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Abstract—In this paper, we analyze processing divisible loads in systems with a memory hierarchy. Divisible loads are computations

that can be divided into parts of arbitrary sizes and these parts can be independently processed in a distributed system. The problem is

to partition the load so that the total processing time, including communications and computations, is the shortest possible. Earlier

works in the divisible load theory assumed distributed systems with a flat memory model. The dependence of the processing time on

the size of the assigned load was assumed to be linear. A new mathematical model relaxing the above two assumptions is proposed in

this article. We study distributed systems which have both the hierarchical memory model and a piecewise linear dependence of the

processing time on the size of the assigned load. Performance of such systems is modeled and evaluated. Finally, we compare the

efficiency of distributed processing divisible loads in multiinstallment and out-of-core modes. Multiinstallment processing consists in

sending multiple small chunks of the load to processors instead of a single chunk which needs external memory. It turns out that

multiinstallment is an advantageous strategy for reasonably selected load chunks sizes.

Index Terms—Divisible load theory, scheduling, performance evaluation, memory hierarchy, communication delays.

�

1 INTRODUCTION

THE divisible load model applies to a class of distributed
applications allowing to divide computations into parts

of arbitrary sizes. The parts are processed in parallel by a set
of distributed computers. The sizes of the load parts must
be adjusted to the speeds of communication and computa-
tion, and possibly also other system parameters, to finish
processing in the shortest possible time. Examples of
divisible computations include search for patterns in text,
audio, graphical files, database processing, measurement
data processing, data retrieval systems, video on demand,
some linear algebra algorithms, simulation, and combina-
torial optimization algorithms [3], [8], [11], [15], [18]. For
example, a big file searched for patterns can be divided into
parts of arbitrary sizes, and these parts can be processed in
parallel.

A general scenario of distributed computations assumed
in the divisible load theory (DLT) is that, initially, some
volume V of the load resides on one processor called
originator,which sends chunks of the load to other processors.
The time of transferring x load units (e.g., bytes) is S þ Cx
time units (e.g., seconds). Computing x load units takes Ax
timeunits.After receiving themessage, aprocessor intercepts
its share of the load and immediately starts computing. The
rest of the load is relayed to the processor’s inactive
neighbors. This procedure is repeated until activating all
the used processors. After the completion of the computa-
tions, the results can be returned to the originator. Since
communication delays are inherent in the divisible load
model, the underlying interconnection topology is explicitly

analyzed. DLT started with a linear array of processors
architecture [10], other interconnection topologies such as
buses, trees, hypercubes, andmeshes,were included later [6],
[7], [13], [14]. In this paper, we consider a star interconnection
(also called a single level tree) which is topologically
equivalent to a bus. Extensive surveys of DLT can be found
in [4], [6], [13].

In the earlier DLT literature, the processing time
dependence on the size of the load was linear. This is
justified in flat (nonhierarchical) memory systems. Though
core memory sizes grew rapidly over the years, the memory
size limitations are an important factor in high-performance
computing. Under DLT assumptions, memory limitations
have been considered first in [19]. A fast heuristic method
has been proposed which constructs load distributions not
exceeding the given memory limits. Later, a more general
method with guaranteed optimality has been proposed in
[16]. In both [19] and [16], it was assumed that memory
limits are restrictive, i.e., assigning load beyond the
memory limit is forbidden, and results in an infeasible
solution. Yet, in most contemporary computer systems,
memory is hierarchical. The higher the certain level of
memory hierarchy is, the faster transmission can be
achieved. However, the higher the certain level of memory
hierarchy, the smaller the memory size. The lowest memory
levels are implemented either as virtual memory storing
memory pages on disks or as files directly accessed by the
application. Huge sizes of disk storage can be achieved at
relatively low costs using off-the-shelf components. Thus,
instead of strictly forbidding a load assignment exceeding
certain memory level size, it is more practicable to use the
next memory level with longer access time and, hence, a
smaller computing rate. We will call the applications using
external memory (i.e., disks) the out-of-core computations. In
Fig. 1, we demonstrate that using out-of-core memory
makes a big difference in the computation speed. A
dependence of the processing time of a simple search for
a pattern in a linear array on the array size is shown in Fig. 1.
Even for this simple application, with a predictable memory
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access pattern using more memory than available in the
core results in an increase of the execution time by at least
an order of magnitude.

