensions. It was shown in [20]
that for meshes not all solutions of this equation lead to feasible tessellations of
moves in the basic cube. In general, the existence of scattering algorithms for other
values of p, k, x, d and other network topologies remains an open problem.

3. Mathematical model

Before presenting formal model let us introduce some notation. In the sequel
symbol 4 denotes the inverse processing rate of a single processor (e.g. in seconds per
byte) and ¥ is the volume of the load that is to be processed. Symbol o;, 0<i< A,
stands for the load share in ¥ assigned to each processor activated in move i.

For simplicity of the presentation we assume that no results of processing are
returned to the originator. This assumption by no means restricts applicability of our
model as we can always account for the time necessary to complete transfer of results

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 387

multiplying transfer rate C by a constant factor 1+ ¢, where 1 stands for scattered
data and e represents volume of returned results as a fraction of the received data. It
was proved in [11] that in the optimal schedule without transfer of results all pro-
cessors must finish computation at the same moment of time. The time diagram of
load scattering and processing in a p-port 4-layer mesh which observes this rule is
shown in Fig. 3.

Following the above assumptions, for each i, 0<i<h — 1, the time of compu-
tation in layer i must take as long as the time of transmitting to layer i + 1 plus the
time of computation in layer i+ 1. Computation of «; share of the load takes
Aw; units of time. The part of the load communicated to a processor in layer i
must accommodate data for all its descendants and be equal to
L=a;+pog+plp+ Do +---+plp+ 1)h~i_1a;,. Transmission of this load part
takes S + CL units of time. In this way we obtain 4 non-homogeneous linear re-
cursive equations for z + 1 variables. The last (k + 1)th equation is the normaliza-
tion equation which constrains the size of load shares so that parts of the load
assigned to particular processors sum up to V. The share of the load to be processed
by each processor can be determined from this model

AOCh_l =5+ (A + C)dh,

Awp ;=S + (A + C)ah—i+1 + szah—H—j(P + 1)}'—2’ i=23,... ',

=2
. i—1
V=a+py wlp+1)", a,a,..., % >0 (1)
i=1
S+C{o+poa+p(p+1)0s} S+C{oz+pos} S+Cos; communication
gcomputation Ao |10
S+C{oytpai} S$+Cas communication

gcomputation Ad, 1

S+Cot; communication

icomputation Ao, |2

computation A0y 3

time

Fig. 3. Time diagram for load distribution in 4-layer three-dimensional mesh.

388 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404

The generic distribution model (1) has p realizations, one for each scattering al-
gorithm ScATTER(p) described above. Model (1) provides # + 1 equations for & + 1
unknowns. It may have no feasible solution for some 4. This situation happens if
communication speed is low and the front layers finish their assignments before data
arrive to the most distant layers. In that case a smaller network should be considered.
The maximum size of the usable network can be found by binary search in O(log 4)
calls to Eq. (1), or by using closed-form solutions obtained in this work. Note that in
the optimal load assignment the originator is never idle. Hence, the whole load is
processed by time Aoy.

Theorem 1. The model (1) has the following closed-form solutions:

—h ik o
ah—i=(V+ G)p(p+p+1) +plp+p+1) +a(1p 1)

p+p pt+p p+p
fori=0,1,...,h, (2)

where 6 = s/A. Hence, fraction oy of the total load processed by the originator amounts
to

oco=(V+ o)P(P+P+l)-h+p+a(hp—l). 3

ptp p+p p+tp

Proof. A complete description of the method applied to solve Eq. (1) can be found in
Appendix A. O

4. Speedup evaluation

Closed-form solutions obtained in the previous section allow us to evaluate per-
formance of the considered load distribution algorithms with respect to different
values of system parameters. In particular, we want to find out under what condi-
tions a three-dimensional mesh of processors executing one of the algorithms
SCATTER(p) may significantly outperform a single processor of the same kind as
network processors. To this end performance will be measured in terms of compu-
tation speedup s, defined as the ratio of sequential computation time on a single
processor (e.g. originator) to the working time of the originator embedded in the
(p + 1)"-node mesh of processors

