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Abstract

In this work, we study influence of limited size of communication buffer on the efficiency of divisible loads processing. Divisible
loads are computations which can be divided into parts of arbitrary sizes, and these parts can be processed in parallel. To finish
processing in the shortest possible time an optimum distribution of the load must be calculated. The method of determining load
distribution must take into account not only computing speed, but also interconnection system topology, communication medium
speed and startup time. In this work, we include one more parameter: communication buffer size. We propose a general method of
studying the influence of the communication buffer size on the interaction between the communication and computations. Three
archetypal interconnection topologies are examined: stars, ordinary trees, and binomial trees. The results of modeling the
performance of parallel systems show that the influence of communication buffer size is indirect and qualitative in nature. Buffer size
affects the performance by causing message fragmentation, or changing load balance among the processors. We analyze
performance of several communication algorithms and their interaction with the computations. The simulations show that these

classic algorithms are limited.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Divisible load model has been introduced in [9], where
a linear array of intelligent sensors was considered. The
problem was to find optimum balance between advan-
tages of distributed computations on the measurement
data and the costs of communication. Later on, divisible
load model has been extended in various directions: new
interconnection topologies, sophisticated communica-
tion methods, memory limitations at the processor side,
monetary costs of computation were studied. Despite its
ability to analyze intricate details of distributed compu-
ter systems, divisible load model remained computa-
tionally tractable. Not only was it successful in
theoretically analyzing distributed computer systems,
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but its predictions have also been confirmed in real
parallel applications [7,8,11]. Thus, divisible load theory
is a new versatile paradigm of distributed computing.
Surveys on divisible load processing can be found in
[4.5,10,16].

Divisible loads are computations that can be divided
into parts and processed independently in parallel. The
sizes of the parts can be adjusted to the communication
and computation parameters of the system. This means
that the granularity of the computations is fine, and is
not influencing the load size selection. There are no
dependencies among the grains of computations because
it is possible to process them in parallel. This model
applies, for example, to processing measurement data
(e.g. SETI@home), data mining: searching databases,
text, audio, and video files, also to some applications of
linear algebra, number theory (e.g. Mersenne project),
simulation, combinatorial optimization [7,8,11]. Divisi-
ble load theory can be applied in the analysis of
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distributed storage systems such as video on demand
systems [3]. The distribution of the information can be
optimally geared to the speeds of the communication
network, and transfer rates of the storage devices.

In the divisible load theory it is generally assumed
that initially volume J° of the load resides in one
processor Py called originator. Originator scatters the
load to m processors of a distributed computer network.
The communication delay inevitably appears. Transfer-
ring x units of the load (e.g. bytes) lasts S + xC units of
time (e.g. seconds). A processor in the network, on the
receipt of the load, intercepts some part of the received
load and starts processing it (computing). The rest of the
load is sent to other, still inactive processors which are
not directly accessible from the originator. Computing x
units of the load lasts x4 units of time. The problem is
to adjust the sizes of the parts sent to the processors such
that processing time Cp. is the shortest possible. An
intermediate conceptual layer between this general
scenario and the communication hardware is the
communication (scattering) algorithm. We study scat-
tering algorithms dedicated to three message routing
topologies: a star, an ordinary tree, a binomial tree.

The purpose of this paper is to examine the impact of
communication buffer size D on the performance of
divisible load processing. We propose a general method
of studying the interaction between the communication
and computing subsystems under limited communica-
tion buffer sizes. To our best knowledge, it is the first
attempt of this kind in the divisible load theory. Buffer
size can be considered as an equivalent of maximum
transmission unit (MTU) used in TCP/IP protocol. As
the buffer size is D, the transferred load must be split
into units of length D (e.g. bytes). Sending each
transmission unit incurs delay of one startup time which
may affect performance of parallel processing. One of
the goals of this study is to propose a method of
adjusting the communication buffer size.

Organization of the paper is the following. In Section 2
communication system architecture and load scattering
algorithms are presented. Section 3 introduces the
solution method. The results of modeling and their
discussion are given in Section 4, and Section 5,
respectively. In the appendix, we summarize the notation.

2. System architecture

We assume that the computer system is homogeneous
and synchronization of the events can be accomplished.
Startup time S, communication rate C, and processing
rate A are the same for the whole system.

The originator does not compute, and its purpose is to
communicate. This postulate does not limit generality of
our study. If the originator computes, then it can be
represented as an additional processor. The processors

can communicate and compute simultancously. This is
the case when processors are equipped with some
communication hardware. This assumption has been
relaxed in the divisible load literature [4] and does not
limit generality of the method.

For the simplicity of mathematical modeling and
conciseness of presentation we assume that the time of
returning the results of computations to the originator
can be neglected. In general, returning of the results
can be incorporated in the divisible load model
(cf. applications in [1,7.8,11]).

Loads greater than D cannot be sent in one message.
Communication buffers are filled and messages are
cyclically sent to their destinations. Hence, the load is
distributed in n stages. Each stage is a repetition of
the same communication pattern. We will denote the
minimum number of stages by myi,. We assume that
there are no processor memory limitations and arbitrary
load may accumulate over the course of processing.
Instead of studying scattering algorithms for a multitude
of interconnection topologies, we consider three funda-
mental structures of the scattering and broadcasting
algorithms: a star, an ordinary tree, and a binomial tree.
These abstract scattering structures can be embedded in
buses, meshes, hypercubes, multistage interconnections
[6.10,12,13,15].

