
XXXX

Analysis and Solution of CSS-Sprite Packing Problem

JAKUB MARSZAŁKOWSKI, JAN MIZGAJSKI, DARIUSZ MOKWA and MACIEJ
DROZDOWSKI, Institute of Computing Science, Poznań University of Technology

A CSS-sprite packing problem is considered in this paper. CSS-sprite is a technique of combining many

pictures of a web page into one image for the purpose of reducing network transfer time. CSS-sprite packing

problem is formulated here as an optimization challenge. The significance of geometric packing, image
compression and communication performance is discussed. A mathematical model for constructing multiple

sprites and optimization of load time is proposed. The impact of PNG sprite aspect ratio on file size is

studied experimentally. Benchmarking of real user web browsers communication performance covers latency,
bandwidth, number of concurrent channels as well as speedup from parallel download. Existing software for

building CSS-sprites is reviewed. A novel method, called Spritepack, is proposed and evaluated. Spritepack
outperforms current software.

CCS Concepts: rInformation systems → Web interfaces; rComputing methodologies → Image com-
pression; rNetworks → Network performance modeling; rMathematics of computing → Combinatorial
algorithms;

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: CSS image sprites, load time reduction, web optimization, heuristics,
image compression, JPEG, PNG, rectangle packing, web engineering

ACM Reference Format:
Jakub Marszałkowski, Jan Mizgajski, Dariusz Mokwa and Maciej Drozdowski, 2014. A Challenge of CSS-
Sprite Packing ACM Trans. Web V, N, Article XXXX (2015), 33 pages.
DOI: http://dx.doi.org/10.1145/2818377

1. INTRODUCTION
Short web page load time has a great importance for the Internet industry [Weinberg
2000; Marszałkowski et al. 2014]. Contemporary web pages are heavily loaded with
small images (icons, buttons, backgrounds, infrastructure elements, etc.) and [Jeon
et al. 2012] report that 61.3% of all HTTP requests to large scale blog servers are im-
ages, while other static content is only 10.5% of requests. Each image is a resource
which must be downloaded from a web server. The interaction with a web server has a
relatively long constant delay (a.k.a. latency, startup time) resulting from, e.g., travers-
ing network stack by the messages carrying the request, request processing at the
server, locating resources in server caches, etc. Fetching many images separately mul-
tiplies such fixed overheads and results in extensive web page loading time. CSS-sprite
packing is a technique used in web design to overcome disadvantageous repetition of
web interactions and improve performance of displaying web pages. The many small
images, called tiles, are bundled into a single picture called a tile set, a sprite sheet,

Jakub Marszałkowski acknowledges support by the FNR (Luxembourg) and NCBiR (Poland), through
IShOP project, INTER/POLLUX/13/6466384.
Authors addresses: Piotrowo 2, 60-965 Poznań, Poland
jakub.marszałkowski@cs.put.poznan.pl
maciej.drozdowski@cs.put.poznan.pl
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2015 ACM. 1559-1131/2015/-ARTXXXX $15.00
DOI: http://dx.doi.org/10.1145/2818377

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:2 Jakub Marszałkowski et al.

<style>
.image1
{background: url("sprite.png")
0 0 no-repeat;
width:159px; height:188px
}
.image2
{background: url("sprite.png")
0 -188px no-repeat;
width:159px; height:188px
}
.image2:hover
{background: url("sprite.png")
0 -376px no-repeat;
width:159px; height:188px
}
. . .
</style>

<body>
. . .

<span class="image2"
alt="image2.gif">

. . .
</body>

a) b) c)

Fig. 1. Example of CSS-sprite. a) sprite.png image, b) part of the CSS file locating images, c) example of
use.

or simply a sprite. The sprite is loaded once and hence the constant delay elapses only
once. An additional advantage can be taken in preloading images used in the web page
interaction animations. In such animations appearance of a graphical element can be
changed in almost no time because there is no communication delay of downloading
a different view of the element. Sprites improve performance of the web servers too.
Each interaction with a browser requires an overhead at the server. Reducing the num-
ber of the interactions by supplying a sprite once lowers the server load. Consequently,
CSS-sprite technique is widely used in many web pages. An example of applying a
CSS-sprite is shown in Fig.1. A sprite is shown in Fig.1a. In order to extract tiles from
a sprite Cascading Style Sheets (CSS) are employed in Fig.1b. Example code using the
tiles in the sprite is shown in Fig.1c.

To the best of our knowledge the first reference to CSS-sprite packing appeared in
[Stanı́ček 2003] and it has been later popularized in [Shea 2004]. CSS-sprite pack-
ing rests in the area of web development practice rather than in the sphere of sci-
entific research. It seems quite common situation in web engineering, compare e.g.
[Marszałkowski and Drozdowski 2013; Błażewicz and Musiał 2010]. Contemporary
CSS-sprite generators pack all tiles into a single sprite, optimizing geometric area,
if anything. This indeed reduces the number of server interactions, but at the risk of
increasing file size, transmission time and slowing web page rendering. In this pa-
per we allow to pack website tiles into multiple sprites for optimization of loading
time. CSS-sprite packing is a practical problem with multiple facets involving image
compression, complex distributed system modeling, solving combinatorial problems.
We tackle these problems in the following sections. In the next section realities and
the challenges in sprite packing are discussed, then the CSS-sprite packing problem
is formulated. Results of preliminary empirical studies conducted to define our solu-
tion algorithm are presented in Section 3. In Section 4 current techniques for packing
sprites are outlined. Our method of sprite packing is given in Section 5 and evaluated
in Section 6. The last section is dedicated to conclusions. The notation used throughout
the paper is summarized in Table I.

2. PRACTICAL CHALLENGES AND PROBLEM FORMULATION
Before formulating the CSS-sprite Packing Problem let us discuss our goals and tech-
nical constraints. This analysis serves representing CSS-sprite packing as an opti-

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:3

mization problem. Given a set of images (tiles) in various file formats we intend to
combine them into a set of sprites for minimum browser downloading time. Factors
determining the downloading time can be arranged into groups of: (i) geometric pack-
ing, (ii) image compression, (iii) communication performance. The three factors are
tightly interrelated which will be shown in the following sections. There are certainly
also other factors related to the browser (e.g. rendering efficiency), server (e.g. cache
performance), etc., but constructing a comprehensive model of their works is beyond
the scope of this paper and we take them into account only implicitly.

2.1. Geometric Challenges
One of the factors affecting sprite size(s) is geometric layout of the tiles. By layout we
mean here mutual alignment of the tiles on the plane. It determines shape, size and
location of empty spaces, and consequently, the total number of pixels in the sprite.
We will call the total number of sprite pixels a sprite area. Sprite area (in px) strongly
correlates with the size (in bytes) of the sprite converted to a file or a message. When
optimizing sprite area we deal with a class of regular 2-dimensional packing problems
because tiles and sprites are rectangles. Rotation of images is not allowed. Though it
is technically possible to rotate images using CSS, tile rotation has not been used in
CSS-sprite packing so far for the lack of compatibility with older browsers.

The problem of optimizing a layout of 2-dimensional objects for minimum space
waste has been tackled very early in glass/paper/metal sheet cutting, in packaging,
factory-floor planning, VLSI design, etc. [ARC Project 2013; Christofides and Whit-
lock 1977; Gilmore and Gomory 1965; Lodi et al. 2002; Ntene and van Vuuren 2009].
Needless to say that 2-dimensional cutting/packing problem is computationally hard
(precisely NP-hard). In practice, it is solved by heuristic algorithms. Unlike in the
above classic applications, in sprite packing we do not use any material sheet which
(i) should be conserved, (ii) would impose a bounding box. Hence, it may seem that
arbitrary tile layout is as good as any other. For example, the sprite in Fig.2a has a
lot of waste space not encoding any tile. It may be argued that the layout in Fig.2a
is as good as the layouts in Figs 2b,c because algorithms used in image compression
are capable of dealing with such waste, i.e. with repeating equal pixels. In reality it is
more complicated because various compression strategies used for this purpose have
diverse efficiency. Encoding equal pixels is not completely costless because the infor-
mation about the pixels must be stored to reconstruct them. Moreover, sprites must be
decompressed to a bitmap in the browser. Consequently, waste space drains memory.
Excessive memory usage affects browser performance. Hence, there are advantages in
not wasting space in the sprites.

Another geometric factor determining sprite area is its bounding box. It is possible
to restrict sizes in both, in one, or none of the dimensions. Accordingly, three variants
of 2-dimensional packing are distinguished [Lodi et al. 2002]. In the 2-dimensional bin
packing problem (2BP) both sizes of the box (the bin) are fixed and it is required to min-
imize the number of used bins. The 2BP is furthest from CSS-sprite packing because
we can choose arbitrary bin sizes and using many bins due to size restrictions has no
practical sense here. In the 2-dimensional strip packing problem (2SP) the 2D objects
are put on an infinite strip with one dimension fixed: either the width or the height
[ARC Project 2013; Lodi et al. 2002; Ntene and van Vuuren 2009; Steinberg 1997]. This
representation is more attractive because we can use numerous algorithms proposed
for 2SP. Moreover, there are two intuitive ways of defining the fixed dimension of the
strip: either as the width of the widest tile, or as the height of the highest tile. We
will call the former case vertical layout (see Fig.2a,b). Similarly, we will call the lat-
ter option a horizontal layout (see Fig.2c). In the rectangle packing problem (RP) the
two dimensions are free to change [Huang and Korf 2009; Korf 2003; Korf et al. 2010;

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:4 Jakub Marszałkowski et al.

tile 1

tile 1

tile 1

Waste space

Waste space

Waste space

tile 2 tile 2

tile 2

ti
le

 3

ti
le

 3

ti
le

 3

tile 6

tile 6

tile 6

tile 7

tile 7

tile 7

ti
le

 8

ti
le

 8
ti
le

 8

ti
le

 4

ti
le

 4
ti
le

 4ti
le

 5

ti
le

 5

ti
le

 5

Fig. 2. Examples of CSS-sprite layouts. a) excessive waste space, b) vertical layout, c) horizontal layout.

Perdeck 2011]. It is required to find the smallest area bounding box enclosing a set of
rectangles. Rectangle packing seems to be closest to sprite packing. A disadvantage is
a smaller set of known algorithms for the RP problem.

The geometric challenges in sprite-packing can be summarized as follows:

— determining packing model (RP vs 2SP),
— determining bounding box, respectively, the strip fixed size,
— selecting packing algorithms,
— determining the assignment of tiles to sprites for good geometric packing.

2.2. Image Compression Properties
Image compression techniques and standards (GIF, PNG, JPEG) are essential ele-
ments of this study. However, introducing computer graphics compression technology
is beyond the scope of this paper. An interested reader is recommended to begin with,
e.g., [CompuServe Inc. 1990; International Telecommunication Union 1993; Wallace
1991; Randers-Pehrson and Boutell 1999]. Let us note that images can be delivered to
a browser as data URIs inlined in HTML or CSS text documents [Masinter 1998]. This
scheme is out of scope of this paper and requires an independent study.

Methods of image compression introduce complex interactions impacting sprite size.
Combining tiles for the best image compression is computationally hard in general. We
give two examples: Firstly, PNG and GIF image formats permit indexed colors. When
the number of image colors is limited a color palette can be used. Then, for each pixel
an index of a color in a palette is recorded. The number of bits per pixel can be smaller
than if the colors were encoded independently for each pixel, while keeping color depth
of the image. Consequently, images sharing a palette of colors, when combined into a
sprite, can be stored with fewer bits per pixel. This requires determining the set of
images sharing an indexed palette. Assume that set T of tiles is given and a subset
T ′ ⊆ T which can share a palette of some fixed size l must be determined. Deter-
mining maximum cardinality T ′ is NP-hard which can be shown by a transformation
from Balanced Complete Bipartite Subgraph problem [Drozdowski and Marszałkowski
2014; Karp 1972]. Secondly, compression algorithms in PNG and GIF formats analyze
images line by line. If two tiles aligned horizontally have the touching border areas in
the same colors then such pictures compress better than if the colors were different.
Aligning tiles for maximum length of constant color is NP-hard because it amounts to

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:5

Hamiltonian Path problem [Drozdowski and Marszałkowski 2014; Karp 1972]. Since
selecting and aligning tiles for good graphical compression is computationally hard,
we are bound to heuristics choosing the set of tiles and constructing the layout.

