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Abstract

In the classical scheduling theory it is widely assumed that any task requires for its processing only one processor
at a time. In this paper the problem of deterministic scheduling of tasks requiring for their processing more than one
processor at a time, i.e., a constant set of dedicated processors, is analyzed. Schedule length is assumed to be a
performance measure. Tasks are assumed to be preemptable and independent. Low order polynomial algorithms for
simple cases of the problem are given. Then a method to solve the general version of the problem for a limited
number of processors is presented, while the case of an arbitrary number of processors is known to be NP-hard.
Finally, a version of the problem, where besides processors every task can also require additional resources, is
considered.

1. Introduction

One of assumptions commonly imposed in the classical scheduling theory is that a task can
be processed by only one processor at a time [5]. With the progress in technology and parallel
algorithm applications, however, this assumption is becoming not so evident. For instance, this
is the case for self-testing multi-microprocessor systems where one processor tests others or
diagnostic systems in which tested elements are simultaneously stimulated and their outputs
analyzed [7,13]. This is also the case in the fault-tolerant systems where multiple copies of the
same program are working simultaneously and the final decision is established by voting [10].
This approach may become useful with the development of new parallel algorithms and
corresponding future task systems.
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Optimal scheduling of tasks requiring more than one processor at a time improves perfor-
mance of a computer system. For example, reduces time consumed by tests performed
temporarily by a computer system, reduces the amount of memory necessary to hold intermedi-
ate data, reduces time wasted during waiting for synchronization between copies of the
program running on different processors. A deterministic approach (i.e. assuming knowledge of
some time parameters of a task set) is especially justified in real-time (or hard-real-time)
systems. We see that the examples discussed above are often performed in a real-time mode,
thus justifying the use of a deterministic model of performance. When analyzing such problems,
one tries to construct scheduling algorithms of the lowest possible time-complexity (low order
polynomial-time algorithms). However, it is also known for some time that not for all the
problems polynomial time algorithms exist. It is especially true for the NP-hard problems, for
which rather suboptimal algorithms must be designed (see [9] for the detailed treatment of the
subject). In the following we will analyze scheduling problems along these lines.

The problem of deterministic scheduling tasks requiring more than one processor at a time
has been studied in many publications. For the schedule length (C,,,,) performance measure
and tasks requiring constant numbers of identical processors it has been analyzed in [3]. A
uniform processor system has been analyzed in [4]. A more general model of multiprocessor
task system has been given in [8]. It has been assumed in [8] that a processing time of a task
depends on the number of processors processing it. Various subcases of the problem of
scheduling nonpreemptable tasks requiring a dedicated set of processors have been analyzed in
[1,13,14,2], the case of preemptable tasks being considered in [15]. In this paper, we extend the
above results by solving open questions concerning the case of preemptable tasks and dedicated

processors.
Before presenting the results, let us formulate the problem. We are given a set of tasks
T=(T,...,T,}, a set of processors #={P,, P,,...,P,} and a set of additional resources

Z ={R,} available in m, units. Tasks are independent and preemptable, i.e. each task can be
interrupted and restarted later at no cost. Each task requires for its processing a dedicated set
of processors and possibly a unit of resource R;. The set of independent tasks 7 is partitioned
into subsets according to the set of required processors. In particular, let 72 be the set of tasks
which require set D of processors. Task T;° € T? has processing time tP and requires set D of
processors. For the sake of simplicity, we define by t? = ZTieTDtiD the total time required by
all tasks which use the set of processors D. Thus, %3 is the total processing time required by
tasks which use processors P;, P,, P;. We denote additionally 7, tasks requiring additional
resources and the same set of processors, the sum of their execution times is denoted 7.
Please note that 77 includes in our notation also T,0.

The performance measure of the scheduling problem is schedule length C,,, =t + C*_,
where tZ is the total processing time of tasks requiring all processors.

