
New Applications

of the Muntz and Coffman Algorithm

Maciej Drozdowski

Instytut Informatyki
Politechnika Poznańska

ul. Piotrowo 3a
60-965 Poznań

Poland
telephone: (4861)6652124, (4861)6652366

fax: (4861)8771525
email: maciej_d@sol.put.poznan.pl

1

New Applications
of the Muntz and Coffman Algorithm

Maciej Drozdowski∗

Abstract

Muntz and Coffman proposed an algorithm to solve the problem
of scheduling preemptable tasks either with arbitrary precedences on
two processors, or tasks with tree-like precedences on an arbitrary
number of processors, for the schedule length criterion. In this work,
we demonstrate that this well-known algorithm has interesting features
which extend its application to many other scheduling problems. Three
deterministic scheduling problems for preemptable tasks are consid-
ered. Though these problems have diverse formulations, they have at
least one thing in common: Basically their optimization algorithms
boil down to the Muntz-Coffman algorithm. The foundations of the
Muntz-Coffman algorithm versatility are established.

Keywords: Deterministic scheduling, preemptive scheduling.

∗Instytut Informatyki, Politechnika Poznańska, ul. Piotrowo 3a, 60-965 Poznań,

Poland. The research has been partially supported by a KBN grant.

2

1 Introduction

At the end of the 60’s Muntz and Coffman proposed an algorithm that solves
two problems of scheduling preemptable tasks under the schedule length cri-
terion: The problem of scheduling tasks with arbitrary precedences on two
parallel identical processors [16], and the problem of scheduling tasks with
tree-like precedence constraints on an arbitrary number of parallel identi-
cal processors [17]. This algorithm has features which make it applicable
to many other deterministic scheduling problems with preemptable tasks.
Such problems include, e.g., tasks available for processing in restricted time
intervals, processors available in time windows of availability, tasks which
can be executed on more than one processor at the same time, the lateness
criterion, etc. In this work we discuss such problems and their optimization
algorithms derived from the Muntz and Coffman (MC) algorithm. In Section
2 the classical form of the MC algorithm is discussed. In Section 3 three other
problems solvable by algorithms based on MC are presented. Conclusions are
given in the last section.

In the remainder of this section, we introduce the following notation and
terminology to be used in this work. The processing environment, e.g. com-
puter system, P = {P1, . . . , Pm} consists of m parallel processors. Processors
are either identical or uniform. In the latter case processors differ in their
speeds si. Without loss of generality we assume that s1 ≥ s2 ≥ . . . ≥ sm.
Processors may be available in restricted time intervals (some processors
may be blocked). These intervals will be called time windows (or simply
windows). There are p time windows, each identified by a time interval
[bl, el], for l = 1, . . . , p, and the number ml of processors available. We as-
sume that neighboring windows differ in the set of available processors. The
sets of available processors are nonempty (completely blocked windows are
skipped). In the case of uniform processors we denote by sil the speed of
i-th processor available in window l. In each window l processors are ordered
such that s1l ≥ s2l ≥ . . . smll.

Task set T = {T1, . . . , Tn} has n elements which represent work to be
performed. Precedence constraints may exist among tasks, e.g. when the
results of one task are the input data for some other task. Ti ≺ Tj will mean
that task Ti must be completed before the processing of task Tj can start. The
set of all such relations in the task system constitute a precedence constraint
graph (PCG). Tasks may arrive to the system at different times or may have
desired time limits by which they should be completed. Therefore, a task is

3

characterized by a ready time and a duedate. We will denote the ready time
of task Tj by rj for j = 1, . . . , n. Analogously, dj denotes the duedate of Tj .
In this work we assume that tasks are preemptable. When preemptions are
not allowed all tasks must be executed continuously on the same processor
from the beginning till the very end. Preemptability means that each task
can be suspended, and restarted later (possibly on a different processor)
without additional overheads. Processing time of Tj is denoted tj. We say
that a task is ready when it has not been completed, it has arrived, and all
its predecessors are finished. In parallel computer systems it may be allowed,
or required, to execute a task on many processors simultaneously. Tasks of
this kind are called multiprocessor tasks [1, 3, 5, 18] (also parallel tasks or
malleable tasks). When Tj must be executed on some number of processors
in parallel, we will denote this number by sizej . When Tj can be executed
on some number of processors in parallel, but the number of the processors is
not fixed in advance, we will denote by δj the maximum number of processors
that Tj is allowed to use. In this last case, processing time depends on the
number of assigned processors. It is assumed that tasks have linear speedup.
Linear speedup means that execution of Tj on m′ processors lasts tj/m

′ units
of time. Moreover, when such a task is preempted the amount of performed
work is equal to the total area that the task occupied, i.e. duration of the
execution interval multiplied by the number of processors used. Task Tj is
considered finished when the sum of all such areas is equal to tj .

