
Isoefficiency Maps for Divisible Computations in
Hierarchical Memory Systems

Maciej Drozdowski1[0000−0001−9314−529X]
�, Gaurav Singh2, and Jędrzej

M.Marszałkowski1

1 Institute of Computing Science, Poznań University of Technology, Poland
{Maciej.Drozdowski;Jedrzej.Marszalkowski}@cs.put.poznan.pl
2 Technology Strategy and Innovation, BHP, Perth, 6000, Australia

Gaurav.Singh@bhp.com

Abstract. In this paper we analyze impact of memory hierarchy on
divisible load processing. Current computer systems have hierarchical
memory systems. The core memory is fast but small, the external mem-
ory is large but slow. It is possible to avoid using external memory by
parallelizing computations or by processing smaller work chunks sequen-
tially. We will analyze how a combination of these two options improves
efficiency of the computations. For this purpose divisible load theory rep-
resenting data-parallel applications is used. A mathematical model for
scheduling divisible computations is formulated as a mixed integer linear
program. The model allows for executing multiple load installments se-
quentially or in parallel. The efficiency of the schedule is analyzed with
respect to the impact of load size and machines number. The results are
visualized as isoefficiency maps.

Keywords: performance evaluation and prediction, hierarchical mem-
ory, divisible load theory, isoefficiency maps

1 Introduction

Current computer systems have hierarchical memory. At the top of the hierar-
chy, CPU registers are the fastest form of computer memory, but also available
in the smallest amount. Further memory hierarchy levels include CPU caches,
core memory commonly referred to as RAM, networked caches, SSDs, HDDs,
tapes, etc. When going down the hierarchy, memory size increases but speed of
data transfers decreases. The part of the hierarchy from CPU registers to RAM
is managed by hardware. The lower levels are controlled by software stacks [16].
Consequently, computations exploiting external storage, e.g. in the form of vir-
tual memory, can be by two orders of magnitude slower than using only the upper
part of memory hierarchy [9, 14]. Therefore, for the purposes of this study, we
will be distinguishing only two memory levels: CPU registers, caches and RAM
by convention referred to as core (or main) memory, and out-of-core memory
including all kinds of external storage.

2 M.Drozdowski, G.Singh, J.M.Marszałkowski

One of the key applications of parallel systems is processing big volumes
of data. Core memory size is a limitation in processing big volumes of data.
Memory footprint can be reduced in at least two ways: (i) by parallelizing com-
putations, and hence, reducing processor individual load shares, (ii) by multi-
installment processing, i.e. dividing the load into multiple chunks and process-
ing them sequentially. There is a need for understanding how the number of
machines, number of installments, memory size, and problem size interplay in
determining performance of processing big volumes of data. Thus, our goal in
this paper is to analyze the impact of various system parameters on performance
of processing big volumes of data in parallel. Most of the earlier approaches to
performance analysis focus on scalability with machine number (speedup) but at
fixed problem size, while the problem size vs machine number interrelationship
is ignored. Our goal is to allow easily grasping the system parameter interrela-
tionships, and in particular, between machine number and problem size. For this
purposes divisible load theory (DLT) will provide mathematical model of data
parallel application and isoefficiency maps will be used as a visual front-end.

Divisible load theory is a scheduling and performance model of data-parallel
applications typical for big volumes of data. In the DLT it is assumed that
the computation consists in processing large amount of similar data units, con-
ventionally referred to as load. The load can be partitioned between remote
computers and processed in parallel. The individual data units are small enough
in relation to the total load size so it can be assumed, without great loss of
accuracy, that the load is arbitrarily divisible. Accuracy of DLT in predicting
performance and scheduling data-parallel applications such as text, image and
video processing, file compression, linear algebra, sorting has been reported in
[1, 11, 14]. Further introduction to the DLT can be found in surveys [4, 5, 10, 15].
The first DLT paper assuming flat memory model was [13]. A heuristic load
distribution method has been proposed. In [9] hierarchical memory system has
been analyzed and single-installment load distribution has been found by use of
a linear program. In [3] data gathering networks with limited memory are stud-
ied. Time-energy trade-offs in divisible load processing have been studied in [6,
14]. A single-installment load distribution has be found by linear programming
formulation. It was assumed that all available machines were always activate
(powered on). In [6] the single-installment schedules built by the linear program
have been compared with heuristic load distribution methods derived from loop
scheduling (see e.g. [5] for loop scheduling). Isoefficiency maps borrow the per-
formance visualization concept from other types of iso-lines (isotherms, isobars,
isogones). Such visualizations proved very effective in building understanding of
sensitivities and relationships of complex phenomena in other areas of science
and technology