To denote analyzed problems we will use an extended version of the scheme proposed by
Graham et al. [11] with later extensions [6,17]. In this notation the scheduling problem is
described by three fields. The first field describes the processor system. In this paper it will be
letter P optionally followed by some constant which denotes a number of processors. If there is
no constant after P, then the number of processors is not fixed by the formulation of the
problem but by the current instance of the problem. The second field describes a task system.
We will be using the word “pmtn” to denote that tasks are preemptable, the word “fix ; to
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denote multiple processor requirement of tasks such that task T, can be processed on exactly 1
subset of processors [17]. The optional symbol “p; =17 denotes that tasks are of equal length.
Presence of the symbol “respo7” denotes a requirement of additional resources of p types
each with o units available, required by tasks in the number of at most 7 units for each task.
The third field is the performance measure, in our case it is C, ..

The organization of the paper is as follows. Section 2 presents simple algorithms for the case
of two, three and four processors. Section 3 presents results for the general case of the
problem. In Section 4 usage of additional resources is considered.

2. Polynomial-time algorithms

In this paragraph the problem of scheduling preemptable tasks requiring a set of processors
simultaneously, in the case of a processor system consisting of two, three and four processors,
respectively, will be considered. Tasks do not require additional resources. Low order polyno-

mial time algorithms will be given.
2.1. P2| fix;,pmtn|C,,,,

Everything one can do in this case is to schedule tasks from 772 in any order at the
beginning (or at the end) of the schedule and tasks from 77, T2 in any order on appropriate
processors. This method is obviously optimal, since preemptions do not decrease the schedule

length.
2.2, P2\ fix omr| €,

Let us consider graph G(V, E), where V={T! T2 T3, T*? T%3 T2% and an edge is
joining two task types if they cannot be executed in parallel. We will name G(V, E) a
competition graph. There are four cliques in this graph. These are (we enumerate nodes only):
A={T! T4, T3, B=(T? T*? T%3), C=(T3, T, T%3), D={T*? T3 T23). The follow-
ing theorem reduces the problem of finding a schedule of minimum length to the analysis of the
cliques of graph G.

Theorem 1. The minimal length of the schedule for the problem P3| fix »pmin|C, .. is equal to
the greatest sum of processing times of any clique in graph G, i.e.,

* s
C’““"_J (Amgxco){ Lz ti}'
€1A,B,C, TiSGS
sSeJ

Proof. Obviously the schedule length cannot be smaller than this sum because tasks in any

clique cannot be executed in parallel.
Now, we are going to show that if the schedule length C}%, is a sum of processing times of
tasks in a certain clique in graph G, then the schedule is feasible also for tasks not included in

this clique.
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Fig. 1. A schedule corresponding to clique C.

Firstly, let us assume that clique C defined the schedule length. Then the resulting schedule
is presented in Fig. 1. This is a feasible schedule because t? <t — otherwise clique D would
be chosen for C% .. Also t"? + 2 <t"? + ¢t because clique B is not chosen and "2 + ¢/ <23
+17 because clique A is not chosen for C*_. Thus, tasks of types T?, T*2, T? can be

scheduled feasibly as in Fig. 1. The same reasoning applies to cliques A and B if we renumber
processors appropriately.

Secondly, let us assume that clique D was chosen. Then, the resulting schedule is presented
in Fig. 2. This schedule is feasible because t7? > ¢?, t#3 > ¢!, t"3 > ¢2 otherwise clique D would
not have been chosen. O

Following Theorem 1, one can solve optimally problem P3|fix ppmtn|C,_ . in O(n) time,

defining firstly an optimal length C};,, and then scheduling tasks as depicted in Fig. 1 or in Fig.
2.