Let cj denote the completion time of task Tj . Two optimality criteria
will be analyzed: the schedule length Cmax = maxj{cj}, and the maximum
lateness Lmax = maxj{cj − dj},

The three-field notation introduced in [11, 18, 7] will be used to refer to
problems. In particular, win in the processor field means that processors
have windows of availability. The word sizej in the task field means that
tasks require several processors simultaneously, with the number of required
processors fixed. spdp− lin− δj means that task Tj has linear speedup when
assigned up to δj processors (j = 1, . . . , n), and that using more than δj

processors is forbidden.

2 The Muntz-Coffman (MC) algorithm

Originally, the MC algorithm was proposed to solve problems P2|pmtn, prec|
Cmax, and P |pmtn, in − tree|Cmax [16, 17]. Out-tree cases can be reduced

4

to in-tree cases by reading schedules backwards. The particular structure of
precedence constraints and processor numbers result from the fact that the
MC algorithm can be considered as a continuous version of the algorithms
given by Hu [14] to solve the problem P |pj = 1, tree|Cmax, and by Coffman
and Graham [4] for the problem P2|pj = 1, prec|Cmax, i.e. the same problems
with nonpreemptable unit-execution-time tasks.

The MC algorithm uses two concepts: task level, and processing capabil-
ity. Task level (or height) is the length of the longest path in the PCG starting
at the considered task and finishing at its furthest successor. Processing time
of the task itself is included in the level. Observe that the level changes while
processing a task. For example, a task with level 0 is finished. Intuitively,
height can be thought of as an indicator of the task urgency. We will denote
the level (or height) of task Tj by h(j). For simplicity of presentation, we
assume that h(1) ≥ h(2) ≥ . . . ≥ h(n).

Processing capability βj is a fraction of the total processing power assigned
to task Tj in some time interval. For example, a task with βj = 0.5 in an
interval of length 1 is executed 0.5 units of time.

In the pseudocode of the MC algorithm we denote by β = [β1, . . . , βn]
a vector of processing capabilities for all tasks, and by t the current time
moment in the schedule being constructed. For simplicity of presentation, tj
denotes the remaining processing time of Tj.

MC algorithm

1: t := 0; for all Tj ∈ T do calculate h(j);
2: while ∃j∈T tj > 0 do

begin

2.1: construct set Q of ready tasks;
2.2: capabilities(Q,β); (*find capabilities for ready tasks*)
2.3: calculate times:

τ ′ := min{∞,minTj ,Tj+1∈Q{
h(j)−h(j+1)

βj−βj+1
: βj 6= βj+1, andh(j) > h(j + 1)}

(* the shortest time required for different heights of two tasks Tj, Tj+1 to
become equal*)

τ ′′ := minTj∈Q{
tj)
βj

: βj > 0};

(* the time to the earliest completion of any task*)
2.4: τ := min{τ ′, τ ′′};
2.5: schedule τβj piece of task Tj in interval [t, t+τ] according to McNaughton’s

wrap-around rule [15], for Tj ∈ Q;
2.6: for Tj ∈ Q do h(j) := h(j) − τβj , tj := tj − τβj ; remove tasks with tj = 0

from Q and from T ;

5

2.7: t := t + τ ;
end; (* end of the algorithm *)

procedure capabilities(in:X;out:β); (* X - a set of ready tasks *)
begin

3.1: β := 0; avail := m; (* avail is the number of free processors *)
3.2: while avail > 0 and | X |> 0 do

begin

3.2.1: construct set T of the highest tasks in X with h(j) > 0;
3.2.2: if | T |< avail then

begin

3.2.3: for Tj ∈ T do βj := 1; avail := avail− | T |;
end

else (* tasks in T can use all avail processors *)
begin

3.2.4: for Tj ∈ T do βj := avail
|T | ; avail:=0;

end;
3.2.5: X := X − T ;

end; (* of while loop *)
end; (* of procedure capabilities *)

Description of the MC algorithm. The algorithm builds a schedule inter-
val by interval in while loop 2. The end of an interval is reached when the
level of one task is reduced to that of another task (after time τ ′), or when
some task is finished (after time τ ′′). As tasks are processed their level and
the remaining processing requirement tj is decreased in line 2.6. Finished
tasks are removed from T . Procedure capabilities assigns in line 3.2.3 one
processor (βj = 1) to the highest tasks as long as their number is not greater
than the number of available processors. The remaining tasks, if there are
any, share the remaining processors equally (line 3.2.4).