2.1. Star

The originator is located in the center of the star. All
the messages are routed from the originator to the
processors, or from the processors to the originator.
Only one message can be sent or received by the
originator at a time. This kind of communications on
the bus can be considered as equivalent to star
interconnection. Hence, the star topology can represent
a network of workstations, master-slave, or client—
server systems. Star interconnection applies also to the
networks in which the originator is able to directly
access each slave processor. The intermediate commu-
nication nodes can be represented as an additional
communication delay. Therefore, star can be called
direct communication topology.

2.2. Ordinary tree

We consider regular balanced tree in which nodes
have out-degree p. p is also the number of processor
ports that can be used simultaneously to activate other
processors. The set of processors in equal distance from
the originator, will be called a layer. Processors in the
same layer perform the same actions, communicate and
compute synchronously. If a processor receives some
load to relay, it divides it into p equal parts and
retransmits them to the next layer processors. Let &
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denote the height of the tree. The ordinary tree has m =
le processors, when p>1, and m=h+ 1 for p = 1.

In the ordinary tree topology we distinguish two
additional cases depending on the ability of the nodes to
deal with more than one message simultaneously. If the
intermediate node can handle only one message at a
time, then we will call this 1-buffer case. If it is possible
to overlap sending one message with receiving another

message, then this situation will be called 2-buffer case.

2.3. Binomial tree

Binomial tree has been introduced in [15] as a
broadcasting structure, and as a scattering structure in
[6,10]. Binomial tree (cf. Fig. 1a) is a tree in which nodes
have out-degree p. Each processor (node) at level
0,....i =1 activates p new processors at level ;. for
i=1, ..., h The set of processors in the same level of the
binomial tree will be called a /ayer. Binomial tree takes
advantage of the communication delay structure typical
of circuit switching and wormhole routing. For these
two switching methods communication delay does not
depend significantly on the distance covered by the
message. Therefore, it is advantageous to send the load
to processors in physically large distance from the
originator first, and then to redistribute the load locally
in a smaller sub-network. Note that a processor in layer
i receives load to be redistributed among its descendants
in layers i + 1, ..., h. Examples of embedding binomial
trees in the meshes are shown in Fig. 1b. The path
pattern is repeated recursively in sub-meshes of decreas-
ing size.

We assume that processors in the same layer work
synchronously. Processors are able to divide the received
message into equal parts and simultaneously redistribute

layer O layer 3 layer 2 layer 3 layer | layer 3 laye O

the parts to its p ports. The number of processors in a
binomial tree with layers 0, ...,k is m = (p—+ I)". There
are p(p+1)"" processors in layer 1<i<h. Since all
layers 0, ...,/ work synchronously to activate layer / + 1,
there is no room in the communication algorithm for
simultaneous distribution of the load for some other
layer. Consequently, we do not consider 1- and 2-buffer
cases here because overlapping in time distribution of
the loads to different layers is not possible.

2.4. Laver activation order

In trees it is possible to activate the layers in the order
of the growing distance from the originator. This
method will be called the nearest layer first (NLF). It
i1s also possible to activate the processors in the inverted
order. We will call the second method the largest layer
Jirst (LLF). Tt has been shown in [12] that LLF is the
optimal activation sequence for binomial trees when
there are no memory limitations in the computer system.

Note, that using LLF instead of NLF order, 2-buffers
instead of 1-buffer, binomial trees instead of ordinary
trees are examples of optimizations that can be
implemented in the communication algorithms. It will
be demonstrated that their impact is limited when it
comes to the interactions with the computations, and
limited communication buffer.

3. Mathematical models

In this section, we formulate the problems of finding
optimum distribution of the load as linear programs.
Linear programming (LP) is a widely used tool for

(a)

distance O

(b)

Fig. 1. Binomial tree structure, (a) The idea (p = 2), (b) examples of embedding.
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Fig. 2. Communications and computations in a star interconnection.

modeling problems in science and engineering (see
e.g. [14]).

3.1. Star

Minimum number of stages is /imin = [ 5= |- A Gantt
chart depicting communications and computations in a
star network is presented in Fig. 2. The following
extension of the standard notation is used in this section:

a; =0 is the amount of the load sent to processor P; in
stage k,

tx=0 is the start time of the communication to
processor FP; in stage k.

The problem of determining optimum distribution of
the load in the star, for a given number of stages
13 Nmin. can be formulated as a linear program

LP LoadDirect

minimize Cupax

subject to

ik Ztic + Coge + 8, 1= 1, ....m—1,

k=1,..,n, (1)
l|[k+|)2f”,k+camk +S, k= [ I (2)
Iik + S + Cdﬁ‘k + A Z ar‘lscmaxx 1= ]a am!
=k
k=1, ciym; (3)
oD, i=1,..,m k=1, ..un, (4)

h n

Z Z Xike = V. (5)

i=l k=l

In linear program LoadDirect inequalities (1) ensure that
communications of the same stage do not overlap. By
(2) the succeeding stages do not overlap. Inequalities (3)
guarantee that computations finish before the end of
the schedule. By (4) the communication buffers do
not overflow. Eq. (5) guarantees that all the load is
processed.

