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Abstract

The problem to be addressed here is one of scheduling multipro-
cessor tasks, i.e. tasks which may require more than one processor at
a time. This model is quite natural for many parallel applications. It
is, however, different than standard approach in the scheduling the-
ory. In tis paper, a low order polynomial-time preemptive scheduling
algorithm is proposed for tasks scheduled on uniform processors, when
schedule length is the performance measure. The results of computa-
tional experiments over the algorithm are reported.
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1 Introduction

Classical scheduling models assume that each task requires for its processing
one processor at a time |3, 6, 8]. It turns out, however, that in systems of mi-
croprocessors one often has tasks requiring several processors simultaneously
(e.g. [4, 19, 20| and lots of others). It is for instance the case of self-testing
multi-microprocessor systems in which one processor is used to test others
or in fault detection-systems in which test signals stimulate the elements
to be tested; then outputs are analyzed simultaneously [2, 9]. New parallel
algorithms and corresponding future task systems create another domain of
application for this kind of scheduling [13, 17]. It is not difficult to give exam-
ples of the computational problems from mathematics, physics, electronics
and computer graphics (e.g. computations on matrices) which can be easily
divided into subproblems solvable "almost'" independently in parallel. This
means that copies of the program solving the problem must communicate
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from time to time. No matter what kind of communication medium is used,
the full advantage of parallelism can only be taken if the copies are running
in parallel in the real time [12, 1]. Otherwise, one running module of the
program may wait for communication with a module which is temporarily
swapped out from the processor. In such a situation the speed of execution
depends mainly on the work of the scheduling algorithm swapping tasks on
processors [13, 12]. Hence, it seems desirable to run in the real time copies
of the program requiring more than one processor simultaneously.

In order to model task sets for the above applications, one can divide the
set of tasks T into subsets 7', T2, ..., T* with | T" |=n;,(: = 1,...,k) and
ny +ng+, ..., +n, = n. Bach task 77 requires exactly j arbitrary processors
simultaneously during a prespecified period t! of its processing. We assume
that tasks are independent and each processor can be assigned only one
task at a time. The objective is to find the shortest feasible schedule. This
model is useful both from theoretical and from practical point of view. For
one thing, it is often the case that it is difficult to change the number of
processors used by a task. This reflects, for example, the level of a scheduler
in the operating system. What is more, it enables deriving complexity results
valid also for more sophisticated models.

Our definition of task system follows [4]. A different definition of the task
system including the dependence of a processing time on a number of proces-
sors executing some particular task was given in [11] (the so-called Parallel
Task System - PTS). These two models are closely related and dependent
on each other. The model we consider here (so-called Multiprocessor Task
System - MTS) is a special case of PTS. NP-hardness results obtained for
MTS are automatically valid for PTS. In particular, in [11] it has been shown
that for nonpreemptive scheduling and for precedence constraints consisting
of chains MTS problem is strongly NP-hard. For independent tasks and
nonpreemptive scheduling the problem is strongly NP-hard for five proces-
sors ([11]). Polynomial-time algorithms for some special cases of MTS are
also known ([4]).

For the preemptive MTS and identical processors already some results
have been obtained, too. For independent multiprocessor task systems with
m fixed (m is the number of processors) the problem can be solved in poly-
nomial time using a linear programming formulation [4, 5|. While in general,
this problem is NP-hard [10]. If there are T -tasks and 7% -tasks in the
system only, the optimal schedule can be constructed in O(n) time [4]. A spe-
cial case of the preemptive MTS is scheduling on a hypercube of processors



[7, 18]. An O(m?*n?) algorithm was proposed in [18] to schedule preemptively
tasks requiring a number of processors which is a power of two.