AV
Sy = IT“O . (4)
First, we must ensure that the value of o, given in Eq. (2) is always positive as it
denotes load share allocated to each processor in the last layer. This restriction
imposes an upper bound on the maximum number of layers ., that can effectively
participate in the computation

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404 389

>0

vV o 1
oy = ri 1- -
(p+p+1) P+p (p+p+1)
@V%—E+l>(p+p+l)h '

> h < = [Togyepur (VP24 1) . 5)

Formula (3) for the originator’s load consists of two parts: the first is an expo-
nentially decreasing function of 4, the second is a linearly increasing function of 4.
When # is large, the former converges to the limiting value of (V +o/(p+
p)) (p/(p + p)) while the latter has no limit. Hence, when circuit setup time ' is non-
negligible then the speedup offered by each of the considered algorithms

5= L : (6)
(1 +-,,(;Tp))(p—+—p(p+p+l)_h) +2(hp—1)

does not converge to a finite limit but achieves its maximum for the optimal number
of layers hop. This number can be determined by finding the minimum of denomi-
nator in Eq. (6), denoted here by b(h)

db(h)
a0
[_h (2

Consequently, the optimal number of layers Aoy participating in computation is
equal to the solution of Eq. (7)

ptp ptp
b = 18 (V21 21) = 08 () ®

rounded to the nearest integer value. The difference between real values of Aoy, and
huax is at most 0.72 in the range 10~ < p<10° and disappears in rounding of
Eqgs. (5) and (8). Thus, An.x and Ay coincide so it is desirable for the optimal per-
formance to use as many network layers as possible.

The following figures show computer plots of speedup attained by the proposed
load distribution algorithms. In Fig. 4 speedup vs number of processors working on
a divisible load is depicted. Communication parameters are set to values typical of
the commercial three-dimensional mesh system CRAY T3D: C=3.3 ns/byte and
S'=8.57 ps. It is also assumed that 4 =1 ps/byte and V= 10° bytes. There are three
speedup curves for p=1,3,6. It can be observed that for each p speedup initially
grows exponentially with the number of utilized layers. Later, the curves level off
which means that adding more processors offers only a diminishing speedup growth.
Each speedup growth curve attains a different speedup limit which depends on the
value of p. Below we determine the exact value of the speedup limit for each p. We
may safely assume that circuit setup time S is negligible in comparison to AV, the
time of processing the whole load in a single processor. In that case originator’s load
share Eq. (3) reduces to

390 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404

speedup vs. number of processors
1-10 T T T T T

1000 e e

100 [o N

speedup

{ | 1 [1
1 10 100 1000 1107 1-10° 1-10°

number of processors
— speedup, p=1
" speedup, p=3
“°° speedup, p=6

Fig. 4. Speedup vs number of processots for p = 1,3,6.

—h
yPe+p+1) " +p ©)
pt+p
and the formula for speedup takes a much simpler form
p=—"tE (10)
Pt Gy P
It is well known that a parallel computer consisting of # processors cannot obtain
n-fold speedup because the sequential component of the computation limits the
speed of the total process. This effect is usually expressed as Amdahl’s Law [16]
_L+T
S =7 311 (11)
where T; and T;, are, respectively, the time spent on serial and parallel components of

the program in a single processor. It was observed in the earlier study [15] that
communication delays cause a similar effect on speedup of distributed computation

Xojg~0 =

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 391

in linear and star networks as the sequential portion of a parallel program affects
speedup of parallel computing according to Amdahl’s Law. The correspondence of
Amdahl’s Law (11) and the speedup formula (10) provides theoretical explanation of
these phenomena in the case of mesh networks.

Formula (10) may be used to derive the limit of speedup attained by our load
distribution algorithms in the mesh network. For growing 4 speedup s, converges to

g =Pl 142
hlgiolosh— . —1+p. (12)
Corollary 2. The ultimate speedup attained by load processing scheme (1) in the three-
dimensional mesh for negligible 6|V is equal to 1 + p/p.

Note that in this speedup bound the slower processors the higher speedup can be
obtained. This is well-known counter-intuitive artifact resulting from the definition
of speedup. Intuitively, it can be said that the faster the processors are the worse
scalability our algorithms have.