3.2. Ordinary tree

Since the layers work synchronously, we do not have

to analyze processors separately. We will denote by
>0 is the amount of the load sent to each processor

of layer i in stage k,

fia=0 is the start time of sending the load to
processors in destination layer i from the intermediate
node(s) in layer [ in stage k, i=1,....h k=
Loon, I=0,...,i—1

Let us analyze the number of stages. The load for
the deeper layers is transferred from the originator
to a processor in layer 1, via a communication buffer
of size D. Successors of this processor receive at most D
units of load altogether in a single installment.
Hence, the number of stages is n2nmin = | Dpﬂ Note
that a single link from layer / feeds p~=! processors in
layer i.

3.2.1. NLF

1-buffer: The communications and computation for
this case are presented in Fig. 3a. Linear program for the
problem is

LP TreeNLF-1

minimize Cpax

subject to
ticar) =t + Cp'™ o+ 8, i=1,..,h,
k=1,....n, 1=0,..i-2, (6)
His)k(1-1) = tikl + Co~ o+ 8, i=l..,h=1,
k=1,..n [=1,...,i-1, )

tieryi-n) Stk + CpF e + S, i=1,..,h—1,
k=1,...,n—1, (8)

tao=tiwo + Coe + S, k=1, (9)

i
rik(i—l)+caik+S+AZ%I\Cmm i:11"'1h7
1=k

k=1,...,n, (10)
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Fig. 3. Communication and computation in an ordinary tree, NLF. (a) 1-buffer. (b) 2-buffer.
Pl LD, d= 1y, =T, (11) present?d in Fig. 3b. In the following linear program
constraints (10)-(12) are also used, but we do not
’ reproduce them to avoid repetition.
i I
; LP TreeNLF-2
Z pPlog=V. (12) iy
= = minimize Cpyay

In the linear program TreeNLF-1 inequalities (6)
guarantee that relaying a message can start only if the
message is fully received first. By (7) the communication
to the next layer may not start unless the relaying of the
previous message is finished and the next buffer is ready
to be reused. Inequalities (8) ensure that the commu-
nications of the consecutive stages do not overlap.
Constraints (9) follow from the fact that the message to
the second layer can be sent immediately after the
message to layer 1, because the message to layer 1 is not
further relayed. Inequalities (10) ensure that all the load
received by the processors is processed before the end of
the schedule at Cpax. By (11) messages fit into the
communication buffers, and by (12) all the load is
processed.

2-buffers: When the number of buffers is sufficient,
two consecutive communications can be performed
simultaneously. However, the buffers are reused in the
third following communication. If the load received in
the first message has not been relayed, then the third
communication using the same buffer must wait. This
restriction prevents accumulation of the load in the
intermediate layers. The Gantt chart for this case is

subject to

tkaeny Ztar + Cp g + S, i=1,..h,

e Vot =0y i, — 2, (13)
Hisnkl 2 Tikg + Cpig,fli,','\- +8, i=1,..,hk-1,

= Liesth, T= 1 aenid— 1, (14)
Hisnpk(-n Ztar + Cp "o + S, i=1+1,.. h-2,

k=1,....n, I=1,....,h—2, (15)
Lk+1)0 Z Lh—1ykr + CP”_Zﬂﬂ(n-nk 8,

k=1; guii— 1 (16)
Do St + Cp" e + 8, k=1,...,n—1, (17)
b 2t + Cp Pa + S, k=1,..n—1, (18)
liks1)(i-1) 2 tik(i—1) + CP" o + S, i=1,..,h,

k= 1t L (19)

Inequalities (13) guarantee that retransmission of the
load to the deeper layers may start only after fully
receiving the message. By (14) the communications on
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Fig. 4. Communication and computation in an ordinary tree, LLF. (a) | buffer, (b) 2-buffer.

the same link do not overlap. Inequalities (15)-(18)
ensure that sending a new portion of the load does not
start before the buffer at the receiver is available. By (19)
the succeeding stages do not collide.

322 LLF

1-buffer: The communication and computation Gantt
chart for this case is presented in Fig. 4a. In the
following linear program, we skip repetition of con-
straints (10)—(12).