In this paper, we extend the MTS model by considering a uniform k-pro-
cessor system. A system of uniform processors can be a model for a computer
system consisting of heterogenic processors or a system in which some proces-
sors have to do additional work "in the background" (e.g. passing a massage
in the node-to-node communication network). A k-processor system consists
of disjoint k-tuples of processors. All k processors in the same k-tuple have
the same speed sip41 =,...,= suq1)r ¢ = 0,1,...,m/k — 1. This assump-
tion is justified in practice, because of necessary synchronization of parts of
the same task running simultaneously. Thus, the slowest processor speed
is the speed of the whole tuple. We give a low order polynomial algorithm
for preemptive scheduling of the task sets 17, ...,T*, where for every pair
17,7, 5/1 € Z*. It is worth mentioning that this covers also the problem of
scheduling on the hypercube described in |7, 18], but the methods used here

are different.
Throughout this paper we will be denoting processing requirements of 7'1-

tasks by a vector of standard processing times I = [t1,t3, .-, 1), ]. Thus, the
time needed to process le on a processor of speed s; is t;/sl,j =1,2,...,n.
Similarly, tasks from sets T2,...,T* are characterized by vectors of stan-
dard processing times 52, e ,fk, and by requirements of 2,...,k processors,

respectively, at the same time by any task from the respective set. A real
processing time of task T; depends on a processing speed s; of the i-tuple
of processors assigned to the task, and it is equal to t:/s;. All tasks are
assumed to be preemptable, i.e. their processing may be interrupted at any
moment and restarted later (perhaps on a different processor) without addi-
tional costs. The objective is to find the shortest possible schedule, i.e. one
for which C,,,, = maXT;{C;} is minimal, where C} is a completion time of
task T;,] =1,...,n:1 = 1,... k.

The rest of the paper is organized as follows. Section 2 describes the
scheduling algorithm. In Section 3 results of computational experiments are
reported.

2 The Algorithm

In this section, the algorithm solving the problem of preemptive scheduling
independent multiprocessor tasks on uniform processors will be presented.



This algorithm solves a special case of the problem which has been proven
to be NP-hard in general ([10]). Restriction that we impose on the general
formulation requires that for every pair of task types 77.71", /i € Z+. This
let us formulate a low-order polynomial time algorithm. Such a restriction
is justified from the practical point of view because it covers also the case of
scheduling on hypercubes of processors. While scheduling on a hypercube,
which has a power of two processors, each task requires a sub-cube consisting
of a number of processors which is a power of two, too.

Now, we will describe the algorithm in the rough outline. First, a lower
bound on the schedule length is calculated. Then we schedule tasks starting
from tasks sets requiring the biggest number of processors and the longest
processing time within each task-type, and finishing with uni-processor tasks
(T') which are the shortest. In the course of scheduling we use a set of
rules guaranteeing preserving the biggest possible processing capacity for the
remaining tasks. It is possible, however, that a feasible schedule may not
exist within a lower bound. In such a case the schedule is lengthened by
some calculated time. Each step of the algorithm will be described in the
sequel.

We start by calculating a lower bound on the schedule length. Let all tasks
in each set be ordered according to the nonincreasing processing times (i.e.
Tji-l—l < T; fori=1,...,k j=1,...,n;— 1) and the processor set according
to nonincreasing processor speeds, respectively. Consider k relaxed versions
of the problem:

k) T*-tasks only and k-processor system consisting of m/k processors.

) 70—, ..., T'—,..., T"~tasks (I < ... < j < ... < k) each of which
is treated as one T'-type task,...,j/l T'-type tasks, ..., k/l T'-type
tasks, respectively, while the processor system consists of [-processors
the total number of which is m/I.

1) T'—, ... T*tasks treated as 1,...,k uni-processor tasks while the pro-
cessor set is Pr,..., P,.

The lower bound on the length of the schedule can be calculated for the
above relaxed versions of the problem according to the following formulae:

4



g 1tk anltk
C'(k) = max{maxi<gem/k s, emgi—

g
Z]= Z, 1 Sky

Tt DL
2

C'(1) = max{maxi<yem/i S T,

9 1 nyt. kg g
il 2 &

C(1) = max{maxi<g<m S Jim - 21,
g=1"7

Note, that each of the above formulae denotes that the longest task must
fit in the fastest processor, the two longest tasks must fit in the two fastest
processors etc. This follows standard approach for tasks requiring only one
processor at the time [14, 16]. Clearly, C' = max{C(1),...,C(k)} is a lower
bound on the schedule length. Let us denote by PC; = s,C a processing
capacity of processor P;.