Lossy JPEG compression adds another dimension of difficulty: When a JPEG tile is
supplied for sprite-packing, it must be converted to a bitmap, and then may be stored
in a JPEG sprite. We will call such a transformation JPEG repacking. Repacking and
any other conversions into a JPEG file inevitably reduce image quality. The change
may remain unnoticeable for a nonprofessional user if the compression ratio is small,
but a high compression ratio results in various discernible artifacts. There are methods
of artifact-free decompression [Bredies and Holler 2012], but still cartoon-like smooth-
ing or staircasing effects are problems remaining to be solved. Chroma subsampling
allows to reduce image size by lowering chromatic resolution. Thus, it is easy to build a
JPEG sprite of small size by trimming image quality. However, it has two undesirable
consequences: (i) It is hard to determine acceptable lossy compression settings, e.g.
a threshold of compression ratio. (ii) Fair comparison of various software for sprite-
packing is challenging because in most cases settings of lossy image compression are
undocumented (cf. Section 4). Therefore, it is hard to assess whether small sprite sizes
of some sprite-packing software are obtained at the cost of image quality, or by effec-
tively exploiting opportunities for good geometric packing or for compression without
quality loss. In JPEG compression pixels of touching tiles influence each other which
may distort pictures reconstructed from a sprite. Some solution may be putting side
by side tiles with similar pixels, which again is computationally hard (as discussed
above for PNG/GIF), and its effects are unpredictable. Aligning tiles to JPEG block
sizes can be only a partial solution because filling the blocks with some dummy pixels
may result in the so-called ringing artifacts and eliminating them is a research sub-
ject [Eckert and Bradley 1998; Popovici and Withers 2007] and a current engineering
challenge [Mozilla Co. 2014; Davies et al. 2014].

Given some images, their sizes quite often can be further reduced by use of compres-
sion optimizers. Here it means that the sprites can be further processed for minimum
size. We will name this procedure postprocessing. Compression optimizers reduce im-
age headers, remove metadata, and most importantly, experiment with compression
settings. For example, in JPEG there is a choice between the baseline and the progres-
sive compression, for the latter different image divisions can be used. For PNG one
of five filters can be applied to each pixel row, which gives numerous possible combi-
nations. Both formats use Huffman compression which is impacted by the choices of
frame size and methods of searching for repetitions (PNG 1.2 offers four). Some tools
for PNG use LZMA or Zopfli algorithms as alternatives to Huffman coding. Since the
settings resulting in the smallest file are data-dependent and hence a priori unknown,
various compression arrangements are checked by brute-force or by some heuristic.
This is an extensively experimental area and its chicanery is partially described in
sources like [Chikuyonok 2009a; 2009b; Impulse Adventure 2007; Independent JPEG
Group 2012; Silverman 2013; Louvrier 2013].

Choosing the bounding box or the width of a strip in the geometric packing may limit
chances of putting some tiles together. Thus, the geometric packing implicitly affects
image compression efficiency. Observe two consequences: (i) Building many sprites
may be profitable because some pictures do not combine well and putting them in one
sprite gives worse results than keeping them separated. (ii) Tile to sprite distribution
has effect both on geometric packing and on image compression. Hence, the two as-
pects are mutually related: It may be profitable to use worse geometric packing for the
benefit of better image compression or vice versa. However, the overall effect cannot
be predicted.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:6 Jakub Marszałkowski et al.

The difficulties resulting from unpredictability of geometric packing and image com-
pression can be overcome by trying many alternative solutions and choosing the best
one. This may take several forms: trying various geometric packing methods (cf. Sec-
tion 2.1), verifying alternative tile to sprite distributions, experimenting with different
image compression settings. However, the process of image compression is time con-
suming and limits the number of compression attempts that can be made. For exam-
ple, it seems barely acceptable to verify a few hundred alternative ways of packing and
compressing the tiles, but it would be far better if only a few dozens of such attempts
were made. Furthermore, there are many fast algorithms for geometric tile packing
[Ntene and van Vuuren 2009], but it seems impractical to verify all possible sprites
resulting from such geometric packings due to the computational complexity of image
compression. Thus, there is a trade-off between achievable sprite size and the time
needed to construct it.

The main challenges related to image compression can be summed up as follows:

— determining the assignment of tiles to sprites for good image compression,
— choosing satisfactory compression settings for each compression standard,
— finding satisfactory trade-off between sprite construction time and solution quality.

2.3. Communication Performance
Since quality of a set of sprites should be measured as the downloading time, sprite(s)
can be constructed to take advantage of communication channel characteristics. For
example, a large constant delay in communication time encourages packing tiles in
one sprite. Hence, the primary rule of web performance optimization has always been
to minimize the number of HTTP requests. Still, if parallel communication is possi-
ble, then it may be advantageous to construct a few sprites and send them in parallel
[Simpson 2015]. As mentioned above, in the ideal case downloading time measures
sprite(s) quality. However, a number of circumstances make it close to impossible. Let
us consider limitations to the perception of communication performance. Downloading
time is determined by a chain of components: the browser, network communication
stacks, network devices on the path from the client to the server, web-server queu-
ing and buffering. A variety of browser, communication, server platforms exist which
deal with messages in various ways. All these components are shared by activities
with unknown arrival times and durations. Diverse scheduling strategies are used to
dispatch them. Consequently, communication time is unpredictable and nondetermin-
istic, which materializes in dispersion of performance parameters (see Section 3.2). It
is not possible to use detailed methods of packet-level simulation to calculate sprite
transfer time because such methods are too time-consuming to be called hundreds of
times in the optimization process. Hence, in evaluating quality of a set of sprites we
have to rely on performance models, such as flow models [Velho et al. 2013], preferably
an easy to calculate formula, representing typical tendencies which can be reasonably
traced. Thus, we face a dilemma how to represent essential determinants of the trans-
fer time in the tractable way. Our approach is detailed in the following.

Given a set of sprites sizes, we consider three communication channel performance
elements to estimate transfer time: (i) communication latency, (ii) available bandwidth,
(iii) number of concurrent communication channels. We assume that one sprite is
transferred over one communication channel but we abstract away the specific packet
exchanges. Communication latency (startup time) L is the constant overhead emerg-
ing in a sprite transfer time. Bandwidth B(1) (e.g. in bytes per second) is the speed of
transferring data between the web-server and the browser using one communication
channel. Thus, according to our model, transferring x bytes of data over one chan-
nel takes L + x/B(1) seconds. Note that in our representation L implicitly covers all

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:7

constant overheads, both in the communication channel and in the web-server. Simi-
larly, bandwidth accounts for the speed of the communication channel and the server.
Consequently, our network performance model encompasses all communication layers
from the physical to the application layer. Browsers allow for opening a few concurrent
communication channels to the web-server (cf. Section 3.2). This opens an opportu-
nity to transfer sprites in parallel. We assume that one channel may transfer several
sprites sequentially. The performance for parallel communications is ruled by sequenc-
ing them in the browser, packet scheduling in the network, sharing the communication
path and bandwidth with other communications and with network protocols signaling.
Hence, the total bandwidth is not increasing linearly with the number of used chan-
nels. Instead we assume that the total bandwidth B(c) is a function of the number of
simultaneously open channels c. Then a single channel bandwidth share is B(c)/c. We
will denote by B = [B(1), . . . , B(cmax)] a vector of aggregate bandwidths for different
numbers of channels. Suppose that size of sprite i is fi, for i = 1, . . . ,m. The time of
transferring the set of sprites S over c concurrent channels is modeled by the formula:

T (S, c) = max

{
1

c

m∑
i=1

(L+
fi

B(c)/c
),

m
max
i=1
{L+

fi
B(c)/c

)}

}
. (1)

In the above formula L + fi/(B(c)/c) is communication time of sprite i transferred
via one of c channels. The first part of (1) is total communication time shared fairly
over c channels. The second part is a duration of the single longest communication.
Formula (1) represents communications like preemptive tasks scheduled on a set of
c parallel processors in the scheduling theory [McNaughton 1959]. Clearly formula
(1) is an approximation. We assume a simple communication time model because, as
discussed above, the actual scheduling of communications is unknown. More detailed
models of the transfer time (e.g. accepting certain sequencing of sprites in channels)
are not justified without further disputable assumptions. An advantage of formula (1)
is that it can be easily calculated in O(m) time from sprite sizes without a need for
more complex algorithms or simulations. Note that increasing the number of sprites
m means increasing the number of HTTP requests. This is represented by mL in the
first part of formula (1). Thus, (1) takes into account the trade-off between the oppor-
tunity of transfer time reduction by parallel communication and the cost of issuing a
HTTP request for each sprite. Usually B(c) is a nondecreasing sublinear function (see
Section 3.2). Consequently, B(c)/c is nonincreasing and (1) has maximum in one of two
trivial cases c = 1 or c = cmax. Hence, to encourage applying a mild number of parallel
communication we will use

T (S) =
cmax

min
c=1
{T (S, c)} (2)

as the objective function evaluating quality of a set of sprites. We do not take for
granted that any aspect of the problem dominates download time, but by optimiz-
ing (2) we strike a balance between the number of sprites, their sizes, overheads, and
parallelism. However, certain optimization versions may be handled as special cases of
(2). For L = 0, B(c) = 1, cmax = 1 total size of transferred data is minimized. Similarly,
for L = ∞, B(c) = 1, cmax = 1 the number of communications is minimized, i.e. one
sprite will be created.

For the end of this section let us note that communication performance has a ”demo-
graphic” aspect. The website performance perceived by its user is impacted not only
by the server, but also by factors on the user side such as the ”last mile”, browser,
computer platform. Moreover, many users visit the website and each of them can be
different. Specific load generated by the users also affects the website performance.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:8 Jakub Marszałkowski et al.

Table I. Summary of notation.

B(c) accumulated bandwidth of c concurrent communication channels;
B vector [B(1), . . . , B(cmax)];
c number of concurrent communication channels;
cmax maximum admissible number of concurrent communication channels;
fi size of sprite i in bytes;
k number of intermediate tile groups (cf. Section 5.2);
L communication latency (startup time);
m number of sprites;
n number of tiles;
S set of sprites;
T set of tiles;
T (S, c) communication time as a function of the set of sprites S and number of used

communication channels c;

Hence, we have a population of visitors as well as population of their performance in-
dicators and each website is unique with respect to these parameters. In order to take
the full advantage of performance optimization, parameters L,B should be measured
on the actual web site and its viewers population. In Section 3.2 we demonstrate how
this can be done in practice.

2.4. Problem Formulation
We summarize the introductory discussion by formulating CSS-sprite packing prob-
lem. Given is set T = {T1, . . . , Tn} of n tiles (images in standard image formats such
as JPEG, PNG, GIF), communication link with latency L and bandwidths vector B of
length cmax. Construct a set of sprites S such that objective function T (S) as defined
in (2) is minimum. Rotation of tiles is not allowed. Each tile is comprised in only one
sprite. Each sprite is transferred in one communication channel.

Let us summarize possible advantages and costs implied by the above problem for-
mulation. By using objective function (2) we assume user-side performance percep-
tion. Applying more than one sprite allows to build better sprites and thus save on
total transferred data size and memory usage in browsers. Employing many sprites
offers faster downloading by parallelizing communication at the cost of establishing
many connections on the server. The interplay of communication performance and the
sprite(s) determines efficiency of the solution. Hence, sprite construction is guided by
the actual data: n,B,L, tiles sizes and features. We do not predetermine the number of
sprites in the solution. Depending on the actual set of tiles and the performance data
it may be a single or a few sprites. As observed in the previous section, a single sprite
will be constructed if additional latencies outweigh benefits of parallel connections. It
is also justified to consider separating significantly different classes of user browsers
(e.g. mobile vs wired) and constructing different sprite(s) for each class.