The contributions of this paper can be summarized as follows: (i) optimum
divisible load scheduling formulation is proposed for systems with both hierarchi-
cal memory system, and multi-installment load distribution, while the individual
machines are powered on only if needed; (ii) isoefficiency maps are proposed to
analyze the impact of memory hierarchy on divisible load processing; (iii) com-

Isoefficiency Maps for Hierarchical Memory Systems 3

putationally hard mixed integer linear program model is used as performance
oracle. Further organization of this paper is the following. In the next section
the model of parallel computation is introduced, and the problem of planning
optimum schedule for the computations is formulated as a mixed integer linear
program. In Section 3 the method of drawing isoefficiency maps is explained. Sec-
tion 4 is dedicated to a study of isoefficiency maps for divisible loads processing.
We conclude in the last section.

2 Mathematical Model of Parallel Application

We will be assuming that execution of the data-parallel application is initiated
by a root processor (a.k.a. master, originator) which starts worker machines,
schedules communications and distributes the load. Computing environment is
homogeneous and comprises m identical machines M1, . . . ,Mm. The system in-
terconnect is equivalent to a star (single level tree) and the originator commu-
nicates directly with worker processors. The machine starting process lasts for
S time units and may include, e.g., cold-start, start from certain suspension
mode, loading the application code and initializing data structures. A machine
starting message is short and the delay it induces in the communication system
may be neglected. Load of total size V is distributed to the worker processors in
installments (messages, load chunks). Sending a load chunk of size α takes time
O+Cα, where O is a fixed delay required to start the communication and C is
communication rate (in seconds per byte). Only after receiving the whole load
chunk can the worker machine start processing the load. A machine may receive
more than one load chunk, but only after finishing computations on the previous
one. Let n be the total number of load chunks distributed by the originator.

It has been experimentally demonstrated [9, 14] that the time of processing
load of size α in a system with two memory levels can be represented by function

τ(α) = max {a1α, a2α+ b2} (1)

where a1 is rate (seconds per byte) of processing in-core, a2, b2 are parameters
of linear time function for computing out of core. Function τ(α) has properties:
(i) τ(0) = 0, (ii) 0 < a1 < a2, b2 < 0, (iii) τ(ρ) = a1ρ = a2ρ + b2. The third
property means that the two linear segments of τ in equation (1) intersect at
load size ρ which is the core memory size available to application. The process
of collecting results is not explicitly scheduled because, e.g., the size of results
is small and their transfer time is very short, or the results are stored on the
worker machines for further processing. The optimum schedule of the computa-
tions requires determining: (i) where to send the load (i.e. the sequence of load
distributions to the processors), (ii) when to send the load, (iii) sizes of the sent
load chunks.

Let xij be a binary variable equal to 1 if load chunk j is sent to machine
Mi and equal to 0 otherwise. We will denote by αij the size of load chunk j
sent to processor i. If the chunk is sent to some other processor, then αij = 0.
The moment when sending chunk j begins will by denoted by tj . Let T be the

4 M.Drozdowski, G.Singh, J.M.Marszałkowski

length of the schedule (makespan). We will use auxiliary variables qij = tjxij
and τij = max{a1αij , a2αij + b2}. The problem of constructing an optimum
computation schedule can be formulated as mixed integer linear program (MIP):

minimize T (2)

subject to:

tj + C

m∑
i=1

αij +O ≤ tj+1 j = 1, . . . , n (3)

qij + Cαij +Oxij + τij ≤ T
j = 1, . . . , n i = 1, . . . ,m

(4)

qij + Cαij +Oxij + τij ≤ qil + (1− xil)Z
i = 1, . . . ,m j = 1, . . . , n− 1 l = j + 1, . . . , n