The algorithm will use three rules (cf. [16]) which will be given below.
It will be applied first to schedule T%-tasks on m/k k-processors, then to
schedule T?-tasks on m/p p-processors (where p = max{/ : [ < k and 1" €
T1), and so forth until the uni-processor tasks. Within a certain task set,
rules 1,2, and 3 will be applied to the tasks scheduled according to the order
of nonincreasing standard processing times. At each stage of the algorithm,
the processors will be ordered according to nonincreasing values of PC; (note,
that initially this order coincides with the order of nonincreasing processing
speeds).

For the sake of simplicity of defining the three rules we will ignore actual
number of required processors and denote the task by T} and its processing
time by ¢;. Suppose we have to schedule T} and we are considering the last
P, for which PCy > t;.

If t; = PC; then apply Rule 1:

Rule 1: Schedule task 7; on the processor P in such a way that the
interval [0,C] is completely filled with 7. Set PC:=0 and renumber the
processor set according to nonincreasing processing capacities.

If PC; > t; > PCyy then apply Rule 2:

Rule 2: Calculate the time u such that T; is completely processed in
the intervals [0,u| on processor P; and [u, C'| on processor Py, respectively.
Combine processors P, and Py to a composite processor P, with PCy :=
PCy+ PCiyy — ;. Set PCi11:=0 and renumber the processor set according
to nonincreasing processing capacities.



When rules 1 and 2 can no longer be applied, then we are necessarily in
one of the following cases:

a) t; < PC; with either | = m or PCiyy = ... = PC,, = 0 (i.e., the
processing requirements of T; will not entirely fill the smallest positive
remaining capacity of a single processor);

b) PC; > t; > PCj;4; and no u (as in Rule 2) can be found. This case
can occur only if rule 3 has already been applied: processors are then
loaded in some time intervals in |0,C].

Then we apply the following:

Rule 3: Schedule task 7} and the remaining tasks in any order in the
remaining free processing intervals from left to right starting with processor
P, and use processor P, 1 <[, only if P,y is completely filled.

As C > C(k) we know that a feasible schedule for the set of T*-tasks
must exist. It remains to show that also 77, ..., T -tasks can be scheduled
in the remaining processing intervals and if not, that no feasible schedule for
the given problem instance with schedule length C' will exist.

From the calculation of C' we know that there is enough processing capac-
ity in the interval [0,C'] to schedule all the tasks on the given set of processors.
In case of infeasibility it might happen that the length of some task will pre-
vent the construction of a feasible schedule. To check this, we calculate the
processing capacities in the interval [0,C| for the processor system remain-
ing after scheduling the set of 7%, ..., T/-tasks. Let PCif be the remaining
processing capacity of an original or composite e-processor F; in the interval
[0,C] after the scheduling of all tasks from sets T%,...,T/. Remember that
these processors are ordered according to nonincreasing remaining processing
capacities. Let T be the next task type to be scheduled (after 7).

From [16] it is known that a feasible schedule for the set of T°-tasks exists
if and only if

m/je Ne
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and that we can construct it by applying rules 1-3 to the set of T'°-tasks using
the processor system resulting from the assignment of the T, ..., T'/-tasks.

Now, assume that no feasible schedule can be found in this way. First,
we will show that no other assignment of the set of 7%, ..., T/-tasks than the



one generated by rules 1-3 can achieve feasibility for the set of T-tasks. Let
pc{ be the remaining processing capacity of e-processor P; after any feasible
assignment of tasks from sets T%, ... T,

Theorem 1 Using rules 1-3 we can always guarantee that Y, PCY >
4 pc) for q=1,...,mje and f=k,...,1.