Fig. 5 shows how the speedup is affected by various values of p. The middle plot
(reference) corresponds to p = 3.3 x 103 computed for the above parameters. In the
lower plot this ratio is an order of magnitude bigger than in the reference system,
while in the upper plot it is an order of magnitude smaller. As might be expected,
speedup grows with the increase of speed of data transfer over speed of processing
because more processors can join computation in shorter time.

In Fig. 6 load shares are plotted against layer number for three values of the
number of communication ports used by each processor p = 1,3, 6. A small number
of ports puts a greater burden on the front layers which results in poor performance.
Conversely, a greater number of available ports facilitates sending more data to
deeper layers and permits the originator to take only a tiny fraction of the total
work.

Fig. 7 illustrates the impact of p on layers’ load shares in the computation. Three
plots of load shares are drawn in the same settings as discussed in Fig. 5. As the
speed of communication increases the bigger part of computation is performed by
deeper layers with the maximum share located in the last layer.

The last two resuits are particularly significant. In the perfect network with no
communication delays the load of a layer is proportional to the number of layer
processors which, in our case, is exponential in the layer index. Practically, subtle
interplay of parameters n, p, 4, C and S flattens and reshapes the perfect load dis-
tribution curve. Still, our results coincide with the earlier observations for point-to-
point networks [7,9]: most of the load is processed in deeper layers while the front
layer communicate more. This may be contrasted to the result for bus and tree
networks [2], where most of the load stays in the front layers. The difference may be
attributed to at least two factors. The prime factor responsible for this difference of
behavior is that deeper layers are much easier accessible in the circuit-switched
routed networks than in the store-and-forward routed networks. In the circuit-
switched routing the transmission time is virtually independent of the covered dis-
tance, therefore our algorithms take advantage of this fact and place the bulk of the

392 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404

4 speedup vs. number of processors
1.10 T T —T T %
/V
s
/
7 - a
1000 |- P .
78
i
/0
& g
7
B 1001 s -
& “
/
p
y
:/‘
10 .
1 L 1 ! 1 4 1
1 10 100 1000 1.10% 1.10° 1-10°
number of processors
¢ r0=0.033
% r0=0.0033
" 10=0.00033

Fig. 5. Speedup vs number of processors for p=6 and different values of p.

load in deeper, more powerful layers of exponentially growing size. Another reason
is in the definition of a layer. In the former work a layer is a single level of a regular
p-ary tree. In our work a layer is defined relative to a different kind of p-ary tree
induced by the pattern of load distribution and contains nodes which are successors
of all the nodes from the earlier levels of such a tree (this is so-called binomial tree).
Due to the structure of the binomial tree the number of processors in a layer grows
faster than in the regular p-ary tree.

Comparing Fig. 4 with Fig. 5 and Fig. 6 with Fig. 7 one cannot miss certain
similarity of corresponding figures. Clearly, speedup is affected by the number of
communication ports p in an inverse way as it is influenced by the ratio p (up to the
scaling factor). This is not surprising as formula (10) already anticipated this effect.

5. Upper bound on speedup

In this section we obtain an upper bound on the speedup of processing divisible
loads in a multiprocessor network with three-dimensional mesh topology. The

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 393

load share vs. layer number
T T I

T —

1 T

0.01 - o7 -
/

load share

*—] port layer number

8-8-0 3 ports
—*— 6 ports

Fig. 6. Load share vs layer number for p = 1,3,6.

bound is quite general as it makes no assumptions on the type of scattering algo-
rithm. It is inherently related to the cost of communication in a network and reflects
the communication ‘bottleneck’ between the originator and the rest of the network.

Theorem 3. The maximum speedup offered by an n-processor p-port three-dimensional
mesh where load is initially distributed from one node is bounded from above by

Sunction u, = min {n, 1+ (p/p)}.