(5)

S

m∑
i=1

xij ≤ tj j = 1, . . . , n (6)

m∑
i=1

n∑
j=1

αij ≥ V (7)

αij ≤ V xij i = 1, . . . ,m j = 1, . . . , n (8)
m∑
i=1

xij = 1 j = 1, . . . , n (9)

Zxij ≥ qij ≥ 0

tj ≥ qij ≥ tj − Z(1− xij)
i = 1, . . . ,m j = 1, . . . , n

(10)

a1αij + Zuij ≥ τij ≥ a1αij

a2αij + b2 + Z(1− uij) ≥ τij ≥ a2αij + b2

i = 1, . . . ,m j = 1, . . . , n

(11)

In the above formulation xij , αij , qij , tj , T, τij , uij are decision variables. C,O, S,
V, a1, a2, b2,m, n are constants defined in the parallel application, while Z is a
large number defined in the above MIP. Decision variables xij determine the
sequence of communications and any n-message sequence to the m processors
can be constructed. The purpose of constraint (3) is to guarantee that the jth
message fits in interval [tj , tj+1] and messages do not overlap in the communi-
cation channel. Inequalities (4) ensure that computations finish before the end
of the schedule. Constraints (5) establish that if load chunks j, l are sent to
processor i, then there is enough time to receive the jth chunk and process it
before receiving the lth chunk starts. By (6) the processor which is receiving
the jth load chunk is already started when sending the chunk begins. Inequality

Isoefficiency Maps for Hierarchical Memory Systems 5

(7) guarantees that the whole load is processed. Constraint (8) ensures that a
processor that is not receiving the jth load chunks also receives no load in the
jth communication. By (9) only one machine can receive the jth load chunk.
Inequalities (10) ensure that the auxiliary variable qij is equal to tjxij . Using
product tjxij directly is not allowed because the formulation would become a
quadratic mathematical program. Yet, it is possible to obtain the same value by
use of linearizing constraints (10) and an additional variable qij . Inequalities (11)
guarantee that τij = max{a1αij , a2αij + b2}. The trigger binary variable uij = 0
determines whether the first (a1αij) or the second component (a2αij+b2) in the
max is active.

3 Isoefficiency Map Construction

In this section we introduce the concept of isoefficiency map, and then explain
how such maps can be constructed for processing divisible loads in hierarchi-
cal memory systems. Performance of parallel computations is measured by two
classic metrics: speedup S and efficiency E :

S(m) =
T (1)

T (m)
E(m) =

S
m

=
T (1)

mT (m)
, (12)

where T (i) is execution time on i machines. Speedup and efficiency measure
scalability of the parallel application. E is often interpreted as the fraction of
the processor set which really computes. In a well-designed application S should
grow (preferably linearly) with m and E should be as close to 1 as possible.
However, in most cases speedup saturates at certain number of machines and
efficiency decreases with m. The location of the maximum speedup depends on
the size of the solved problem. Bigger problems allow to exploit more proces-
sors while preserving certain efficiency level. In order to grasp this relationship
a concept of isoefficiency function has been introduced [12]. Isoefficiency func-
tion I(e,m) is size of the problem required to maintain efficiency E(m) = e.
Consider an example of finding a minimum spanning tree in a graph with n ver-
tices. A straightforward parallel version of Prim’s algorithm for this problem, has
complexity T (m) = c1n

2/m+ c2n logm, where c1, c2 are constants (see e.g. [2],
Section 10.6). Efficiency of this algorithm is E(m) = c1n

2/(c1n
2 + c2nm logm).

