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Abstract. In this paper we analyze energy usage in divisible load pro-
cessing. Divisible load theory (DLT) applies to computations which can
be divided into parts of arbitrary sizes, and the parts can be indepen-
dently processed in parallel. The shortest schedule for divisible load pro-
cessing is determined by the speed of computation and communication.
Energy usage for such a time-optimum schedule is analyzed in this pa-
per. We propose a simple model of energy consumption. Two states of
the computing system are taken into account: an active state and an idle
state with reduced energy consumption. Energy consumption is exam-
ined as a function of system parameters. We point out possible ways of
energy conservation. It is demonstrated that energy can be saved by use
of parallel processing.

Keywords: Energy-efficient computing, performance evaluation, divisi-
ble loads.

1 Introduction

Divisible load theory (DLT) is a new parallel processing paradigm applicable in
computations which can be divided into parts of arbitrary sizes and processed
independently on remote computers. In other words, the DLT assumptions are
relevant to computations with fine granularity and negligible data dependen-
cies. Processing big volumes of data is an example of divisible computation.
Consider searching for patterns in medical screening photographs. The set of
photographs can be partitioned with granularity of one picture. If the number of
pictures is big, then the resolution of partitioning the whole dataset is fine. The
photographs can be analyzed independently of each other. Other examples of di-
visible computations include processing measurement data (e.g. SETI@home),
image and video processing, linear algebra, search for combinatorial objects (e.g.
distributed.net). Divisible load theory originated in the late 1980s [1, 3] as a way
to strike a compromise between the communication delays and the gains from
faster parallel processing. Surveys of DLT, and its practical applicability can be
found in [2, 4, 7].
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Energy consumption of contemporary data centers, and supercomputing fa-
cilities is becoming a limiting factor to their growth [6]. Buying power is becom-
ing more and more expensive. For example, the average power usage of the first
5 supercomputers from the current (June 2009) top500 list [9] is over 3.2MW.
At the current prices in Poland (≈0.3PLN/kWh) this would cost ≈23.3k PLN
daily, and ≈8.5M PLN annually (resp. ≈5.5k, ≈2M EUR). Thus, careful and eco-
nomic use of energy is an indispensable element of the future high performance
computing.

The cost of divisible load processing in general has been analyzed in [5, 8].
The cost considered in [5, 8] could be monetary as well as energy. In both pub-
lications two problems were analyzed: to find the minimum cost schedule for
a given schedule length, or to find minimum schedule length for a given cost
limit. Both papers took into account the cost of computation only. In [8] the
sequence of activating heterogeneous computers minimizing the cost was pro-
posed, but computation startup costs were ignored. In [5] it was shown that the
above problems are computationally hard (strictly NP-hard) when the startup
time is non-negligible. Yet, for a given sequence of communications between the
processors and the load distributor the problem can be solved by reduction to
linear programming. In this paper we assume that performance is the primary
criterion. Therefore, the shortest schedules are used. Energy consumption is ex-
amined for such time-optimum schedules. Moreover, we concentrate on a more
energy-specific representation of the costs of load processing. It is assumed that
both the communication and the computations use energy. The costs of com-
putation initiation (startup costs) are taken into account. Similarly to [11] we
assume that computing system can be in two states: idle and active. In the idle
state power usage is reduced.

The rest of this paper is organized as follows. In the next section we formulate
the mathematic model of divisible load processing both with respect to the
timing and to the energy cost. In section 3 results of performance evaluation are
presented. In section 4 we provide conclusions and discuss lessons learned.

2 Problem Formulation

In this section we outline construction of the optimum length schedule, as well as
its energy consumption. Words computer, processor will be used interchangeably.
A processor consists of a CPU, memory, and network interface. The CPU and the
network hardware can work in parallel such that simultaneous communication
and computation is possible. The topology of the processor interconnection is a
star (a.k.a. single level tree). In the center of the star resides a processor P0 called
originator (also called master, server) which distributes the load to the remaining
processors P1, . . . , Pm (called slaves, workers). The star topology may represent
a computer cluster in a local area network or a set of computers interconnected
in the grid infrastructure. The computing environment is homogeneous.