LP TreeLLF-1

minimize Cpyax

subject to
tigeny i + Cp g + S, i=1,.,h,

e b enntly BTl g8, (20)
Link(i—t) =ikt + Co ' lay + S, i=2,..,h

k=1,..,n I=1,..i-1, (21)
tueanyi Z e + Coge +8, i=0,.,h—1,

=1, ik (22)

In the above formulation inequalities (20) guarantee
that before the relaying the message is fully received
first. By inequalities (21) a buffer is not used by two
messages simultaneously. Messages from the consecu-
tive stages do not overlap by inequalities (22).
2-buffers: The communication and computation
Gantt chart for LLF communication strategy and two

buffers in an ordinary tree is presented in Fig. 4b. Linear
program for the problem is as follows (constraints (10)-
(12) are not repeated):

LP TreeLLF-2

minimize Cpay

subject to
Lik(1+1) = ikl + Cp g+ 8, == 1paagh

k=1,..,n =0, ..i-2, (23)
Lio )kt 2 ikl + Cp g+ S, i=2,..,h

=yl = Bt 1, (24)
tiap-ty 2t + Cp T o + 8, i=142,.,h,

B Dy, o 1Ly B2 (25)
ko =tk + Cpoge + 8, k=1,...,n—1, (26)
ther)i Z i + Coee + 8, i=1.,0-1,

k=1,..,n—1. 27

In the above linear program TreeLLF-2 inequalities (23)
guarantee that the load is first completely received, only
than can it be further relayed. By inequalities (24)
messages sent by layer / to layers i, and i — 1, do not
overlap. By (25), and (26) no more than two buffers are
used in each communication switch. Inequalities (27)
ensure that messages from the consecutive stages do not
overlap.
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3.3. Binomial tree

Before going into the further details let us analyze the
duration of the communication from the originator to
layer i in some stage k. In binomial trees nodes receive
load once and then redistribute it to the deeper layers of
a tree. Therefore, each communication must comprise
load not only for the node, but also for the successors in
a binomial tree. There are p(p + 1)’71 processors in
layer i 1. The originator sends load to layer 7 in i steps.
First, the originator sends over each of its p commu-
nication links p(p + 1)’ .2 %ik load units to layer 1. The
remaining load p(p + l) o will be sent to layer 7 via
direct successors of the originator in layers 2, ...,7 (cf.
Fig. 1a). Analogously, each processor in layerj<: — 2
sends load to layer i in i — j steps. First, p(p+ 1) 2otk
units of load are sent to layer j + 1 over each of p ports.
The remaining p(p + 1) ay load units are sent from
layer j to layer i via J’s direct binomial tree successors in
layers j+2 ....i. In the last ith communication step,
(p—+ ) processors in layers 0, ...,i — 1 send o load
units over p( p + ]) ports to edch processor in layer /.
Note that all layers communicate synchronously, and
the same amounts of load are sent from active layers
to the next activated layer. Total communication time
is equal to Si+ Coy(l +pz S(p+ 17 =
Si+ Cox(p+1)"". We will use this closed-form
summation result in the following formulations.
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neighbors in layer 1. As it was said the originator in the
‘) .

first step sends p(p+ 1) “ax<D load units to its

descendants in layer 1. Hence oy < . The total

(p+l
number of processors in layer /s p( p + '~ '. Therefore,
total load trdnsferred to layer i> 1 in a single stage is at

D’;(p’:'}) = (p+ 1)D. Note that this quantity does

not depend on i. For layer 1 the load is at most pD. As
we have computing layers 1, ..., A, total load that can be
distributed in one stage is (h(p + 1) —1)D. Thus, the
number of necessary iterations is ”;D_(.'?('Fit)_—n'

As it was noted the layers work synchronously. For
this reason it is not needed to introduce to the linear
programs constraints expressing the fact that the
message must be fully received first and only then can
it be relayed. Hence, only variable 7; is needed in the
linear programs. The remaining variables ty; for /=
1,...,i— 1 will not be used.

most

3.3.1. NLF

The communication and computation diagram for
NLF activation strategy is presented in Fig. 5a. Linear
program formulation is as follows:

LP BinomialTreeNLF

minimize Cpayx

subject to

il B B
Let us consider the number of stages. The originator firko =ik + C(p + 1) o + 81, i=1,.,8 =1,
can send at most D units of load to each of its p k=1, (28)
oigi- o D0 310 410 Mion  Toon g {430 Y fasg 330
org | IH\III‘ D D D B
laer D o \7" \1—!—r R \L \1—r
HAey N 1] R [\ VIR l
B : Y
layer 2 i\ 1_ i L 1—‘
'|' Adlg ] } ‘l Allyy J \7 AD‘.23
layer 3 3 e T RS
Ay V)] Aazy | I
layer 4 r T bl e
(a)
oriai- 410 310 210 o a0 320 200 20 ey 133
origi- [T T 1T T ] \l [ \| | B N
layer 1 l ] ¥ \} I | I [ | \*
ﬂ \ \> Ao~ \ l\j- Ayt \ 1\,
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Aay Al Aoy B
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(b)

Fig. 5. Communication and computation in a binomial tree. (a) NLF strategy, (b) LLF strategy.
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a1y = tuko + C(p + 1) oyp + Sh,

k=1,..n—1, (29)

ligo + C(.p+ l)fWIdik o S1+A Z “H"{E Cmuh
1=k
1= lgveslts B2 Loy (30)

<D, k:l,...,n, (3])

pp+ D) ug<D, i=2,..h k=1,..n (32)

h n
SN e+ )=V, (33)
=1 k=l

Inequalities (28) ensure that messages sent to the
consecutive layers do not overlap. By (29) the messages
from the consecutive stages do not overlap. The
remaining constraints are analogous to the ordinary
tree case.