Complexity of the MC algorithm. The while loop 2 can be executed at
most 2n − 1 times because at most n tasks can be finished and at most
n − 1 times level of one task may be decreased to the level of some other
task (cf. Observation 1). Procedure capabilities requires O(min{n, m}) time
if we initially order tasks according to their heights which can be done in
O(n logn) time. Times τ ′ and τ ′′ can be calculated in O(n) time in line
2.3. Building a partial schedule in line 2.5 using the McNaughton’s wrap-
around rule [15] requires O(n) time. Line 2.6 requires O(n) time. The total
algorithm complexity is O(n2) (we assume for simplicity that m ≤ n).

Below we analyze properties of the MC algorithm.

6

Observation 1 When two tasks become equal their levels remain equal until
one or both of the tasks complete.

Proof. This attribute of the algorithm is a result of two facts: Tasks with
equal levels receive the same capabilities, and a task with an initially higher
level may not reduce it below the level of some other task with an initially
lower level (which is guaranteed by lines 2.3 and 2.4). 2

Note that this property extends also to certain successors of the two
tasks. Suppose that h(i) = h(k) for tasks Ti, Tk, and Ti ≺ Tj . Without loss
of generality let us assume that Ti is completed earlier than Tk. After the
completion of Ti, h(j) = h(k).

Observation 2 The ordering of ready tasks according to their heights does
not change.

Proof. An immediate consequence of Observation 1. 2
For the purposes of the following key theorem recall that h(1)≥ . . .≥h(n).

Theorem 3 The MC algorithm is optimal in simultaneously minimizing the
partial sums

∑j
i=1 h(i) for j = 1, . . . , m, and the total amount of remaining

work
∑n

j=1 tj.

Proof. We start with the second part of this theorem.
∑n

j=1 tj is obvi-
ously minimal until some idle time appears for the first time in the interval
[t, t + τ]. Q is the set of tasks executed in [t, t + τ]. An idle time in MC
means that |Q| < m, and there are no other ready tasks. Moreover, all the
tasks executed after t + τ are successors of the tasks in Q. Therefore, any
algorithm processing more tasks in [0, t + τ] must be infeasible. Thus, the
idle time cannot be avoided, and

∑n
j=1 tj is minimal possible.

Suppose, that MC is not optimal in minimizing S(j)MC =
∑j

i=1 h(i) for
j = 1, . . . , m. Thus, there are index q and time t starting from which
some better algorithm A has S(q)A =

∑q
i=1 h(i) < S(q)MC, and S(j)A =∑j

i=1 h(i) = S(j)MC for j = 1, . . . , q − 1. This means that from moment t on
task Tq is processed faster than in the MC algorithm, and it receives a bigger
value of βq than in MC. Suppose Tq was assigned βq in line 3.2.3 by algorithm
MC. As it is maximum possible value, algorithm A builds infeasible schedule.
The same reasoning applies if Tq was assigned βq in line 3.2.4 by algorithm
MC, and |T | = 1. Suppose Tq was assigned βj in line 3.2.4, and |T | > 1.

7

Then there is at least one more task Ta with the same height. If A gives a
higher βq than MC at the cost of βa and if a < q, then S(a)A > S(a)MC and
algorithm A is no better than MC. If A gives a higher βq than MC at the
cost of βa and a > q, then Tq immediately stops being the q-th highest task,
h(a) > h(q), and tasks Ta, Tq should be swapped in the ordering according
to their height. After swapping, S(q)A > S(q)MC and algorithm A is not
better than MC. 2

The MC algorithm has already been extended to solve many schedul-
ing problems. For example, problems of scheduling on uniform processors
Q|pmtn|Cmax, Q2|pmtn, prec|Cmax [13] can be solved by an algorithm de-
rived from MC. A generalized algorithm for Q|pmtn|Cmax is considered in
the next section. We finish this section with an example demonstrating that
the algorithm complexity is indeed O(n2), even for very simple in-trees.

Example 1

Let m = 2, and n > 2, t1 = 1, t2 = 2, t3 = 3, . . . , tj = j, . . . , tn−2 = tn−1 =
n − 2, tn = 1. Tasks T1, . . . , Tn−1 precede Tn, hence we have an in-tree. We
calculate levels: h(n−1) = h(n−2) = n−1, h(n−3) = n−2, . . . , h(1) = 2. In
the first interval of the schedule, and the first iteration of while loop 2 tasks
Tn−1 and Tn−2 obtain βn−1 = βn−2 = 2

2
. The other tasks receive 0 processing

capability. In line 2.4 τ ′ = 1 is selected for the length τ of the interval, and
Tn−1, Tn−2 are executed in parallel. At the beginning of the next iteration
(also interval) h(n − 1) = h(n − 2) = h(n − 3) and βn−1 = βn−2 = βn−3 = 2

3
.

