
Grid Branch-and-Bound
for Permutation Flowshop

Maciej Drozdowski, Paweł Marciniak, Grzegorz Pawlak, Maciej Płaza

Institute of Computing Science, Poznań University of Technology,
Piotrowo 2, 60-965 Poznań, Poland

{Maciej.Drozdowski,Grzegorz.Pawlak}@cs.put.poznan.pl
Maciej.Plaza@gmail.com

Abstract. Flowshop is an example of a classic hard combinatorial prob-
lem. Branch-and-bound is a technique commonly used for solving such
hard problems. Together, the two can be used as a benchmark of ma-
turity of parallel processing environment. Grid systems pose a number
of hurdles which must be overcome in practical applications. We give a
report on applying parallel branch-and-bound for flowshop in grid envi-
ronment. Methods dealing with the complexities of the environment and
the application are proposed, and evaluated.

Keywords: branch-and-bound, flowshop, grid computing.

1 Introduction

Solving a hard combinatorial optimization problem on the grid is considered in
this paper. Flowshop is a classic NP-hard combinatorial optimization problem.
A set of test instances has been proposed for this problem [16]. Despite 20-
year attempts, some of the instances remain unsolved. Thus, flowshop became a
benchmark problem in combinatorial optimization, and deterministic scheduling.

Though many methods have been proposed to solve combinatorial optimiza-
tion problems, Branch-and-Bound (BB) remains the main algorithm delivering
guaranteed optimum solutions. BB partially enumerates the solutions, and this
process often can be envisioned as searching a tree. Various approaches are used
to prune the tree, but still search spaces of combinatorial problems remain huge.
Therefore, parallel branch-and-bound (PBB) is used to reduce the running time
[1, 3]. BB parallelization introduces a host of new complications [3, 7]. Overcom-
ing them requires making design decisions which influence performance of PBB.

By combining computational resources of many institutions Grid environ-
ments provide computational power not available to any single institution sepa-
rately. Therefore, grid is a very attractive computing platform for combinatorial
optimization applications. Yet, grid has a number of inherent peculiarities such
as resource heterogeneity and volatility which must be dealt with when designing
a robust application.

Overall, the three elements: benchmark hard combinatorial problem, parallel
branch-and-bound, the grid environment make the implementation practically

2 Maciej Drozdowski, Paweł Marciniak, Grzegorz Pawlak, Maciej Płaza

hard. Therefore, these three elements can serve as a benchmark of maturity and
robustness in parallel processing. With such a goal 2nd Grid Plugtests Flowshop
Challenge was organized by European Telecommunications Standards Institute
in 2005 [4]. A testbed for solving benchmark hard problems on the grid was
provided to verify usability and maturity of the computational platform and the
programming environment. The code presented in this paper scored 1st prize in
the above competition. This paper is dedicated to the grid parallel processing,
and the challenges which must be faced by application designers, rather than to
solving flowshop problem itself. Flowshop serves as a benchmark here.

The rest of this paper is organized as follows. In the next section we define
flowshop problem. Section 3 is dedicated to grid middleware, and the computa-
tional platform peculiarities. In Section 4 parallel branch-and-bound algorithm is
described. In Section 5 we report on the results obtained by our implementation
of PBB.

2 Flowshop

Flowshop (FS) problem is defined as follows. Sets {M1, . . . ,Mm} of m dedicated
machines, and J = {J1, . . . , Jn} of n jobs are given. Each job Jj consists of a
sequence of m operations (Oj1, Oj2, . . . , Ojm). Operations Oji are executed on
machine Mi, for all j = 1, . . . , n. Consequently, operations Oj1, Oj2, . . . , Ojm

proceed through machines M1,M2, . . . ,Mm, as for example, cars on the produc-
tion line. Execution time of operation Oji is a non-negative integer pji. Only
active schedules are allowed, which means that operations are started as soon
as it is possible. The problem consists in finding the shortest schedule. We will
denote schedule length by Cmax.

In general, the operations of different jobs can be executed on a given machine
in an arbitrary order. This results in at most (n!)m possible solutions of the
problem. In permutation flowshop jobs proceed through the machines in the same
order. It means that the sequence of operations from different jobs is the same
on all the machines. In this paper we consider permutation flowshop. Though
there are ’only’ n! solutions for the permutation flowshop, the number of possible
solutions is still very big in practice. Flowshop problem is polynomially solvable
for m = 2 [8], and strongly NP-hard for m ≥ 3 [5].

