
Two-Echelon System Stochastic Optimization
with R and CUDA

Witold Andrzejewski1, Maciej Drozdowski1�, Gang Mu2,3, and Yong Chao Sun2

1 Institute of Computing Science, Poznań University of Technology, Poland
{Witold.Andrzejewski;Maciej.Drozdowski}@cs.put.poznan.pl

2 School of Mathematical Sciences, Tongji University, Shanghai, China
103644@tongji.edu.cn

3 F. Hoffmann-La Roche AG, Basel, Switzerland Gang.Mu@roche.com

Abstract. Parallelizing of the supply chain simulator is considered in
this paper. The simulator is a key element of the algorithm optimizing in-
ventory levels and order sizes in a two-echelon logistic system. The mode
of operation of the logistic system and the optimization problem are
defined first. Then, the inventory optimization algorithm is introduced.
Parallelization for CUDA platform is presented. Benchmarking of the
parallelized code demonstrates high efficiency of the software hybrid.

Keywords: two-echelon problem, simulation-based optimization, CUDA, R

1 Introduction

Logistic systems are key elements of the contemporary economy. Optimizing
operations of the logistic systems is essential for running distributed produc-
tion facilities. The frights with goods are often managed by multi-level systems
where facilities consolidate the requests, store the goods, and redistribute them
to the subordinate levels, and customers. Such multi-level systems are called
multi-echelon [2]. In this paper we examine a two-echelon system with one in-
ternal level and leaf facilities (cf. Fig.1). The operations of the system must be
optimized by adjusting inventory levels and reorder sizes. Since multi-echelon
systems have discrete event-driven nature, they are not susceptible to analytical
solutions, and simulation is frequently used to analyze their performance. In this
paper we report on parallelizing a two-echelon system simulator which is a core
of the stochastic simulation-based optimization algorithm minimizing cost of the
operations with the quality of service constraints. The optimization method ap-
plied here is an adaptation of [1]. Initially the optimization algorithm has been
implemented in R language. R offers relative ease of algorithm prototyping and
a wealth of data analysis libraries. However, the algorithm in R was very slow
and it has been decided to parallelize its most time-consuming part: the sim-
ulations. Further organization of this paper is the following. In Section 2 the
optimization problem is defined. The solution algorithm is outlined in Section 3.
Parallelization of the simulation is presented in Section 4. Benchmarking results
are given in Section 5. Conclusions are provided in the last section.

facility 1 OD[1,]tOD[,]at

OD[2,]t

OD[,]i t

customer
order

customer
order

customer
order

customer
order

R[1], Q[1]

R[], Q[]a a

R[], Q[]b b

R[2], Q[2]

R[], Q[]i i

order Q[1]

order Q
[]a

order Q[]i

order Q[]b

resupply Q[1]

resupply Q[]a

resupply Q[]i

resupply Q[]b

facility 2

facility i

facility a

facility b

leaves
(end-facilities,
end-nodes)

internal nodes,
(middle facilities)

root
facility

(factory) .
.
.

... ...

Fig. 1. Structure of the inventory system.

0

0 5 10
15

20

-1000

1000

2000

3000

4000

R[i] Reorder point
(reorder level)

on-hand inventory

order Q[i]

order Q[i]

replenishment

delivery
delay delivery

delay

in
v
e
n
to

ry
 l
e
v
e
l

Q[i]

Q[i]

backorder

Fig. 2. Inventory level changes in the
R,Q-policy.

2 Problem Formulation

The inventory system has a tree structure with the root facility, middle facilities,
and leaves as depicted in Fig.1. A predecessor of facility i will be denoted pred(i),
the set of facility i successors will be denoted succ(i). Customers submit orders
in the middle facilities and leaves. If inventory levels are sufficient, the customers
and the successors are immediately served. If the inventory level at some facility
i is too low, then i submits a request to its predecessor pred(i). If the inventory
level at pred(i) is too low to serve all the requests, then pred(i) orders goods from
its own predecessor pred(pred(i)). Thus, the requests may propagate to the root
node. Processing the requests requires time. If the requests recursively propagate
toward the root, then all the intermediate processing times must be included in
the waiting time. Customers can be served immediately if high inventory levels
are maintained. However, storing goods costs and there is a trade-off between
quality of service and the cost of running the system.