3. PRELIMINARY TESTS
As discussed in the previous section, a number of decisions must be made in designing
a sprite-packing solution. In this section we report on the impact of layout choice on the
efficiency of the image compression. We also present results of network communication
performance evaluation.

3.1. Packing Model
An aspect ratio of an image is the ratio of its vertical and horizontal sizes. Vertical and
horizontal layouts may be considered the border cases of possible aspect ratios in this
sense that one sprite dimension is fixed to a minimum. As noted in Section 2.2 the
sprite aspect ratio may influence the efficiency of image compression. In order to ex-
amine the extent of such relationship, an experiment has been conducted. 36 sets of 36

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:9

a)
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ships blue blue2 blobs2 tanchaos blobs game autumn2

R
e

la
ti

v
e

sp

ri
te

fi

le

si
ze

Benchmark and aspect ratios

b)
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

mac2 gloss checker smallicons maccol tiny tango flags

R
e

la
ti

v
v
e

 s
p

ri
te

 f
il

e
 s

iz
e

Benchmark and aspect ratios

Fig. 3. Instances with preference for a) vertical layout (x
y

= 1
36

) b) horizontal layout (x
y

= 36
1

).

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:10 Jakub Marszałkowski et al.

0.985

0.990

0.995

1.000

onebit shot jewel shot2 autumn

R
e

la
ti

v
e

sp

ri
te

fi

le

si
ze

Benchmarks and aspect ratios

Fig. 4. Instances without strong preference for any aspect ratio.

rectangular tiles representing web icons, buttons and similar elements were collected
from websites offering stock images. The sets had various colors, backgrounds, visual
styles and sizes. In addition to sets with images coming from a single origin and hence
with similar visual style, sets comprising images from different sources, distorted im-
ages and blank tiles to simulate wasted space were tested. Since in each test set tile
sizes were equal, it was possible to pack them without real waste. The only waste was
introduced intentionally in the test by using blank tiles. For 36 rectangles 9 aspect
ratios were tested which conventionally represent the size of a sprite as a tile array
in tile units. Thus, we had aspects (xy): 1

36 (a vertical layout), 2
18 ,

3
12 ,

4
9 ,

6
6 ,

9
4 ,

12
3 , 18

2 , 36
1

(a horizontal layout). Since the mutual arrangement of the tiles may alter results of
image compression, 200 random permutations of tiles were generated for each aspect
ratio. Image manipulations were performed with GD Graphics library [Boutell et al.
2013]. For PNG compression PNG ALL FILTERS setting was selected which means that
in the construction of the compressed image scanline all compression filters were tried
and the most effective compression filter was applied. Images were compressed with
the strongest level 9 of DEFLATE method.

Results of the experiments with PNG images are shown in Fig.3-4. On the horizontal
axis different data sets are presented, and for each data set aspect ratios are shown
from 1

36 to 36
1 . Along the vertical axis sizes of sprite files in relation to the size of the

biggest sprite created for the given test set are given. The results from 200 permu-
tations are shown as boxplots with minimum, first quartile (Q1), third quartile (Q3),
and maximum. Note that Fig.3-4 have different ranges on the vertical axes. For clarity
of presentation only a subset of results is shown. It can be verified in Fig.3-4 that the
data sets can be divided into three groups: with a preference for vertical layout (Fig.3a),
with a preference for horizontal layout (Fig.3b), and data sets without any apparent
preference for the aspect ratio (Fig.4). By a preference we mean here that certain as-
pect ratio results in the smallest sprite sizes. Out of 36 data sets 17 had preference for
horizontal layout, 14 for vertical layout, and 5 demonstrated no aspect preference. In

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:11

the instances with preference of the layout the sprite sizes could be reduced by 2% to
35% from the worst to the best aspect ratio (Fig.3a,b). In the case of no correlation of
file size with the aspect ratio, sprite file sizes could be reduced by less than 1.5% by se-
lecting the aspect ratio. The above results give a strong argument that in case of PNG
images it is justified to focus the examination of the geometric packing models on strip
packing with vertical and horizontal layouts. Moreover, for the preferred aspect ratios
the impact of tile permutations was always within 2%. It can be concluded that the
neighborhood of the tiles has a relatively small impact on the sprite size and, e.g., the
designed algorithm does not need to examine swapping the same-sized tiles between
their locations.

In the case of JPEG image format no similar preference has been observed. However,
size of the output sprite was strongly correlated with the sprite area (number of pixels).
Therefore, in the case of JPEG images it is advisable to eliminate unnecessary waste
space.

3.2. Communication Performance
In this section we demonstrate that performance parameters L,B introduced in Sec-
tion 2.3 can be obtained in practice. Before proceeding to our results let us explain
why using existing performance studies is problematic. As explained in Section 2.3
communication performance parameters should be measured on the particular web
server and its user population. Consequently, latency and bandwidth results which
could be obtained using tools like [WebPageTest 2015] are not adequate here because
the sprites would be optimized not for the population of real users but for the bench-
marking infrastructure. To the best of our knowledge data on bandwidth scalability,
here expressed in vector B, is not available in the open sources. The number of per-
domain parallel connections a browser may open is well studied [Simon and Souders et
al 2015], but it does not translate directly to the number of parallel channels cmax and
bandwidth scalability in B because these are determined by the server, user platforms,
and the ”last miles”.

Network performance observed by browsers has been tested experimentally. In or-
der to estimate latencies and available bandwidth of user browsers, we have installed
a script downloading files of size 1B and 1MB on a web page ranking popularity of
over 700 other web pages. Each of the 700 ranked pages had a hyperlink to the page
with our script, which users were clicking manually, causing the browser to execute our
script as the page was downloaded. Thus, the test page traffic consisted of users coming
from over 700 other web sites. The variety of linking websites guarantees that the pop-
ulation of visitors was not too uniform. By viewing our web page the visitors executed
the script in their browsers and downloaded the two files using their specific browsers
and Internet connections. Since the script was appended to a ”production” page, we
were able to gather real viewers traffic with their specific network performance fea-
tures. The times of downloading the two files were collected. According to formula (1)
transferring x bytes of data without using parallel channels takes L+ x/B(1) units of
time. Time t1 of downloading 1B file is dominated by communication latency L. Hence,
we used t1 as an estimate of L. Time t2 of downloading 1MB file has a significant
component related to bandwidth. We calculated speed as B(1) =1MB/(t2 − t1). Mea-
surements with t2 ≤ t1 were rejected. In total, measurements from 17460 unique IP
addresses were collected. Time t1 was measured 43876 times, 26968 measurements
with t2 > t1 were collected, 277 measurements with t2 ≤ t1 were rejected.

Results of latency measurement are shown in Fig.5a. It can be seen that latency
distribution has a long tail, but majority of the observations are concentrated around
mean, median and the average value. Over 2/3 observations are concentrated in range
[200ms,500ms]. It can be concluded that performance optimization should focus on typ-

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:12 Jakub Marszałkowski et al.

a)
1E+00

1E+01

1E+02

1E+03

1E+04

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
o

.
o

f
u

se
rs

Latency L [ms]

mode 312 ms

median 352 ms

mean 531 ms

6 ms

148036 ms

43876

min

max

No. of points

b)

0

100

200

300

400

500

600

700

800

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

N
o

.
o

f
u

se
rs

Speed B(1) [kB/s]

mode 110 kB/s

median 464 kB/s

mean 811 kB/s

min 2 kB/s

max 333 MB/s

No. of points 26968

Fig. 5. Experimental verification of network performance: a) latency distribution (logarithmic vertical
axis), b) user download speed distribution.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:13

0

1

2

3

4

5

6

0 1 2 3 4 5 6

B
(c
)/
B
(1
)

B(3)/B(1)

B(5)/B(1)

B(7)/B(1)

B(9)/B(1)

Fig. 6. Speedups B(c)/B(1) vs B(3)/B(1) in using parallel channels.

Table II. Distribution of browser parallel channel number limit.

Number of channels ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9
accumulated frequency 100% 81% 68% 65% 61% 57% 12% 6%

Table III. Synthetic results of parallel channel ex-
periment.

speedups B(3)
B(1)

B(5)
B(1)

B(7)
B(1)

B(9)
B(1)

medians 1.36 1.56 1.66 1.77
SIQR 0.39 0.60 0.61 0.68

ical values of the latency. Distribution of speeds is shown in Fig.5b. Also speed distri-
bution has a long tail, but over 76% of registered speeds are in range [100kB/s,2MB/s].
The histogram in Fig.5b demonstrates that measurements aggregate around particu-
lar speeds (in bits/s): 1Mb/s, 2Mb/s, 4Mb/s, 6Mb/s. The number of clients with speeds
greater than 6Mb/s (≈750kB/s) quickly decreases with increasing speed. Therefore, it
may be advisable to divide users into classes and optimize performance for a particular
speed representing a given user class. Such classes could be established by ranges of
IP addresses assigned by Internet service providers to client connection type classes,
or by separating mobile device browsers. This, however, is beyond scope of the paper.

In order to evaluate opportunities for parallel communication a very similar script
downloading 1MB of data over c = 1, 3, 5, 7, 9 channels has been designed. For example,
for c = 3 three files of size 1/3MB have been downloaded by a browser executing the
script. The downloading time of the last of the files t(3) has been recorded to calculate

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:14 Jakub Marszałkowski et al.

Table IV. Excluded CSS-sprite generators.

Reason Web address

A. bound to websites
created in certain
technology stack and
framework

aspnet.codeplex.com/releases/view/65787
compass-style.org/reference/compass/helpers/sprites/
contao.org/en/extension-list/view/cssspritegen.en.html
docs.typo3.org/TYPO3/SkinningReference/BackendCssApi/
SpriteGeneration
drupal.org/project/sprites
github.com/northpoint/SpeedySprite
github.com/shwoodard/active assets
requestreduce.org
spriterightapp.com

B. failed to install and
work properly

search.cpan.org/perldoc?CSS::SpriteMaker
yostudios.github.io/Spritemapper/

C. online with dead
website or scripts

css-sprit.es
spritifycss.co.uk

D. produce results with
overlapping tiles

mobinodo.com/spritemasterweb
spritepad.wearekiss.com
timc.idv.tw/canvas-css-sprites/en/

bandwidth as B(3) =1MB/t(3). 370 measurements from 276 unique IPs have been
collected. Different types of browsers are opening various numbers of parallel connec-
tions. Hence, we first verified capability of the user infrastructure in parallel commu-
nication. The number of communication channels which can be effectively simulta-
neously open has been determined as the number of communications overlapping in
time. If a of communications were performed at least partially in parallel, while the
(a+1)-th communication was executed after one of the earlier a communications, then
a was recorded as the number of available channels. In Table II cumulated fraction of
browsers capable of using at least some number of parallel channels is shown. It can
be verified in Table II that all browsers are using at least two parallel channels, in
roughly 80% three channels can be used, but only 12% are using 8, 9 or more. Hence,
not in all browsers can any speedup in communication be observed if, e.g., 8 concurrent
downloads are started. To compensate for the differences in user bandwidths B(1), in
the further discussion we consider bandwidth speedup B(c)/B(1) obtained by using c
parallel communications. For the sake of giving the reader a rough impression of the
obtained results Fig.6 shows speedups B(c)/B(1) as sets of points. On the horizon-
tal axis speedup B(3)/B(1) is shown, along the vertical axis speedups B(c)/B(1) for
c = 5, 7, 9 are shown. It can be seen that: i) indeed there is some acceleration of com-
munication by use of parallel channels because most of the observations are located
above a diagonal line, ii) the acceleration has a great deal of dispersion, iii) the results
form one cluster, iv) there are cases for which no gain (no speedup) has been observed.
In roughly 19% of measurements parallel communication resulted in longer communi-
cation time. In Table III the results are presented in a more synthetic form. We report
speedups B(c)/B(1) obtained in parallel communications. The first line presents me-
dians of the speedups. The second line provides SIQR (semi-interquartile range) as an
index of dispersion. A moderate speedup increasing with the number of open channels
c can be seen. Clearly, the speedups are sub-linear.