A set of test instances is known [16] for flowshop problem. In the following we
refer to Taillard’s instances [17] which sizes are from (n×m): 20×5 to 500×20.
Over the years, flowshop has been used as a benchmark problem to test new
methods in combinatorial optimization [6, 9, 14].

3 The Test Platform

In this section we characterize grid environment in the 2nd Grid Plugtests Flow-
shop Challenge. The information mentioned here follows [4]. Initial runs of the
algorithm were also executed on an SMP SunFire 6800 machine with 24 CPUs
and 96GB RAM in Poznań Supercomputing and Networking Center.

Grid Branch-and-Bound for Permutation Flowshop 3

a)

0

1

2

3

4

5

6

7

8

<50 [50,75) [75,100) [100,125)[125,150) [150,175) [175,200)[200,225) [225,250)

Mflops

N
u
m

b
e
r

o
f
c
o
m

p
u
te

r
ty

p
e
s

b)

1E2

1E3

1E4

1E5

1 10 100 1000

No.CPUs

M
F

lo
p

s

Fig. 1. a) Distribution of computer performance score. b) Datacenter performance vs.
CPU number. On the basis of [4].

The test grid consisted of 2700 CPUs distributes in 40 locations (datacenters)
in 13 countries on 5 continents [4]. The computing platform comprised 5 different
operating systems, 10 job submission and deployment systems, 5 Java Virtual
Machine types. The total performance of the grid was estimated at 450GFlops
according to SciMark benchmark [4]. Fig.1a depicts distribution of the CPU
speeds, and Fig.1b the spread of datacenter CPU numbers and the total per-
formance. It should be noted that the computers were not continuously and
exclusively available. Since the computing platform lacked sufficient reliability
mechanisms, such mechanisms had to be implemented by the application.

Developing an application for such a diverse computing platform was possible
thanks to Proactive middleware [15]. Proactive is a Java programming library
providing active objects, asynchronous communication between the objects, their
deployment and method execution. An active object has its own thread of exe-
cution. For example, it can be executed in a loop actively pooling conditions and
reacting to them. Proactive provides uniform view of the application memory
space. Therefore, methods of a remote active object can be called by other ob-
jects in the same way as in a sequential program. For deployment of the active
objects Proactive used XML Deployment Descriptors comprising information
on: the addresses of available computers, process initiation, communication and
file transfer protocols. Thus, a programmer was separated from the actual grid
hardware and referred to an active object in its very own code rather than to a
description of a process on a remote computer.

4 Parallel Branch-and-Bound for Grid

In this section we give a general description of the PBB, our implementation of
PBB for flowshop, and the above computing platform. An interested reader will
find description of BB and PBB in, e.g., [2, 3, 7, 10].

4 Maciej Drozdowski, Paweł Marciniak, Grzegorz Pawlak, Maciej Płaza

4.1 PBB in General

The BB search for the optimum solution may be understood as a recursive
analysis of the set of solutions in divide-and-conquer manner. The initial set of
solutions is divided into subsets. A subset is fathomed by either eliminating it,
as not containing optimum solution, or by further sub-dividing it. The recur-
sion stops if a subset comprises only one solution. This process of creating and
eliminating subsets can be viewed as constructing and searching of a tree. Thus,
names sub-tree or search tree node can be used when referring to a subset of
solutions. We will use abbreviation BBTnode for Branch and Bound tree node.

Search trees for hard combinatorial problems have exponential size in the
length of the input (here the number of jobs n). Since it is not desirable, various
methods are applied to limit the search tree. We will be calling a BBTnode active
if it has neither been branched into offspring, nor eliminated. The active nodes
can be eliminated on the following basis (e.g.): 1) all the solutions represented
by the subtree are infeasible, 2) all the solutions represented by the subtree
are dominated, 3) all the solutions represented by the subtree are not better
than some already known solution. If it is known that the optimum solution
has certain feature, then the analyzed BBTnode a is dominated and can be
eliminated if it lacks such a feature. Suppose we solve minimization problem. In
the third case a lower bound LB(a) on the objective function is calculated for all
the solutions represented by a. Suppose some solution b is known with objective
value Cmax(b) ≤ LB(a), then node a is pruned. The best known solution b
establishes an upper bound UB. The more the search tree is cut, the smaller
the set of visited nodes and the faster the algorithm is. Yet, sometimes shallower
cuts but faster to calculate give faster BB than deep time consuming cuts.