Daily Bookkeeping. Let m denote the number of facilities and Nt the number of
days in the simulation. The following events may happen at facility i = 1, . . . ,m
on day t = 1, . . . , Nt: 1) delivery from pred(i) in size of Q[i] units, 2) a re-
quest of size OD[i, t] from a local customer, 3) requests from subordinate nodes
j ∈ succ(i) are received in sizes Q[j]. Sizes of customer orders OD[i, t] are
generated from max{0, N(µi, σi)}, where N(µi, σi) is normal distribution with
mean µi and standard deviation σi. Let MoI[i, t] be the morning inventory
level, and EvI[i, t] the evening inventory level, at facility i on day t, We have
MoI[i, t] = EvI[i, t − 1]. MoI[i, t] is increased by Q[i] if a replenishment from
pred(i) arrives on day t. Let DR[i, t− 1] denote the total size of the earlier day
demand remaining to be fulfilled at i at the beginning of day t. The aggregate de-
mand of facility i on day t is ROD[i, t] = OD[i, t]+DR[i, t−1]+

∑
j∈succ(i)Q[j].

Let FOD[i, t] be the size of fulfilled orders at node i on day t. We have:
FOD[i, t] = min{ROD[i, t],MoI[i, t]}. The size of requests remaining to be sat-
isfied in the following days is DR[i, t] = max{0, ROD[i, t] −MoI[i, t]}. At the
end of day t the remaining inventory is EvI[i, t] = MoI[i, t]− FOD[i, t].

R,Q–Policy. The R,Q–policy [4] guides inventory levels using two control pa-
rameters: reorder level R[i] and reorder size Q[i]. The idea of R,Q–policy is
shown in Fig.2. The inventory on hand (IOH) is the amount of goods actually
available at facility i which can be immediately served. Requests which cannot
be served are accumulated as backorder. When inventory on hand at facility i
falls below R[i] an order of size Q[i] is placed in pred(i). A new order to pred(i)
can be sent only after the previous one is executed.

Delivery Delays. The requests are executed immediately only if inventory levels
are sufficient. Otherwise, the requests must wait until the next replenishment. A
delivery delay has two components: facility processing time and a recursive com-
ponent. Processing time is the interval between receiving an order and sending
the replenishment. If facility i has insufficient inventory level, then the request
from succ(i) must additionally wait until the arrival of a shipment from pred(i).
This delay is represented by the recursive component. The recursive component
accumulates the processing times of the preceding facilities. The root facility
inventory level is unlimited. Let pt[i, t] denote the processing time of the order
submitted at facility i on day t. pt[i, t] is generated from U(Min pt[i],Max pt[i]),
where U(a, b) is a discrete uniform distribution in range [a, b].

Constraints and the Objective Function. Quality of the customer service is mea-
sured as the fraction of all orders served immediately in the whole volume of
orders. For facility i it is service level[i] =

∑Nt
t=1 FOD[i, t]/

∑Nt
t=1ROD[i, t]. It

is required that service level[i] for all facilities i be at least 0.9 with probability
at least 0.95 according to Student t-distribution.

The cost of the logistic system has three components: holding, ordering,
and the shortage costs. For facility i, Holding Cost[i] = Ch[i]

∑Nt
t=1EvI[i, t],

where Ch[i] is the cost per unit of inventory per day. Ordering Cost[i] of i
is the number of submitted orders times the cost of one order Co[i]. The cost

of shortage is Shortage Cost[i] = Cs[i]
∑Nt
t=1DR[i, t], where Cs[i] is the cost

of one unit of backorder per day. The cost is accumulated over all facilities:
Cost=

∑m
i=1 (Holding Cost[i]+Ordering Cost[i]+Shortage Cost[i]) .

The problem consists in finding reorder levels R[i] and sizes Q[i] such that
Cost is minimum, subject to the above constraints on customer quality of service.