3.3.2. LLF

The communication and computation diagram for
LLF activation order is presented in Fig. 5b. The linear
program in this case is as follows (we skip repeating
constraints (30)-(33)):

LP BinomialTreeLLF

minimize Cpax

subject to

Li—1)ko 2 tiko + C(p+ l)iil—ot;k +8i, i=2,...,h
=1y ey (34)

kv =tio + Cane + 8, k=1,....n—1. (35)

By (34) scattering to the consecutive destination layers
do not overlap. Inequalities (35) ensure that the
succeeding stages do not overlap.

The LP formulations presented in this section
assumed that all stages and processors are really needed.
It is not always true. When some number of processors,
or stages, is sufficient to process the whole load, then
some processors may receive no load. Using excessive
processors introduce additional startup times, but does
not increase processing speed. In such situations,
superfluous stages and processors were removed succes-
sively until all load assignments were positive. The LP
formulations were adjusted accordingly.

4. Performance modeling

We present results obtained by means of 1p_solve [2],
a public domain linear program solver. Over 2600
instances of LP problems were solved. The biggest
successfully solved instance had over 50000 variables
and 156000 constraints. Since the space of possible

parameter values is enormous, we restricted the study to
the combinations that seem typical of applications.

4.1. Star

We modeled a system with m =10 processors,
C = 1E-6, A = 1E-3, and § =1E-3 (these values can be
for example: bandwidth 1 Mbyte/s, processing rate
| kbyte/s, startup time 1 ms). Parameters ¥, D, were
variable.

Let us start this section with considering the distribu-
tion patterns. In most of the cases the sizes of load
chunks sent to the processors grow slowly both with the
processor number and the stage number. It is because
processors are activated early when the initial chunks
are small. In the last stage the chunk sizes decrease in
order to achieve simultaneous completion of the
computations on all processors. This facilitates perfect
load balance. The changes of the data chunks are
demonstrated in Fig. 6. Processor numbers are aligned
along the horizontal axis, sizes of the chunks are
presented on the vertical axis. Note that no load is sent
to Py in the last stage.

We observed in our simulations that when n> npn,
the limited buffer size manifests only when D is very
small and messages are excessively fragmented. In order
to better expose the influence of the limited commu-
nication buffer size we analyzed the case of the
minimum possible number of scattering stages, i.e.
Mmin = [ 2. The results are shown in Fig. 7. For D =
oc minimum number of stages is #= 1, and the
minimum number of processors is m = 1. The lower
bound LB = § + ¥4, representing ideal circumstances of

500

4004 |;E|- stage |-%- stage 2-&- stage 3

3004

00 -

1004 oo

0 3 : 3 : E

processor number

Fig. 6. Example load chunks sizes in different stages for star
(m=10,4 = 1E-3,C =1E-6, D =1E4, S=1E-3, V=5E3).
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Fig. 7. Cpax vs. V for various D and ny, in a star (4= 1E-3, C=1E-6,
S=1E-3).
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difference of Cmax
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IE-4 — * : :
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Fig. 8. Differences between Cpyx for various D in a star, for sy, The
processing time for D=1E2 is the reference (4=1E-3, C=1E-6,
§=1E-3).

processing the load, is added to show existing potential
for reducing the processing time. In the ideal case at
least one startup time S must elapse before any
processor starts computing. The computing phase may
not last shorter than lr’nﬂ which is the case of ideal load
balance. In Fig. 7 lines for D = oo and D = 1 overlap by
the coincidence of values A4, C,S. The lines for other
communication buffer sizes follow the line of infinite
buffer when V<D, because only one processor is
activated. When V' exceeds D more than one message
must be sent, and it is profitable to activate additional

processors. Additional processing power compensates
for the growing V, and Gy, does not increase
significantly for Ve[D,mD]. If V'>Dm all processors
are activated, the communications overlap computa-
tions, therefore processing time is similar to the lower
bound.

Fig. 7 does not show that the differences between the
processing times in absolute terms can be arbitrarily big.
This is demonstrated in Fig. 8 showing the difference
between the processing time for D=1E2, and other
buffer sizes, for nmin. There is no difference for V' <1E2
because only one message is sent. The difference grows
with  until D, and levels off for V' >mbD. For V' >mD
the lines are parallel because the duration of the
computing part is the same. Only the communication
time in the first stage is different due to different
communication buffers sizes and different message
lengths.

On the basis of the above charts one may think that
the communication buffer should be small, yet, big
enough to avoid excessive message fragmentation. Still,
there is one more way in which communication buffer
may influence processing time. Consider an example:
m=3,4=C=1,5=0,V =23 When D=1, only one
stage is needed (n = 1). The processors receive o =
oy = o3y = D =1 units of load. The communication
phase lasts 3 units of time, the computations on the last
activated processor complete 4 units of time after the
communication start. On the other hand, when D>1.5a
different load distribution is possible: 2’ = 1.5,
w2’ = 1,03, = 0.5, processors stop computing at time
3.5. Thus, too small communication buffer may cause
imbalance of the computing completion times.