Proof. We shall use a dual definition of speedup, that is, we define speedup as the
ratio of the load volume that might be processed in a network in a given time interval
to the load volume processed in a single processor in the same time. It is not hard to
see that both definitions are equivalent. Let us split n-node mesh network N into
originator Py and the remaining part of mesh M (i.e. N = {P} UM). Consider load
processing in network N in a fixed time interval 7 > S according to some optimal
scheduling algorithm Oprt.

394 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404

load share vs. layer number
T 1 T

1 T

0.1

0.01

load share

%X po=(0.033 layer number

=0 ro=(.0033
—e*— 10=0.00033

Fig. 7. Load share vs layer number for p=6 and different values of p.

During this time originator P, may process at most ¥, = T/4 data units. The
amount of data that might be processed in M is limited by two factors: communi-
cation bandwidth of links connecting originator P, to subnetwork M and processing
speed of M. Processor P, may communicate data to M over p links simultaneously.
Let us represent subnetwork M as a single processor Py, with the ‘equivalent’ pro-
cessing rate 4,, connected to P by a single link with the ‘equivalent’ communication
rate Cy. Without loss of generality let us assume that algorithm Opt operates in g
steps, whereby ith round supplies P, with amount ¢; of data for processing. Com-
putation and communication phases in P, may be interleaved and/or overlapped in
some way. On the other hand, the total amount of load data which may be com-
municated to Py, in time interval T is bounded from above

S+ eCu<T. (13)
i<g
A similar upper bound holds for the amount of data which may be processed in
Py, in time interval T

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 395

S+ edu<T. (14)
i<g
Denoting by V3, = 3, &, we conclude from Egs. (13) and (14) that the amount of
data that might be sent to and processed in Py, during time 7" is bounded from above
by

T-—-8
W ————.
H max{AM, CM}

(15)

Since we assume that P, is the only source of data in a network, therefore ¥, 4 ¥},
is the upper bound on the divisible load volume which might be processed in time T
by any scheduling algorithm OpT. Thus, the speedup of processing a divisible load in
a mesh network is bounded from above by

o+ Vur S . A4 4
—= —_— —_— = P 1
Sn 7 1+(1 T) mm{AM CM} (16)

Subnetwork M consists of n — 1 processors, therefore 4y > 4/(n — 1). Similarly,
Cu 2 C/p. Now we consider two cases depending on the network size.

Case 1. Mesh size n is small. With the decrease of n the ‘equivalent’ processing rate
Ay increases but Cy, decreases because all nodes are within a close distance from the
originator. Hence, for 4y, > Cj, Eq. (16) reduces to

S\ 4 4
< ~=)-—<14+-—< —1)=n.
s,,\1+(1 T)AM\1+AM 1+(n—-1)=n (17

Case 2. Mesh size n is large. With the increase of n the ‘equivalent’ processing rate
Ay decreases but Cy, increases because more communication steps are needed to feed
further located nodes. Hence, for 4y < Cyy Eq. (16) reduces to

S\ 4 A P
» <1 l-=] —<14—=14%. 18
’ +(T) Cu clr- Th (18)
Combining both cases (17) and (18) we get
s,,<u,,=min{n, 1+%}. (I (19)
6. Summary

In this paper we studied scheduling a divisible load in a three-dimensional mesh of
communicating processors. We obtained closed-form solutions for load shares as-
signed to processors and analyzed various characteristics of distributed computation.
We demonstrated that our distribution algorithms attain the speedup limit of
1 + p/p, which is the best possible in the considered model. This value was shown to
be determined by architectural constraints of the network (i.e., number of origina-
tors, number of communication ports, processing and communication speeds). It is

396 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404

independent of any particular load distribution method. Another conclusion is that
the way in which linear communication delays influence speedup of distributed
computation closely resembles the impact of sequential parts of parallel program on
the same metric.

The study was done under the assumption that parameter d, representing the time
to commute a switch, is very small in comparison to setup time S and can be safely
neglected. In some parallel systems this is not the case (for example, in IPSC/860
parameter § may be even as high as one sixth of S). Nevertheless, in most current
machines, message transmissions are initiated by software and switching is done in
hardware, so 6 is usually much smaller than S. In fact, experiments with circuit-
switched and wormhole-routed machines show that communication latencies are
nearly independent of distance [18]. Another important issue is the length of data
distribution paths. Currently available systems usually have no more than few
thousand of processors, therefore for bigger number of ports p (say, p=>5) the length
of the longest path remains small. In the very large systems the first step paths may
become relatively long but the transmitted load is also large, so both é and S are
small as compared to the linear component. The impact of § and the length of paths
on effectiveness of the proposed algorithms shall be subject to further research.