Timing Model. It is assumed that initially volume V of load resides on the orig-
inator. The load is sent from the originator to processors P1, . . . , Pm in pieces
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of sizes α1, . . . , αm. To receive a piece of load a processor has to be activated

first. The activation process may include transition of the computer hardware
and software from the idle to the running state, loading the divisible applica-
tion runtime environment (such as virtual machines and libraries), starting the
application, allocating memory and bringing the application to the state of ac-
tive waiting for the message with the piece of load. The time of activation is
denoted S, and referred to as computation startup time. Sending αi units of
load to processor Pi takes time αiC. Computations for this amount of load take
time αiA. It is assumed that the time of returning the results to the originator
is very short and can be neglected. It is a common assumption in DLT made
for the sake of simplicity in mathematical modeling [2, 4, 7]. We distinguish two
cases depending on the participation in the computations of the originator. If
the originator is dedicated solely to distributing work then it receives no load
(Fig.1a). Otherwise, originator takes part in the computation and processes load
α0 > 0 (Fig.2a).
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Fig. 1. Initiator is not computing. a) Communication and computation schedule. b)
Power usage schedule.

The optimum schedule length is obtained by selecting sizes of load chunks
α1, . . . , αm, and α0 if applicable. It has been shown in [2] that if the result return-
ing time can be neglected, then for the minimum schedule length all processors
must stop computations simultaneously.

Assume that the originator is not computing. The above observation leads to
the system of linear equations, from which chunk sizes are derived (cf. Fig.1a):

Aαi = S + (C + A)αi+1 for i = 1, . . . , m − 1 (1)
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m
∑

i=1

αi = V (2)

Let us denote as σ = S/A, and ρ = 1 + C/A. Then,

αi = σ + ραi+1 =

= σ + ρ(σ + ραi+2) = σ + ρσ + ρ2αi+2 = . . .

= σ + ρσ + . . . + σρm−i−1 + ρm−iαm =

=
σ(1 − ρm−i)

1 − ρ
+ ρm−iαm. (3)

for i = 1, . . . m. From (2) and (3) we obtain

V =

m
∑

i=1

αi =

m
∑

i=1

(

σ(1 − ρm−i)

1 − ρ
+ ρm−iαm

)

=

=
σ

1 − ρ

(

m −

1 − ρm

1 − ρ

)

+
αm(1 − ρm)

1 − ρ
. (4)

Consequently,

αm =
V (1 − ρ)

1 − ρm
−

σ(m(1 − ρ) − 1 + ρm)

(1 − ρm)(1 − ρ)
(5)

Note that in the above equation we have subtraction, and αm may become neg-
ative if σ and m are sufficiently big. All such combinations of V, m, C, S, A that
αm < 0 are rejected as infeasible. In practice αm < 0 means that the load V is
too small to employ all m processors for the current communication parameters
C, S and processing rate A. If the programmer still decided to use this num-
ber or more processors, then schedule length would grow instead of decreasing.
Consequently, efficiency of the schedule would also unnecessarily decrease.

When the originator is not computing schedule length is

T (m) = S + (C + A)α1, (6)

where α1 is calculated from (3) and (5).

If the originator is computing (Fig.2a) then partitioning of the load can be
derived in the same way as in the previous case, however, equations (1) and (2)
start from i = 0. Equation (3) is valid for i = 0, . . . , m. Analogously to (4), (5)
we obtain

αm =
V (1 − ρ)

1 − ρm+1
−

σ(m(1 − ρ) − ρ + ρm+1)

(1 − ρm+1)(1 − ρ)
. (7)

Schedule length is

T (m) = S + Aα0, (8)

where α0 is calculated from (7) and (3).
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Fig. 2. Initiator is computing. a) Communication and computation. b) Power usage.

Energy Use Model. Now let us analyze the energy usage. Both the network and
the processors may be either active or idle. It is assumed that active processors
consume power PC , and the active network equipment consumes power PN . In
the idle state power consumption is k times smaller, i.e. PC/k, and PN/k, for
processors and for the network, respectively. To simplify mathematical formulae
we divide the energy usage into two parts: the idle state energy, and the energy
beyond the idle state consumed when processors and the network are running.
During the whole schedule of length T (m), the originator, m idle processors and
the idle network consume energy

EI = T (m)((m + 1)PC + PN )/k. (9)

The network is in the running state at the beginning of the schedule while
distributing the load (cf. Fig.1b, and Fig.2b). Suppose the originator is not
computing. Processor activation and the load distribution time is

∑m

i=1
(S +

Cαi) = mS + CV . The energy consumed above the network idle state is

ERN = PN

k − 1

k
(mS + CV ). (10)