Proof. Using the above rules we schedule one by one the tasks from set
T*. Having selected the first task Tf, assume we are using rules 1 or 2. Let
[ be the index such that PC; > t’; 2 PCiyq. The composite processor has a
remaining processing capacity which satisfies PCLy < PC + PCryy — t’; <
PC;_y and no reordering of the processors is necessary. '

On the other hand, if we combine P; and P, (¢« < ¢) we will have
PC;+ PC, — tf < PCj since PC, < t’; Let r be the new index of the com-
posite processor after reordering the processor set. We will have 35 _, pef <
S, PCFfor z =4,....,r — 1 (and r > i). In general, P; or P, could be
any feasible composition of processors other than P and Py ;. Important
is that some PC}; has been used unnecessarily. For rule 3, the conclusion is
immediate.

After scheduling Tjk we have the problem to schedule nj — 1 T*-tasks
on m — 1 processors (Tjk was scheduled by applying rules 1 or 2) or on m
processors (Tjk was scheduled by applying Rule 3). For the next T*-task to
be scheduled the same argument applies. Induction over the number of tasks
proves that the theorem holds while scheduling tasks of one type (i.e. T%).
This means that after scheduling 7*-tasks the remaining processor system
has the biggest possible processing capacity.

The same arguments can be applied to the following types of tasks. Hence,
induction (the number of required processors is decreasing in the subsequent
task types) over the task types proves correctness of the theorem. O

From Theorem 1 we know that if the schedule is not feasible, then in-
feasibility could not have been avoided and the extending of the schedule
is inevitable. Infeasibility is a result of the fact that even though the pro-
cessor system contains sufficient total processing capacity but it is spread
over several processors rather than accumulated on one processor. In this
case inequalities (1) are not satisfied for [ tasks T°%,..., T, (I > 1). For

. T Now, we introduce

the sake of notation we denote these tasks T
a new term - dead processing capacity which is just the amount of process-

ing time by which inequalities (1) are violated. Dead processing capacities



for the tasks which cannot be scheduled feasibly can be calculated from the
equations:

J+i—=1 J4i—1 i—1
DPf= > t,— >, PCi+) DF; (2)
h=1 h=1 h=1
Note, that it is not necessary the case that T7*, ..., T* are consecutive tasks

of T, i.e. there can be additional tasks between T/ and T which could be
scheduled feasibly (for which (1) holds). In this case the following discussion
is also valid, but (2) should be appropriately modified (by changing range of
summation) to reflect this situation.

Now, a key question is by what amount of time the schedule should be
extended. A feasible schedule will exist if and only if inequalities (1) are satis-
fied. In such an extended schedule dead processing capacities will be reduced
to zero. After lengthening of the schedule only some processors will create

additional processing capacity usable for tasks T7*, ..., T*. Thus, in order
to calculate proper length of extension we have to know which processors will
take part in creating processing capacity for 77, ..., T7* after lengthening

the schedule. This information can be collected in the course of building a
partial schedule (i.e. the schedule for tasks preceding the infeasible ones).

First, let us describe the process of accumulating processing capacity
during scheduling of the tasks according to the above three rules. When a
task is scheduled according to Rule 2, the remaining capacity of a composite
processor is passed to subsequent tasks. Thus, the lengthening of a schedule
causes that the increase of processing capacity of all the processors forming
a composite processor will be passed to the subsequent tasks. Only if after
lengthening of the schedule the task occupies the whole f-processor (not
composite, but using original numbering) will not the above scheme work.
In this case, Rule 1 is applied and the processing capacity of a particular
f-processor disappears from the set of processing capacities. Hence, the
increase of the processing capacity of this f-processor is not passed to the
subsequent tasks.

Here, we will describe operations on a special data structure devised for
storing information which processors will take part in creating processing
capacity after lengthening the schedule. We start with a vector [1,...,m]
of indices of processors divided into m/k sub-vectors (sub-lists) containing
numbers of real processors forming k-processors.