Parallelization is a natural step to speed up BB. Yet, PBB has to deal with
several problems. A common approach is to distribute the search tree between
computers. Since the search tree is instance-dependent, its structure is unknown
before the runtime. Consequently, the tree cannot be partitioned statically be-
cause some computers would quickly run out of work, while the other would
be overloaded. However, an optimistic scenario is also possible. When several
computers search the solution space simultaneously, then a good upper bound
UB may be found earlier than in the sequential run. As a result, some parts
of the search tree which would have been visited in a sequential run, may be
pruned in a parallel run. Such phenomena are known as performance anomalies
in PBB [11, 12]. In distributed systems other difficulties arise. For example, ter-
mination of the computation may be erroneously declared when some BBTtree
node is lost. This may happen due to errors in communication, or as a result of
transition state when some tree nodes are in the communication network, while
computers have nothing to process.

Thus, the following issues must be taken into account in PBB:
1) load balancing is necessary to avoid idling or overloading the processors,
2) upper bounds must be globally communicated to prune unneeded nodes,
3) deploying and quick initiation of computation to avoid idling of the computers,
4) reliable termination of computation.

Grid Branch-and-Bound for Permutation Flowshop 5

4.2 Branching Scheme

In the following subsections we outline our PBB implementation. The branching
scheme can be seen as construction of all possible job permutations. Let AS be
the set of already sequenced jobs. The jobs in set TS = J − AS remain to be
sequenced. Suppose we have two sequences π, σ partitioning AS, i.e., job sets in
π, σ are disjunctive and their sum is equal to set AS. Initially π = σ = (), AS =
∅, and TS = J . Pair (π, σ) is a BBTnode representing all the schedules starting
with sequence π and finishing with sequence σ. Let |x| denote the number of jobs
in sequence x. Height of a BBTnode is the height of the subtree it represents,
i.e. height of (π, σ) is n− |π| − |σ|.

Branching BBTnode (π, σ) consists in inserting unassigned jobs Jj ∈ TS
between sequences π and σ. Jobs Jj may be attached either to the end of π
or to the beginning of σ, but only one option can be used to avoid generating
the same sequences many times. Both assignments are verified for each job in
TS, but only one assignment type is used in all the successors of (π, σ). The
assignment which results in a greater number of the offspring nodes with their
lower bounds smaller than the current upper bound UB is selected. If both
choices are equivalent, then the assignment giving the smallest lower bound for
any new node is chosen. Otherwise, all the jobs are arbitrarily attached at the
beginning of σ.

The branching process is finished when a complete solution is achieved, i.e.
when TS = ∅ or equivalently |π| + |σ| = n. Observe that the search method
is exhaustive, i.e. all possible sequences may be enumerated (unless they are
pruned), and no sequence is generated twice.

The search tree was explored in the Depth-First Least Lower Bound (DF/LLB)
order, i.e. the newly branched BBTnodes (π′, σ′) were sorted according to non-
decreasing values of lower bounds LB(π′, σ′) and analyzed in this order before
the older BBTnodes.

4.3 Bounding Techniques

Let us remind that BBTnodes with lower bound greater than or equal to the
upper bound are not expanded. The upper bound UB is the schedule length of
the best known solution of the problem. The initial UB value is the length of
the schedule built by NEH heuristic [13]. NEH first sorts the jobs in the order
of nonincreasing total processing times

∑m
i=1 pji. Then the first two jobs are

scheduled for the minimum schedule length. Thus, a sequence of l = 2 jobs is
constructed. For the given sequence of l jobs schedules with the (l + 1)th job
inserted between all the jobs in the sequence of length l, including the starting
and the ending positions, are verified. The best schedule for l+ 1 jobs is chosen
and l is increased. This procedure is repeated until inserting all jobs, i.e. until
l = n. The value of UB is updated and the new solution is recorded when a
better solution is found in a leaf of the search tree.

Now we proceed to the methods of lower bound calculation. A BBTnode
consists of two sequences (π, σ). The unscheduled tasks from set TS shall be

6 Maciej Drozdowski, Paweł Marciniak, Grzegorz Pawlak, Maciej Płaza

M1

head i(,)p

tail i j(+1,)s

tail m(,)s

head(1,)p

.
.
.