There is a broad class of the out-of-core parallel
applications. These include data-intensive algorithms [21]
for processing information from large scientific experi-
ments, data mining, visualization [1], [12], and simulation,
often with the need to solve large linear algebra problems
[22]. Gaussian [17] is an example of a commercial package
using out-of-core memory. In [9], an environment for out-
of-core parallel applications has been proposed. Computa-
tional fluid dynamics and large linear algebra problems
have been used as benchmarks. The access to the major data
arrays was achieved by using indirect addressing that has
been known at the runtime only. It turned out that, by using
locality in the algorithm and dividing the arrays into small
sections that fit in the core memory a fourfold reduction of
the execution time has been obtained compared to the use
of virtual memory.

Thus, an alternative to the out-of-core processing is to
divide the load into many small chunks that fit into the
available core memory. The chunks are sent to processors in
an iterative manner. Hence, it is possible to perform fast
computations at the cost of additional communications. We
will call this way of computing a multiinstallment divisible
load processing. Multiinstallment processing has been
considered, e.g., in [5], [23]. In this work, we compare the
efficiency of the out-of-core with the efficiency of multi-
installment computations.

The original contribution of this paper can be summarized
in the followingway: TheDLT is extended by the inclusion of
hierarchical memory systems in its methodology. To the best
of our knowledge, this is the first attempt of modeling
nonlinear dependence of the processing time on the load size
in the DLT. Simple and tractable mathematical tools are used
to solve the proposed model. We believe that this is a good
compromise between precision and tractability in modeling

parallel applications. The performance of the data-intensive
applications and utilization of the computational resources
should benefit from the new method of determining the
optimum distribution of the computations in the systems
with hierarchical memory and communication delays.

The rest of this paper is organized as follows: In Section 2,
the problem of constructing optimum load distribution is
formulated in a mathematical form. In Section 3, the
influence of the system parameters on the performance is
studied. In Section 4, the performance of the out-of-core
computations is compared with that of the multiinstall-
ments computations. The notation used in this paper is
summarized in the Appendix.

2 MATHEMATICAL MODELS

In this section, we formulate mathematical models for
divisible load computations in a system with hierarchical
memory, and for multiinstallment computations. We will
use the word processor to denote a single processing
element with CPU, memory, disks, and network interface.

Let us start with the description of the communication
subsystem. We assume a star interconnection network. In
this topology, originator P0 is located in the center of the
star. Processors P1; . . . ; Pm can communicate only with the
originator. Only one communication can be executed at a
time. Thus, star topology is equivalent to a bus interconnec-
tion here. The load is sent to the processors in a single
communication. P1 receives the load first, P2 as the second
processor, etc. Pm receives its load as the last one. The
originator does not compute, but communicates only. This
assumption does not limit the generality of our considera-
tions because computations on the originator can be
represented as an additional processor. The time of
transferring x units of load to processor Pi is Si þ xCi.
Note that the communication time depends linearly on the
size of the message, but also includes fixed startup cost Si.
For the simplicity of the presentation, we assume that the
time of returning the results can be neglected. We do not
exclude applications which return some results; this
assumption is done for the sake of simplicity of mathema-
tical models. The process of returning the results can be
easily represented in the DLT, which was demonstrated
both theoretically in monographs [6], [13], and practically
by the applications [3], [8], [11], [15], [18].