Any time we schedule task T? according to Rule 1 on e-processor P we
have to join sub-vectors (lists) corresponding to P, and Py;. We do it in such
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Figure 1: Operation on the processor indices’ data structure for Rule 2.

a way that real processors form pairs: (Pu_iyet1, Pret1)s (Pu=t)et2, Pret2)s
ooy (Pre, Pugrye) (cf.Fig. 1) This can be done in a constant time if we op-
erate on lists (and/or each pair can be represented as a set). After such
an operation data structure with indices of real processors corresponding to
e-processor P, have two lists in parallel. This action is done due to the fact
that after eventual lengthening of the schedule T'? will be scheduled accord-
ing to Rule 2. If Py does not exist (P is the last e-processor) then we do
not change anything in the list of indices.

If Rule 2 is used to schedule any task we perform the same action as for
Rule 1 because it is equivalent to forming composite e-processor Pj.

When Rule 3 is applied then there are two cases in which we have two
different operations to perform:

a) 15 < PC{ with either [ = m/e or Ple-I—l =...=PCJI =0.

If Py does not exist (P, is the last e-processor and [ = m/e) we change
nothing in the processor indices data structure because no new composite
processor is formed. Otherwise, we have to join into "parallel" list, lists
representing Ple+1 = ... = PC/ due to the fact that after eventual length-
ening task 77 will benefit from additional processing capacity of all slower
Processors.

b) Ple—1 > 15> Ple and no u (as in Rule 2) can be found.

17 will be scheduled in the remaining free processing intervals from left
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Figure 2: Operation on the processor indices’ data structure after 77 is

scheduled and before scheduling 7.

to right starting with e-processor P, and ending on e-processor P_;. In
this case we join vectors representing P, and F;_; as for Rule 1 and Rule 2
because eventual lengthening of the schedule will give some gain of processing
capacity from both P, and P,_; to the task following 7.

When one task set, say 7", is scheduled and we turn to the next task type,
say T¢ we have to modify processor indices data structure (cf. Fig. 2). We
split f processor long vectors (lists) into e processor long lists (which number
is f/e). We do the same with "parallel" lists created during performing Rule
1 and Rule 2. In a word, we create f/e "parallel" lists of length e. Each
e processor long list represents real processors that have contribution in the
capacity of the particular e-processor. "Parallel" list means more than one
real processor has contributed in processing capacity of e-processor.

Let us denote by A¢ the set of processors indicated on the first position
(positions) of the list (possibly "parallel") associated with e-processor P;,
right before any T°-task is scheduled. In this moment we check (1) and
calculate (2) (if necessary).

Theorem 2 If there is no feasible schedule for the set of 1T°¢-tasks, i.e.
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DPf >0, then we have to lengthen our schedule by at least

g Dps
6 = max{ =1 :

1<g<I +g—1 S;
oS Dpenpteta S

¥ (3)

Proof. Consider any schedule of 7%, ..., T/ tasks which gives certain
dead processing capacities DPf. According to Theorem 1 there exists a
schedule constructed by the rules 1,2,3 for which dead processing capacity
is not larger than DPf. Let ¢ be the minimum amount of time by which
we have to lengthen the schedule to make it feasible. After lengthening the
schedule processing capacity of each original processor P; is PC! = PC;+ s;¢.
Thus, processing capacity of e-processor P; assigned as before lengthening to
process 17 is now

(PC) =PCl+e 3 s (4)
Pieu;,_ A
where Af is a set of processors contributing in processing capacity of e-proces-
sor P,. In this equation we assume that all e-processors preceding j will
participate in creating processing capacity for infeasible tasks as it is in Rule
2. We have to guarantee that 31" (PCYY > Yt s for g = 1,..., 1.
After substitution of the sum of (PC{)’ we have (from 4)