.
.
.Mi

Oji

Oji-1

Oj1

Oji+1
Ojm

pji

pj1

pjm

Mm

Fig. 2. Calculation of head(i, πj) and tail(i, jσ).

either appended to π, or attached at the beginning of σ. Suppose job Jj is in-
serted at the beginning of sequence σ, and the offspring node is (π, jσ). Consider
operation Oji which is immediately followed by the operations in σ on machines
Mi, . . . ,Mm (cf. Fig.2). Operation Oji and its successors in jσ will be executed in
time at least tail(i, jσ). Let tail(m+1, jσ) = tail(m,σ). The value of tail(i, jσ)
is calculated using the following formula:

tail(i, jσ) = max{pji + tail(i+ 1, jσ), tail(i, σ)} for i = m, . . . , 1 (1)

Note that tail(i, jσ) is tabulated after tail(i+ 1, jσ). Analogously, assume Jj ∈
TS is to be appended to π, and (πj, σ) is the offspring. Operation Oji is preceded
by the operations in π on machines M1, . . . ,Mi. Let head(i, πj) denote the min-
imum time it takes to execute these operations. Let head(0, πj) = head(1, π).
The value of head(i, πj) can be tabulated using the following formula:

head(i, πj) = max{pji + head(i− 1, πj), head(i, π)} for i = 1, . . . ,m (2)

Again head(i, πj) is calculated after head(i − 1, πj). Let π′, σ′ be the offspring
sequences. If Jj is appended to π, then π′ = πj, σ′ = σ, otherwise Jj immediately
precedes σ and π′ = π, σ′ = jσ. The first lower bound was calculated in O(m)
time from the formula

LB1(π
′, σ′) =

m
max
i=1
{head(i, π′) +

∑
j∈TS−{Jj}

pij + tail(i, σ′)} (3)

Also a second lower bound was initially used. It was based on the above
defined head(k, π), tail(l, σ), and the length of the schedule for tasks in set TS
executed on any pair of machines Mk,Ml only. Though this lower bound ef-
fectively reduced search tree, it had higher complexity O(m2). Consequently,
despite optimizations speeding computation of the second lower bound, it did
not reduce overall running time.

4.4 Parallelizing for the Grid

In this section we describe control mechanisms and load balancing. Active nodes
are stored in queues at each of the computers. An active BBTnode is a unit of
load balancing.

Grid Branch-and-Bound for Permutation Flowshop 7

Control Architecture. The control structure is a three-tier tree comprising a
master server, slave servers and clients. There is one master server in the tree
root. To avoid a communication bottleneck on the master server monitoring the
whole computation, an intermediate layer of slave servers was introduced. A
slave server manages a set of its clients. Except for the computation initiation
the servers perform communications and load balancing. Clients compute and
shift the load. All communications are performed on the paths up and down the
tree.

The number of clients is equal to the number of CPU cores. Master server
deploys a slave server for each 8 clients, and at least one slave server in each
geographic location. The number of 8 clients per slave server was established
experimentally in the preliminary runs on the SMP machine. The slave servers
deploy their clients.

Both the master server, and the slave servers verify if the subordinate ma-
chines are alive. This is done by ping-like function during the BBTnode har-
vesting procedure (see the next paragraph). Let us observe that the timeout
for a ping was 15s which is quite long period. A slave server or a client can
be eliminated from the computing pool also if it causes a communication error,
e.g., when a controlling computer tries to send to its subordinate some BBTno-
des. If a computer does not respond or causes a communication error, then it is
declared dead, removed from the computer pool and no longer used. The BBT-
nodes assigned to such a computer are moved back by the supervising server to
the queue of active nodes to be reassigned. Computations finish when there are
no BBTnodes to branch (see the next paragraph for details).

Load Balancing. At the start of the computation the master server branches
the BB tree to the depth of two levels, creating n(n− 1) active nodes of height
n − 2, and sends one node to each slave server. Each slave server expands the
received BBTnode by two additional levels, creating (n−2)(n−3) new BBTnodes
of height n − 4, and sends one node to each of its clients. The servers record
information on the forwarded nodes and their destinations. A client expands
the received node to a full depth of the BB tree. If a client achieves a complete
solution b which is better than the current upper bound, i.e. Cmax(b) < UB,
then b, UB are sent to the slave server. If the received upper bound UB is better
than the old one, then the slave server sends it up to the master server, and
down to its other client computers. Analogously, the master server sends a new
better UB to the other slave servers, which forward it to their clients. A client
or a slave server ignore the received upper bounds if these bounds are worse
than the bounds known to the client or the slave server. A BBTnode a which
has LB(a) ≥ UB (because a was enqueued when UB was bigger) is discarded
when pulled from the queue for branching or load balancing.