2.3. P4| fix;,pmtn|C

max

Let us consider the competition graph for four processors. Since 75%%* cannot be executed
in parallel with any other task type, we have to schedule it at the beginning (or at the end) of

the schedule and we can exclude it from further analysis. Consider the competition graph
G(V, E) consisting of V={T', T? T3 T* T, T, 7% T2, 1% T3 T2 T12¢ T134 T234

and edges joining tasks that cannot be executed in parallel. There are twelve cliques in this
graph. These are (we enumerate nodes):

A= {TI, TIZ, T13, T14, T123’ T124, TI34}
B= {TZ, le, T23, T24, T123, T124, T234}
C= {T3, T13, T23, T34, T123, TI34, T234}
D= {T4, TI4’ T24, T34, T124, T134, T234},
E = {TIZ, TI3, T23, T123, T124, TI34, T234}
F= {TIZ, T14, T24, T123, T124, TI34’ T234}
G = {TI3, TI4, T34, T123, T124, T134, T234}
H= {T23, T24, T34, T123, T124, TI34, T234}
I= {TIZ, T13’ T14, T123, T124, T134, T234},
J= {le, T23, T24, T123, T124, TI34, T234},
K= {TI3, T23, T34, T123, T124, TI34, T234},
L = {T14, T24, T34, T123’ T124, TI34, T234}.
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Fig. 2. A schedule corresponding to clique D.
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Now, the scheduling problem reduces again to the analysis of the cliques in the competition
graph.

Theorem 2. The minimal length of the schedule for the problem P4| fix,,pmin|C.,,, is equal to the
greatest sum of processing times of any clique in graph G, i.e.,

B max { G } :
Je(ABCDEFGHIIKL | 52
SeJ

Proof. Note that there is only a limited set of task types that can be executed in parallel (cf.
Figs. 3-5). One can only schedule three-processor tasks with appropriate types of uni-processor
tasks; duo-processor tasks in appropriate pairs or with at most two appropriate uni-processor
tasks; finally, uni-processor tasks with different requirements can be scheduled in parallel. The
schedule length cannot be smaller than the weight of the above cliques (i.e., the sum of

execution times of tasks included in the clique).
Let us first analyze cliques A, B, C and D including uni-processor tasks. Assume A is the
clique with the greatest weight. Then, combining cliques A and E we can derive the inequality:

tI+t12+t13+t14+t123+t124+t134>t12+t13+t23+t123+t124+t134+t234
and from the above:

t] > t23 _ t14 + [234.
In a similar way we obtain, combining A with F, A with G and A with H, respectively, the
following set of inequalities:
1> 234 4 24 413,
1> 1234 4 34— 412,
t] > t234 T3 t34 _ t12 e t24 _ t13 g t23 _ t14
Combining clique A with cliques I till L we derive the inequalities:
t] > t234
tI > [234 4 t24 _ f13 g t23 _ t14,
t] > t234 + t23 . [14 + t34 _tIZ
(1> 234 4 p34 _p12 4 424 413
From the above eight inequalities we can conclude that T/ tasks cannot be fully executed when

assigned only in parallel with 727, Moreover, they cannot be executed fully neither with any
one duo-processor task type and T%>¢ nor with any pair of duo-processor tasks and 72%%%.
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Fig. 3. A schedule corresponding to clique A.

Finally, 7' will not be executed fully with all feasible duo-processor tasks and 7%%*. From this
we can conclude that tasks of type T/ must be executed as the last in the schedule. Other
uni-processor tasks cannot be executed after completion of 77, otherwise clique A would not
be maximal. Thus, the length of the schedule is equal to the sum of processing times of tasks
using processor P;. The optimal schedule looks like in Fig. 3. Note, that this reasoning applies

also to cliques B, C and D, respectively, if we renumber the processors.
Now, let us assume that one of cliques E, F, G or H is maximal. Without loss of generality we

may assume E to be the one. According to the above method one can combine cliques E and I,
E and J, E and K, E and L and obtain from this, respectively, a set of inequalities:

15> 14

t13 > t24

t12 > t34

t12 +t13 4 t23 > t14+ t24 £ t34.
From these inequalities one can conclude, that all the duo-processor tasks can be executed
feasibly during an execution of tasks of the types 772, T?3, T?? and the schedule can look like in
Fig. 4. No uni-processor task can be processed after the execution of the tasks of this clique,
otherwise E would not be maximal. This reasoning can be applied to cliques E, F, G and H,

respectively, if renumbering of processors is applied.
Finally, let one of the cliques I through L be maximal. Without loss of generality we may

assume [ to be the one. In the same way combining I and E, I and F, I and G, I and H we
obtain:

> £33,

B> t24,

12 > ¢34,

t12 4 t13 +t14 > t23 s t24 | t34.
The same arguments as for clique E can be applied. The schedule is presented in Fig. 5. O

Again, let us sum up this section with the observation that the schedule for each of the above
cases can be built in time O(n). This is a result of the fact that the optimal schedules have a

Py T [1P% 24 2 LRl 7 Rk

P, 2V 123 23 o l’///////
X 1234 —— AT 3

3 REVI S T34 % L

R L) e B AU

Fig. 4. A schedule corresponding to clique E.
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Fig. 5. A schedule corresponding to clique I.

fixed structure (cf. Figs. 3 through 5) and each task is taken into account during the scheduling
process either only a limited number of times if it is interrupted or only once otherwise.

3. A general case

In this paragraph a general case of the problem will be considered. It is known [15] that the
problem is NP-hard for the case of an arbitrary number of processors m and it will be shown
that the problem is solvable in polynomial time if m is limited.

Theorem 3. [15] P| fix,,pmtn,p; = 1|C,,,, is NP-hard.

We would like to comment this theorem. From the computational complexity point of view,
problem P [fix;,pmtn,p; =1 |C o is (for m not fixed) computationally difficult as is the
problem P [fix;|C,,,, where nonpreemptable tasks are considered [2]. To demonstrate the
difference between those problems, note that in the nonpreemptable case any permutation of
feasible sets could change the schedule length C,_,., while in the preemptive one, any
permutation of feasible sets does not change C,,,. One can see that the complexity of both
problems follows (among others) from a simultaneous competition of tasks for the processors
(which directs us to coloring problems).

This complexity result is obviously valid for P |fix;,pmtn|C,, P |fix ;,pmtn,res111|C,,,, and
then for P [fix;,pmtn,res... |Cp,,. It follows that none of these problems can be solved in
polynomial time. However, if the number of processors m in the system is limited (fixed), the
problem can be solved via linear programming approach. ‘

Let us consider now the case in which either m — the number of processors — is limited or
the set of possible sets of processors required by tasks has a limited cardinality.

By a processor feasible set we mean here a set of tasks which can be processed simultane-
ously. Let there be Z different processor feasible sets with processing time x; for set i. Let QjD
be a set of indices of feasible sets containing Y}D. Now, our problem can be formulated as a

linear programming problem as follows:

z
min ) x,, (1)
i=1
subject to
in=tjD,j=l...n, (2
ieQf

x,20,i=1...Z. 3)
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For m fixed, Z is limited and is O(n™). For a fixed cardinality of the set of possible sets of
processors required by tasks, Z is also limited. Since linear programming problems can be
solved in the time bounded by polynomial in the number of variables and constraints, then our
problem can be solved in polynomial time, too (cf. [16] for a discussion of the two-phase linear
programming approach to the resource-constrained scheduling).

In the same way one can solve Pm |fix ;,pmtn,res. .. | C,, taking into account also resources
during generation of feasible sets.

4. Scheduling on dedicated processors with additional resources

In this section we consider the case in which a task may require (besides a set of processors)
one unit of an additional resource (eg. communication medium) available in »z, units.

We have to consider different situations:

(1) m, = 1: in this case it is possible to represent a problem as if the additional resource was
a dedicated processor. The problem Pk |fix;,pmtn,res111|C_, is then equivalent to P(k +
D) |fix;,pmtn | C,,,,. For example P4 |fix;,pmtn |C,,, is equivalent to P3|fix,,pmtn,res111|C,,,.

To consider other subcases, let us denote by g the maximum size of a set of tasks which can
be executed in parallel while not taking into account additional resources.

(2) m, > q: In this case all resource requirements can be easily satisfied and a schedule can
be built without considering additional resources.