The other tasks are not executed. The length of the interval is 3
2
. In the third

interval four tasks are executed: Tn−1, . . . , Tn−4, with βn−1 = . . . = βn−4 = 2
4
.

The interval has length 2. Each of the following intervals adds one more task
to be processed. Finally, in interval (and iteration) n− 2, tasks Tn−1, . . . , T1

receive capabilities βn−1 = . . . = β1 = 2
n−1

. In the last interval of length 1
only Tn is executed. The schedule built above is presented in Fig.1.

In each of the intervals the McNaughton’s wrap-around rule is used which
results in the complexity proportional to the number of considered tasks. In
the first interval we had 2 tasks, in the second 3 tasks, . . ., in j-th interval
j+1 tasks, . . ., in interval n−2 we had n−1 tasks. Thus, the total complexity
of the algorithm is O(

∑n−2
i=1 (i + 1)) = O(n2). 2

8

3 Derivatives of the Muntz-Coffman algorithm

3.1 Q, win|pmtn|Cmax

In this section we consider the problem of preemptive scheduling on uniform
processors available in time windows, for the schedule length criterion. Tasks
are independent. The number of available processors is not stable in general,
yet in each of the time windows it is fixed and known a priori.

Let us outline the main ideas of the algorithm solving this problem. The
length of the schedule is determined by the pieces of tasks which remain to
be scheduled in the last occupied window [bp, ep]. Let t1 ≥ t2 ≥ . . . tn be
the processing requirements of tasks that remain to be completed in [bp, ep].
Let s1p ≥ s2p ≥ . . . smpp be the speeds of uniform processors available in
window p. The following reasoning can be used to determine the length
of the schedule in the last window: The fastest processor must be able to
execute the longest remaining task, the two fastest processors must be able
to execute the two longest tasks, etc. Finally, all processors together must
be able to accommodate all the tasks remaining in the last window. Thus,
the length of the partial schedule in the last interval is determined by the
lower bound:

C = max{
m−1
max
i=1

{
i∑

j=1

tj/
i∑

j=1

sjp},
n∑

j=1

tj/
m∑

j=1

sjp}. (1)

If the above equation holds, then the pieces of the tasks can be feasibly
scheduled, e.g., according to the Gonzales and Sahni (GS) algorithm for
Q|pmtn|Cmax [10]. The GS algorithm is presented in the following part of this
section. It follows from equation (1) that the optimization algorithm for our
problem Q, win|pmtn|Cmax should minimize maxm−1

i=1 {
∑i

j=1 tj}, and
∑n

j=1 tj
before reaching the last occupied interval. Observe that the MC algorithm
has exactly this required feature (see Theorem 3). Below we present a mod-
ified version of the MC algorithm which solves problem Q, win|pmtn|Cmax.

Algorithm for Q, win|pmtn|Cmax

1: t := 0; l := 1; for all Tj ∈ T do calculate h(j); order tasks according to their
heights;

2: while ∃Tj∈T tj > 0 do

begin

2.1: capabilities(l,T , β); (*find capabilities for the current window l*)
2.2: calculate times:

9

τ ′ := min{∞,minTj ,Tj+1∈Q{
h(j)−h(j+1)

βj−βj+1
: βj 6= βj+1, andh(j) > h(j + 1)}

τ ′′ := minTj∈T {
t(j)
βj

: βj > 0};

τ ′′′ := el − t;
(* τ ′′′ is the time to the completion of the current time window*)

2.3: τ := min{τ ′, τ ′′, τ ′′′}; if τ = τ ′′′ then l := l + 1;
2.4: schedule τβj piece of task Tj in interval [t, t+ τ] according to the Gonzales-

Sachni (GS) algorithm [10] for Tj ∈ T ;
2.5: for Tj ∈ T do h(j) := h(j) − τβj , tj := tj − τβj; remove tasks with tj = 0

from T ;
2.6: t := t + τ ;

end;(* end of the algorithm *)

Description of the algorithm for Q, win|pmtn|Cmax. Observe that in this
problem there is no need to select the ready tasks in each interval (iteration)
because all tasks are initially ready. We have no precedences and height of a
task is equal to the remaining processing time. The above algorithm differs
from the original MC algorithm in few details: Procedure capabilities takes
into account changing number of currently available processors and differing
speeds. Therefore, index l of the current window is passed as a parameter to
procedure capabilities in line 2.1. Line 3.1 in this procedure should look like
3.1: β := 0; avail := ml;
The assignment of processing capacities takes into account differing proces-
sors speeds. Thus, lines 3.2.3 and 3.2.4 in procedure capabilities shoud be
3.2.3: for Tj ∈ T do βj := 1

|T |

∑ml−avail+|T |
i=ml−avail+1 sil; avail := avail− | T |;