4. STATE OF THE ART
Initially CSS-sprites were constructed manually [Shea 2004]. Here we consider auto-
matic CSS-sprite packing. Since there are many software solutions with little differing
names, we will identify them by web addresses and in some cases our own short names.
The index of names and addresses is given in Table V.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:15

Table V. Index to the CSS-sprite packing solutions.

Short
Name

cf.
Tab.

Web address

aberant

VI

github.com/aberant/css-spriter
cbrewer codebrewery.blogspot.com/2011/01/cssspriter.html
cssscom csssprites.com
csssorg csssprites.org
elentok github.com/elentok/sprites-gen
fsgen freespritegenerator.com
IHLabs github.com/IndyHallLabs/css-sprite-generator
insts instantsprite.com
JWwsg github.com/jakobwesthoff/web-sprite-generator
perforgsg spritegen.website-performance.org
mod ps developers.google.com/speed/pagespeed/module/filter-image-sprite
selaux github.com/selaux/node-sprite-generator
spriteme spriteme.org
acoderin

VII

acoderinsights.ro/sprite/
cdplxsg spritegenerator.codeplex.com
codepen codepen.io/JFarrow/full/scxKd
csgencom css.spritegen.com
csssnet cssspritesgenerator.net
glue glue.readthedocs.org/
isaccc codeproject.com/Articles/140251/Image-Sprites-and-CSS-Classes-Creator
JSGsf github.com/jakesgordon/sprite-factory/
pypack jwezorek.com/2013/01/sprite-packing-in-python/
txturepk codeandweb.com/texturepacker
simpreal simpreal.org.ua/csssprites/
shoebox renderhjs.net/shoebox/
spcanvas cssspritegenerator.net/canvas
stitches draeton.github.io/stitches/
sstool leshylabs.com/apps/sstool/
zerocom zerosprites.com

Table VI. Solutions not using 2D-packing algorithms.

Short
Name

last update application type output options 2D packing mode

aberantT Mar 24, 2011 commandline mul-
tiplatform (Ruby)

PNG One row

elentokT Nov 5, 2011 commandline mul-
tiplatform (Python)

PNG, JPEG One row

fsgen unknown online PNG One column
spritemeT
12

Aug 29, 2014 Bookmarklet. Ana-
lyzes a web page

PNG, color mode One column

cbrewer Jan 2, 2011 windows executable PNG, JPEG One column
IHLabsC Aug 22, 2008 code to modify and

run (PHP)
PNG, JPEG, GIF One column

cssscom unknown online, single file
upload

PNG, no opacity One column or row
with padding

csssorgT C3 Feb 14, 2014 commandline mul-
tiplatform (JAVA)

PNG, automatic color
depth

One column or row
with padding

instsT Oct 30, 2014 online PNG, GIF One column or row
with padding

perforgsg4 Jan 22, 2010 online, upload of zip
file (filename bugs)

PNG, JPEG, GIF, num-
ber of colors and loss
rate

Columns or rows with
padding

mod ps1 J Aug 28, 2014 Apache module PNG, GIF One column
JWwsgC Mar 27, 2010 commandline mul-

tiplatform (PHP)
PNG Multiple rows with pic-

tures of similar colors
selaux Aug 12, 2014 code to modify and

run (JavaScript)
PNG One column, row or di-

agonal line

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:16 Jakub Marszałkowski et al.

Table VII. Solutions using some 2D-packing algorithms.

Short
Name

Last Update Application Type Output
Options

2D-Packing Method

csssnet5 2014 online PNG Unknown
codepen6 ? online PNG Unknown. Choice of: tile sorting,

sprite dimensions.
glue ? commandline mul-

tiplatform (Python)
PNG, PNG8 Implementation of [Gordon 2011].

zerocomT 7 May 8, 2014 online PNG, PNG8 Tries [Korf and Huang 2012] for 20
seconds. If instance is large then
uses [Chen and Chang 2006].

pypack Jan 6, 2013 commandline mul-
tiplatform (Python)

PNG Extension of [Gordon 2011].

JSGsfC8 Aug 08, 2014 commandline mul-
tiplatform (Ruby)

PNG Can be forced to use implementa-
tion of [Gordon 2011].

acoderinG9 Jan 22, 2010 online, upload of zip
file

PNG, JPEG Some variation of guillotine split
heuristic.

csgencom10 May 2014 online PNG, JPEG,
GIF, loss
rate

Unknown.

cdplxsg11 Sep 10, 2010 windows executable PNG Implementation of [Guo et al.
2001].

txturepk12 Oct 27, 2014 GUI for Windows,
MacOs, Linux

PNG, and
many other
formats

Best result of the heuristics:
MaxRects, ShortSideFit, LongSide-
Fit, AreaFit, BottomLeft, Contact-
Point.

stitchesT 13 May 4, 2013 online PNG Unknown.
sstool14 May 29,

2014
online PNG Unknown local search.

isacccG Feb 17, 2013 windows command
line

PNG ArevaloRectanglePacker [Nuclex
Framework 2009].

simpreal15 Feb 25, 2013 online PNG, JPEG,
GIF, BMP,
Base64

Many options: heuristics, column or
row mode, groups of images, tile
sorting.

spcanvas16 ? online PNG Implementation of [Korf 2003].
shoebox 2014 GUI, multiplatform

(Adobe Air)
PNG Unknown.

T Offers tile test sets. C Offers CSS test sets. G Does not read GIFs. J Does not read JPEGs.
1 Accepts only background PNG and GIF images from a web page.
2 Simple decision support based on predefined rules.
3 Reads images from CSS file, requires manual annotation of the files.
4 Possible postprocess: OptiPNG.
5 Forces padding. Fails on spaces in the input filenames, and files larger than 30kB.
6 Not fitting tiles are discarded without warning.
7 Filename limitations. Postprocess: PngOpt. High computational complexity.
8 Failed to work with rmagick package, but works with chunkypng instead. Possible postprocess:

pngcrush.
9 Creates more than one sprite if bounding box exceeds 1200px×1200px. Hangs on duplicate filenames

with different extensions. Allows repacking tiles in sprites given as input.
10 Crashes on ≥ 73 tiles.
11 Fails on spaces in the filenames and duplicate filenames.
12 Possible postprocess: PngOpt.
13 2D-packing places pictures instantly, but unexpectedly continues computations for some more time.
14 Optimization feature randomly repacks sprite. High computational complexity.
15 Rich interface with many options. Hard to use.
16 Bounding box can be resized, which sometimes leads to tile overlapping.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:17

There are three groups of CSS-sprite generators which have been excluded from fur-
ther study and evaluation (cf. Table IV and Table VI). Firstly, there is a group of tools
bound to web pages developed in a specific technology stack and software framework.
These tools were created with the intention of generating sprites applicable only in cer-
tain technology ecosystem and not as independent files for external use. Applications
in this set are marked as group A in Table IV. Secondly, there is a set of applications
which could not be included in the further study because we were unable to use them.
We mention such cases in Table IV. The specific situations which we encountered were:
failure to work after installation (group B in Table IV), dead web applications giving
no results (C), sprites with overlapping tiles (D).

Further applications are listed in Table VI and Table VII. In the third column of
the tables (application type) the way of using a generator is described. CSS-sprite gen-
erators are usually used in two ways: as an online or as a commandline application.
In both cases tiles and sprites are files. A few exceptions exist. SpriteMe and mod ps
read web page background images and convert them into sprites. Moreover, mod ps is
an Apache server module and does it in web pages it serves. IHLabs and selaux are
scripts without commandline support, parameters (e.g. input images) are set by code
modification. Applications using script languages (e.g. Ruby or Python) often require
additional packages, sometimes quite hard to install. The set of user options for the
output sprite is described in the fourth column. PNG denotes a 32bpp truecolor PNG
image with transparency. PNG8 is an 8bpp PNG image with or without transparency.
It can be observed that the set of output formats is usually limited and if there is any
option, then the responsibility rests on the user to choose reasonable settings. Some
applications admit using postprocessing to further reduce the sprites. However, such
post-optimization cannot undo bad decisions made earlier. Hence, there is a need for
some decision support in selecting minimum color depths and in optimizing output
format. In Table VI CSS-sprite generators are listed which align tiles in a single col-
umn or row. A drawback of these applications is that they construct sprites of very
big dimensions and with a lot of wasted space if the number of tiles is big. As a re-
sult, sprites built by such applications are not comparable with the sprites obtained
by using some geometric packing algorithm. Therefore, we consider them not suitable
for real-life industrial use. This is the third set of applications we had to exclude from
further comparisons.

Applications using some geometric packing algorithms are listed in Table VII. In
a few lucky cases the applied 2D-packing algorithms were identified in the provided
software documentation. Algorithm [Gordon 2011] is commonly used because its im-
plementation is openly available. As geometric packing is NP-hard most of the appli-
cations use some simple greedy heuristics.

To the best of our knowledge all existing sprite generators build a single output
sprite. No solution automatically evaluates options for distributing the tiles into sev-
eral sprites for better matching tile types and to optimize communication time. Only
one solution uses a set of rules to optimize image color depths and compression set-
tings.

5. SPRITEPACK
In this section we present Spritepack, our method for sprite construction. Given set
of sprites T , communication parameters L,B Spritepack progresses in four steps: i)
tile classification, ii) geometric packing, iii) packing with image compression, iv) post-
processing. Spritepack has been implemented in C++ using MS Visual Studio 12 and
Magick++ API to ImageMagick.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:18 Jakub Marszałkowski et al.

5.1. Tile Classification
With the goal of grouping tiles with similar sets of colors and to retain as low color
depth in sprites as possible, input tiles are first classified according to their color depth.
The following image classes have been distinguished:

(1) 8 bit per pixel (bpp) indexed color PNG without transparency (denoted as PNG8i),
(2) 8 bpp indexed color PNG with transparency (PNG8it),
(3) 8 bpp gray-scale PNG without transparency (PNG8g),
(4) 8 bpp gray-scale PNG with transparency (PNG8gt),
(5) 24 bpp truecolor PNG without transparency (PNG24),
(6) 32 bpp truecolor PNG with transparency (PNG32t),
(7) JPEG images (jpeg).

Each tile is included in the class with minimum color depth greater than or equal to
the original tile color depth. Since the original image information may specify higher
depth than actually existing, images may be attributed to wrong classes. To avoid such
a situation each input tile were converted to minimum necessary color depth PNG im-
age using Magick++ and saved on file. Only then was the tile re-opened and assigned
to the appropriate class. Similar procedure was applied to JPEG images. If the JPEG
image converted to PNG had smaller size, then the PNG version was used in the fur-
ther manipulations. Images with 1,2,4 bits per pixel are currently relatively rare, and
therefore are included in PNG8i, or PNG8it. For similar reasons PNG tiles with 16
bits per color channel were not considered. All GIF images were converted to PNG8i
or PNG8it which sometimes reduces image size [Stefanov 2008].

5.2. Geometric Packing
The goals of geometric only packing are twofold. The first objective is to identify tiles
which have similar sizes and can be put together in one sprite with little waste. It
should also filter out tiles with odd shape which should not be combined into a sprite
to avoid excessive waste. The second purpose is reducing Spritepack runtime. As noted
in Section 2.2 image compression is time-consuming, and full evaluation of each inter-
mediate sprite would take too much time. Hence, geometric packing is a form of fast
proxy to the full version of the algorithm, or a preprocessing step reducing the num-
ber of sprite candidates for complete evaluation. The algorithms for geometric packing
operate on tile bounding boxes, that is on rectangles, rather than on bitmaps. By a
group we will understand here a set of tentatively assembled tiles. The procedure for
geometric packing is given in the following pseudocode.