Note that our analysis concerned distribution model which allowed only one data
shipment per processor. Further research shall concentrate on designing more effi-
cient distribution algorithms based on pipelining technique described in [4,13]. An-
other direction for study is to find out whether scattering of load shares to processors
ordered differently than according to the increasing distance from the originator
considered here may bring any improvement. This idea is currently under investi-
gation.

Acknowledgements

The authors are grateful to the anonymous referees for providing comments and
suggestions which greatly helped to improve this presentation.

Appendix A. Proof of Theorem 1

For notational convenience we relabel our variables so that

ﬂozah,...,ﬁi=ah_i,...,ﬁh=a0. (Al)

Henceforth, p = C/A, and ¢ = S/A4. The transformed equations corresponding to
Egs. (1) and (A.1) are as follows:

Bi =0 + (1 + p)Bo, (A2)
j—2

Bi=c+(1+p)Bi+ppY Blp+1Y7" j=23,...,h (A3)
k=0

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 397

h—1
V=B +pY_Blp+1)""". (A.4)
k=0
Each §;, 1<j<h, can be expressed in terms of By, load fraction assigned to each
processor in the last layer. From the normalization Eq. (A.4) we can compute the
exact value of §,. Once the value of B, is known, all §,’s can be obtained easily. To
this end we rewrite Eq. (A.3) so that they do not contain sums of variables. Eq. (A.3)
for B, ; and B; may be rewritten as

=3 _
Bia—o—(1+p)B = PPZB}:(P +1y = (A.5)
k=0
and
i3 .
B,=c+(1+p)Bs+ppBio+ @+ 1)ppY Blp+1Y 77 (A.6)
k=0

Eq. (A.6) contains RHS of Eq. (A.5). Replacing it by its LHS equivalent and re-
grouping terms we obtain

Bi=@+p+2)B—@+p+ 1B s—po, j=2,3,....h (A7)
It is possible to write each B;, 1<j<h, as a function of §; and o

B; = gio + fiPos (A.8)
where

f} =f(j: 0)00 +f(j’ l)pl + - +f(ja]),0’ = Zf(]’ i)piv

i=0
g =g(, 0)° + g, Vp' +---+g0U, P =Zj:g(j, ip'. (A9)
i=0

Functions f; and g; are polynomials in p and each f{j, i) (resp. g(j, 9)) represents a
coefficient of p’ in f; (resp. g;). They can be determined from Egs. (A.2), (A.7) and
(A.9)

fU,)=@+DfG-1, d+fG-1,i-1)

fG, 00=1, f(,j+1)=0

0, 0)=1, f(1,1)=1, for1<i<j<h, (A.10)
and

gU,)=(p+1)g(i—1,) +g(i—1,i-1)

g, 0) =, gU,)=0

g(0, 0) =0, g(1, 1)=0, for1<ig<j<h. (A.11)

Note that f{j, {) and g(j, i) are given by the same recursive relation but with
different boundary conditions, which leads to entirely different function values.

398 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404

Expanding Eq. (A.10) one can observe that each coefficient f{j, i) is, in turn, a
polynomial of p+ 1

f(jv i) =f(,]’ i 0)(p+ 1)0 Fomee +f(]7 L, j— l)(p+ l)j—i' (A12)
This allows us to represent each f{j, i) as a number in radix p + 1 representation with
coefficients f{j, i, k) taking place of digits. Similarly we can expand Eq. (A.11) and
obtain