The computations are performed by processors connected
to the hierarchical memory systems. The highest level is
constituted by processor registers. The lowest level is disk
storage. The memory sizes increase and transfer rates
decrease with the decreasing hierarchy level. Hence, the
processing timedependson the amountof allocatedmemory.
Processing time ti on processor Pi is a piecewise linear
function of the assigned load x: ti ¼ maxfAij1 þ xAij2g (cf.
Fig. 2), where Aij1; Aij2 are the coefficients of the linear
function describing the processing time on processorPi at the
jth hierarchy level. Note that Ai11 is the cost of starting
computations onprocessorPi. For practical reasons, only two
levels of memory hierarchy: core memory and virtual
memory (or other form of disk storage) are considered in
this paper. The reason for this simplification is that divisible
load model is well-suited for data parallel applications
processing large volumes of data. Therefore, high levels of
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Fig. 1. Processing time of a simple search for a pattern in a linear array
versus array size. In the legend, Wx denotes Windows version x, Lk2.4
denotes Linux with kernel version 2.4, SGIPC—SGI Power Challenge,
SGIPCXL—SGI Power Challenge XL, My denotes core memory size
y MB.



memory hierarchy, such as processor registers and caches,
are not able to hold a substantial part of the assigned load.
Due to the uniform and regular structure of divisible load
applications, memory access patterns are very predictable
and cache management algorithms make this memory level
transparent. The processor cache level of memory hierarchy
could be visible for the application if the memory access
patternwere random.However, to the best of our knowledge,
nodivisible loadprocessingproblemhasbeenpresentedwith
random memory access patterns. The simplification of the
model to only twomemory levels can be easily relaxed as we
explain in the further part of this section. We denote the
processing time on processor Pi as ti ¼ maxfAl

i1 + xAl
i2; A

h
i1 +

xAh
i2g, whereAl

i1; A
l
i2 are the coefficients of the linear function

describing the computing time in the core memory, and
Ah

i1; A
h
i2 for computingout-of-coreusingdisk storage.Thesize

of the load swpi beyond which the operating system starts
using the disk, and for which the above two functions are
equal, i.e., Al

i1 þ swpiA
l
i2 ¼ Ah

i1 þ swpiA
h
i2, will be called a

swap point of processor Pi.
Let us observe that the above piecewise linear depen-

dence of the processing time on the load size may also have
a different nature. Not only can the memory hierarchy be
modeled in this way, but also, referencing memory on
remote hosts or nonlinear dependence of the processing
time on the problem size can be dealt with in this way.
Hence, after approximating a nonlinear convex function of
the processing time by a piecewise linear convex function,
our method can be used to represent more complex DLT
applications.

We will formulate the problem of constructing optimum
distribution of the divisible load computations as a linear
program. Linear programming is a special case of mathe-
matical programming. It is used for modeling problems in
science and engineering [20]. Let us denote by �i the
amount of load assigned to processor Pi, and by Cmax the

completion time of processing. Our problem can be
formulated as a linear program:
minimize Cmax

subject to:

Xi
j¼1

ðSj þ �jCjÞ þ ti � Cmax i ¼ 1; . . . ;m ð1Þ

Al
i1 þ �iA

l
i2 � ti i ¼ 1; . . . ;m ð2Þ

Ah
i1 þ �iA

h
i2 � ti i ¼ 1; . . . ;m ð3ÞXm

i¼1

�i ¼ V ð4Þ

�i � 0 i ¼ 1; . . . ;m:

The above formulation has 2mþ 1 variables and 4mþ 1
constraints. On the left-hand side of inequality (1), commu-
nication time

Pi
j¼1ðSj þ �jCjÞ until activating Pi is added to

processing time ti onPi. Hence, inequality (1) guarantees that
all processors stop computing before the end of the schedule.
Inequalities (2) and (3) together, model a piecewise linear
processing time function of the assigned load. Observe that
(2) and (3) restrict processing time ti from below, but do not
bind it from above. Sufficiency of these two constraints is
guaranteedby the features of linearprogramming [20].As the
linear program constraints formulate a 2mþ 1-dimensional
convex polyhedron, and the objective function is a linear
function of the program variables (Cmax), the optimum
solution is a point in 2mþ 1-dimensional space located in an
extreme corner of the polyhedron. The constraints intersect-
ing in the optimum corner of the polyhedron are limiting the
optimumvalueof theobjective function, andare calledactive.
If one of the constraints (2), (3) is active for some i, then it is
satisfied with equality and ti is exactly equal to the piecewise
function expressing the processing time. If none of the
constraints (2), (3) is active for some i and both are satisfied
with inequality, then it means that processor Pi is idle for
some time after completing the computation phase. By
inequality (4), all the load is processed.