3 Solution Method

Structure of the Algorithm. The solution is a stochastic optimization method with
sampling and linearization of the objective function and constraints. A method
proposed in [1] has been adapted. A pseudocode of the algorithm is shown in
Fig.3. Vector Initial IOH provides initial inventory levels. Constants countmax,
deltamin limit the run of the algorithm. Nmc is the number of samples gener-
ated by simulating the inventory system. blackboxagent1(R,Q) simulates the
system for the given vectors of reorder levels R, reorder sizes Q and returns sam-
ples of cost and service levels concatenated in array y. blackboxagent1(R,Q)
comprises two loops: over Nt days t, and m facilities i, generating user requests
OD[i, t], updating MoI[i, t], EvI[i, t], Cost, service level[i], etc.

Input: R,Q,Initial IOH, Ch, Co, Cs, Min pt, Max pt, µi, σi

Nmc=100,countmax,delta,deltamin,Nd=64,m,Nt=120,ρ // default values of Nmc,Nd,Nt
Output: R,Q,Cost,service level

1: repeat { // build a feasible solution
2: for(i in 1:Nmc){y=rbind(y,blackboxagent1(R,Q))} // generate samples
3: using samples y foreach i calculate from t-distribution probability

p[i] of maintaining service level[i]>=0.9;
4: for(i in 1:m){if(p[i]<0.95)){Q[i]=Q[i]+50; R[i]=R[i]+50; }}
5: } until (forall i: p[i]>=0.95);

6: DM=FrF2(Nd,2m) // use precomputed design matrix
7: counter=0; while (counter<countmax) { // optimize
8: counter=counter+1;
9: for(j in 1:Nd) { for(i in 1:Nmc) {

y=rbind(y,blackboxagent1(R+ρ*DM[j],Q+ρ*DM[j])) }}; // generate samples
10: using samples y calculate linear dependencies of Cost // linearization

and service level on R, Q;
11: R’,Q’=linear program(Cost,service level,delta) // linear programming
12: for(i in 1:Nmc){y=rbind(y,blackboxagent1(R’,Q’))} // generate samples
13: if ((forall i: service level >=0.9 with probability >=0.95) AND

(Cost increased with probability <=0.2)) {
14: R=R’; Q=Q’; } // R’, Q’ become a new solution
15: else {
16: if (delta<=deltamin) { return R,Q,Cost,service level}
17: else {delta=delta/2}} // retry in smaller neighborhood
18: }// end of while

Fig. 3. Pseudocode of the optimization method.

The algorithm can be divided into two parts. In lines 1–5 a feasible solution
is searched for, while in lines 6–18 the solution is optimized. A feasible solution
must guarantee that service level[i] ≥ 0.9 with probability at least 0.95 accord-
ing to t–distribution. These constraints are verified in steps 3–5. If satisfied, then
the algorithm proceeds to the cost optimization. Otherwise, R[i] and Q[i] are
increased in the facilities i missing the constraint and the loop is reiterated.

In the second part of the code, a linear model of R,Q impact on Cost and
service level[i] is constructed in lines 9–10. For this purpose fractional factorial
experiment design is used (explained in the following). The linear models of Cost
and service level[i] dependencies onR,Q are used in step 11 to formulate a linear
program minimizing Cost subject to the constraints on quality of service and
range delta of R,Q changes (explained in the following). The linear program
provides new values of R′, Q′ evaluated by simulation in line 12. If R′, Q′ meet
the constraints on the quality of service and cost (line 13), then R′, Q′ become
a new solution (line 14). Otherwise, the range of changes delta is verified. If
delta falls below deltamin then the algorithm stops. In the opposite case delta
is halved in line 17 and the algorithm reiterates. blackboxagent1(R,Q) is called
Nmc times in each iteration of loop 1–5, and Nmc(Nd + 1) times in loop 7–
18. For the default setting these were 100, and 6500 calls, respectively. Hence,
blackboxagent1(R,Q) is the biggest computational effort in the algorithm.