g0,) =80, i, O+ 1"+ +g(j, i, j—i—D+1y""" (A.13)
In order to find closed forms of polynomials f; and g; we build two tables of
coefficients, one for each of the above functions. Table 1 shows (p+ 1)-based ex-
pansions of f{j, i) for 0< i, j< 6. Given 7 and j, radix p+1 representation of f{j, i) is
located in jth row and ith column of the table. The cell for f{j, i) contains a sequence
of coefficients 7(j, i, 0), f(j, i, 1), ...,f(, i, j—i—1), f(j, i, j—1i) in the fol-
lowing order: f{j, i, 0) is in the rightmost position (the least significant bit position),
JU, i, 1) is in the second position from the right, etc. Empty cells contain zeros. To
obtain f;, one takes the whole jth row and plugs each f(j, i), 0<i<}, into
Eq. (A.9).
Table 1 is a generalized Pascal’s triangle. In the original Pascal’s triangle the entry

in jth row and ith column is binomial coefficient { . In Table 1 this entry corre-

sponds to the expansion of f{j, i) Eq. (A.12) and contains a sequence of binomial
coefficients. Namely, for each i and j, coefficients f{j, i, 0),..., fj, i, j — i) can be
obtained from the original Pascal’s triangle taking a sequence of j —it 1 consec-

utive binomial coefficients in column i — 1 from i: 1) until é— . Hence,

1
1 -1
! _11—{_ k) . Moreover, all f{j, i, k)’s in the

. In other words, by setting p=0 in Eq. (A.12) one obtains

each f(j, i, k), 0<k<j—1i,isequalto (

J
i
from Table 1 the original Pascal’s triangle. Similarly we derive Table 2 of coefficients
for g(j, i). Now we can write f{j, {) in a concise way as

cell f{j, §) sum up to

Table 1
Coefficients f{j, i) for 0<i, j<6
i 0 1 2 3 4 5 6
j
0 1
1 1 1
2 1 L1 1
3 1 1,1,1 2,1 1
4 1 1,1,1,1 3,2,1 3,1 1
5 1 1,1,1,1,1 4,3,2,1 6,3,1 4,1 1
6 1 1L1,1,1,1,1 54,3,2,1 10,6,3,1 10,4,1 5.1 1

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404 399

Table 2
Coefficients g(j, i) for 0<i, j<6
i 0 1 2 3 4 5 6
J
0
1 1
2 2 1
3 3 1,2 1
4 4 1,2,3 2,2 1
5 5 1,2,3,4 34,3 3,2 1
6 6 1,2,3,4,5 4,6,6,4 6,6,3 42 1
& 1+k
76, 9=3 (1) ey (A14)
k=0

For given j let us consider the difference f; — f;—;. In Table 1 this corresponds to
the difference of jth and (j — 1)th rows. Each column i, 1< i<, contributes to the
difference the leftmost term f(j, i, j — i) multiplied by p’ - (p+ 1Y~. Summing all
components up we get

~fra = Zfo, iy =P (p+ 1)
S -+ (—i) -,
Z(i))p'(p+1)f"

=1 i-1

213(1—_ >pi—1(p+ l)j—i

i=1

S CARA Umh)—k
=py pfp+ 1)U
=0\ k

=plp+p+1Y7" (A.15)

It
N

We can add up differences obtained in Eq. (A.15) with the initial condition f; = g,
which gives us a closed-form for f;

+p+1Y -1
=p@ p+1)

=(fi—fir)+a—fi)+ -+ a=A)+i—-fo)+1f

2:@@+p+ﬂ)

i=0

+1. (A.16)
p+p

‘ 400 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404
|
‘ In the case of polynomial g;, the difference g; — g;_, is equal to the difference of jth

and (j — 1)th row of Table 2. Comparing Tables 1 and 2 one can see that this dif-
ference amounts to the (j — 1)th row of Table 1

gj - gj—l =fj——1' (A17)
Adding up differences from Eq. (A.17) with the initial condition g; = 0 we obtain

gi=(g—-g-1)+(@g1—-g=2)+ +(&—&)+ (g —g)+g

j-1 j-1 1 —1
B3 (L LI
=0 =0 p+p

j—1

=— +p+1)+
p+pi=0(p(p p+1) +p)

1 p+p+1)Y -1)
= +
p+p(" p+p 42
=——(fi+jp-1). A.18
p+p@ jp—1) (A.18)