GEOMETRIC PACKING
INPUT: set T of tiles
1: Create a group for each input tile;
2: while number of groups is bigger than k
2.1: bp1, bp2 ← nil; bw ←∞; // create an empty group pair with waste bw
2.2: for all unevaluated group pairs g1, g2 with equal image classes
2.2.1: join g1, g2 into a new group g3;
2.2.2: apply to g3 all geometric packing strategies; record the packing with minimum

geometric waste w3;
2.2.3: if w3 < bw then bp1 ← g1, bp2 ← g2, bw ← w3;
2.3: endfor;
2.4: create a new group from bp1 ∪ bp2, remove bp1, bp2, reduce number of groups by 1;
3: endwhile

Geometric packing is a one-pass method merging in each iteration the best pair of
groups. Note that in geometric packing only tiles of the same class may be merged

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:19

(step 2.2). In this way premature upgrading tiles to higher color depths is avoided.
Thus, dealing with the uncertainties of image compression efficiency is delayed to the
next step of Spritepack. The above procedure finishes with k groups of tiles. Value of
k is a control parameter of Spritepack. Yet, limits on k exist. On the one hand, k can-
not be greater than the number of tiles, which is important for small sets T . On the
other hand, k cannot be smaller than the number of tile classes identified in set T
plus 2. The offset of two groups has been established experimentally. Without such a
margin all tiles from a given class end up in one group. Consequently, very different
tile shapes are combined, thus invalidating the first purpose of the geometric packing
step. Performance of Spritepack under various k settings is discussed in Section 6. Ge-
ometric packing is a simple hyperheuristic [Chakhlevitch and Cowling 2008] because
it guides a set of low-level heuristics referred to as geometric packing strategies in step
2.2.2. The strategies involve packing model and packing algorithm. Two packing mod-
els are possible: 2-dimensional strip packing (2SP) and rectangle packing (RP). The
2SP comes in two flavors of either horizontal or vertical layout. Since geometric phase
may involve hundreds of tiles and packing algorithms may be called hundreds of times
and more, therefore only fast heuristics are acceptable here. Packing algorithms are
dedicated to each type of packing model. For 2SP the following low-level heuristics are
available:

— First-Fit Decreasing Height (FFDH, computational complexity O(n log n)),
— First-Fit Decreasing Height with Two-Fit (FFDH2F, O(n3 log n)),
— Best-Fit Decreasing Height (BFDH, O(n log n)),
— Best-Fit Decreasing Height with Two-Fit (BFDH2F, O(n3 log n)),
— Bottom-Left (BL, O(n2)),
— Modified Bottom Left (MBL, O(n3)).

For RP model algorithm Variable Height Left Top (VHLT, O(n2w0)) is available. In the
following we give a short description of the above heuristics. A more detailed account
can be found, e.g., in [ARC Project 2013; Lodi et al. 2002; Ntene and van Vuuren 2009;
Perdeck 2011].

In the coming description of 2SP algorithms we assume vertical layout. It means
that we have a strip of the width equal to the widest tile and in the process of pack-
ing the occupied area extends upward. Heuristics FFDH, FFDH2F, BFDH, BFDH2F
are so-called shelf algorithms. It means that they pack the tiles as if on shelves cut
from the strip: The bottom lines of the tiles are aligned to the bottom of the shelf. The
height of a shelf is determined by the highest rectangle on the shelf. It is required
that total width of the rectangles on no shelf exceeds the width of the strip. Thus,
shelf algorithms are 2-dimensional renditions of 1-dimensional bin packing methods.
The above shelf algorithms consider tiles in the order of decreasing height. First-Fit
algorithms (FFDH,FFDH2F) place the current tile on the first shelf which can accom-
modate the width of the tile. Best-Fit algorithms (BFDH, BFDH2F) place the tile on
the shelf on which the remaining width is smallest. When placing the current tile
closes a shelf, that is no single remaining tile is able to use the shelf, the Two-Fit al-
gorithms (FFDH2F, BFDH2F) search among the remaining tiles for a pair wider than
the current tile and still able to fit on the shelf. BL algorithm [Chazelle 1983] places
tiles as close to the bottom and as close to the left edge of the strip as possible. In our
implementation (MBL) of BL tiles are considered in the order of nonincreasing width
and holes (empty areas not accessible from above) are not considered. In each iteration
MBL tests all available tiles for their placement. The tile which can be put closest to
the bottom is chosen. The versions of the algorithms for horizontal packing are defined
analogously by swapping the roles of widths and heights.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:20 Jakub Marszałkowski et al.

tile 1

tile 1 ti
le

 2

ti
le

 2

ti
le

 2

ti
le

 2

tile 1 tile 1tile 1

tile 3
tile 3tile 3

tile 2

tile 2

a) b)
Fig. 7. Increasing bounding box height in VHLT after a) successful, b) unsuccessful packing.

Implementation of VHLT [Perdeck 2011] is inspired by [Korf 2003]. In the origi-
nal description [Perdeck 2011] a horizontal layout is used. Hence, the Left-Top could
equally well be referred to as Bottom-Left in the vertical layout rendering. However,
in the subsequent description we stick to the original horizontal setting. VHLT algo-
rithm iterates over admissible widths w and heights h of the bounding box, verifies
feasibility of packing in the given (w, h) using Left-Top algorithm, and returns the
bounding box with the smallest total area. A special data structure has been proposed
in [Perdeck 2011] to represent available space. The iteration starts from the rectangle
of dimensions (w0, h0) obtained by Left-Top for horizontal layout. Suppose that the cur-
rent bounding box (w, h) is feasible, then the width w is decreased by 1px. If the new
rectangle is feasible, then w is decreased again. If it is infeasible, then h is increased
by one. Moreover, if w × h is smaller than the area of tiles, then the bounding box is
infeasible and h is increased until the rectangle is feasible. If w × h is bigger than
the smallest area of a feasible bounding box, then testing bounding box (w, h) may
be skipped and w is decreased again. In [Perdeck 2011] the following rules tailored
to Left-Top have been used: i) After a successful packing the next narrower bounding
box must be higher at least by the height of the highest tile touching the right edge
of the bounding box (cf. Fig.7a). ii) After an unsuccessful packing the next narrower
bounding box must be higher at least by the smaller of the values: the height of the
first rectangle which could not fit, or the minimum extra height allowing rectangles
neighboring horizontally be put on one another (Fig.7b). The advantages of VHLT are
that dimensions of the bounding box are not fixed and that holes are considered. A
disadvantage is VHLT complexity. Since each possible width may be verified VHLT
is pseudopolynomial, that is VHLT has exponential running time in the length of w0

encoding. In practice this may be less severe because the initial width w0 usually does
not exceed a few thousand pixels and only a subset of possible widths is really tested
by VHLT.

5.3. Merging with Image Compression
Merging with image compression is a core of Spritepack. It is based on a similar idea
as geometric packing, but takes into account size of the obtained sprites after image
compression and the resulting load time estimation defined in (2). The procedure for
merging with image compression is given in the following pseudocode.

MERGING WITH IMAGE COMPRESSION
INPUT: k groups of tiles
1: Create a sprite for each input tile group; record current set of sprites as solution S and as

the best solution S∗ with objective T ∗ = mincmax
c=1 T (S, c);

2: while number of sprites is bigger than 1
2.1: bs1, bs2, bs3 ← nil; bS ←∞; // create an empty sprite pair and empty sprite junction

// with size bS
2.2: for all unevaluated sprite pairs s1, s2

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:21

2.2.1: apply to the tiles in s1 ∪ s2 all strategies of merging with image compression; record as s3
the sprite with minimum size S3;

2.2.2: if S3 < bS then bs1 ← s1, bs2 ← s2, bs3 ← s3; bS ← S3;
2.3: endfor;
2.4: S \ {bs1 ∪ bs2} ∪ bs3; calculate objective T = mincmax

c=1 T (S, c)
2.5: if T < T ∗ then S∗ ← S; T ∗ ← T ;
3: endwhile;

Merging with image compression is again a greedy sprite merging procedure. In each
iteration (while loop in lines 2-3) a pair of sprites which can be packed in minimum size
(measured in bytes) is selected in line 2.2.2. Note that in the progress from the initial
set of k sprites to just one sprite each intermediate set of sprites S is a valid solution.
The set of intermediate sprites which minimizes the objective function is selected in
line 2.5. A key ingredient of merging with image compression are the strategies ap-
plied in line 2.2.1. A strategy is defined here by a combination of geometric packing
strategy and image compression method. Geometric packing strategies were discussed
in the previous section. All geometric packing strategies are verified in line 2.2.1 on
the set of tiles included in s1, s2. It means that the tiles in s1 ∪ s2 are once again ar-
ranged geometrically, and their layouts existing in s1, s2 are not passed to s3. Image
compression methods are: i) for PNG format minimum color depth is selected and all
filters are tested, ii) if both sprites s1, s2 comprise only JPEG tiles or it is allowed to
change PNG type tiles to JPEG then JPEG formats with the baseline and progressive
compression are tested. The set of admissible PNG filters, the option for changing a
PNG class tile into a JPEG class tile, JPEG compression quality are input parameters
of Spritepack.

5.4. Postprocessing
As it was described in Section 2.2 image sizes may be reduced by applying different
compression settings. It is not possible to verify alternative image compression settings
directly in the earlier step because it is too time-consuming. Therefore, Spritepack
takes the opportunity of optimizing sprites as a post-process to the images obtained
in the previous stage. This means that sprites obtained in the merging with image
compression step are further processed for minimum size. The set of Spritepack post-
processors is customizable and builds on the examples from [Louvrier 2013]. In fur-
ther experiments postprocessors pngout [Silverman 2013] with the option of using its
KFlate algorithm and jpegtran [Independent JPEG Group 2012] with the option of
verifying progressive and baseline compression have been applied.

For the end of this section let us note that the CSS-style sheets generated by
Spritepack take into account not only the position of a tile in a sprite, but also which
sprite comprises the tile (if there are more than one sprite).

6. SPRITEPACK EVALUATION
In this section we report on testing Spritepack. Performance of Spritepack is compared
against other existing applications for sprite generation. The results give insight not
only into the internal workings of our method and its efficiency, but also into the sta-
tus quo in the web. Unless stated to be otherwise all tests were performed with the
use of ImageMagick 6.8.7-10-Q16-x64 on a typical PC with i5-3450 CPU (3.10GHz),
8GB of RAM and Windows 7. For PNG Compression zlib compression level has been
set to 7. All feasible filter types (0-4) have been always tested for a given PNG-type
sprite, and the resulting sprite with minimum size was always preserved (cf. Sec-
tion 5.3). For JPEG images quality has been set to 89 in ImageMagick. Combining
a non-JPEG tile into a JPEG sprite has been disallowed. Latency has been set to

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:22 Jakub Marszałkowski et al.