3.2.4: for Tj ∈ T do βj := 1
|T |

∑ml

i=ml−avail+1 sil; avail := 0;
Finally, the algorithm recalculates the current processing capabilities assign-
ment also at the end of the current time window. For this purpose τ is
selected in line 2.3 not to exceed time τ ′′′ remaining to the end of the current
time window. Note that the order of the tasks according to their height does
not change, i.e. h(1) ≥ h(2) ≥ . . . h(n) is an invariant of the algorithm.

A note on applying the Gonzales and Sahni (GS) algorithm. Line 2.4
building partial schedules in intervals [t, t + τ] needs additional explanation.
Below we present the basics of the GS algorithm. Let S(i) =

∑i
j=1 tj , and

let PC(i) = Csi denote processing capacity of some processor Pi in interval
with length C. If we order processors such that s1 ≥ s2 ≥ . . . ≥ sm, and
tasks such that t1 ≥ t2 ≥ . . . ≥ tn, then a feasible schedule exists provided

10

that

S(i) ≤
i∑

h=1

PC(h) for i = 1, . . . , m − 1, and S(n) ≤
m∑

h=1

PC(i). (2)

Inequalities (2) determine a lower bound on schedule length (cf. equation
(1)). Algorithm GS schedules tasks one by one from the longest to the short-
est in such a way that inequalities (2) are always satisfied by the remaining
tasks and the remaining processing capacity. To assign tasks to processors
GS algorithm uses the following rule. For a task with processing requirement
tj find a pair of processors Pi and Pi+1 such that PC(i) ≥ tj > PC(i + 1).
Find a moment of time x such that task Tj is executed in interval [0, x] on
processor Pi and in interval [x, C] on Pi+1. From the two remaining processor
intervals ([x, C] on Pi and [0, x] on Pi+1) create a new composite processor
with processing capacity PC(i) + PC(i + 1) − tj . In the boundary case x
can be equal C or 0, then Tj uses one processor without interruption. On
the other hand, when i+1 is greater than the number of available processors
(original or composite) one should assume PCi+1 = 0.

Now, let us translate the GS algorithm to our problem of constructing an
interval of schedule in line 2.4. The length of the partial schedule is τ . Pieces
of tasks are βjτ for j = 1, . . . , n. Now S(i) =

∑i
j=1 βjτ , PC(i) = silτ . We

must guarantee that inequalities (2) hold. Assume it holds for i = 1, . . . , j
for some j ≥ 0, and tasks Tj+1, . . . , Tj+|T | received equal processing capa-
bilities, where |T | is defined in procedure capabilities. The capabilities of
the tasks are βj+1 = . . .= βj+|T | = 1

|T |

∑ml−avail+x
i=ml−avail+1 sil = 1

|T |

∑j+x
i=j+1 sil where

x = min{avail, |T |}. Since |T | ≥ x, and s(j+1)l ≥ . . . ≥ smll no task receives

bigger processing capability than s(j+1)l. Indeed, βj+1 = 1
|T |

∑j+x
i=j+1 sil ≤

xs(j+1)l

|T |
≤ s(j+1)l. Thus, inequality S(j + 1) ≤

∑j+1
h=1 PC(h) also holds.

Analogously,
∑j+a

i=j+1 βi = a
|T |

∑j+x
i=j+1 sil ≤

ax
a

∑j+a

i=j+1
sil

|T |
≤

∑j+a
i=j+1 sil for a =

1, . . . , |T |. Hence, also the remaining inequalities hold in formula (2) for the
pieces of tasks assigned to interval [t, t+ τ], and partial schedule can be built
by the GS algorithm.

Complexity of the algorithm for Q, win|pmtn|Cmax. Line 1 can be exe-
cuted in O(n logn) time. The while loop 2 can be executed at most 2n−1+p
times because it is executed at most 2n − 1 times as in the original MC al-
gorithm, and there are p time windows at the end of which capabilities must
be recalculated. Procedure capabilities requires O(min{n, maxi{mi}}) time.

11

Times τ ′ and τ ′′ can be calculated in O(n), and τ ′′′ in O(1) time in line
2.2. The original GS algorithm needs sorting the pieces of tasks assigned to
interval [t, t + τ], according to their processing requirements. However, in
our problem pieces of the tasks are already sorted because tasks with higher
height receive bigger processing capability. Therefore, the order of pieces
according to value of τβj coincides with the order of heights of the original
tasks. This order is invariant in our algorithm. Hence, building a partial
schedule in line 2.4 requies O(n) time. Line 2.5 requires O(n) time. The
total complexity (assuming maxi{mi} ≤ n) is O(n(n + p)).