Note that formulations (1)-(4) can be augmented by
adding a constraint of the form �i � Bi to limit the total
memory usage on some processor Pi. Constraints analogous
to (2) and (3) can be added to represent additional memory
hierarchy levels. For the feasibility of this method, it is
necessary that the dependence of processing time on the
volume of load be a piecewise linear convex function. The
shape of the convex polyhedron and the location of the
optimum extreme corner depend on the numerical values of
the coefficients in constraints (1)-(4). Therefore, no closed
form expression of �i seems possible. Consequently,
general analytical solutions are hard to be expected.

Let us use an example to compare the above model

with the earlier DLT approach. Consider a homogeneous

system with two processors and computing time function

described by parameters: Al
11 ¼ Al

21 ¼ 1, Al
12 ¼ Al

22 ¼ 1,

Ah
11 ¼ Ah

21 ¼ �9, Ah
12 ¼ Ah

22 ¼ 10. Hence, the swap points

are at load size 10
9 , and core memory is approximately

10 times faster because
Ah

12

Al
12

¼ Ah
22

Al
22

¼ 10. The communication

transfer rate is C ¼ 1 and the startup time is S ¼ 1. The

load volume is V ¼ 2. By solving formulations (1)-(4), we
obtain a solution �1 ¼ 1:25; �2 ¼ 0:75; Cmax ¼ 5:75 and the
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Fig. 2. Memory hierarchy diagram and a piecewise linear dependence of

processing time on the size of the load.



schedule shown in Fig. 3a. If standard DLT methodology
were used, we would have to assume that the processing
time is a strictly linear function of the load. Thus,
computing x units of the load would take either xAl

12

(if we optimistically assume that only the core memory is
used) or xAh

12 (if computing takes place out-of-core only).
In the first case, the standard DLT theory [4], [6], [13]
gives solution �1 ¼ 5

3 ; �2 ¼ 1
3 ; Cmax � 4:333. However, the

real schedule length for this load distribution would be
approximately 10.333, due to the hierarchical structure of
the memory (see Fig. 3b). In the second case, the standard
DLT solution is �1 � 1:095; �2 � 0:905; Cmax � 13:048. Yet,
the real schedule length for this load distribution is
approximately 5.905 (see Fig. 3c). As it can be seen in
Fig. 3, neglecting memory hierarchy results in significant
load imbalance. The decisions made on the basis of the
average processing rates can be even worse in hetero-
geneous systems. Let us consider a two processor system
with processor P1 core memory size V and processor P2

core size 0. The computing speed on the second memory
level is equal for both processors. A decision made on the
basis of the speed at the second memory level splits the
load equally between the processors. The optimum,
however, is to give the majority of the load to P1.
Depending on the speed of P1 for the in-core computa-
tions the ratio of the optimum schedule length and the
length of the schedule based on average speed can be
very large.

Now, we shall formulate a simple algorithm for multi-
installment divisible load processing and a method for
adjusting its parameters. By the use of installments, we
want to exploit fast computing within the limits of the
available core memory, while keeping the communication
costs low. Let us assume that the multiinstallment algo-
rithm divides the whole volume V into equal chunks of size
�. The processors are assigned load repetitively in rounds,
i.e., in the manner P1; P2; . . . ; Pm; P1; . . . . The selection of the
optimum chunk size � is a nontrivial problem. Therefore,

we give bounds on reasonable � sizes and propose a
heuristic method indicating a potentially good value.