Table VIII. Test instance index
Instance name URL Accessed on
4images travelphoto http://www.themza.com/4images/travel-photography-template.html Nov 14, 2012
acoderin http://acoderinsights.ro/sprite/sample/img.zip Aug 26, 2014
concrete5 coffee http://www.smartwebprojects.net/concrete5-themes/morningcoffee/ Dec 6, 2012
dotnetnuke bright http://www.freednnskins.com/FreeSkins/tabid/152/Article/88/bright.aspx Jan 1, 2013
drupal fervens http://kahthong.com/2009/12/fervens-drupal-theme Dec 6, 2012
drupal garden http://drupal.org/project/gardening Dec 6, 2012
e107 race http://www.themesbase.com/e107-Themes/7106 Race.html Dec 6, 2012
joomla ababeige http://www.themesbase.com/Joomla-Templates/7232 Aba-Beige.html Nov 14, 2012

joomla busines14a http://jm-experts-25-templates.googlecode.com/files/ Nov 14, 2012busines14a bundle installer.zip
magneto hardwood http://www.themesbase.com/Magento-Skins/7396 Hardwood.html Dec 6, 2012
mambo partyzone http://www.themza.com/mambo/party-zone-template.html Nov 14, 2012
mediawiki bookjive http://www.themesbase.com/Mediawiki-Skins/7487 BookJive.html Nov 14, 2012
modx creatif http://modxd.com/creatif-template.html Dec 6, 2012
modx ecolife http://modxd.com/eco-life-template.html Dec 6, 2012
mojoportal thehobbit http://mojoportal.codeplex.com/downloads/get/534280 Jan 1, 2013
moodle university http://www.themza.com/moodle/online-university-theme.html Jan 1, 2013
myadmin cleanstrap https://github.com/phpmyadmin/themes/tree/master/cleanstrap/img Jan 1, 2013

opencart choco http://www.opencart.com/index.php?route=extension/extension/info& Jan 1, 2013extension id=9853&filter search=cakes
oscommerce pets http://www.themesbase.com/osCommerse-Templates/7195 pets.html Nov 14, 2012
phpbb wow http://www.themesbase.com/phpBB-Themes/8124 WoW5thAniversary.html Nov 14, 2011
phpfusion skys http://www.themesbase.com/PHP-Fusion-Themes/6839 Skys.html Dec 6, 2012
phpnuke dvdfuture http://www.themesbase.com/PHPNuke-Themes/1809 sb-dvd-future-7.html Dec 6, 2012

prestashop matrice http://dgcraft.free.fr/blog/index.php/themes-prestashop/ Jan 1, 2013matrice-themes-prestashop-1-3-1-gratuits/
smf classic http://www.themesbase.com/SMF-Themes/7339 Classic.html Dec 6, 2012

SpriteCreator http://www.codeproject.com/KB/HTML/SpritesAndCSSCreator/ Jun 30, 2015SpriteCreator v2.0.zip
squirrelmail outlook http://sourceforge.net/projects/squirreloutlook Jan 1, 2013
textpattern mistylook http://txp-templates.com/template/mistylook-for-textpattern Dec 6, 2012
tinymce bigreason http://thebigreason.com/blog/2008/09/29/thebigreason-tinymce-skin Dec 6, 2012

vbulletin darkness http://www.bluepearl-skins.com/forums/index.php?app= Nov 14, 2012core&module=attach§ion=attach&attach id=2809
wordpres creamy http://www.themesbase.com/WordPress-Templates/9831 Creamy.html Jun 19, 2015
xoops bellissima http://www.themesbase.com/XOOPS-Themes/6849 Bellissima.html Nov 14, 2012
zencart artshop http://www.themesbase.com/Zen-cart-templates/7405 Artstore.html# Nov 14, 2012

L=352ms which is median in Fig.5a. Aggregate bandwidth vector has been set to
B = [464, 557, 631, 685, 723, 750, 770, 791, 821] in kB/s which has been calculated from
median speed in Fig.5b and bandwidth speedups in Table III with additional curve-
fitting.

6.1. Test Instances
In order to evaluate Spritepack 30 test sets were collected first. The tiles in the test sets
are skins and other reusable GUI elements of popular open source web applications.
An index to instance names is given in Table VIII, a concise summary on the dataset
is collected in Table IX, further details are provided in [Marszałkowski et al. 2015].
Instance names come from the name of the originating software package and graphical
theme name (if there was any). The second through fourth columns in Table IX provide
numbers of tiles in GIF, PNG, JPEG formats. Animated GIFs and tiles with improperly
assigned file extensions were excluded. The following seven columns specify tile classes
assigned by Spritepack. Spritepack moved all GIFs to PNG format. Also some JPEG
tiles have been transferred to PNG classes because this reduced their sizes. It can be
observed that gray-scale tiles are rare and classes PNG8g, PNG8gt hardly ever appear.
We analyzed test sets offered together with the alternative sprite generators described
in Section 4. Unfortunately, most of them are too simple, consisting of a few tiles with
identical shapes. Therefore, only acoderin and SpriteCreator test sets were included in
our benchmark making a total of 32 test sets.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:23

Table IX. Classification of the images in test instances

Instance name Original tiles Spritepack tile classification Total
PNG GIF JPEG PNG8i PNG8it PNG8g PNG8gt PNG24 PNG32t JPEG n

4images travelphoto 9 41 7 42 8 0 0 1 0 6 57
acoderin 20 0 0 9 6 0 0 4 1 0 20
concrete5 coffee 0 1 14 0 1 0 0 1 0 13 15
dotnetnuke bright 2 0 34 0 31 0 0 0 1 4 36
drupal fervens 5 0 0 2 2 0 0 1 0 0 5
drupal garden 37 7 4 2 40 0 1 0 1 4 48
e107 race 13 16 17 14 19 2 0 2 0 9 46
joomla ababeige 10 0 4 7 2 0 0 1 0 4 14
joomla busines14a 110 1 1 23 82 0 0 0 7 0 112
magneto hardwood 3 5 1 2 6 0 0 0 0 1 9
mambo partyzone 2 13 1 14 1 0 0 0 0 1 16
mediawiki bookjive 6 8 1 1 11 0 0 0 2 1 15
modx creatif 7 0 17 7 0 0 0 1 6 10 24
modx ecolife 0 4 6 4 0 0 0 0 0 6 10
mojoportal thehobbit 11 19 9 9 22 0 0 1 0 7 39
moodle university 8 246 3 13 240 0 0 2 0 2 257
myadmin cleanstrap 210 2 0 22 155 7 10 0 18 0 212
opencart choco 27 0 0 5 19 0 0 1 2 0 27
oscommerce pets 1 131 71 46 111 0 0 13 0 33 203
phpbb wow 81 39 10 6 56 0 0 2 58 8 130
phpfusion skys 8 31 3 18 22 0 0 0 1 1 42
phpnuke dvdfuture 0 11 3 3 9 0 0 0 0 2 14
prestashop matrice 37 122 21 61 110 0 0 6 2 1 180
smf classic 62 254 1 14 283 0 0 0 19 1 317
SpriteCreator 56 0 0 0 1 0 0 0 55 0 56
squirrelmail outlook 16 57 0 29 43 0 0 0 1 0 73
textpattern mistylook 1 7 3 5 4 0 0 0 0 2 11
tinymce bigreason 5 1 0 3 2 0 0 0 1 0 6
vbulletin darkness 660 355 13 92 833 0 0 3 89 11 1028
wordpres creamy 28 0 0 3 18 0 0 0 7 0 28
xoops bellissima 19 2 1 0 7 0 0 0 14 1 22
zencart artshop 2 55 3 8 49 0 0 0 0 3 60
Total files 1456 1428 248 464 2193 9 11 39 285 131 3132

A disadvantage of the evaluation using a test set collection is some inflexibility in
choosing parameters of the tests. Nevertheless, this test set collection represents tiles
existing in practical applications and allows examining Spritepack in a realistic set-
ting.

6.2. Initial Experiments
In this section we report on performance of Spritepack on a corpus of tile sets (Table
IX). The experiments evaluated goal function optimization, sprite sizes and numbers,
Spritepack processing time. This series of experiments allows to choose number k of
tile groups passed from geometric packing stage and the set of usable geometric pack-
ing algorithms.

Before discussing the results let us remind that Spritepack is minimizing goal func-
tion (2) which is a model of communication time. Total size of the sprites (e.g. in bytes)
is not directly minimized and it can be used only as a secondary criterion for compar-
isons. In the process of combining tiles into sprites some space may be wasted. This
results in the increased total area of the sprites compared to the initial area of the
tiles (expressed e.g. in px). Consequently, more memory may be needed to represent
tiles in the browser than if the tiles were downloaded independently. Hence, the in-
crease in sprite area is an additional evaluation criterion. In the experiments a range
of parameter k is swept which has two-fold consequences. On the one hand, reducing
k also reduces processing time because fewer groups of tiles are evaluated in merging
with image compression (Section 5.3). On the other hand, increasing k gives more pos-

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:24 Jakub Marszałkowski et al.

a)
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 4 6 8 10 12 14 16

co
st

 r
ed

uc
tio

n
[%

]

k

b)
-10

-8

-6

-4

-2

 0

 4 6 8 10 12 14 16

co
st

 r
ed

uc
tio

n
[%

]

k

Fig. 8. Reduction of communication time estimation (2). a) Spritepack, b) postprocessing. Lower is better.

Table X. Number of tests vs the number of final sprites

Number of sprites 1 2 3 4 5 6 7 8 9 10
Number of cases 11 77 52 68 51 31 12 14 3 1

sibilities of combining groups of tiles into sprites. Thus, k should be neither too big, nor
too small.

The instances from Table IX have been solved for k = 4, . . . , 16. Since k can be nei-
ther greater than the number of tiles n, nor can it be smaller than the number of tile
classes plus two (cf. Section 5.2), 320 test instances have been solved in total. The
results of this series of experiments are collected in Fig.8-Fig.10 and in Tables X-XI.
In Fig.8 reduction of the goal function (2) vs k is shown. The reduction is expressed
relative to the value of the goal function T (T , 1), i.e. as (T (S)/T (T , 1) − 1) × 100%.
T (T , 1) is the cost of transferring the initial tile set T over one communication channel

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:25

without packing into any sprite. In Fig.8a goal function reduction obtained solely by
Spritepack is shown and in Fig.8b the reduction obtained in postprocessing is shown.
It can be seen that typically Spritepack is able to reduce the goal function by 60% and
postprocessing further reduces it by roughly 0.5-4%. With growing k the reductions
are better, which is a result of two processes. Indeed there are 6 test sets where in-
creasing k decreases the objective function as could be expected due to a greater sprite
combination flexibility. However, a set of instances which can be applied for a given k
also has influence in Fig.8a. Let us remind that k cannot be greater than the number
of tiles nor can it be smaller than the number of tile classes plus 2. Consequently, the
number of instances which can be packed with a given k grows from 2 for k = 4 to 30
instances for k = 7, . . . , 9 and then decreases to 23 test sets for k = 16. Therefore, the
reduction in the goal function is also a result of changing set of test cases. It is an un-
avoidable consequence of using real-world test sets as mentioned in Section 6.1. This
observation applies also to Figs 9, 10. It can be concluded that for average set of tiles
appearing over Internet k ≥ 7 is sufficient. This should be juxtaposed with the number
of the sprites finally constructed shown in Table X. In all tests the biggest number of
10 sprites has been constructed for vbulletin darkness instance which had 1028 tiles.
Hence, in the further tests we used k = 10 because it is not restricting the choice of the
final sprite number. It can be also observed that Spritepack uses moderate numbers of
sprites comparable with the number of browser download channels (see Table II).

As mentioned above, sprite file sizes and the total area are additional performance
indicators. Changes in file size are presented in Fig.9a for Spritepack alone and in
Fig.9b for postprocessing. Along the vertical axis the fraction of the total initial tile
sizes by which the Spritepack sprite(s) are smaller is shown. Negative values represent
reduction in file size. As shown in Fig.9b postprocessing reduces file size approximately
by 4-7%, which is a useful complement to Spritepack. It can be seen in Fig.9a that in
general Spritepack reduces total file size by more than 20% (cf. medians). However,
for approximately 1/6 of all the cases file size increased, which is shown in Fig.9a as
positive values. Some increase in file size should not be surprising because merging
tiles into a sprite may waste some space and this results in bigger sprite files. It is
further confirmed in Fig.10a showing relative increase in image area. It can be seen
in Fig.10a that usually image area is not increasing more than by 10–20%. Yet, there
have been cases when area increased by more than 100% for k = 7. The impact of
enlarged sprite area can be reduced by increasing k even beyond k = 10. The most
problematic tile sets (prestashop matrice, moodle university) have over 180 diverse
tiles corresponding to different functionalities of the services from which they come.
Tile sets covering such scattered areas of application should be merged into separate
sprites according to the system functionalities. Otherwise, some tiles may be preloaded
in some sprite and never used. This may be done effectively by the web-designer on
the basis of tile application area. Partitioning tile sets according to their function and
frequency of use is beyond the scope of this paper. Still, Spritepack is able to deal
with such big tile sets on the basis of web performance. It is demonstrated in Fig.10a
for k ≥ 10 where Spritepack mitigates the worst area increments. Therefore, in the
case of tile sets with hundreds of images, possibly representing varied functionalities,
Spritepack should be allowed to check also k > 10.