If a client exhausts all its BBTnodes, then it requests one node from its slave
server. The slave server records that the node previously sent to the client is
fathomed, and assigns to the client a new BBTnode from its queue. If no active
nodes are available at the slave server, then the slave server requests a node
from the master server. The master server acts similarly if it has a BBTnode

8 Maciej Drozdowski, Paweł Marciniak, Grzegorz Pawlak, Maciej Płaza

available. If it has no BBTnodes available then the initial BBTnodes of height
n−2 are distributed, and the computation is in the final stage. Then, the master
server starts a harvesting procedure.

In the first phase of harvesting the master server requests half of the nodes
from the slave servers. A slave server returns at most half of its BBTnodes but
only if they have sufficient height. If the request is successful, then the received
BBTnodes are sent by one to the waiting slave servers. If the request is not
successful, then the second phase of harvesting is initiated. Namely, the master
server sends to the slave servers requests for half of BBTnodes from the clients.
If a client has BBTnodes of sufficient height then it sends them to its slave
server. The slave server keeps half of the received nodes, and the other half is
transferred to the master server, provided that they have sufficient height.

The height of the BBTnodes returned to the servers in the harvesting proce-
dure is important for the PBB performance. On one hand, low BBTnodes allow
for fine granularity load balancing because they represent smaller subtrees. On
the other hand, low BBTnodes represent smaller computational demands. They
can be fathomed faster, and clients return for new BBTnodes earlier than for
high BBTnode. Hence, use of high BBT nodes reduces the number of communi-
cations. In the tests on an SMP machine the minimum heights of the returned
nodes were set to 10 for slave servers, and 8 for clients. In the grid, the number
of processors was bigger and the load transfers were too frequent overloading
the computers with handling communications. Therefore, BBTnodes lower than
12 at the slave servers or 10 at the clients, were not returned in the grid runs.

If the master server request for BBTnodes at the second phase of harvesting
fails, then it means that only low BBTnodes are held by the clients and slave
servers (if any). In such a case a request to confirm the completion of the com-
putations is issued by the master server to all live slave servers. The slave servers
wait for a confirmation of the completion of the computation at the live clients.
When a client exploits all its BBTnodes, then the confirmation is sent. If all its
clients confirmed then also the slave server confirms completion to the master
server. Finally, computations stop if all live slave servers confirm completion of
the computation to the master server.

We observed that in the final stage of the computation the number of ex-
changed messages was intensively increasing. This was a result of exchanging
control messages to achieve load balance with a small number of final BBT-
nodes. As they had low subtrees, clients quickly fathomed them and returned
requests for new BBTnodes. Thus, the load balancing method needs better tun-
ing for the final stage of computation.

5 Experiments

Running a PBB was not always as smooth as one could expect. Application
deployment was time consuming and not always successful. To speed up the
deployment process our PBB used parallel deployment of the clients by the slave
servers. Not always have the machines declared available successfully deployed

Grid Branch-and-Bound for Permutation Flowshop 9

Table 1. Example of the infrastruc-
ture deployed for instances Taillard
21,28,29.

Location No. of CPUs per
Computers computer

Amsterdam 20 2 x 1GHz
Supelec 33 2 x 3GHz

Lifl 53 2 x 2.4GHz
Inria Sophia 16 2 x 2GHz
Inria Sophia 16 2 x 933MHz

Inria Nef 32 2 x 2GHz

Table 2. Runtimes for Taillard 20×20
instances.

Taillard Runtime CPUs Runtime
instance (grid) [s] (grid) (SMP) [s]
No. 21 435 370 1285
No. 22 219 361 499
No. 23 1746 352 16627
No. 24 234 361 502
No. 25 351 361 925
No. 26 515 361 1486
No. 27 607 352 2119
No. 28 148 370 102
No. 29 187 370 234
No. 30 139 361 108

the code. Consequently, our application quickly discarded slow and unreliable
computers. For example, out of 2300 computers declared available, instances
Taillard 21, 28, 29 were solved on grid shown in Table 1. Hence, our attempt in
heterogeneous computing immediately reduced the heterogeneity of the platform
for the benefit of speed and reliability.