Chunk size � cannot exceed the swap point of any of the
processors, i.e., � � swpi for i ¼ 1; . . . ;m. Second, it cannot
be too small because too many messages would be used and
communication costs would dominate the processing time.
Let us calculate the minimum chunk size for which
multiinstallment processing is still better than the computa-
tions out-of-core. When the second memory level is used,
the load must be at least as big as m� swp. Thus, we may
assume that the processing time is dominated by the
computation time. A rough estimate of out-of-core proces-
sing rate for large volumes is

lim
V!1

Cmax

V
¼ 1Pm

i¼1
1
Ah

i2

;

where
Pm

i¼1
1
Ah

i2

is the total speed of all the processors. An

estimate of the processing time for multiinstallment proces-

singwith small load chunks and dominating communication

time is V
m� ð
Pm

i¼1 Si þ �
Pm

i¼1 CiÞ þAl
1i þ �Al

2i, where V
m� is the

number of communication rounds,
Pm

i¼1 Si þ �
Pm

i¼1 Ci is the

communication time per round, and Al
1i þ �Al

2i is the

computation time for the last chunk. Hence, an estimate of

the processing rate is

lim
V!1

Cmax

V
¼ 1

m�

Xm
i¼1

Si þ �
Xm
i¼1

Ci

 !
:

The multiinstallment mode is faster when its processing
rate is smaller than the one for the out-of-core mode:

1

m�

Xm
i¼1

Si þ �
Xm
i¼1

Ci

 !
<

1Pm
i¼1

1
Ah

i2

;

from which we get

� >

Pm
i¼1 Si

mPm

i¼1
1

Ah
i2

�
Pm

i¼1 Ci
:

Thus, chunk size � should be selected from the range

Pm
i¼1 Si

mPm

i¼1
1

Ah
i2

�
Pm

i¼1 Ci
;max

m

i¼1
fswpig

0
B@

1
CA:

For uniform computing systems, this expression can be
simplified to ð mS

Ah
2
�mC

; swpÞ, where swp is the swap point.
When � increases, the load imbalance may arise and

some processors may have to wait idle for the completion of
the computations on other processors. Furthermore, the
bigger �, the longer the processors must wait before starting
the computations. On the other hand, if � decreases, the
number of messages grows and communication overhead
increases. Hence, it can be expected that, for some instances,
of the system parameters an optimum value of � exists for
which the processing time is minimum. We propose a
heuristics to select �. The value of � should be such that a
processor is computing during the whole communication
round, while the originator is sending the load to the
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Fig. 3. Schedules for load distributions calculated assuming

(a) hierarchical model of the memory, (b) computing in the core memory

only, and (c) computing out-of-core only.



processors. This results in requirement Al
i1 + �Al

i2 �Pm
j¼1ðSj þ �CjÞ, for processor Pi. Taking into account all

processors:

� ¼ max
m

i¼1

Pm
j¼1 Sj �Al

i1

Al
i2 �

Pm
j¼1 Cj

( )
:

For a uniform computing system, the above formula
expressing � can be simplified to:

� ¼ mS �Al
1

Al
2 �mC

; ð5Þ

where Al
1; A

l
2 are parameters of the linear function of the

processing time in the core memory, and C; S are commu-

nication time parameters. Note that � can be calculated in

this way only if the numerator and the denominator are of

the same sign. In (5), the numerator is positive when

mS > Al
1, which means that a processor is able to start

computation within the duration of activating communica-

tion to all processors. If the numerator is negative, messages

arrive faster than the processors are able to process them,

and the load will accumulate in communication buffers.

Consequently, the numerator and the denominator must be

positive. Denominator Al
2 �mC is positive when

Al
2

m > C,

which means that the computing rate of all processors

together is greater than the communication rate or, in other

words, communication speed is greater than the total

computing speed of all processors. If the denominator is

negative, the total computing speed of processors is greater

than the communication speed and some idle times will

arise on some processors. The negative denominator, or the

fact that (5) expresses a value outside the admissible

interval introduced in the preceding paragraph, do not

limit the applicability of the multiinstallment strategy. It

means that chunk size � must be selected in a different way.