Jtg—1 Jtg—1
ZPC{— oot +e > s; >0forg=1,...,1 (5)
h=1 h=1

) Jtg—1
Feu, i A

and after substitution of the sums of PC/ and t¢ with DPf we have (from
2)
9
€ > s;—Y DPi>0forg=1,....1 (6)
PeutiTla; h=1
Thus, & > 6° = maxi<y<i{37e; DPF/ Y p ciito—t 4o Sif} is the minimal amount
- * h=1 h

of time by which we have to lengthen the schedule. a

After lengthening the schedule we again apply the same procedure to
the set of tasks. If the schedule is still infeasible we have to lengthen it
once more. This may only happen when the layout of tasks from 7%,..., T/
changes on the original processors preceding the ones on which T7*, ... T~
fall [5]. This can be a result of the fact that slower processors would have
processing capacity big enough to accommodate (as in Rule 1) whole tasks

11



which previously had to be executed partially on faster processors. What
is more, this situation may happen at most O(m?) times during the whole
execution of the algorithm because there can be at most m tasks scheduled
according to Rule 1 and (1) can be violated at most 2m — 1 times.

Theorem 3 After lengthening of the schedule by 6¢ calculated according to
Theorem 2, the new schedule is feasible for TY*, ... T when the real sets of
original processors participating in processing capacily of the e-processors on

which T¢*, ..., T7¢ fall are not proper subsets of UJTIAS forg=1,...,1.

Proof. Let us denote by B the set of the indices of the original proces-
sors which participate in processing capacity of e-processor F,. Note, that
the U;n:/fAi can differ from U;n:/fB,f because due to applying Rule 1, some
processors may disappear from U;n:/fB,f This means that it is possible that
excess of processing capacity of some processor(s) will not be passed for use
by subsequent tasks. The result is that the increase of processing capacity
caused on such a processor after lengthening the schedule is not usable for
the following tasks. This situation is different than the one we were expecting
after the extension and rescheduling. What is more, it is difficult to foresee
such cases before rescheduling. Hence, while modifying the processor indices
data structure this situation is never expected to happen.

Now, we have to distinguish between four cases:

1) Uj_ Af = Uy, B;

2) Ul, 45 5 UL B

3) Uiy A7, C Ul By | | | |

4) Upo AN U B = O or (Ugo Af 2 Uiz B and Uy Af & U BY).

The first case is exactly what we were expecting in Theorem 2 and the
schedule is feasible.

The second case takes place in the situations described in the first para-
graph of this proof. It is easy to verify that at least one task will not be
scheduled feasibly.

The third case takes place when some task has been expected to fall on
processors P, and P,.;, but was scheduled on P, and (perhaps) on P, + 1.
The schedule is obviously feasible for T7* because the schedule is longer and
we can schedule all the tasks preceding T7*, while for this particular task
more processors participate in creating processing capacity. Now, a question
arises whether the schedule is still optimal (the shortest possible).

12



Let us consider some task which after rescheduling is using different pro-
cessors than expected. Since the schedule is longer the task cannot be sched-
uled (according to rules 1,2,3) on faster processors, so b > a + 1. The task
scheduled according to Rule 1 before the lengthening, is expected in han-
dling the processor indices data structure to be executed according to Rule
2 after the lengthening. When a task is scheduled before lengthening ac-
cording to Rule 3 the set of indices of original processors is joined until the
last e-processor and no change in A¢ is possible. Thus, we can analyze only
the case when a task is scheduled before lengthening according to Rule 2.
After lengthening, such a task will leave free for the subsequent tasks e-
processor P,. So its processing capacity will be PC/" = PC/ + §°s,. On
the other hand, the expected remaining capacity on this e-processor was
PCI = PCY + PCl 4 6%(s4 + 5441) — t, where ¢ is the processing time of
the considered task. We can say that PCY” > PC/ because after reschedul-
ing e-processor P, is completely free and has faster original processors than
expected. What is more, PC’f+1 + 0%(Sq41) > t because the considered task
has been feasibly scheduled on slower processors. Thus.

0< PCI” —PC = —PCl | — 65,01 +1<0

this is possible only for 0, i.e. processing capacities of the completely free
processor and the expected processing capacity are equal. Hence, the sched-
ule is not longer than necessary. Induction over the tasks finishes this part
of the proof.