The above algorithm can be also applied to schedule in time windows
chains of preemptive tasks, i.e. for problem Q, win|chains, pmtn|Cmax. It
is because each chain can be considered as one long preemptive task with
processing time equal to the sum of processing requirements in the chain.
Then, our algorithm can be applied to such a reformulated problem. Further-
more, it is not difficult to extend our algorithm to problem Q2, win|prec, pmtn|Cmax

(cf. [13]). Surprisingly, the case of arbitrary precedence constraints and time
windows is computationally hard already for an arbitrary number of identical
processors and trees (strictly saying P, win|tree, pmtn|Cmax is NP-hard) [2].
The hardness comes from the need of simultaneous matching trees of tasks
in two directions: time and processor number. We finish presentation of the
algorithm with an example.

Example 2

p = 5, the windows of processor availability are: [b1, e1] = [0, 1], m1 =
2, s11 = 3, s21 = 1, [b2, e2] = [1, 2], m2 = 3, s12 = 3, s22 = 2, s32 = 1, [b3, e3] =
[2, 4], m3 = 1, s13 = 1, [b4, e4] = [4,∞], m4 = 2, s14 = 2, s24 = 1. We have
n = 4, the processing requirements are: t1 = 8, t2 = 6, t3 = 4, t4 = 2. In
the following table we present levels of the tasks h = [h(1), . . . , h(4)] (at
the beginning of each algorithm iteration), capability assignments β, and the
length of the intrval τ . The schedule has length Cmax = 6 + 2

3
and is shown

in Fig.2. 2
h β τ

[8, 6, 4, 2] [3, 1, 0, 0] 1
[5, 5, 4, 2] [2.5, 2.5, 1, 0] 2

3

[10
3
, 10

3
, 10

3
, 2] [2, 2, 2, 0] 1

3

[8
3
, 8

3
, 8

3
, 2] [1

3
, 1

3
, 1

3
, 0] 2

[2, 2, 2, 2] [3
4
, 3

4
, 3

4
, 3

4
] 8

3

12

3.2 P |spdp − lin − δj, rj, pmtn|Cmax

In this section we extend the MC algorithm in yet another dimension. We
consider special case of multiprocessor tasks with ready times. Multiproces-
sor tasks may require more than one processor at the same moment of time.
Here we assume that the number of required processors is not fixed before
executing the task, and can be changed during its execution. Furthermore,
task Tj preserves linear speedup up to δj processors. Thus, Tj executed
tj
m

units of time on m ≤ δj processors is considered finished. Using more
processors than δj is prohibited. Since the number of used processors is not
predetermined the height of the task must be calculated differently than in
the original MC algorithm. Here the height is equal to the shortest remaining
execution time, i.e. h(j) = tj

δj
for Tj, where tj is the remaining piece of work

on Tj. As tasks have various ready times we may distinguish intervals of time
between consecutive ready times. At each ready time new task(s) appear in
the processing environment. After the last ready time we remain with some
pieces of tasks to be completed. Thus, the length of the schedule after the
last ready time determines the length of the whole schedule. It is analyzed
in the following Proposition.

Proposition 4 Length of the optimal schedule for problem P |spdp − lin −
δj , pmtn|Cmax is

Cmax = max{max
Tj∈T

{
tj
δj
},

1

m

n∑

j=1

tj}

Proof. Note that Cmax calculated in the above way is also a lower bound
on the schedule lenght because maxTj∈T {

tj
δj
} is the time required to finish

the longest task, while 1
m

∑n
j=1 tj is the time needed to finish all the tasks

provided all processors are equally loaded. A schedule of that length can be
constructed by extending McNaughton’s wrap-around rule [15]. In the Mc-
Naughton’s algorithm tasks are scheduled one after another starting at (say)
processor P1. A task which completion spans beyond the calculated Cmax is
wrapped-around and the excess of work is shifted to the next processor at
time 0. We do the same in our case, however, it is possible to wrap-around
the same task several times. In this way some task(s) can be executed at
the same time on many processors. A schedule is feasible because all tasks
receive the required processing and no task Tj uses more than δj processors
which is guaranteed by the first term in the formula stating Cmax. 2

13

From Proposition 4 we know that the length of the schedule after the last
ready time is determined by the longest piece of a single task, and the sum of
all remaining work. Thus, the optimization algorithm for our problem should
minimize the longest remaining processing requirement of any task, and the
total remaining work before reaching the last ready time. MC algorithm is
able to achieve this (cf. Theorem 3). Let Qk denote the set of tasks available
for processing at the ready time rk, and l the number of different ready times.
Below we present an adapted version of the MC algorithm.