Hence, isoefficiency function for m machines and efficiency level e < 1 is
I(e,m) = c2em logm/(c1(1 − e)). For a fixed value of e, function I(e,m) can
be viewed as a line of equal efficiency in the m × n space. Such a line of equal
efficiency will be called an isoefficiency line. Thus, performance of parallel com-
putations can be visualized as a set of isoefficiency lines in m × problemsize
space. Such a visualization will be called an isoefficiency map of a parallel com-
putation. The idea of isoefficiency maps has been extended to other pairs of par-
allel computation efficiency parameters, such as speed of communication, speed
of computation, etc. [7, 8]. Such visualizations are useful in comprehending the
phenomena limiting performance of parallel processing.

6 M.Drozdowski, G.Singh, J.M.Marszałkowski

Schedule length T calculated by solving (2)-(11) can be used in performance
evaluation of data-parallel applications. Let T (m,n, V) denote the value of T
obtained for a particular number of machines m, communications n, and prob-
lem size V . The time of processing the same amount of load on a single machine
is T (1, 1, V) = S+O+CV +max{a1V, a2V +b2}. Thus, efficiency of the compu-
tation is E(m,n, V) = T (1, 1, V)/(mT (m,n, V)). The isoefficiency function for
a given value of efficiency e can be defined as I(e,m, n) = {V : E(m,n, V) = e}.
Function I(e,m, n) allows to draw one isoefficiency line, i.e. a line of efficiency
e in the m× V space. The isoefficiency line depicts how problem size V should
grow in order to maintain equal efficiency e with changing number of machines
m.

Due to the complex nature of the formulation (2)-(11) it is not possible to
derive a closed-form formula of I(e,m, n). Therefore, I(e,m, n) has been found
numerically, using the following approach: It has been established that for fixed
m,n, efficiency function E(m,n, V) has a single maximum Emax(m,n) at load
size Vmax(m,n) and is monotonous on both sides of Vmax(m,n). This will be
further discussed in Section 4. A bisection search method has been used to find
load sizes V < Vmax(m,n) for which certain efficiency level e < Emax(m,n) is
achieved. Precisely, for a probe value V times T (1, 1, V) and T (m,n, V) were
calculated and if the resulting efficiency satisfied T (1, 1, V)/(mT (m,n, V)) < e
then the probe load size was increased, respectively decreased in the opposite
case. Analogous method has been applied to calculate I(e,m, n) for load sizes
greater than Vmax(m,n). The values of Vmax(m,n) and Emax(m,n) have been
found by a modification of the bisection method: Efficiency has been calculated
for two probe values V1, V2 in some tested interval. Then the load size interval has
been narrowed to V1 or V2, whichever resulted in the smaller efficiency. Both in
the bisection search and in the search for the maximum efficiency the procedures
have been stopped if the width of the searched V intervals dropped below 1MB.

As the MIP solver Gurobi 7.5.2 has been used. Observe that MIP is an NP-
hard problem, and in the worst-case MIP solvers run in exponential time in the
number of variables. In order to obtain solutions in acceptable time, the MIP
solver run times have been limited to 300s on 6 CPU threads. Consequently,
the obtained solutions mostly were not guaranteed optimum. Still, the solutions
are always feasible and can be considered as approximations of the optimum
solutions of (2)-(11).

4 Performance Modeling

In this section we present isoefficiency maps and discuss the performance phe-
nomena they show. Unless stated to be otherwise the reference instance pa-
rameters were: for the computing time function τ(α) : a1 = 0.109s/MB,
a2 = 4.132s/MB, b2 = −27109s, for the communication delays C = 5ms/MB,
O = 75ms, machine startup time S = 25.4s, and a limit of n = 20 load chunks.
The a1, a2, b2 parameters correspond with usable RAM size ρ = 6739MB. Since
these parameters are machine- and application-dependent and can vary widely

Isoefficiency Maps for Hierarchical Memory Systems 7

Table 1.Maximum efficiency and corresponding load sizes vs m at n = 20 installments

m 2 3 4 5 6 7 8 9 10
Emax(m,n) 34.2 34.0 33.7 33.4 33.2 32.8 32.4 31.5 30.9
Vmax(m,n) [MB] 134485 120827 123329 105097 119663 95748 106921 115514 75048
m 11 12 13 14 15 16 17 18 19 20
Emax(m,n) 30.4 29.6 28.7 27.7 26.7 25.7 24.8 23.8 22.9 22.1
Vmax(m,n) [MB] 81394 86545 90457 94532 98591 99460 100506 100354 99708 102240

(cf. [7, 14]), we will concentrate on the frequent qualitative phenomena rather
than on particular performance numbers. We will also attempt analytically ex-
plaining the relationships behind the observed shapes of the isoefficiency lines.