In practice, by selection of �, applications can be experi-

mentally tuned to obtain good performance.

3 PERFORMANCE MODELING

In this section, we shall present the results of modeling
dependence of a computing system performance on the
model parameters. Over 2,400 instances of the linear
programs were solved by lp_solve, a free linear pro-
gramming code [2].

Let us analyze the optimum distribution of the load
under various swap point values and speeds of the
processors. This dependence for two processors (m ¼ 2)
and load size V ¼ 2E8 is presented in Fig. 4. We assumed
that parameters of P1 are fixed to Al

11 ¼ 0; Al
12 ¼ 1E� 3,

Ah
11 ¼ �9E5, Ah

12 ¼ 1E� 2 (hence, swp1 ¼ 1E8). The para-
meters of speed and swap point of P2 were variable, except
for Al

21 ¼ 0. In Fig. 4, load �2 assigned to processor P2 is
presented on the vertical axis, on the horizontal axis the
ratio

Ah
22

Ah
12

¼ Al
22

Al
12

¼ � of the processor speeds is shown, various
values of the processor P2 swap points swp2

V are represented
by different curves. As we move to the right along the
horizontal axis, the speed of processor P2 decreases, and its
load also decreases. The curve for swp2

V ¼ 0 represents P2

using the second level of memory only (disk), while swp2
V ¼ 1

represents P2 able to hold all load V in the first level of
memory (core). As swap point swp2 increases, load size �2

also increases. Curves for swp2
V < 1 do not cross the curve

swp2
V ¼ 1 because, at the point of such intersection, the load
assigned to processor P2 is small enough to be held in the
core, i.e., �2 � swp2, and the real location of the swap point
of P2 is meaningless. Three intervals of processing rate ratio
� can be distinguished in Fig. 4. When � < 1E� 1, then P2

has the second memory level faster than the first memory
level of P1. In interval ½1E� 1; 1E0�, P2 is faster than P1, but
only when the core memory is used on P2. In the third
interval of � > 1, P2 is slower than P1, independently of the
memory level used. In these three intervals, �2 changes with
different speeds under � changes. This can be seen,
especially for swap points swp ¼ 0 and swp ¼ 1, for which
the curves are not smooth. When the two processors are
identical (swp2V ¼ 0:5; � ¼ 1), the distribution of the load is not
exactly equal because processor P1 receives the load first
and computes longer. It can be concluded that, even though
the mathematical model is linear, the optimum distribution
of the load changes nonlinearly with the growing difference
of the processors.

In the following part of this section, we shall consider

homogeneous computing systems only. Therefore, we

shall use a simplified notation, in which Al
1; A

l
2 are

parameters of the linear function of processing time for

the core memory, and Ah
1 ; A

h
2 for the out-of-core memory.

C; S are communication time parameters. Unless other-

wise specified, we considered a system with m ¼ 10

processors, Al
1 ¼ 0; Al

2 ¼ 1E� 3, swp ¼ 1E8,
Ah

2

Al
2

¼ 10, and

communication parameters C ¼ 1E� 6, S ¼ 1E� 3.