(3) m, <q: In this case we may have a set of tasks, feasible with respect to the processor
usage, which are not feasible with respect to resource usage. This is possible because the
maximum number of tasks that can be executed in parallel on the dedicated processors is given
by g. So, we could have g tasks all requiring the use of additional resource and since m, <gq,
conflicts on the use of resource would arise. A simple case here is m; =g — 1. If m, =q — 1,
there is only a limited number of feasible sets requiring more resources than available. In this
case a schedule feasible with respect to the processors is also feasible with respect to resources
if there is at least one type of tasks included in maximal feasible set for which all the tasks
requiring an additional resource can be executed fully outside the maximal feasible set. In
other words, if there is enough time in the schedule feasible with respect to the processors to
accommodate all the tasks requiring the resource from at least one type of tasks included in the
maximal feasible set. Following this way of reasoning we will analyze the problem
P3 Ifixj,pmtn,resl21 | Crax- In this case m; =2 and g = 3. Thus, m;=q — 1 and the schedule
feasible with respect to the processors is also feasible with respect to the processors if one of
the types of the uni-processor tasks requiring an additional resource can be fully scheduled
outside the feasible set {T}{, T3, T3}. Otherwise the schedule must be longer. The following
theorem summarizes our observations for the problem.

Theorem 4. The minimal length of a schedule for P3| fix;,pmtn,resi21|C,,, is equal to

Coax = 2 17 +max{0, max {4}, min {max(A‘}+ A%, Alﬁ)} ,
TSes 1<i<3 i,j,k={1,2,3}
SieD i#j+k
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Fig. 6. A schedule in which two sets of tasks are executed sequentially.

where D is a clique defined in Theorem 1, A, =t'—t%, A,=t?—1t" A;=t3—1t" and

AR =t} — P AR =12 — 1%, AR =1 — 1"

Proof. Let us note that for the case of tasks requiring no additional resources, the schedule
length is equal to that given in Theorem 1.

The set F = {T}, TZ, T3} can be scheduled feasibly with respect to the processor set but it is
the only one which is not feasible with respect to the resources. If at least one AX <0
(i =1...3), then tasks requiring resources can be executed fully in the schedule feasible with
respect to processors. Since AR < A, (because T; C TY), then in this case the schedule length is
the same as in Theorem 1.

Finally, if tasks requiring resources cannot be fully executed with duo-processor tasks, it is
necessary to execute them in such a way that no more than two units of the resource are
simultaneously required. This means that two sets of tasks requiring the resource have to be
executed sequentially. There are three such sequences. Such a group of tasks can be executed
in time max(AR + A%, AR). This case is presented in Fig. 6. The case for which Af + A} is
maximal can also be expressed in terms of graph theory. One can build a competition graph
with nodes V ={T5, T?, T?, AR AR A%}, where AR, A%, AF represent tasks (or parts of
tasks) which cannot be executed together with 723, T3, T2  respectively. Because AR, AR A%
cannot be scheduled all in parallel, then there is a pair AR, Af connected by an edge. This
leads to a conclusion that such a competition graph must have clique with nodes
(T2, T4, T, A%, Af}. O

Using the above result, one can build in O(z) time an optimal schedule in which uni-processor
tasks are scheduled in parallel with appropriate duo-processor tasks and uni-processor tasks
requiring an additional resource are given priority over tasks not requiring it.

Other subcases of the problem can be solved optimally following the lines the general case of
the problem without additional resources was solved.

5. Conclusions

In this paper, low order polynomial algorithms for deterministic scheduling of preemptable
independent tasks requiring for processing a set of processors simultaneously (from among a
set of three or four), have been presented. The general version of the problem is known to be
NP-hard but is solvable in polynomial time if the number of processors is limited. A simple
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algorithm for three processors and tasks requiring one unit of the additional resource is also

given.
Further research in this area may include an analysis of the problem for other performance

measures such as lateness (L ,,,) or flow time (F), or the case in which a task may be processed
(alternatively) by more than one set of processors simultaneously.
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