In Fig.1 isoefficiency map for the load sizes smaller than Vmax(m,n) is shown,
and in Fig.2 for the loads above Vmax(m,n). For better clarity, maximum values
of efficiency Emax(m,n), and the corresponding load sizes Vmax(m,n) are shown
in Table 1. The line of maximum efficiency Emax(m,n) is denoted as max in
Figs 1,2 and the isolines are labeled with their efficiency levels. The efficiency
for m = 1 is always 1, and no isolines for m = 1 are shown. Note that m, shown
along the horizontal axis, is a discrete variable and consequently the isolines are
step functions. It can be observed in both figures that efficiencies greater than
1 (consequently also super-linear speedups) are possible. Though such situation
is rare in typical parallel applications, it is not unusual in the context of mem-
ory hierarchies. If only one machine is used (as in the calculation of T (1, 1, V))
then for V > ρ the processing rate tends asymptotically to a2. Conversely, if
the load is distributed between many processors then it can be processed in-core
with rate a1. In our case a2/a1 ≈ 37.9 and efficiency levels close to 37 can be
expected. The values in Table 1 are slightly smaller than a2/a1 which is a result
of communication delays and machine startup times. The Emax(m,n) line shows
problem sizes V which achieve the best balance between the advantage of pro-
cessing load in-core over single machine out-of-core processing, and the costs of
starting the machines, communicating and avoiding idle time. MIP (2)-(11) is
a discrete optimization problem and, e.g., there are fixed overheads S,O which
can be switched on and off by the choice of the communication sequence. Fur-
thermore, the best communication sequences are not always repetitive patterns.
Consequently Emax(m,n) is neither smooth nor does it show an obvious trend.

Let us consider the part of the isoefficiency map for problem sizes smaller
than Vmax(m,n) shown in Fig.1. For such load sizes machines in set M1, . . . ,Mm

compute in-core, but if the same load were processed on just one machine then
the load may spill to out-of-core. As it is not possible to derive a closed-form for-
mula of the (2)-(11) solution, we will analyze range of E(m,n, V). The efficiency
in this part of the isoefficiency map can be bounded in the ensuing range:

S +O + CV + a′V

mS + nmO +mCV + a1V
≤ E(m,n, V) ≤ S +O + CV + a′V

mS +mO + a1V
. (13)

In the numerator of (13) a1 ≤ a′ ≤ a2 is an equivalent rate of processing on
one machine. Product mT (m,n, V) in denominator of (12) can be interpreted

8 M.Drozdowski, G.Singh, J.M.Marszałkowski

1.0E1

1.0E2

1.0E3

1.0E4

1.0E5

 2 4 6 8 10 12 14 16 18 20

V
 [

M
B

]

m

MAX
e=32
e=24
e=16
e=8
e=4
e=2
e=1
e=0.9
e=0.7
e=0.5

Fig. 1. Isoefficiency map for the load sizes V below maximum efficiency. Logarithmic
vertical axis.