Spritepack processing time depends, among the other, on the number of tiles n and
group number k. The coefficient of correlation between processing time and the number
of tiles observed for k = 10 was 0.438 with p-value (probability of obtaining such cor-
relation randomly) equal ≈0.0175. Hence, the dependence on n is statistically strong,
yet it involves a great deal of dispersion. Such a situation is natural because timing
of graphical image compression depends on many factors. One of key factors is im-
age area and color depth. In our test sets tiles had various sizes and color depths.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:26 Jakub Marszałkowski et al.

a)
-80

-60

-40

-20

 0

 20

 40

 60

 4 6 8 10 12 14 16

fi
le

 s
iz

e
re

du
ct

io
n

[%
]

k

b)
-16

-14

-12

-10

-8

-6

-4

-2

 0

 4 6 8 10 12 14 16

fi
le

 s
iz

e
re

du
ct

io
n

[%
]

k

Fig. 9. Reduction in file size. a) Spritepack, b) postprocessing. Lower is better. Positive values represent
increased file sizes.

Average execution time per tile in all our test sets was 4.59s at k = 10. It should
not be forgotten that it is only a rough indication of the execution time and real ex-
ecution times may change very much depending on size of tiles and their complex-
ity. Fig.10b gives an impression of Spritepack processing time (including postprocess-
ing). As it can be seen most of the test sets have been processed in at most a couple
of minutes. This should be acceptable considering that sprites are built once at the
web-site construction stage. Spritepack processing time is split between tile classifi-
cation, geometric packing, merging with image compression, and postprocessing. The
four stages consumed on average 5%, 1%, 81%, 13% of the total processing time, re-
spectively. Thus, merging with image compression is the most time-consuming step.
The geometric packing step is very short and it is worth its computational effort as a
preparatory step before merging with compression.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:27

a)
1E-2

1E-1

1E0

1E1

1E2

1E3

 4 6 8 10 12 14 16

in
cr

ea
se

 in
 a

re
a

[%
]

b)
1E0

1E1

1E2

1E3

1E4

 4 6 8 10 12 14 16

tim
e

[s
]

Fig. 10. a) Change in image area, b) Processing time. Logarithmic scales. Lower is better.

In the course of experiments we registered frequencies of using certain geometric
packing algorithms. The results are shown in Table XI. The first line of Table XI con-
tains names of heuristics which output has been used at least once. Letters H and V
refer to the horizontal and the vertical layouts, respectively. The second line in Table XI
is the number of times results of some heuristic have been used. The most frequently
used heuristics MBL and VHLT cover 99% of all use cases. The shelf packing heuris-
tics (FFDH, FFDH2F, BFDH2F) are hardly ever used. The BFDH method mentioned
in Section 5.2 has not been used at all. It seems that reducing the set of geometric
packing algorithms to just MBL, VHLT, FFDH2F may be a reasonable option to curb
Spritepack complexity in production systems. Contrarily, to obtain better results the
geometric packing algorithms should outperform the MBL.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:28 Jakub Marszałkowski et al.

Table XI. Usage of geometric packing heuristics

MBL(V) MBL(H) VHLT FFDH2F(V) BL(V) BL(H) FFDH2F(H) BFDH2F(V) FFDH(V)
24135 5381 2829 208 68 21 17 8 5

Table XII. Comparison of sprite generators on size of output. Lower is better. Spritepack is 100%. Spritepack
was forced to create a single file.

instance name:
acoderin modx

creatif
Sprite
Creator

squirrel
mail
outlook

joomla
busi

nes14a
average

input 198 100 236 122 87 148
csssnet 211 205 159 192
codepen 199 140 157 122 128 149
glue 154 114 174 157 146 149
zerocom 136 117 191 159 137 148
pypack 149 120 182 146 141 148
JSGsf 161 114 162 156 135 146
acoderin 136 118 170 161 143 145
csgencom 145 116 173 144
cdplxsg 135 140 192 129 115 143
txturepk 132 112 166 128 149 137
stitches 126 139 168 121 117 134
sstool 134 132 174 112 116 134
isaccc 114 153 155 121 123 133
simpreal 123 136 177 107 121 133
spcanvas 137 135 164 116 112 133
shoebox 107 120 143 106 96 114
Spritepack [bytes] 7274 395393 28663 69714 190145 –

6.3. Spritepack Performance Comparison
In this section we compare Spritepack with alternative sprite generators. For the rea-
sons discussed in Section 2 comparing sprite generators rigorously and fairly is not
easy. Moreover, a great number of sprite generators exist. Therefore, we applied the
following procedure. In the first experiment a big set of sprite generators has been
compared on a small set of test instances. As a result, a few solutions have been sin-
gled out which have been most reliable, versatile and provided smallest sprites. In the
second series of tests the selected generators have been compared with Spritepack in
generating sprites for all instances from Table IX.

As mentioned above sizes of the sprites built by the alternative generators have
been evaluated first. Test instances with moderate number of tiles n have been used.
Since not all generators were able to deal with JPEG tiles all tiles have been con-
verted to PNG image format. The alternative sprite generators construct one sprite,
while Spritepack builds a number of sprites which minimizes objective function (2). In
order to make the comparison possible Spritepack code has been modified to extract
the single sprite constructed in the last iteration of merging with image compression.
The results of the evaluation are collected in Table XII. The table head gives names of
the test instances. Sizes of the sprites constructed by Spritepack (in bytes) are reported
in the last line of Table XII. Except for the last line results are expressed in % relative
to the size of the single sprite constructed by Spritepack. Each line gives results for a
certain generator. Line labeled ”input” expresses size of the input tiles relative to the
single Spritepack sprite. An empty entry in Table XII means that certain generator
has not been able to construct a sprite. Four alternative sprite generators which have
given the smallest sprites on average have been selected for the next round of perfor-
mance comparison. Although Spritepack was not built for creating one sprite with the
smallest file size it still outperforms most of the competitors and only one application
in a single case produces better results.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:29

Table XIII. Evaluation of best sprite generators on 32 test
instances. Lower is better. Spritepack is 100%.

shoebox spcanvas simpreal isaccc
objective function (2)

min 101 101 101 101
median 132 131 137 134
max 248 284 272 291

file size
min 82 82 82 83
median 138 141 143 143
max 382 379 386 397

In the second round of comparisons the selected sprite generators have been eval-
uated with respect to the values of the objective function (2), and size of the output
sprites on a complete set of instances from Table IX. However, it turned out that
Spritepack outperformed the alternative generators and their results were extremely
bad. For example, the shoebox generator, which was best in the previous set of tests, re-
turned sprites which had objective (2) equal on average 235% of the Spritepack’s (and
642% in the worst case). Similarly, file sizes were on average 376% of the Spritepack’s
sprite sizes (883% in the worst case). In the case of vbulletin darkness (1028 tiles)
shoebox stopped reacting (hang) on tile 666. There are various reasons for such situa-
tion, mostly some tacit assumptions made while designing the alternative generators.
It can be inferred that most of the alternative generators assume that (i) there are no
large JPEG tiles (like backgrounds or page headers), (ii) tiles have minimum possible
color depth, (iii) there is no advantage in special treatment of tiles with odd dimen-
sions, (iv) all tiles sizes are small (icons, buttons), (v) there is no advantage in parallel
communication.

A consequence of the first four assumptions is that big savings that could have been
made by optimizing big images for color depth, alternative compression, geometric
layout are not realized. Still, some of the above assumptions may be considered rea-
sonable in certain applications and our evaluation may be deemed unfair. Therefore,
to make the conditions of the comparison more compatible with the above assumptions
and easier for the alternative generators we limited (only for them) the set of the tiles
subjected to sprite construction to the tiles of file size below 10kB. As a result each tile
set has been split into a number of tiles which have not been combined into a sprite
and a set of tiles which have been. The obtained set of files, i.e. a sprite and a set of un-
touched tiles, has been treated as an output tile set S and the objective function (2) has
been calculated in the same way as in the Spritepack. In this experiment Spritepack
still operated on the whole data sets comprising all the tiles and produced as many
sprites as it found effective.

The results of this series of experiments are collected in Table XIII. The four alter-
native sprite generators have been compared in two criteria: objective function (2) and
sprite file size. Since the tests have been done on a set of 32 instances, three statistics
are reported: minimum, median and maximum values in the population. These three
measures are given in % relative to the results provided by Spritepack. It can be seen
that the four alternative generators on average build solutions worse than Spritepack
by roughly 30% with respect to the objective function (2) and 40% with respect to file
sizes. There has been only one instance phpfusion skys when the alternative genera-
tors have constructed a solution with smaller overall file size. In this case Spritepack
included a JPEG tile with chroma subsampling into a PNG sprite. Since Spritepack is
not optimizing sprite size, but the objective function (2), it is not surprising that some
other method performs better on the sprite size criterion.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:30 Jakub Marszałkowski et al.

Table XIV. Sprites in end-to-end test of sprite generators.

Instance input shoebox Spritepack
name files size [B] sprites size [B] sprites size [B]
magneto hardwood 9 373610 1 482828 3 294128
modx ecolife 10 50947 1 366663 3 48891
mojoportal thehobbit 39 218993 1 726364 7 154486
oscommerce pets 203 1201692 1 1683872 6 673785

6.4. End-to-End Evaluation
The end-to-end tests were conducted to verify in a real setting the validity of using
multiple sprites, our communication performance model and objective function (2), to
evaluate the advantages of applying sprites in general and Spritepack in particular.
Furthermore, we compared Spritepack and shoebox generator performance. Shoebox
has been selected as an alternative generator because in the preceding tests it demon-
strated high reliability and solution quality.

In the experiment, the times of downloading all the tiles separately, as a single sprite
constructed by shoebox, and as the sprites constructed by Spritepack were measured
on the clients’ side and reported back to the server. For this purpose a similar script as
mentioned in Section 3.2 has been designed and inserted into a web page analyzed in
Section 3.2. By viewing the page users downloaded the tiles in the above three alter-
native ways consecutively: first all of them separately, next as a single shoebox sprite,
finally as a set of Spritepack sprites. Note that in this experimental setup the same
communication performance parameters were experienced as had been measured in
Section 3.2 and had been applied to build sprites by Spritepack. Detailed parameters
of the test instances are shown in Table XIV. The instances were chosen to repre-
sent a spectrum of possible situations: from modx ecolife tile set of size smaller than
50kB to oscommerce pets with 203 tiles and over 1.1MB total size. It can be seen that
Spritepack, by using a few sprites, was able to reduce the total size of transferred data.
Shoebox, with single sprites, achieves much bigger file sizes, which is in line with the
results reported in the previous section.

The results of time measurements are collected in Table XV. For oscommerce pets,
the biggest tile set with over 203 tiles, 2274 measurements were collected. For
the remaining tile sets the number of measurements exceeded 4000 and, e.g., for
modx ecolife 5057 samples were collected. The second and fifth columns in Table XV
(’input’) represent all the tiles sent independently, i.e. not sprited. It can be seen that
using a single sprite, as in shoebox, may halve the download time. Yet, such reductions
not always materialize because in some cases one sprite is not as effective in keeping
small file size as Spritepack or even not spriting at all. Despite using a few sprites,
which incur additional interactions with the server, Spritepack was able to reduce the
download time of tiles sent individually by a factor of 2.5-4. In absolute terms it was
from approx. 350ms to 2.4s (medians of differences) while the reduction from shoebox
single sprite download time was 140-800ms. It can be concluded that judiciously cho-
sen multiple sprites are not an obstacle to short download times. Overall, it can be
concluded that Spritepack fares very well compared to the alternative generators.

Finally, let us comment on the validity of objective (2) as a model of the download
time. The coefficient of correlation between the medians of download times and the
objective function (2) was 0.952 and its p-value was below 2E-06. Though these results
should be taken with caution, because of big SIQRs in Table XV, function (2) can be
considered an effective guide in sprite optimization process.

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:31

Table XV. Time results of the end-to-end evaluation in real world setting.