Closed-form formula (A.18) for g; facilitates expressing ; in terms of f; and j

B fi+ip—1)+ Bof;

g
wz
c G .
= (B2)i+ 5T Up). (A19)

Given Eq. (A.19) we can resolve normalization Eq. (A.4). Before we do that let us
introduce two auxiliary coefficients ¢ = f, + o/(p+ p) and d; = (¢/(p+ p))jp — 1),
which allows us to split normalization sum of Eq. (A.4) into two easier manageable
parts ¥} and V.

h—1
V=g+p> Bip+1) "7

j=0

h—1
=cfi+di+py_(cfi+d)p+ 1)
=0

=0 j=0

h—1 h-1
= c(f;, +pY filp+ 1)"“—1') + (d,, +p) dip+ 1)”“—1')

=V +h, (A.20)

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404 401

where

h—-1
h= C(fh +p) filp+ l)""‘j)

=cfh+CP2[iPi<Z< 11+k)(p+))]@+l)h_l_j (A21)
=0 =0 \k=0
and

h—1
h=dy+pY dip+1)"""

=0

=T =145 (55 0p= 1) (o D (a22)

First, we evaluate 7 by means of 1nterchanging the order of sums twice so that
summation over j is done first

=1 w1 fj~i fi—14+k)
V1=cfh+cp2p"2(2< -)(p+1)")(p+1)"“"}

j=0

=0 | j=1 \k=0 i—

h=l [rvishol (Ue)=i (i~ 1 + k . e
:cﬁ,+cp2p' Z (Z(L)(P+1))(P+1)__(+l)]

=0 | i+i=i \ ¥=0 i—

Al [ali 1 fi—-1+4k .
P zz(B)<p+1>-++]
i=0

| =0 %=0 i—

hl [hlsifi—1+k h=1=i '
=cfy +cp;p’ Z (-)(p_,_ 1)k<lz=;(p+ l)h—l—z—l>]

| =0 i

=1 [r-1-ifi—14+k h—i—k _
= cfi+cpy p Z()(p+1)"(—’i”—p——1}

=0 | k=0 i—1
h—1 .-h—l—i i—-14+k (p+1)h—i_(p+l)k
=cfitcpy p
=0 [k=0 i—1 p
A=l -ifi—1+k =i fi—1+k
e S PO
i P =0 i—1 =0 i—1 '

(A.23)

At that moment we can apply parallel summation law [14] to the first sum of bi-
nomial coefficients in Eq. (A.23) and due to Eq. (A.14) we replace the second sum by
f(h—1, i), so that

402 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404

L (h=1—iti-1+1
+1) '(- f(h—=1,1)

A1
Vi =cfy+ chi i
—1—i

i=0

= (h-—1
=c(p+l)Zpi(p+1)h_'_l(h_l)+c(ﬁ. pr h—1, l))

i=0 i=0

=c(p+ I)Z_:pi(p+ 1= () +e(fo = fo1)

- c[(p+ Dp+p+ 1) +pp+p+ 1)"-‘]
=clp+p+1). (A.24)

The second part of Eq. (A.20) denoted as ¥ can be transformed to

_ ohp—1) po h_lfh—l[(h C 1= f)p— 1] 1)

p+tp pte 4,

p+p{hp—l+pi[(h—1)p JP*I](P‘*‘I)}

j=h-1

Jj=0 j=0)
=277 {hp—l+p[(h—l —1]2(p+1)’ ZZj(p-i-l)’}

j=h—1 j=h—1
P+1)’ -1
= hp— 1+ p(h s
p+p{p pihp=p=1)=—
_c Pz(p+l)—h(p+l)h+(h—l)(p+l)h+1
ptp o
[
__ _ A25
o (A.25)
It follows from Egs. (A.20), (A.24), (A.25) that
4 h
V=|(—+) +p+1) ——,
(p+p ho)t o+ 1=
so f, takes the form of
14 c 1
=g = — - A.26
b @e+p+1) pP+p| (+p+1) (A.26)

Finally, by the use of Egs. (A.16), (A.19) and (A.26) the closed-form for
B;,1<j < h, can be derived

b
£

M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381404 403

== (Bt 3=)i =T = 1)

p+p
={(p+:+1)"—p:p 1w(p+;:+1)" P+p f] p(jp_l)
= (V+P+P) (P(P+p+1)j+p) (p—1)
+p+1) Lk p+p
IjvJ:Lerp(P(pﬂoJr Y+ plp+p+ 1)) + a(zlap+—pl)'

References

[1] T. Armitage, J.G. Peters, Circuit-switched broadcasting in 3-dimensional toroidal meshes, manu-
script, 1995.