Linearization. Linearization method is based on fractional factorial design [3,
5]. As results linear functions linking factors (decision variables) R′[i], Q′[i] with
response variables Cost, service level[i] near the current values of R[i], Q[i] are
obtained, e.g., Cost = c0 +

∑m
i=1(ci(R

′[i] − R[i]) + cm+i(Q
′[i] − Q[i])). Val-

ues of coefficients ci are discovered by setting the factors into boundary values

R[i] ± ρ,Q[i] ± ρ, simulating the system, and checking values of Cost. How-
ever, the number of different boundary value settings is 2m and it is not pos-
sible to verify them all. Which factor R′[i], Q′[i] to set into which boundary
value to obtain the best evaluation of the linear model of Cost, at the num-
ber of tests limited to Nd, is determined by a precomputed design matrix DM

providing this information as ±1 values. One test consists in collecting Nmc
performance samples. In tests j = 1 . . . , Nd mean costs costj are obtained.

Then, coefficients ci are calculated as ci = (
∑Nd
j=1DM [j, i](costj−c0))/(ρ×Nd),

where c0 is the mean cost obtained in all tests. Analogously, service level[i] =
qi0+

∑m
k=1(qik(R′[k]−R[k])+qi,m+k(Q′[k]−Q[k])). Coefficients qij are obtained

from qij = (
∑Nd
k=1DM [k, j](sl[i, k] − qi0))/(ρ × Nd), where sl[i, k] is the mean

service level at facility i in test k, qi0 is the mean service level at i in all tests.

Linear Programming. The goal of linear optimization is to minimize Cost by
adjusting R′, Q′ while obeying quality of service constraints. For this purpose an
external library Rglpk [9], which is an interface to GNU Linear Programming
Kit [6], has been used. Let X ′ = (R′, Q′) denote concatenated vectors R′ and
Q′, which are our decision variables. Let X be a vector of concatenated current
values of R,Q which are constant values. Cost is optimized by the following
linear program:

minimize:

2m∑
j=1

cjX
′[j] (1)

subject to:

2m∑
j=1

qijX
′[j] ≥ 0.9− qi0 +

2m∑
j=1

qijX[j] i = 1, . . . ,m (2)

X[i]− delta ≤ X ′[i] ≤ X[i] + delta i = 1, . . . , 2m (3)

Cost is minimized by objective (1). By inequalities (2) the quality of service is
observed, while changes of X ′ = (R′, Q′) are confined in range delta by (3).

4 GPU Parallelization

The optimization algorithm presented in the previous section has been paral-
lelized for the target of NVIDIA GPU architecture and the CUDA API [8].

Implementation Details. Function blackboxagent1 is executed iteratively to col-
lect samples of the two-echelon system performance. These iterations are inde-
pendent of each other and can be run in parallel. We will call such iterations
Monte Carlo iterations (MC iterations in short).

Each blackboxagent1 instance (i.e. each MC iteration) executes Nt times
a day loop. Since each day depends on the previous one, these iterations cannot
be easily parallelized. Each iteration of the day loop performs three loops called
end-node loop, middle node loop and processing time loop. In the end-node loop,
each iteration refers to a different leaf of the distribution tree and this loop can
be parallelized. Hence, blackboxagent1 has been parallelized as follows: 1) it-
erations of the day loop are performed sequentially, 2) levels of the distribution

0 1

2 3 4 5 6

9
T

re
e

 le
ve

l

0

1

2

3

7 8

nodeLevels

0 1 2 3 4 5 6 7 8
0 0 0 0 1 0 0 2 2

nodeIndices

0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 2 2 2 4 7

nodeNeighbours

0 1 2 3 4 5 6
0 1 2 3 4 5 6

Fig. 4. Exemplary tree and the corresponding nodeLevels, nodeNeighbours,
nodeIndices arrays. In the arrays the upper lines show the indices to guide the eye.