Fig. 5 demonstrates the dependence of processing time

Cmax on problem size V for various values of the ratio of

processing rates in core and out-of-core
Ah

2

Al
2

, and swap points

swp ¼ 1E8 or swp ¼ 1E11. As it can be predicted,
Ah

2

Al
2

has
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Fig. 4. Changes in the load partition for m ¼ 2 and various � ¼ Ah
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, and

swp2.



some influence on the processing time, when the second

memory level is used, which is the case for V > m� swp,

i.e., load size exceeding the total core memory size.
In Fig. 6, the dependence of the processing time on the

size of problem V for various computing speeds is shown.
The curves represent systems with different speeds. A
dotted reference line shows the communication time equal
to mS þ V C, which is a lower bound on the processing
time. In all cases, ratio

Ah
2

Al
2

of the processing rates in core and
out-of-core and swap points swp were fixed. It can be
observed that increasing speed beyond a certain level is not
profitable because communication becomes a bottleneck.
Note that for Al

2 ¼ 1E� 3, Al
2 ¼ 1E� 5, and Al

2 ¼ 1E� 7,
some points are missing in Fig. 6. It is the case when some
of the processors receive no load. This means that not all

m processors can be effectively used because computing on
less than m processors is shorter than activating all the
processors.

Dependence of the processing time on the size of
problem V for various communication speeds is shown in
Fig. 7. It can be observed that the processing time decreases
with C decreasing only up to a certain limit beyond which
the computing speed is the limiting factor. Not in all cases,
m ¼ 10 processors can be used here. When the commu-
nication speed is small C ¼ 1E� 2, all processors can be
used for load sizes V � 1E9. As the communication speed
increases (i.e., C is decreasing), the size of the problem for
which all processors can be used also decreases.

In Fig. 8, speedup for various processor numbers m and

problem sizes V is shown. The size of V ¼ 1 (e.g., byte),

certainly, is not practical, but it shows the behavior of the

model. As it can be seen, for problem sizes V ¼ 1, speedup

decreases all the time. It is so because the load is too small
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Fig. 5. Processing time versus V for various Ah
2=A

l
2 and swp.

Fig. 6. Processing time versus V for various Al
2 and fixed swp, Ah

2=A
l
2.

Fig. 7. Processing time versus V for various C and fixed swp, Ah
2=A

l
2.

Fig. 8. Speedup versus m for various V .



and one processor is able to perform all the computations

within the time of activating additional processors. The

additional processors receive no load and only unnecessary

communication cost is induced. The case of load size V ¼
1E2 is similar when the number of processors m exceeds 14.

For m � 14, speedup is growing which indicates some

profit from parallelism. For other problem sizes V , speedup

is growing. Both when the load size is smaller than the core

memory V � swp and when the problem size by far exceeds

the total core memory size V � m� swp, the speedup is

similar and close to linear. Therefore, lines for V ¼ 1E4,

V ¼ 1E8, V ¼ 1E14 overlap. When V � m� swp ¼ 1E9

superlinear speedup can be observed, because using m

processors allows for holding most of the load in the core

memory, while computing on one processor requires using

slower external memory. Fig. 8 shows speedup obtained on

the assumption that exactly m processors are activated by

an appropriate message even if some of them receive no

load to process. It has been observed that the number of

processors for which speedup achieved its maximum

corresponds to the maximum number of processors for

which all processors receive some load. More insight into

the behavior of the speedup is given by Fig. 9, which

presents speedup versus V for various m. It can be seen that

superlinear speedup is achieved for problem sizes V in

range ðswp;m� swp�. When the number of processors is too

large, speedup decreases with decreasing load V .

4 OUT-OF-CORE AND MULTIINSTALLMENT

LOAD PROCESSING

In this section,we compare twomodes of processingdivisible

loads: out-of-core computations which use external memory

with multiinstallment processing of small pieces of the load

on the first level of memory hierarchy, but at the cost of

additional communications.

We considered a homogeneous system with m ¼ 10
processors, communication rate C ¼ 9:99E� 5, communica-
tion startup time S ¼ 1E� 3, and computing time function
coefficients Al