In Fig. 9 dependence of processing time on D, and n
for fixed V is shown. D is expressed as a fraction of V.
Chax decreases with growing n. The rate of the decrease
is fast initially, but later the returns from increasing n
are diminishing. After exceeding a certain limit, Cpax
grows linearly with n. This is an effect of startup time S
appearing with each communication. § is added even if
the size of the load chunk is 0. This linear increase of
Cyax can be considered an inaccuracy of the model
because it means that we still send the assumed number
nm of messages though some of them contain no load.

From the above figures we draw a conclusion that
there are some optimal communication buffer size D*,
and number of stages n which on one hand, prevent
excessive message fragmentation, and the other hand,
balance the load well. We discuss this in Section 5.

4.2. Ordinary and binomial trees
Relations specific for trees are shown in this section,

because dependence of Cy,x on D,n are similar to
the ones for the star. Unless specified differently, we
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Fig. 9. Dependence of Cyax on D,n. (a) in = 10,4 = 1E-4, C = 1E-4, S = 1E-1, ¥ =1E7), (b) (m = 10,4 = 1E-3, C = 1E-4, § — 1E-2, V = 1E7).

assumed p =2, h= 10,4 = 1E-3, C = 1E-6, S=1E-3 in
all the following simulations.

First let us analyze the sizes of the load chunks
assigned to the processors of the consecutive layers. Let
us remind that the load sent to the deeper layers of both
ordinary, and binomial trees is split each time the load is
relayed (cf. inequalities (11), (32)). The message sent
from the originator to the first layer has its size limited
to D. Thus, the sizes of messages sent to layer i are at
most p,—Dr in the ordinary trees, and ;p—f!—f in the
binomial trees. The exponential reduction of the load
chunks restricts usability of the deep trees, especially
when the load grains come into play. The optimum
distribution of the load among the layers does not
expose a fixed regularity because processing in trees
resemble a heterogeneous star. The layers are like
heterogeneous processors connected to the originator
via heterogeneous communication links. In the hetero-
geneous star the optimum selection of the processors to
be used and the activation order have combinatorial
nature [10]. However, some common patterns have been
observed. The initial layers with few processors often
received no load. It appears to be advantageous to
activate deeper layers which have more processors while
omitting the initial layers. The size of the chunks sent to
the deep layers is restricted by the communication buffer
size¢ D used for the communication between the
originator and the first layer. Therefore, to exploit the
processors of the deep layers to the full extent, the
maximum load was sent, i.e. -2 in the ordinary trees,
and —2_ in the binomial trees. The selection of the

p{p+l W .
used &ayers, and the order of activating them remain
open problems which have combinatorial nature.

The complex nature of the optimum layer activation
order is exposed in one more way. A bigger load may be
processed in shorter time than a smaller load when NLF
activation order is applied, and /4,n are minimum
possible. This is illustrated in Fig. 10 showing depen-
dence of the processing time on the size of the problem
for binomial tree with NLF activation order and

1EO

== Ninin

—#— the best observed case
-~ LB

1E-11-

Clll!lI

0 1E3 2E3 3E3 4E3 5E3
v

Fig. 10. Processing time in a binomial tree for small loads (NLF,
D = 1E2, A=1E-3, C=1E-6, §=1E-3).

D = 1E2. It can be seen in Fig. 10 that for nmy,
processing time may decrease with increasing V. The
explanation for this counterintuitive behavior is that for
the given V' only a certain number of layers can be
activated within the limited span of communication
time. Adding more layers is not productive because
there is no work for them. On the other hand, adding a
little more load allows for activating a new layer which
has at least the same number of processors as all the
preceding layers (because of NLF activation order). This
allows for shifting most of the load to the deep layer,
and thus reduces the processing time. The medium line
of the best observed case illustrates the possible benefit
of increasing the number of stages. However, there is a
technical difficulty in finding optimum distributions for
big n caused by the numerical instability of LP solver.
The third line (LB) shows potential gains from using a
different strategy which bases on selecting one deep
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layer for computations while using the other layers for
communications only. The alternative processing strat-
egy was constructed as follows. At least one layer must
be activated. Suppose only layer 7 is activated, and the
load is sent in equal chunks in all stages. The number of

processors in layer 7 is p(p + 1)~". The processing time

18 Cmﬂx(ﬂ) = J’I(IS + T—rC( P + 1) ) Am}z]—),,‘,

which is a function of n. The first derivative of Cpax

Aﬁ’/— Cpax has minimum for n* =

over n 1s IS —
p(p+1)

W‘:j:nﬁ The lower bound was selected as minimum
Crax(n*) over layers i=1,...,h This strategy is
effective as far as processing time is considered, but
average utilization of the processing resources may be
unsatisfactory. It can be concluded that processing time
depends on the selection of the activated layers, and the
activation order. To avoid arbitrary decisions in
selecting the set of used layers, we assumed ny,, in the
following discussion.