Algorithm for P |spdp − lin − δj , rj, pmtn|Cmax

1: t := 0; group tasks with the ready time rk in set Qk; order tasks in Qk

according to nonincreasing heights, k = 1, . . . , l;
2: for k := 1 to l do

begin

2.1: order tasks in Qk according to nonincreasing values of h(j);
2.2: while (rk+1 > t) and (∃Tj∈Qk

h(j) > 0) do

begin

2.2.1: capabilities(Qk, β);
2.2.2: calculate times:

τ ′ := min{∞,minTj ,Tj+1∈Qk
{h(j)−h(j+1)

βj
δj

−
βj+1
δj+1

:
βj

δj
6=

βj+1

δj+1
, h(j) > h(j + 1)}

(* the shortest time required for two tasks Tj , Tj+1 with different heights to
become equal*)

if β|Qk| > 0 then τ ′′ := h(|Qk|)
β|Qk|/δ|Qk |

else τ ′′ := ∞;

(*the time to the earliest completion of any task*)
2.2.3: τ := min{τ ′, τ ′′, rk+1 − t};
2.2.4: schedule τβj piece of task Tj in interval [t, t + τ] according to extended

McNaughton’s wrap-around rule (Proposition 4) for Tj ∈ Qk;

2.2.5: h(j) := h(j) −
τβj

δj
for Tj ∈ Qk;

2.2.6: t := t + τ ;
end;

2.3: Qk+1 := Qk+1 ∪ {Tj : Tj ∈ Qk, h(j) > 0};
end; (* end of the algorithm *)

Description of the algorithm for P |spdp−lin−δj , rj, pmtn|Cmax. As in the
previous section we have no precedences and height of a task is equal to the
remaining processing time. We explicitly recalculate processing capability
assignment with each ready time, because at ready times new tasks appear,
possibly with heights sufficiently big to execute them. The end of the interval
built in each iteration of while loop 2.2 results either (τ ′) from two tasks with

14

height initially different becoming equal, or (τ ′′) from finishing the lowest task
in Qk (which is also the last task in Qk by line 2.1), or (rk+1−t) reaching a new
ready time. In order to observe different values of δj procedure capabilities
must be modified in the following lines:
3.2.2: if

∑
Tj∈T δj < avail then

3.2.3: for Tj ∈ T do βj := δj; avail := avail −
∑

Tj∈T δj ;

3.2.4: for Tj ∈ T do βj := δj
avail∑
Tj∈T

δj
; avail:=0;

By this method of calculating capabilities, it is guaranteed that tasks with
the biggest height are preferred, and no processor is idle as long as there is
a task ready to use it. Furthermore, tasks of equal height receive the same
capability and remain equal till their completion. More on feasibility and
optimality of the schedule built by the above algorithm can be found in [6].

Complexity of the algorithm for P |spdp− lin− δj , rj, pmtn|Cmax. Again,
the internal while loop 2.2 will be performed at most O(n) times. Line 2.2.4
requires O(n) time to schedule the tasks, and procedure capabilities can be
executed in O(min{n, m}) time. Therefore, the complexity of the algorithm
is O(n2). Below we solve an example instance of the considered problem.

Example 3

The tasks data is the following: n = 5, t1 = 5, t2 = 2, t3 = 3, t4 = 2, t5 =
1; δ1 = 2, δ2 = 1, δ3 = 2, δ4 = 2, δ5 = 1; r1 = r2 = 0, r3 = r4 = r5 = 1. We
have m = 4 processors. In the following table we present levels of the tasks
h = [h(1), . . . , h(4)], capability assignments β, and interval lengths τ for each
iteration of the algorithm. x in the height vector means that the task is not
ready yet. The schedule has length Cmax = 3.5 and is shown in Fig.3. 2

h β τ
[2.5, 2, x, x, x] [2, 1, 0, 0, 0] 1
[1.5, 1, 1.5, 1, 1] [2, 0, 2, 0, 0] 0.5

[1, 1, 1, 1, 1] [1, 0.5, 1, 1, 0.5] 2

Before the end of this section let us observe that if we set δj = 1,
then this algorithm solves problem P |rj, pmtn|Cmax, which in turn is equiv-
alent to P |pmtn|Lmax, when the schedule is read backwards. Note, that for
P |pmtn|Lmax the algorithm by Horn [12] is referred to in the determinis-
tic scheduling literature. After modifications the algorithm presented above
can be applied to solve two equivalent problems P2|sizej, rj, pmtn|Cmax and
P2|sizej, pmtn|Lmax [7]. Let us remind that sizej means that tasks have
fixed and known a priori numbers of simultaneously required processors.