Finally, the last case can be analyzed in the similar way as the third one.
The difference is that all the tasks are scheduled on slower processors than
expected. a

A new problem to deal with is the infeasibility for consecutive task types.
We can handle this in two ways. First: increase schedule length iteratively
every time it appears. This method can be formulated in the following algo-
rithm.

ALGORITHM 1

STEP 1: Calculate C, and schedule all T*-tasks in [0, C'] using rules 1-3;
STEP 2: FOR each 77 € [T?,..., T} DO (* p=max{i:i < k, T* €T *)
BEGIN
STEP 3: WHILE no feasible schedule for 77 -tasks exist DO
BEGIN
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Calculate §7;: C := C + §7;
STEP 4:  FOR each T% IN [T*,...,T%] DO schedule T"-tasks;
(* rescheduling, i = min{q : g > j, 79 € T} *)

END;
STEP 5: schedule T7;
END;
END.

The complexity of this algorithm has two components: calculating a lower
bound in O(nlogn) time, and scheduling and extending of the schedule.
The optimal length of the schedule can be found in O(m?) trials and each
rescheduling can take at most O(n) time. Hence, a total time complexity is
O(nm?* + nlogn).

The second method of dealing with infeasibility is more sophisticated and
complex. It simulates an assignment of necessary processing capacity to the
processor set (in other words, checks (1) in advance). This can be done in
the following way. Add ¢ > p,ea: S; processing capacity to each e-processors
Pp,. This will set to 0 the processing capacity of the e-processor for which
d¢ was chosen as maximum in (3) after scheduling 77, ..., Tf*. If again the
schedule is infeasible, calculate new 6¢, add it to the previously calculated
one and repeat the above procedure. Now we will formulate our scheduling
algorithm for the second method of handling infeasibility.

ALGORITHM 2

PROCEDURE SIMULATE_ASSIGNMENT(7":task set);
BEGIN
IF inequality (1) holds for 77 THEN
SIMULATE _ASSIGNMENT(T%)
(fi=max{q:q¢< 3, T €T *)
ELSE
BEGIN
Calculate §7; C := C + §7;
Increase processing capacity to the processor set;
SIMULATE _ASSIGNMENT(T%)
END
END; (* of SIMULATE _ASSIGNMENT *)

(* main body of the algorithm *)
STEP 1: Calculate C, and schedule all T*-tasks in [0, C'] using rules 1-3;

14



STEP 2: FOR each 77 € [T?,..., T} DO (* p=max{i:i < k, T* €T *)
BEGIN
STEP 3: WHILE no feasible schedule for 77 -tasks exist DO
BEGIN
SIMULATE _ASSIGNMENT(T7); (* lengthen the schedule *)
STEP 4: FOR each T IN [T*,...,T"] DO schedule T"-tasks;
(* where i = min{q: g > 5,77 € T *)
(* rescheduling and updating processor indices data structure *)
END:
STEP 5: schedule 77:
END:
END.

Calculating the lower bound needs O(nlogn) time. The application of
the rules 1-3 has time complexity O(n). The loop of the algorithm (STEP
2) will be carried out O(m) times (at most O(m) task types). Since the sit-
uation that the schedule have to be extended can take place at most O(m?)
times, STEP 3 will be repeated at most O(m?) times over all task sets (all
T?,...,T' from STEP 2). Procedure SIMULATE ASSIGNMENT will be
executed recursively into the depth at most O(m) and calculation of ¢/ takes
O(m) time at most. So, we have a total time complexity of O(nm* + nlogn)
to solve our problem and generate an optimal schedule. As it can be seen
the complexity of ALGORITHM 2 is bigger than the complexity of ALGO-
RITHM 1, so one may ask what is the advantage of using a more complex
algorithm. In practice it appears, that the worst case complexity is diffi-
cult to achieve. What is more, it is possible to calculate the optimal length
of the extension in one recursive sequence of SIMULATE ASSIGNMENT
calls without cumbersome rescheduling. Let us give now an example of such
situation.

EXAMPILE.

T = {T11}7T2 = {T12}7T4 = {T14}7t1 = 177t12 = 1677# =15,m =8,5 =
Sg = 83 = 84 = 2,55 = Sg = S7 = Sg = 1.