The dependence of Cp,, on V for various D, binomial
tree, LLF activation order is shown in Fig. 11. These
dependencies for binomial and ordinary trees, NLF and
LLF activation orders are very similar. In the case of
D = oo only one message is needed to send all the load.
Hence, only p processors in layer 1 are activated.
Processing time for D = 1E0 is bigger than for D = <.
This means that communication buffer is too small,
message fragmentation is excessive, communication time
dominates and is even longer than processing the whole
load on one layer. For De[1E2,1E6] the changes of the
processing time are similar to the case of the star
topology (cf. Fig. 7). When V' <pD only one layer of

1E9
-+ D=infinity
TE7 4o - D=1E0
1E6 ... | ™ D=IE2
~+D=1E4
1E54- | = D=1E6
~a~ LB
g 1E3 ]
)
1E2 J::us
14
1E-1 4.
3 20 W S
1E-3
1 1E2 1E4 1E6 1E8 1E10 1E12
v
Fig. 11. Processing time in a binomial tree vs. V" for various D (LLF,

r"min)-

processors is activated. When Ve [pD, (h(p+ 1) —1)D]
the growing V is compensated for by activating
additional layers. Note the uneven changes in this
interval resulting from the changes of the number
of layers that can be effectively exploited. When
V>(h(p+1)—1)D processing times approach the
same line. This results from the fact that processing
time in the first layer sets the time span of a single stage.
In other words communications and computing in the
deeper layers is hidden in computing in the first layer.
The computing time in the first layer is DA, when
maximum size of the buffer is utilized. The number of
stages 1s nZg Combining these two formulae

. et h(,')+l) 1) va
processing tlme nDAwﬁ(( which is the

asymptote approached by the llnér;l%or)De[lE2 1E6].
This situation could have been avoided provided that
the first layers were not computing, but only relaying
the load. The lowest line (LB) represents an alternative
processing strategy described in the preceding
paragraph. Big difference between LB strategy and
other lines demonstrates that a non-classic approach
to the communication-computation interaction may be
profitable.

In the following discussion, we compare, in the sense
of processing times, NLF with LLF layer activation
order, 1-buffer with 2-buffer case. Let us observe that
comparing the binomial trees with the ordinary trees is
not easy because different numbers of processors are
activated in these structures. Therefore, we compared a
binomial tree with i = 5 which has m = 243 processors
with an ordinary tree which has =7 and m = 255
processors. Hence, the difference in processing power is
less than 5%. In Fig. 12a the dependencies of Cyax on V
for 1-buffer binomial and ordinary trees for D = IE4
are shown. This relation for 1-buffer case and other
values of D, also for 2-buffers and D> 1E0 are very
similar in the form. In Fig. 12a the differences between
all the cases appear only if Ve[pD,D(h(p+1)—1)].
The explanation is that for ¥ <pD only one layer is
activated in all cases. For V>D(h(p+1)—1) the
whole processing time is dominated by computations
on the first layer. The deeper layers receive inadequate
load, as mentioned in the preceding paragraph. It can be
seen that there are problem sizes where the ordinary tree
dominates, and problem sizes where the binomial tree
dominates. Though the binomial tree has smaller total
number of processors, it is hard to claim that it is better
than the ordinary tree because in neither case has the
computational capacity been fully exploited. In Fig. 12b
the same relationship for D = 1E0 and two buffers is
shown. For V>D(h(p+1)—1), i.e. when n>1, pro-
cessing time for ordinary tree is approximately 50% of
the time for binomial tree. This situation is caused by
different times that elapse between the stages. Though
communication times are shorter in binomial trees, the
communications of the consecutive stages may not
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Fig. 13. Reduction of schedule length as an effect of optimizations in trees. (a) Binomial trees NLF vs. LLF, (b) ordinary trees |-buffer vs. 2-buffer.

overlap. On the contrary, in the ordinary trees such an
overlap is possible.

The difference between LLF and NLF layer activa-
tion modes for the binomial trees is shown in Fig. 13a.
NLF activation order is faster than LLF (with the
exception of several cases for D = 1) because of the
following phenomena: as the deeper layers are under-
utilized, their communications and computations can be
hidden in the interval of computing on the first layer.
Processing time is determined by the length of the first
message to the first layer, and computations on the first
layer. The computations on the first layer last the same
time in LLF, and NLF. Therefore the time until starting
the computations on the first layer makes the difference
in the schedule length. In LLF the first layer is activated
as the last one, and the bigger D is the worse LLF is.
This situation completely reverses the domination of the
LLF activation order for networks with the unlimited

communication buffers, as shown in [12]. For ordinary
trees the situation is very similar.

The difference in processing time between 1- and
2-buffer ordinary trees with LLF activation sequence is
shown in Fig. 13b. As it can be seen for D>1 the
difference stabilizes. The explanation is the same as for
the previous figure. The difference comes from the time
until activating the first layer. Two buffers allow for
faster activation of the first layer in LLF. For D = | the
difference steadily grows with V' because messages are
short and the load of a certain layer is computed within
the interval of communications with the other layers.
Thus, mainly communication time matters in the whole
processing time. Communication with 2 buffers are
faster. Hence 2-buffer case domination grows with
growing V. In NLF activation case situation is similar
for D=1. For D>1 no difference between 1- and
2-buffer cases has been observed. Since computations on
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layer 1 determine total processing time, and layer 1 is
activated first in NLF, advantages of shorter commu-
nication to other lavers in 2-buffer way have no
influence on the processing time.