tree are processed sequentially, 3) nodes on the same tree level, are processed in
parallel. Middle node and processing time loops are replaced with loops iterating
over the range of tree levels. Costs and service levels are aggregated on the fly by
every thread. After the day loop ends, threads in parallel compute their service
levels and store them in the output array. Calculation of the total cost, how-
ever, requires aggregating partial costs of the threads. To compute this value a
parallel segmented reduction algorithm has been employed [7]. At each iteration
over the levels of the tree a different set of threads processes their nodes. The
dependencies of parents on their children are retained, but synchronization be-
tween threads of a single MC iteration for each level of the tree on every day are
required. This leads to the problem of thread allocation. Since currently the dis-
tribution tree is short (2 levels), it has been chosen to allocate a thread per tree
node. A disadvantage of this approach is that it wastes thread resources as only
threads of the currently processed tree level are working. Still, it allows to use
registers and shared memory for storing processing state, and reduces the need
for communication between threads. Due to synchronization, threads performing
a single MC iteration have to be included in a single GPU block. Consequently,
current implementation can process distribution trees of at most 1024 nodes,
which is the largest number of threads within a block, e.g., for NVIDIA Tesla
K80. Another issue was the assignment of MC iterations to blocks. Due to the
nature of GPUs the threads are executed in warps. Hence, the block size should
be a multiple of 32 and more than 64 to hide read after write dependencies.
Assigning only one MC iteration per block is wasteful. Consequently, we have
chosen to assign as many MC iterations per block as possible, at the maximum
block size, which is an execution parameter. This introduced some unnecessary
synchronizations (as only all threads within a block can be synchronized), but
still it performed better than the other approaches.

In order to reduce the memory footprint of the blackboxagent1 the following
optimizations have been applied: Matrix MoI is referred to only for the current
day t. Since the references to MoI are done to the entries of the local nodes only,
this matrix has been substituted by thread private variables stored in registers.
Similar optimizations have been done with EvI,ROD,FOD and DR matrices.

OD matrix has been removed in favor of computing pseudorandom values on
the fly. The structure of the inventory system is represented by a number and
three arrays (see Fig.4): treeHeight holds the length of the longest path between
the root and any leaf. Array nodeLevels determines the order of processing the
nodes. For each leaf, value 0 is always stored since the leaves are processed first.
The root and middle nodes are assigned their levels in the tree. The level of a
root is treeHeight and for the middle nodes it is treeHeight minus the distance
to the root (cf. Fig.4). Arrays nodeIndices and nodeNeighbours are a GPU-
friendly representation of a directed tree by a neighbor list. The neighbor lists
are stored in the array nodeNeighbours. Array nodeIndices stores for a node
an index in nodeNeighbours at which the node’s neighbor list starts. The last
entry in the nodeIndices does not correspond to any node, but stores the length
of the nodeNeighbours array. Given node index x, the length of x neighbor
list is nodeIndices[x + 1] − nodeIndices[x]. The root is ignored because in the
assumed logistic model root inventory is unlimited and stored at no cost, hence
the root delivers the goods immediately, and no cost or quality of service need
be calculated for it. Let us note that the CUDA code has been linked with R
through the Rcpp mechanism.

5 Evaluation

Performance of the proposed solution has been evaluated in a series of exper-
iments. Unless stated to be otherwise the reference instance had a root, one
middle node, three leaves and the following parameter vales: Nmc = 100, Nd =
64, Nt = 120, Ch = (1, 1, 1, 1), Co = (100, 100, 100, 500), Cs = (1000, 1000, 1000,
2000), Initial IOH=(1E4,1E4,1E4,4E4), Min pt=(4,5,4,7), Max pt=(8,7,6,9),
µi=(1E3,1E3,1E3,1E3],σi=(400,300,300,500). Tests have been performed on a
PC computer with Intel Core i7 930 CPU with the clock at 2.8GHz, 24GB
RAM, NVIDIA GeForce Titan 6GB RAM. The software platform were Arch
Linux, NVIDIA CUDA Toolkit 7.5, gcc v4.9.