The originator is active during the whole load distribution time mS + CV ,
which results in energy consumption PC

k−1

k
(mS + CV ). The remaining proces-

sors switch from the idle state to the running state when they are activated.
Thus, processor Pi is active for S + αi(C + A) units of time, consuming en-
ergy PC

k−1

k
(S + αi(C + A)) above the idle state. The total computation energy
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consumption beyond the idle state is

ERC = PC

k − 1

k

(

mS + CV +
m
∑

i=1

(S + (C + A)αi)

)

= PC

k − 1

k
(2mS + (2C + A)V ). (11)

Suppose the originator is computing. The time of communications is
∑m

i=1
(S+

Cαi) = mS + C(V −α0). The energy consumed by the network beyond the idle
state is

ERN = PN

k − 1

k
(mS + C(V − α0)). (12)

The processors together consume beyond the idle state

ERC = PC

k − 1

k

(

S + Aα0 +

m
∑

i=1

(S + (C + A)αi)

)

=

= PC

k − 1

k
((m + 1)S + V A + (V − α0)C) . (13)

The total energy consumed in the computation is

E = EI + ERN + ERC . (14)

3 Performance Evaluation

In this section we analyze the amount of energy E necessary to achieve certain
schedule length T (m).

Before presenting the details of the simulations let us examine a general rela-
tionship between the system and application parameters A, C, S, PN , PC , V , the
number of used processors m, processing time T (m), and energy E. As men-
tioned in the previous section the number of processors m that can be exploited
depends on A, C, S, V . A general tendency in divisible load processing is that
with growing C, S the number of usable processors decreases because commu-
nication delays increase and preclude effective use of many processors. On the
other hand, with growing A, V the number of usable processors increases because
relative contribution of communication delays to the schedule length decreases
[2, 4, 7]. Since the reduction in processing time T (m) comes from applying more
processors, and the number of usable processors is limited, also the reductions in
T (m) are limited. Increasing C, S results in narrower range of processor numbers
m where T (m) is reduced. Conversely, increasing A, V widens the range of T (m)
reductions. Note that in the following charts T (m) will be shown on the hori-
zontal axis. Now let us examine energy as determined by equations (9) - (13).
Intuitively, it can be expected that shorter schedules engage more processors, and
hence, should be more costly in energy. Indeed, in all the above equations energy
consumption grows with the processor number m. Beyond m, energy consump-
tion depends on constants V, A, C, S, PC , PN , k. Optimizing them for minimum
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Fig. 3. Energy E vs. schedule length T (m) for A = 1, C = 1E-6, S = 1E2,PN =
50, PC = 200, k = 3. a) V = 1E13, b) V = 1E3.

power usage is beyond the scope of this paper. Let us now proceed to the results
of the simulations. In the following figures we present dependence of the total
energy used as defined in (14) versus schedule length defined in equations (6),
or (8).

In Fig.3 energy consumption vs. processing time is shown. Values of the
parameters used in Fig.3 can be interpreted as follows. Processing one unit of
load takes 1s (A = 1), transferring it from the originator to the remote processor
takes 1µs (C = 1E-6), computation startup time is 100s, the network equipment
uses only 50W of power in the active state (PN = 50), a computing processor uses
200W of power (PC = 200), in the idle state power usage is three times smaller
(k = 3). Let us remind that T (m) is not a real independent variable, because
both T (m) and E change as a result of using more processors m. Surprisingly,
E as a function of T (m) has a minimum. With increasing processor number
execution time is decreasing, as could be expected, but initially also the energy
used is decreasing. This behavior of E dependence on T (m) can be explained by
several phenomena. Let us assume that the originator is not computing. Note
that in (9) the idle state energy depends on T (m). With growing processor
number m, execution time T (m) decreases. Therefore, E initially decreases with
decreasing T (m). Most of this reduction can be attributed to shorter network
and initiator idle state. The relative difference between the highest and the
lowest energy consumption in the above experiments ranged from 30% to 40%
(originator is not computing). The extent of energy savings may be surprising,
considering their source. However, it is a result of long computation time when
the communication system remains idle. On the other end of the diagram E is
not growing to the infinity because increasing m leads to αm < 0 in equation
(5) which means that it is impossible to activate all the processors with the
given V . As noted in the previous section we reject such cases as infeasible. A
wide plateau of energy usage in Fig.3a results from approximately equal effect
of decreasing T (m) in (9) and increasing component mS in (10), (11). With
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Fig. 4. Energy E vs. T (m) a) for changing PN at k = 3 b) for changing k at PN = 50,
and A = 1, C = 1E-6, S = 1E2,PC = 200, k = 3. Originator is not computing.

decreasing problem size V the interval of T (m) with nearly flat energy usage
narrows until disappearing completely for V = 1E3, as shown in Fig.3b. The
above observations apply also if the originator is computing, though this case
is more energy efficient. Consequently, energy savings are smaller. We further
discuss the difference between the situation when the originator is computing,
or not computing, at the end of this section.