It was possible to solve all the submitted 20× 20 FS instances to optimality
within the 1 hour limit imposed by the competition rules. The running times
and numbers of CPUs are shown in Table 2. The last column of Table 2 give
running times on SMP SunFire machine. The computing infrastructure com-
prised moderate number of processors from close locations. This allowed for
using fewer but more reliable CPUs. The optimum solutions in Table 2, were
obtained despite small number of CPUs, because the FS part in PBB was ade-
quately implemented. It can be observed [4] that other teams of the Flowshop
Challenge used a strategy oriented toward employing big number of CPUs. This
strategy, however, turned out futile because using more CPUs did not result in
solving the instances.

6 Conclusions

We presented PBB for permutation flowshop as a benchmark of maturity of grid
computing and the supporting middleware in executing applications with un-
predictable resource demands. Both the platform, and the middleware excelled
well. Furthermore, qualitative conclusions can be drawn. Three elements consti-
tute the parallel application described above: flowshop algorithm, PBB, and grid
interaction algorithms. All the three elements had to be adequately addressed.
It is not possible, for example, to ignore flowshop domain issues and rely solely
on the sheer parallel processing power to solve the problem because the number
of possible solutions is anyway too big. Yet, too complex domain-specific solu-
tions turned out counterproductive. PBB must actively shift the work between
the machines to account for irregular and unpredictable load distributions. The

10 Maciej Drozdowski, Paweł Marciniak, Grzegorz Pawlak, Maciej Płaza

grid part must monitor resource availability to avoid stalls in the computation.
Though the techniques we presented are not new, only combined together were
they able to produce a successful parallel application for hard problem on a
difficult computing platform.

Acknowledgments. Research partially supported by Polish National Science
Center grant N519 643340.

References

1. Bąk, S., Błażewicz, J., Pawlak, G., Płaza, M., Burke, E., Kendall, G.: A parallel
branch-and-bound approach to the rectangular guillotine strip cutting problem.
INFORMS J.on Computing 23, 15-25 (2011)

2. Clausen, J.: Branch and bound algorithms - principles and examples, Technical
Report, Department of Computer Science, University of Copenhagen (1999)

3. Crainic, T., Le Cun, B., Roucairol, C.: Parallel Branch-and-Bound Algorithms. In:
Talbi, E.-G. (ed.), Parallel Combinatorial Optimization, pp.1-28. John Wiley &
Sons (2006)

4. ETSI: 2nd Grid Plugtests Report (2006), http://www.etsi.org/website/
document/plugtestshistory/2005/2ndgridplugtestsreport.pdf

5. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop schedul-
ing. Mathematics of Operations Research 1, 117-129 (1976)

6. Hejazi, S., Saghafian, S.: Flowshop-scheduling problems with makespan criterion:
a review. International Journal of Production Research 43, 2895-2929 (2005)

7. Horn, J.: Bibliography on parallel branch-and-bound algorithms (1992), http://
liinwww.ira.uka.de/bibliography/Parallel/par.branch.and.bound.html

8. Johnson, S.M.: Optimal two-and-three-stage production schedules with set-up
times included. Naval Research Logistics Quarterly 1, 61-68 (1954)

9. Iyer, S., Saxena, B.: Improved genetic algorithm for the permutation flowshop
scheduling problem, Computers & Operations Research 31, 593-606 (2004)

10. Kohler, W., Steiglitz, K.: Enumerative and iterative computational approaches. In:
Coffman Jr., E.G. (ed.): Computer and Job-Shop Scheduling Theory, pp.229-287.
Wiley, New York (1976)

11. Lai, T.-H., Sahni, S.: Anomalies in parallel branch-and-bound algorithms. Com-
munications of the ACM 27, 594-602 (1984)

12. Lai, T.-H., Sprague, A.: Performance of Parallel Branch-and-Bound Algorithms.
IEEE Transactions on Computers 34, 962-964 (1985)

13. Nawaz, M., Enscore, E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flowshop sequencing problem, Omega 11, 91-95 (1983)

14. Reeves, C., Yamada, T.: Genetic algorithms, path relinking, and flowshop sequenc-
ing problem, Evolutionary Computation 6, 45-60 (1998)

15. ProActive - Professional Open Source Middleware for Parallel, Distributed, Multi-
core Programming, http://proactive.inria.fr/

16. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Op-
erational Research 64, 278-285 (1993)

17. Taillard, E.: Scheduling instances (2008), http://mistic.heig-vd.ch/taillard/
problemes.dir/ordonnancement.dir/ordonnancement.html,