1 ¼ 0; Al
2 ¼ 1E� 3, Ah

1 ¼ �9:9E6, and Ah
2 ¼

1E� 1 (hence, swp ¼ 1E8). We used (5) to calculate the load
chunk size � ¼ 1E4. The dependence of processing time
(Cmax) on problem size V is shown in Fig. 10. Note that both
axes are logarithmic and a small constant difference in this
figure can be a big difference in the absolute terms. The three
lines in Fig. 10 depict the processing time in the out-of-core
mode,multiinstallmentmodeusing � ¼ 1E4, andusing � ¼ 5.
For V < 1E4, multiinstallment with � ¼ 1E4 is the worst
because only one chunk of the load is sent and only one
processor works, while the other processors remain idle. For
V 2 ½1E4;m� swp�, the processing time increases slowly, in
the case of multiinstallments with � ¼ 1E4, because more
than one load chunk must be sent and additional processors
are activated. For load chunk � ¼ 5, processing time in
multiinstallment mode is shorter than with � ¼ 1E4 for loads
V smaller than approximately 1E5. It is also better than the
out-of-core computation when the second level of memory
comes into use. Multiinstallment with � ¼ 5 is worse than
distributing the load according to the linear program (1)-(4)
when the core memory is used. It is because the latter
distribution has only one communication per processor, and
perfect load balance resulting in simultaneous completion of
computationsonall processors.As it canbe seen inFig. 10, the
multiinstallmentmode of processing outperforms the out-of-
core computations even for the chunk sizes � smaller than the
one selected according to (5).

The predictions of our model are confirmed by the
computational experiments conducted on a cluster of m ¼ 3
Pentium III computers with 1Gbyte of the core memory.
The operating system was Red Hat Linux 6.2. The test
application was searching for a pattern in a binary file.
Communications were done on the basis of a socket library.
Fig. 11 shows processing time vs. V =m, for out-of-core
computations using virtual memory, and multi-installment
processing with chunk sizes 1E3, 1E4, 1E6, and 1E8. A
dotted line representing the linear part CV of the commu-
nication time has been added as a reference line. The
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Fig. 9. Speedup versus V for various m.

Fig. 10. Processing time versus V for multiinstallment and out-of-core

computations.



dashed reference line at the bottom is the computation time
on a single processor working offline. In the out-of-core
processing, the use of virtual memory is evident when the
load assigned to a processor exceeds the core memory size.
In multiinstallment mode, the processing time is even
worse than the out-of-core processing for � ¼ 1E3 because
communication overheads dominate. Increasing the chunk
size � reduces the total processing time, but only to the limit
of the communication time required to scatter the load.
Therefore, the lines for � ¼ 1E6 and � ¼ 1E8 overlap.

We shall conclude this section with an observation that
multiinstallment processing can outperform out-of-core
computations if the proper size of the load chunk is chosen.

5 CONCLUSIONS

In this work, we have proposed a new mathematical model
for distributed processing divisible loads. The model is
based on linear programming and is capable of represent-
ing piecewise linear convex processing time functions of the
assigned load. In particular, systems with memory hier-
archy can be represented in this way. The influence of the
model parameters on the performance of the computing
system has been studied. The efficiency of processing
divisible loads in multiinstallment and out-of-core modes
were compared. Multiinstallment processing appears to be
advantageous for reasonably selected load chunks sizes.

APPENDIX

NOTATION SUMMARY

Aij1 þ xAij2: computing time for load size x, on processor

Pi, memory level j in a heterogeneous system.

Al
i1 þ xAl

i2: computing time for load size x, on processor Pi,

core memory level in a heterogeneous system.

Ah
i1 þ xAh

i2: computing time for load size x, processor Pi,

out-of-core memory level in a heterogeneous system.

Al
1 þ xAl

2: computing time in core memory for a homo-

geneous system.

Ah
1 þ xAh

2 : out-of-core computing time for a homogeneous

system.

C: transfer rate in a homogeneous system.

Cj: transfer rate of the link to processor Pj in heterogeneous

system.

Cmax: schedule length.

�: size of the load chunk in multiinstallment processing.

m: number of processors.

S: communication startup time in a homogeneous system.

Sj: communication startup time of the link to processor Pj

in heterogeneous system.

swp: swap point in a homogeneous system.

swpj: swap point of processor Pj.

V : total size of the load.
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