We calculate C'(4) = 73, C(2) = 93, C(1) = 913, C' = 932, Partial sched-

K
ule for T*-tasks is given in Fig. 3.

We go to step 2. Data structure with processor indices is l é 2 ] , l ? ;l ]

There remains (on duoprocessors) PC} = PCJ = 14% processing capac-
ity from scheduling T*. Tt is not sufficient to schedule 7%, (1) does not
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Fig. 3

Figure 3: EXAMPLE - a partial schedule.

11 5
§ = 52, C = 105. New (increased) processing capacity is PC; = PCy =

0,PC3 = PCy = 16. T} can be scheduled according to Rule 1, indices
data structure is not changed because T? was executed on the last duo-

processor. Go to SIMULATE ASSIGNMENT(T"). (1) does not hold,
DP! = 1, A} = H],é = %,C = 10%. STEP 4 and STEP 5 - 7% and

T? are rescheduled. Again STEP 2, (1) holds for 7", then execute STEP 5.
Schedule is feasible and presented in Fig. 4.

hold - go to SIMULATE ASSIGNMENT(T2). DP? = 12, A? = [ L ]

3 Results of experiments

The algorithm presented in Section 2 (ALGORITHM 1) has been imple-
mented and tested in the series of simulations. The goal of simulations was
to verify the behavior of the algorithm for a wide range of data instances.
Hence, the measurement of the processing time and the number of iterations
was the main objective. Experimental software has been written in Turbo
Pascal 6.0 and executed on IBM AT clone under the control of MS-DOS 3.30
operating system.

The results are presented in Fig. 5, 6, and 7. Each point in these di-
agrams is an average of at least hundred trials. Execution times of tasks
were generated randomly from the interval [0,10] with uniform probability
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Fig. 4

Figure 4: EXAMPLE - the optimal schedule.

distribution. Similarly, the number of processors required by tasks was taken
from a uniform distribution.

In Fig.5 one can find that the execution time of the algorithm is growing
almost linearly with the growth of the processor number.

When the number of processors is growing, then the execution time of
the algorithm is growing a bit faster than linearly, which is in accordance
with theoretical expectations. This can be found in Fig.6.

The last parameter analyzed was the number of iterations of the algo-
rithm. The number of iterations is a number of necessary extensions of the
schedule length, in other words. The diagram in the Fig.7 presents depen-
dence of the number of iterations (vertical axis - in %) on the value of =
ratio (horizontal axis). It turned out that the biggest number of iterations is
achieved for m ~ n.

This result can be explained by the influence of two factors. When the
number of tasks is smaller than the number of processors then it is highly
probable that the length of the schedule will be determined by one long task.
Then the rest of the tasks will have their own processors and will be scheduled
feasibly.

On the other hand, when the number of tasks is big, most of the times,
processing capacity of processors is shared 'fairly’. This is a result of the fact
that the number of long tasks requiring a lot of processors is small. Hence,
after scheduling tasks requiring many processors, processing capacity can be
consumed on all processors of k-processor and fairly passed to the succeeding
tasks. In other words, the remaining processing capacity after scheduling 7'
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can be passed to subsequent tasks as during scheduling of & uni-processor
tasks. This situation is more like the situation assumed while calculating
C(1). Thus, the lower bound is more precisely estimating C*

mar’

4 Conclusions

In the paper, a new model of deterministic scheduling, applicable in multi-
microprocessor systems such as shared memory multiprocessors or hyper-
cubes of processors, has been considered. It has been assumed that any task
may require more than one processor at a time. The presented O(nm? +
nlogn) time algorithm find a minimum length schedule on uniform proces-
sors under the assumption that tasks require certain numbers from one to
k processors. A more general problem where tasks may require any fixed
number of processors from the set {1,...,k} may be solved via linear pro-
gramming approach ([5]). Further generalizations include, among others,
deadline scheduling problems which are very important from the practical
point of view. These problems are now being studied.
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