Instance medians [ms] SIQR [ms]
name input shoebox Spritepack input shoebox Spritepack
magneto hardwood 1723 764 574 1597 441 330
modx ecolife 685 727 244 1502 427 119
mojoportal thehobbit 776 954 302 456 539 204
oscommerce pets 3653 1831 931 1453 872 537

7. CONCLUSIONS
In this paper the problem of effective construction of CSS-sprites for web applications
has been considered. This problem poses a number of theoretical and practical chal-
lenges. On the theoretical side it is a matter of constructing effective heuristics when
evaluation of one solution is time consuming. It is also difficult to grasp in a tractable
way complexity of the network communication performance. On the practical side it
is a matter of, e.g., tuning the algorithms for particular tile datasets, choosing image
compression setting, obtaining network performance indicators, finding a good trade-
off between solution quality and processing time. We have proposed and implemented
in Spritepack an approach which significantly extends current methods of sprite con-
struction. A typical approach in sprite packing is to take all small images building
page layout and combine them into one CSS-sprite. Our approach allows to take all
static images, including the ones normally not considered for spriting, and let the
algorithm decide how to combine them on the basis of communication performance.
Consequently, the overall number of web interactions for one page can be reduced. As
the key ingredients of Spritepack we consider: (i) geometric packing method which is a
fast hyperheuristic operating on low-level geometric packing algorithms, (ii) verifying
many options for effective image compression, (iii) constructing many sprites for bet-
ter file size and faster network transfer. Spritepack performance has been compared
against alternative solutions on a set of benchmark instances. Though Spritepack is
not constructing guaranteed optimum sprites, because it is a heuristic for an NP-hard
problem, it can be concluded that our method builds quality sprites in reasonable time
and compares well with the alternative methods. Spritepack source code is available
at [Marszałkowski et al. 2015].

It seems technically feasible to improve Spritepack, e.g., by more extensive combi-
natorial search in the stage of merging with image compression or by verifying alter-
native compression strategies in this stage. Such a step would allow for more effective
discovery of tile combinations and for avoiding singular bad cases. However, there is a
trade-off between solution quality and processing time. The area of image compression
is constantly evolving and thus, new algorithms may be tested in the merging with im-
age compression or in the postprocessing steps. Spritepack has been constructed as a
research tool, not an industry-grade product. Hence, the CSS stylesheets produced by
Spritepack may be extended by an automatic analysis and update of the existing web
pages. Future technologies such as the upcoming HTTP 2.0 [HTTPbis Working Group
2015] or growing popularity of SVG encoding may change the context of sprite packing.
Nevertheless, it does not seem that these new technologies will make Spritepack irrel-
evant and the techniques introduced here can be adapted to the new circumstances.

References
ARC Project. 2013. Survey on two-dimensional packing. http://cgi.csc.liv.ac.uk/∼epa/survey.pdf. (2013).
Jacek Błażewicz and Jedrzej Musiał. 2010. E-commerce evaluation-multi-item internet shopping, optimiza-

tion and heuristic algorithms. In Operations Research Proceedings, B. Hu et al (Ed.). Springer-Verlag,
Berlin Heidelberg, 149–154.

Thomas Boutell, Pierre Joye, and PHP.net. 2013. GD graphics library. http://libgd.bitbucket.org/. (2013).

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:32 Jakub Marszałkowski et al.

Kristian Bredies and Martin Holler. 2012. A total variation-based JPEG decompression model. SIAM Jour-
nal on Imaging Sciences 5, 1 (2012), 366–393.

Konstantin Chakhlevitch and Peter Cowling. 2008. Hyperheuristics: Recent Developments. In Adaptive and
Multilevel Metaheuristics, C. Cotta et al (Ed.). Studies in Computational Intelligence, Vol. 136. Springer-
Verlag, Berlin Heidelberg, 3–29.

Bernard Chazelle. 1983. The bottom-left bin-packing heuristic: An efficient implementation. IEEE Trans.
Comput. 32, 8 (1983), 697–707.

Tung-Chieh Chen and Yao-Wen Chang. 2006. Modern floorplanning based on B*-tree and fast simulated
annealing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25 (2006),
637–650.

Sergey Chikuyonok. 2009a. Clever JPEG Optimization Techniques. http://www.smashingmagazine.com/
2009/07/01/clever-jpeg-optimization-techniques/. (2009).

Sergey Chikuyonok. 2009b. Clever PNG Optimization Techniques. http://www.smashingmagazine.com/2009/
07/15/clever-png-optimization-techniques/. (2009).

N. Christofides and C. Whitlock. 1977. An algorithm for two-dimensional cutting problems. Operations Re-
search 25, 1 (1977), 30–44.

CompuServe Inc. 1990. Graphics Interchange Format. http://www.w3.org/Graphics/GIF/spec-gif89a.txt.
(1990).

Andy Davies, Gregor Fabritius, Neil Jedrzejewski, Alessandro Lenzen, Claus Meteling, André Roaldseth,
Christian Schäfer, and Yoav Weiss. 2014. Adept - the adaptive JPG Compressor. https://github.com/
technopagan/adept-jpg-compressor/. (2014).

Maciej Drozdowski and Jakub Marszałkowski. 2014. On the Complexity of Sprite Packing. Technical report.
RA-07/2014, Institute of Computing Science, Poznań University of Technology.

Michael Eckert and Andrew Bradley. 1998. Perceptual quality metrics applied to still image compression.
Signal Processing 70 (1998), 177–200.

P.C. Gilmore and R.E. Gomory. 1965. Multistage cutting stock problems of two and more dimensions. Oper-
ations Research 13, 1 (1965), 94–120.

Jake Gordon. 2011. Binary Tree Bin Packing Algorithm. http://codeincomplete.com/posts/2011/5/7/bin
packing/. (2011).

Pei-Ning Guo, Toshihiko Takahashi, Chung-Kuan Cheng, and Takeshi Yoshimura. 2001. Floorplanning Us-
ing a Tree Representation. IEEE Transaction On Computer-Aided Design of Integrated Circuits And
Systems 20, 2 (2001), 281–289.

HTTPbis Working Group. 2015. Hypertext Transfer Protocol version 2. https://tools.ietf.org/html/
draft-ietf-httpbis-http2-17. (2015).

Eric Huang and Richard E. Korf. 2009. New improvements in optimal rectangle packing. In Proceedings of
the 21st International Jont Conference on Artificial Intelligence. IJCAI’09, 511–516.

Impulse Adventure. 2007. What is an Optimized JPEG? http://www.impulseadventure.com/photo/
optimized-jpeg.html. (2007).

Independent JPEG Group. 2012. Jpegtran. http://jpegclub.org/jpegtran/. (2012).
International Telecommunication Union. 1993. Recommendation T.81: Information technology - digital com-

pression and coding of continuous-tone still images - requirements and guidelines. http://www.w3.org/
Graphics/JPEG/itu-t81.pdf. (1993).

Myeongjae Jeon, Youngjae Kim, Jeaho Hwang, Joonwon Lee, and Euiseong Seo. 2012. Workload Charac-
terization and Performance Implications of Large-Scale Blog Servers. ACM Transactions on the Web
(TWEB) 6, 4 (2012), 16.

Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Complexity of Computer Computa-
tions, R. E. Miller J. W. Thatcher (Ed.). Plenum Press, New York, 85–103.

Richard E. Korf. 2003. Optimal rectangle packing: Initial results. In Proceedings of the Thirteenth Interna-
tional Conference on Automated Planning and Scheduling ICAPS’03. American Association for Artificial
Intelligence, Palo Alto, USA, 287–295.

Richard E. Korf and Eric Huang. 2012. Optimal rectangle packing: An absolute placement approach. Journal
of Artificial Intelligence Research 46 (2012), 47–87.

Richard E. Korf, Michael D. Moffitt, and Martha E. Pollack. 2010. Optimal rectangle packing. Annals of
Operations Research 179, 1 (2010), 261–295.

Andrea Lodi, Silvano Martello, and Michele Monaci. 2002. Two-dimensional packing problems: A survey.
European Journal of Operational Research 141, 2 (2002), 241–252.

Cédric Louvrier. 2013. Optimisation Web (images, performance). http://css-ig.net/. (2013).

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

A Challenge of CSS-Sprite Packing XXXX:33

Jakub Marszałkowski and Maciej Drozdowski. 2013. Optimization of column width in website layout for
advertisement fit. European Journal of Operational Research 226, 3 (2013), 592–601.

Jakub Marszałkowski, Jedrzej M. Marszałkowski, and Maciej Drozdowski. 2014. Empirical study of load
time factor in search engine ranking. Journal of Web Engineering 13, 1&2 (2014), 114–128.

Jakub Marszałkowski, Jan Mizgajski, Dariusz Mokwa, and Maciej Drozdowski. 2015. Spritepack resources.
http://www.cs.put.poznan.pl/mdrozdowski/spritepack/. (2015).

Larry Masinter. 1998. RFC 2397: The ”data” URL scheme. https://www.ietf.org/rfc/rfc2397.txt. (1998).
Robert McNaughton. 1959. Scheduling with deadlines and loss functions. Management Science 6, 1 (1959),

1–12.
Mozilla Co. 2014. Mozilla JPEG Encoder Project. https://github.com/mozilla/mozjpeg/. (2014).
Nthabiseng Ntene and Jan H. van Vuuren. 2009. A survey and comparison of guillotine heuristics for the

2D oriented offline strip packing problem. Discrete Optim 6, 2 (2009), 174–188.
Nuclex Framework. 2009. Rectangle Packing. http://nuclexframework.codeplex.com/wikipage?title=

Rectangle. (2009).
Matt Perdeck. 2011. Fast Optimizing Rectangle Packing Algorithm for Building CSS Sprites. http://www.

codeproject.com/Articles/210979/Fast-optimizing-rectangle-packing-algorithm-for-bu. (2011).
Irina Popovici and Wm. Douglas Withers. 2007. Locating Edges and Removing Ringing Artifacts in JPEG

Images by Frequency-Domain Analysis. IEEE Transactions on Image Processing 16, 5 (2007), 1470–
1474.

Glenn Randers-Pehrson and Thomas Boutell. 1999. PNG (Portable Network Graphics) Specification. http:
//www.libpng.org/pub/png/spec/1.2/PNG-Contents.html. (1999).

Dave Shea. 2004. CSS sprites: Image slicing’s kiss of death. http://www.alistapart.com/articles/sprites.
(2004).

Ken Silverman. 2013. Ken Silverman’s Utility Page. http://advsys.net/ken/utils.htm. (2013).
Lindsey Simon and Steve Souders et al. 2015. Browserscope. http://www.browserscope.org/?category=

network&v=1. (2015).
Kyle Simpson. 2015. Obsessions: HTTP Request Reduction. http://blog.getify.com/

obsessions-http-request-reduction/. (2015).
Petr Stanı́ček. 2003. CSS Technique: Fast Rollovers Without Preload. http://wellstyled.com/css-nopreload-

rollovers.html. (2003).
Stoyan Stefanov. 2008. Image Optimization, Part 3: Four Steps to File Size Reduction. http://yuiblog.com/

blog/2008/11/14/imageopt-3/. (2008).
A. Steinberg. 1997. A strip-packing algorithm with absolute performance bound. SIAM J. Comput. 26, 2

(1997), 401–409.
Pedro Velho, Lucas Mello Schnorr, Henri Casanova, and Arnaud Legrand. 2013. On the validity of flow-level

TCP network models for grid and cloud simulations. ACM Transactions on Modeling and Computer
Simulation 23, 4 (2013), 23.

Gregory K. Wallace. 1991. The JPEG Still Picture Compression Standard. Commun. ACM 34, 4 (1991),
30–44.

WebPageTest 2015. WebPageTest. http://www.webpagetest.org/. (2015).
Bruce D. Weinberg. 2000. Don’t keep your Internet customers waiting too long at the (virtual) front door.

Journal of Interactive Marketing 14, 1 (2000), 30–39.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on the Web, Vol. V, No. N, Article XXXX, Publication date: 2015.