In the first series of experiments 10 instances of the inventory sys-
tem have been examined. Beyond the reference instance, nine other in-
stances were constructed by modifying one parameter of the default con-
figuration at a time: Instance 2: Nmc=200, Instance 3: Nd=32, Instance
4: Nd=128, Instance 5: Nt=60, Instance 6: Nt=180, Instance 7: Ch =
(10, 10, 10, 10), Co = (100, 100, 100, 100), Instance 8: Initial IOH=(9E3,9E3,
9E3,27E3), Instance 9: Min pt = (1, 1, 1, 1),Max pt = (10, 10, 10, 10), Instance
10: µi = (1200, 1200, 1200, 1200), σi = (500, 500, 500, 500). The speedup in the
R+GPU execution vs pure R has been evaluated. For the R code 8 execution
time samples were collected, for the GPU code 10 samples were collected. Wall-
clock times have been used. The results are shown in Fig. 5. Quartiles of speedups
for each instance are shown in Fig. 5. The smallest speedup of 768 was obtained
for instance 5 and the biggest equal to 10873.4 for instance 4. In terms of run-
time it means a reduction from 2134s (average for all runs on all instances in

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 3 4 5 6 7 8 9 10

sp
ee

d
u
p

Instances

Fig. 5. Speedups in test instances.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 200 300 400 500 600 700 800 900 1000

Sp
ee

du
p

NMc

m=1024
m=512
m=320
m=256
m=128

Fig. 6. Speedup vs Nmc,m.

R) to 0.485s (average for all runs on all instances in R+GPU hybrid). Thus, the
optimization process time has been successfully reduced.

In the first series of experiments the whole code comprising simulation on
GPU and optimization in R has been evaluated. This included service level[i]
and Cost linearization, linear programming, which are essentially sequential.
Therefore, in the second series of experiments performance of blackboxagent1
alone in R and in GPU implementations have been compared. The impact of
three main parameters determining complexity of the application: Nmc – the
number of MC iterations, Nt – the number of days, m – the number of facilities,
and the block size have been tested (at Nd = 1). The results are collected
in Figs 6–10. In Figs 6, 7 speedups with reference to R implementation are
shown for 1024-thread CUDA blocks. Values of speedup presented in Figs 6, 7
should be taken with caution because they do not represent scalability analysis
typical of parallel processing literature. Here the reference execution time has
been measured for the algorithm implemented on a different software platform,
namely, in interpreted language (R). This gives an indication of savings from
abandoning R implementation in favor of R+CUDA hybrid. Moreover, more
than the actual numbers, the tendencies can be informative.

It can be seen in Figs 6,7 that speedup decreases with the size of the simula-
tion, namely, the number of facilities m and the number of MC iterations Nmc.
This can be expected because the more the computational resources are oversub-
scribed, the higher the overall overheads costs. The impact of thread scheduling
is visible in Fig. 6 as a saw-like shape of the speedup curve for m = 128 facil-
ities. Yet, such effect is not visible for m=256. This behavior can be explained
via a formula linking block size and the execution time, provided in the further
text. For bigger number of facilities (m ≥ 320), speedups decrease at roughly
Nmc > b1024/mc ∗ 256 and then tend to a new constant value. This effect can
be also seen in GPU execution time (not shown here) because for m = 320
and Nmc > 768, for m ∈ {384, 448, 512} and Nmc > 512, for m > 512 and
Nmc > 256 the growth of the execution times accelerates. The threshold of
performance drop corresponds with 256 blocks executed in the computational
grid. It can be guessed that big numbers of blocks waiting to be executed on a

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120 140 160

Sp
ee

du
p

Nt

m=1024
m=512
m=320
m=256
m=128

Fig. 7. Speedups vs Nt,m.

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50 60 70 80 90 100

ti
m

e
 [

n
s]

Nt

Nmc=100	
Nmc=200	
Nmc=500	
Nmc=1000

Fig. 8. Time of processing one facility-day
on GPU vs Nt,Nmc.

streaming multiprocessor have negative impact on the performance. This drop
in performance is exacerbated if the difference between 1024-thread block size
and mb1024/mc is big, that is, when blocks have many idle threads.