[2] S. Bataineh, T.-Y. Hsiung, T.G. Robertazzi, Closed form solutions for bus and tree networks of
processors load sharing a divisible job, IEEE Transactions on Computers 43 (1994) 1184-1196.

[3] S. Bataineh, T.G. Robertazzi, Bus oriented load sharing for a network of sensor driven processors,
IEEE Transactions on Systems, Man and Cybernetics 21 (1991) 1202-1205.

[4] V. Bharadwaj, D. Ghose, V. Mani, Multi-installment load distribution in tree networks with delays,
IEEE Transactions on Aerospace and Electronic Systems 31 (1995) 555-567.

{5] V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi, Scheduling Divisible Loads in Parallel and
Distributed Systems, IEEE Computer Society Press, Los Alamitos, 1996.

[6] J. Blazewicz, M. Drabowski, J. Weglarz, Scheduling multiprocessor tasks to minimize schedule
length, IEEE Transactions on Computers 35 (1986) 389-398.

[7] J. Blazewicz, M. Drozdowski, The performance limits of a two-dimensional network of load-sharing
processors, Foundations of Computing and Decision Sciences 21 (1996) 3-15.

[8] J. Blazewicz, M. Drozdowski, Distributed processing of divisible jobs with communication startup
costs, Discrete Applied Mathematics 76 (1997) 21-41.

[9] J. Blazewicz, M. Drozdowski, F. Guinand, D. Trystram, Scheduling under architectural constraints,
Technical Report RA-003/95, Institute of Computing Science, Poznaf University of Technology,
1995.

[10] S. H. Bokhari, Assignment Problems in Parallel and Distributed Computing, Kluwer Academic
Publishers, Boston, 1987.

[11] Y.C. Cheng, T.G. Robertazz, Distributed computation with communication delay, IEEE Transac-
tions on Aerospace and Electronic Systems 24 (1988) 700-712.

[12] Y.C. Cheng, T.G. Robertazzi, Distributed computation for a tree network with communication delay,
IEEE Transactions on Aerospace and Electronic Systems 26 (1990) 511-516.

[13] M. Drozdowski, Selected Problems of Scheduling Tasks in Multiprocessor Computer Systems,
Poznan University of Technology Press, Poznasi, 1997.

[14] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, 1989.

[15] D. Ghose, V. Mani, Distributed computation with communication delays: asymptotic performance
analysis, Journal of Parallel and Distributed Computing 23 (1994) 293-305.

[16] J.L. Gustafson, Re-evaluating Amdahl’s law, Communications of ACM 31 (1988) 532-533.

[17] V. Mani, D. Ghose, Distributed computation in a linear network: closed-form solutions, IEEE
Transactions on Aerospace and Electronic Systems 30 (1994) 471-483.

[18] L.M. Ni, P.K. McKinley, A survey of wormhole routing techniques in direct networks, Computer 26
(1993) 62-76.

404 M. Drozdowski, W. Glazek | Parallel Computing 25 (1999) 381-404

[19] J.G. Peters, M. Syska, Circuit-switched broadcasting in torus networks, IEEE Transactions on
Parallel and Distributed Systems 7 (1996) 246-255.

[20] J.L. Park, H. Choi, Circuit switched broadcasting in torus mesh networks, IEEE Transactions on
Parallel and Distributed Systems 7 (1996) 184-190.

[21] T.G. Robertazzi, Processor equivalence for a linear daisy chain of load sharing processors, IEEE
Transactions on Aerospace and Electronic Systems 29 (1993) 1216-1221.