In Fig.4a energy consumption vs. processing time is shown for various values
of the network power usage PN when originator is not computing. The bigger
PN is, the bigger the initial decrease of E with decreasing T (m). On the other
hand, when m is big, and T (m) is near its minimum, ERC is dominating in E,
and all the functions end overlapping.

In Fig.4b energy consumption vs. processing time is shown for various values
of the active to idle power usage ratio k. For instance, k = 1 represents the
situation when power usage in idle state is no different than in the running
state. This means that the whole energy consumption is described in equation
(9). As it can be seen the biggest reduction in energy consumption takes place
just for k = 1 which confirms that the energy savings result from shortening of
the idle state. On the other hand, for k > 1 the energy savings are shallower in
Fig.4b, but the total energy consumption is smaller than for k = 1. Let us note
that one should not be confused that k = 1 is better than k > 1 because deeper
energy reductions are not the same as smaller overall energy use.

When the originator is computing the dependencies of E on T (m) for chang-
ing PN , k are very similar. Therefore we do not present them here.

Let us now return to the difference between the cases when originator is and
is not computing. By subtracting (12) from (10) we obtain the difference in the
energy used by the network: Cα0PN (k − 1)/k. Analogously, from (11) and (13)
the difference in the energy used by the running processors is ((m−1)S +C(V +
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α0))PC(k − 1)/k. The total difference in energy use is

∆E = PN

k − 1

k
Cα0 + PC

k − 1

k
((m − 1)S + C(V + α0)). (15)

Startup times mS cannot dominate in the processing time because otherwise
distributed processing would be counterproductive. Hence, (m−1)SPC(k−1)/k
does not constitute a big difference. The remaining components are related to CV
and Cα0. These gains are especially noticeable if C is big, e.g. C ≈ A. Moreover,
if the originator is computing it is possible to save energy by not sending load
α0 for remote processing. In this case we have an additional computer which
nearly immediately starts processing the load. The two cases are juxtaposed in
Fig.5. It confirms that the difference between the two cases is big when C ≈ A.
For example, for C = 0.5 the difference in energy used is in the range of 130%,
while for C = 1E-3 it is not more than 30%.
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Fig. 5. Energy E vs. schedule length T (m) for A = 1, S = 1E2, V = 1E9, PN =
50, PC = 200, k = 3 and changing C.

Let us observe that Fig.5 also demonstrates influence of communication rate
C on potential energy savings. As it can be seen, for small C energy consump-
tion initially decreases with increasing m, and hence decreasing processing time
T (m). The plateau of nearly flat energy consumption spans three orders of mag-
nitude in T (m). On the other hand, for big C energy consumption decreases only
marginally, and then quickly grows with m (while T (m) is nearly constant). It
can be concluded that small C is essential for allowing reduction in energy con-
sumption. It means that bandwidth must be high. This condition coincides with
the requirements for effective communication in parallel applications.
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4 Conclusions

In this paper we analyzed energy use in distributed processing of divisible loads.
The energy consumed has been presented as a function of the execution time.
Surprisingly, it appeared that this function has a minimum, and with decreasing
processing time energy used is also decreasing. Hence, we have demonstrated that
it is possible to save energy by parallel processing. We compared two ways of
processing divisible loads: with and without computations on the load originator.
It turns out that using the originator is more energy-efficient. Yet, the differences
are apparent only if communication medium is slow.

Our analysis reveals that the savings come from shorter idle state of the
communication subsystem. The network idle time is specific to divisible load
processing. Similar idle intervals exist in other parallel processing models, e.g.,
bulk-synchronous processing [10]. Hence, also in other types of parallel appli-
cations reduction in network energy consumption should be possible. On the
other hand, parallel applications which are communication intensive would have
no such network idle time. Consequently, this kind of energy saving would not
materialize. The analysis conducted in this paper points to a new way of econ-
omizing on energy which is often overlooked. Namely, communication network
consumes energy, and also here considerable resources can be saved. Possibly,
further savings may be achieved by grouping communications, and switching off
the network when it is idle.
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