as area in time × m space which is easier to assess than the schedule length
T (m,n, V). The area of mT (m,n, V) in (13) is bounded from below by mS +
mO+ a1V which is total machine startup time mS, minimum fixed overhead of
communications mO and total work of the computations in core a1V . For the
upper bound of the area, mnO +mCV is an upper bound of machine waiting
during the communications. It can be verified that both bounds of E(m,n, V)
are increasing with V , and value of V derived from the bound formulas increases
with m for fixed efficiency e. Indeed, it can be seen in Fig.1 that problem sizes
V must grow with the number of machines m to maintain some fixed level of
efficiency. The isolines grow slightly faster than linearly with m because the total
processor waiting time in the actual solutions increases faster than linearly with
m. One more peculiarity can be seen in Fig.1: around V = ρ = 6739MB a bunch
of isolines coalesce. This is a result of using out-of-core memory in T (1, 1, V)
used in the efficiency formula. The single reference machine starts to use out-
of-core memory at V ≈ ρ, which extremely expands T (1, 1, V) and problem size
expressed by I(e,m, n) has to increase only marginally to attain the required
efficiency level. Consider, e.g., the upper bound of (13). The size of the load
required to attain efficiency e is V = (S + O)(em − 1)/(C + a′ − a1). When m
grows also V grows, but the single machine must use out-of-core memory and a′

tends to a2 � a1. As a result, the increase in the numerator (S +O)(em− 1) is
intensively suppressed by a′ growing in the denominator (C + a′ − a1). Hence,
isoline coalescing at V ≈ ρ can be observed.

In the part of the isoefficiency map above Vmax(m,n) (see Fig.2) the single
reference machine considered in T (1, 1, V) uses out-of-core memory while ma-
chines M1, . . . ,Mm use out-of-core memory at least partially. In the dominating

Isoefficiency Maps for Hierarchical Memory Systems 9

0.0E0

1.0E5

2.0E5

3.0E5

4.0E5

5.0E5

6.0E5

7.0E5

8.0E5

9.0E5

1.0E6

 2 4 6 8 10 12 14 16 18 20

V
 [

M
B

]

m

e=1
e=1.2
e=1.3
e=1.5
e=2
e=4
e=8
e=16
MAX

Fig. 2. Isoefficiency map for the load sizes V above maximum efficiency.

pattern of load distribution some part of the load is processed in load chunks of
RAM ρ size while the remaining load is distributed to the machines in roughly
equal sizes and processed out-of-core. Thus, for n installments and m machines,
n−m ≥ 0 load chunks have nearly RAM size, and the remaining chunks have size
roughly [V − (n−m)ρ]/m. This load partitioning is intuitively effective because
load as big as possible is processed in RAM, while the remaining load processed
out-of-core on each machine is as small as possible. This load partitioning pattern
results in the following efficiency formula

E(m,n, V) ≈ S +O + V (C + a2) + b2
mS+nO+CV +(n−m)ρa1+m[(V −(n−m)ρ)/ma2+b2]

. (14)

In the denominator of (14) area mT (m,n, V) is calculated. It is assumed that
data transfers to one machine overlap with other machines computations (latency
hiding), and consequently, only CV area is used on communications in all ma-
chines. (n−m)ρa1 is the area of computing in core, andm[(V−(n−m)ρ)/ma2+b2]
out-of-core. From (14) estimation of the isoefficiency function can be derived:

I(e,m, n) ≈ b2(en− 1) + S(em− 1) +O(en− 1)

(C + a2)(1− e)
. (15)

In the derivation of (15) property (iii) ρ = b2/(a1 − a2) of (1) has be used.
Note that b2 < 0, e > 1, n > m, |b2| � S � O, and I(e,m, n) > 0. The load
size necessary for certain efficiency e is almost independent of the number of
machines m in (15). Thus, (15) represents well the lower-right part of Fig.2
where isoefficiency lines are nearly parallel to the horizontal axis. The top-left
part of Fig.2 can be considered an artifact. Note that with growing V the time

10 M.Drozdowski, G.Singh, J.M.Marszałkowski

of processing load out-of-core dominates in the computation time. As a result
efficiency tends to (V a2+ b2)/(m[V/ma2+ b2]) ≈ 1 with growing V and it is not
possible to obtain schedules with efficiency significantly smaller than 1 without
introducing artificial idle time. In other words, to construct a schedule with low
efficiency, overheads are ’necessary’ in the denominator of the efficiency equation
like in (14). Yet, with decreasing m the amount of the overheads decreases in
relation to growing out-of core computation cost, and it is becoming impossible
to build a schedule with some low efficiency level unless some idle time is added.
Consequently, we do not show isoefficiency lines for e < 1 in Fig.2 because the
corresponding schedules require inserting unneeded idle time.