5. Discussion

The influence of the limited communication buffer
size manifests in several ways. When the communication
buffer is too small messages are excessively fragmented
and processing time is dominated by communication
time. Insufficient communication buffer may cause load
imbalance. On the other hand, also big buffers may
cause imbalance when minimum possible number of
stages is used. Thus, even for big buffers it is reasonable
to implement limited sizes of the messages to activate
computations quickly, or to balance the load. There is a
direct relation between the communication buffer size
and the number of stages. It is generally advantageous
to have many scattering phases because all processors
are activated, and load is balanced better.

In trees we observed that communication buffer size
significantly restricted the amounts of load which could
be transferred to the deeper layers. The bandwidth of
the initial layers was to small to feed deeper layers with
load. Consequently, deeper layers completed computa-
tions before receiving a new chunk of load, and the
processing time was dictated by the first layer. This
phenomenon is a great loss of efficiency. Advanced
communication methods using, e.g., binomial trees,
LLF strategy, or 2-buffer communication nodes, do
not outperform their less sophisticated counterparts
such as ordinary trees, NLF strategy. 1-buffer nodes.
Several remedies can be suggested. It is possible to
increase the communication buffer size such that
processors receive enough load to keep computing
during the whole communication phase of one stage.
Still, this solution does not scale well because commu-
nication buffers would have to grow exponentially with
the number of layers. A different solution is to change
the communication algorithm and, e.g., send several
messages to the deep layers per cach message sent to
layer 1. Also this solution has a disadvantage: a startup
time elapses with each sent message. It is possible to use
the initial layers for communication only, and the deep
layers for computations. Potential of such an alternative
strategy is shown as LB in Fig. 11.

Let us now consider the optimum size D* of
communication buffer. Due to the many phenomena
affecting the schedule length finding a generally opti-
mum solutions is difficult. Nevertheless, some good
heuristics are needed. Let us omit the transient states,
and let us assume that all messages sent from the
originator are of size D*. It is a reasonable idea to have a
communication buffer such that processors keep com-

puting until the next communication stage. In a star it
means AD*=m(S + D*C), and D* >S5 Note that
D*>0 only when A>mC, and idle times may arise
inevitably when mC is too big.

Now we estimate analogous buffer size for trees. In
binomial trees processors in layer i receive load ay =
;}—{"pf—-]),-"‘j in some stage k. The communication time from
the originator to layer 7 is Si+ C(p—i—l)"*'oc,-k (cf.
Section 3.3). After substituting oz and summing over
layers i = 1, ..., h we get total communication time in
S(h;—l)h a4 cD* (p+l fr
least load its computing time ﬁ”—’ is the shortest in a
tree. The requirement that computing time is at least

equal to the communication time can be formulated as

AD* Stk | CD'( p+1)h
i,

plp+1 )l: L 2 + P !

Ji-2
D*?%. Also here D* exists only when

A>Ch(p+ I)h_], i.e. using too many layers /1 may
result in inevitable idle times.

In 2-buffer ordinary tree even and odd communica-
tions can overlap each other. Thus communications in
one stage last A(S + CD*). Computations in layer A,
which receives the least load, last 4 Hence, we get the

one stage Since layer /1 receives the

from which we get

requirement D* > ,m. In l—buffer ordinary tree two

consecutive messages from the originator to layer 1 and
from layer 1 to 2 cannot overlap. The two messages can
be sent in time 25 + CD* + CD*/p. Since the messages
in the deeper layers are shorter, and can overlap the
communications of the first layer, the communication
time in one stage lasts approximately AS + hCD*(l g 1.

The computing time on the last layer is 7,— From th1s

we get a requirement D* >—- s

T =hC(1+ )

Note that the above formulae expressing D* link
structure of the tree (i.e. h,p), communication para-
meters S, C, and computing rate A. Not for all
combinations of these parameters D* >0 exists.

6. Conclusions

In this paper, we proposed a formal method of
analyzing computations in distributed systems with
communication buffers of limited size. The method
based on divisible load theory is versatile and compu-
tationally tractable. Tt establishes a link between
scheduling and communication optimization. The re-
sults regarding communication optimization reach
beyond just selecting a good communication buffer size.
For trees it was observed that classic scattering
algorithms do not perform well when the communica-
tion buffer size is limited. Two negative effects were
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observed: underutilization of the deep tree layers, and a
communication bottleneck around the originator.
Hence there is a demand for different scattering
algorithms in trees. An idea of such an algorithm has
been proposed.
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Appendix A. Summary of the notation

ok amount of load sent to processor P; in
stage k (bytes)

A computing rate (s/byte)

C communication rate (s/byte)

Clrinv schedule length

D communication buffer size (bytes)

h number of computing layers in a tree

m the number of processors

n number of the stages

Himin minimum feasible number of the stages

P out-degree of a node in a tree, also number
of processor ports working simultaneously

Py the originator

Py, ...,P, processors

A communication startup time (s)

ti start of communication to processor P; in
stage k, for star network (s)

tixi start of sending load to processors in

destination layer i in stage k from the
intermediate node(s) in layer /. for ordin-
ary and binomial trees (s)

V total volume of the load (bytes)
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