In Fig.7 it can be seen again that speedup decreases with the size of the
computation. The R code implementation checked each day, by iteration over
the past days, whether the current day is an arrival day for a replenishment
sent on some past day. Consequently, the R code computational complexity was
proportional to (Nt)2. In the CUDA code the loop in a loop was substituted
with an array of replenishment arrival days, thus reducing complexity to the
order of Nt. As a result linear speedup can be observed.

In Fig.8 the average runtime per day and per facility on GPU has been
shown. It can be seen that with growing Nt the average time per facility and day
decreases. On the one hand, with growing number of the days of simulation Nt
fixed overheads are amortized because threads run longer before being dequeued
from the streaming multiprocessors. On the other hand, overheads related to the
size of simulation grow with Nmc and time of simulating facility day also grows
(which confirms the earlier observations).

In Fig.9 impact of the block size on processing time is shown. As it can be
verified, the way how simulations of the m facilities are scheduled in the blocks
and the blocks on the streaming multiprocessors impacts performance of the
computation. The saw-like execution time pattern in Fig.9 can be explained by
the formula expressing the number of block executions: ddNmc/bbs/mce/(sm ∗
btpSM/bsc)e, where bs is block size, tpSM = 2048 is the number of resident
threads per streaming multiprocessor, sm = 14 is the number of streaming
multiprocessors.

In Fig.10 performance of the simulation in the sense of GFlops is shown. The
obtained throughput values are far from the theoretical hardware maximum
because our application is not constantly performing multiply-add operations,
has complicated memory reference and thread execution patterns resulting from
simulating a tree-like logistic network.

 0.1

 1

 10

 128 256 384 512 640 768 896 1024

ti
m

e
 [

s]

block size

m=64
m=128
m=192
m=256
m=320
m=384
m=448
m=512
m=576
m=640

Fig. 9. Processing time vs block size, and
m, Nmc = 1000.

 0

 1

 2

 3

 4

 5

 6

 7

 20 40 60 80 100 120 140

G
F

lo
p
s

Nt

m=1024
m=512
m=256
m=128
m=64

Fig. 10. Speed of processing vs Nt,m.

6 Conclusions

In this paper we reported on parallelization of two-echelon supply chain opti-
mization method initially coded in R. The most time-consuming part of the
algorithm has been ported to CUDA platform. The effects obtained demon-
strate that a hybrid of R and CUDA combines ease of prototyping, wealth of
data analysis tools with the speed of graphics processing units.

References

1. Chu Y, You F, Wassick JM, Agarwal A (2015) Simulation-based optimization
framework for multi-echelon inventory systems under uncertainty, Computers and
Chemical Engineering 73:1-16. doi: 10.1016/j.compchemeng.2014.10.008

2. Cuda R, Guastaroba G, Speranza MG (2015) A survey on two-echelon
routing problems, Computers & Operations Research 55:185-199. doi:
10.1016/j.cor.2014.06.008

3. Groemping U (2016) Fractional Factorial Designs with 2-Level Factors, https:

//cran.r-project.org/web/packages/FrF2/FrF2.pdf

4. Hillier FS, Lieberman GJ (1990) Introduction to Stochastic Models in Operations
Research, McGraw-Hill Publishing Company, New York

5. Jain R (1991) The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation and Modeling. John Wiley and
Sons, New York

6. Makhorin A (2012) GLPK (GNU Linear Programming Kit), http://www.gnu.

org/software/glpk/

7. Martin PJ, Ayuso LF, Torres R, Gavilanes A (2012) Algorithmic strategies for
optimizing the parallel reduction primitive in CUDA. In: Smari WW, Zeljkovic V
(eds), HPCS, IEEE, pp 511–519. doi: 10.1109/HPCSim.2012.6266966

8. NVIDIA CUDA Programming Guide (2016) http://docs.nvidia.com/cuda/

cuda-c-programming-guide/

9. Theussl S, Hornik K, Buchta C, Schuchardt H (2016) R/GNU Linear Programming
Kit Interface, https://cran.r-project.org/web/packages/Rglpk/Rglpk.pdf