5 Conclusions

In this paper we studied time performance of divisible computations with non-
linear processing time imposed by hierarchical memory. Efficiency of distributed
computation has been estimated numerically by use of mixed integer linear pro-
gramming. The performance has been visualized in the isoefficiency maps. It has
been established that efficiency greater than 1 is possible as a result of memory
hierarchy: parallel machines and multi-installment processing allow for compu-
tations in-core which is faster than if the same load were put on one machine,
necessarily out-of-core. For problem sizes smaller than the maximum efficiency
size, the efficiency decreases with increasing machine number. For problem sizes
larger than the maximum efficiency size, the efficiency is almost independent of
machine number. In the future study the idea of isoefficiency maps for systems
with hierarchical memory can be extended to other pairs of system parameters
than m and V .

References

1. Agrawal, R., Jagadish H.V.: Partitioning techniques for large-grained parallelism.
IEEE Transactions on Computers 37, 1627—1634 (1988).

2. Akl, S.G.: The Design and Analysis of Parallel Algorithms. Prentice-Hall Int. Inc.,
Englewood Cliffs New Jersey (1989)

3. Berlińska, J.: Communication scheduling in data gathering networks with limited
memory. Applied Mathematics and Computation 235, 530–537 (2014).

4. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling divisible loads
in parallel and distributed systems. IEEE Computer Society Press, Los Alamitos
California (1996)

5. Drozdowski, M.: Scheduling for Parallel Processing. Springer-Verlag, London,
(2009)

6. Drozdowski, M., Marszałkowski, J.M.: Divisible Loads Scheduling in Hierar-
chical Memory Systems with Time and Energy Constraints. In: Wyrzykowski,
R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K.
(eds.), PPAM 2015. LNCS, vol. 9574, pp.111–120. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-319-32152-3 11

Isoefficiency Maps for Hierarchical Memory Systems 11

7. Drozdowski, M., Marszałkowski, J.M., Marszałkowski, J.: Energy trade-offs anal-
ysis using equal-energy maps. Future Generation Computer Systems 36, 311–321
(2014).

8. Drozdowski, M., Wielebski, Ł.: Isoefficiency Maps for Divisible Computations.
IEEE Transactions on Parallel and Distributed Systems 21, 872–880 (2010).

9. Drozdowski, M., Wolniewicz, P.: Out-of-Core Divisible Load Processing. IEEE
Transactions on Parallel and Distributed Systems 14, 1048–1056 (2003).

10. Ghanbari, S., Othman, M.: Comprehensive Review on Divisible Load Theory: Con-
cepts, Strategies, and Approaches, Mathematical Problems in Engineering Article
ID 460354, 13 pages (2014) http://dx.doi.org/10.1155/2014/460354

11. Ghose, D., Kim, H.J., Kim, T.H.: Adaptive divisible load scheduling strategies
for workstation clusters with unknown network resources. IEEE Transactions on
Parallel and Distributed Systems 16, 897–907 (2005).

12. Gupta, A., Kumar, V.: Performance properties of large scale parallel systems.
Journal of Parallel and Distributed Computing 19, 234–244 (1993).

13. Li, X., Bharadwaj, V., Ko, C.C.: Divisible load scheduling on single-level tree
networks with buffer constraints. IEEE Transactions on Aerospace and Electronic
Systems 36, 1298–1308 (2000).

14. Marszałkowski, J.M., Drozdowski, M., Marszałkowski, J.: Time and Energy Perfor-
mance of Parallel Systems with Hierarchical Memory. Journal of Grid Computing
14, 153–170 (2016).

15. Robertazzi, T.: Ten reasons to use divisible load theory. IEEE Computer 36, 63–68
(2003).

16. Swanson, S., Caulfield, A.M.: Refactor, Reduce, Recycle: Restructuring the I/O
Stack for the Future of Storage. IEEE Computer 46, 52–59 (2013).