15

3.3 P |spdp − lin − δj, pmtn, chain|Cmax

In this section we consider problem of scheduling chains of multiprocessor
tasks which have no predefined number of processors to be simultaneously
used. However, for each task Tj the number of usable processors is bounded
from above by δj .

This problem has practical origin in parallel processing. Parallelism pro-
file is a function of time stating the number of processors used by a par-
allel application. Parallelism profile is measured on a computer with un-
bounded (in reality: sufficiently big) number of processors. The problem is
to execute in the shortest possible time n parallel applications with known
parallelism profile on m parallel identical processors. From the scheduling
point of view parallelism profile is a chain of multiprocessor tasks each with
a bounded number of processors used in parallel. Furthermore, bulk syn-
chronous processing (BSP) model of parallel computations translates itself
directly to a chain of multiprocessor tasks. In BSP model computation is a
sequence of parallel computations and synchronizations which can be consid-
ered as, respectively, multiprocessor tasks, and sequential tasks with δj = 1.
This model can be applied to scheduling other activities with a profile of the
resource demand known in advance.

Now we return to our scheduling problem. It has been shown [9] that
the case of three-operation chains with δh = δt = 1, δp = m, where h is the
first, p is the central, and t is the last operation, is strongly NP-hard even
if n < m. Yet, if the optimal schedule for the m− 1 longest chains is known
then the optimal schedule for all n tasks can be found by a modified version
of the MC algorithm. The reader is kindly referred to [9] for the original
idea of the problem and its solution, the complexity analysis, polynomially
solvable cases, theoretical and experimental evaluation of heuristics for the
problem. In the following discussion we concentrate on the use of the MC
algorithm to schedule r > m arbitrary length chains of multiprocessor tasks
provided that some initial schedule S for the m − 1 longest chains is given.
The algorithm can be understood as filling idle periods in schedule S with
the tasks of the remaining chains.

We concentrate on chains here rather than on particular tasks. h(j) of
chain j is the sum of the remaining processing requirements of its compo-
nents. Let us assume that we have set C of r > m chains ordered in descend-
ing order of the heights, thus h(1) ≥ h(2) ≥ . . . ≥ h(r). By a high chain we
mean a chain which is strictly higher than the m-th chain. The set of all high

16

chains is denoted by H, i.e. H = {j : h(j) > h(m)}. The remaining chains
in set L = {j : h(j) ≤ h(m)} are called low chains. Note, that |H| ≤ m − 1
and |L| + |H| ≥ m.

Schedule S for high chains is a sequence of p intervals in which the
numbers of processors assigned to the tasks do not change. Interval k
(k = 1, . . . , p) is defined by its length Lk, set Qk of tasks executed in it,
and the number of processors prock(j) occupied by task Tj ∈ Qk in it.
Interval k is called compact if the number of processors available in k is
zero, or all high chains which have not been finished in the preceding in-
tervals are executed in k. It is possible to convert any interval of S into
a compact one (see [8] for details). In the pseudocode of the algorithm for
P |spdp − lin − δj, pmtn, chain|Cmax the following notation is used:
k - interval index,
Qk - the set of tasks from high chains processed in interval k of S,
prock(j) - the number of processors used by task Tj from high chain j in
interval k of S,
compact(t,S) - procedure compacting the interval of S that starts at t,
head(j) - the task heading chain j.

Algorithm for P |spdp − lin − δj , pmtn, chain|Cmax

1: t := 0; compact(0,S); A := {j : j ∈ L, h(m) = h(j)};
2: while H 6= ∅ and h(m) > 0 do

begin

2.1: β := 0; let k be the interval of S starting at t;
2.2: βj:=prock(j) for Tj ∈ Qk; avail := m −

∑
Tj∈Qk

prock(j);

2.3: if avail > 0 then βj := avail
|A|

for Tj ∈ {Tl : Tl = head(q), q ∈ A};
2.4: calculate times:

τ ′ := min{∞, minj∈H{
h(j)−h(m)

βhead(j)−βhead(m)
: βhead(j) > βhead(m)}};

(* the shortest time required for the height of a high chain to drop
to the height of the m-th highest chain *)

if βhead(m) > 0 then τ ′′ := h(m)−h(|H|+|A|+1)
βhead(m)

else τ ′′ := ∞;

(* the time required for the m-th highest chain to reach the height
of chain |H| + |A| + 1, the highest one in L − A *)
τ ′′′ =

∑k
i=1 Li − t;

(*the time to the completion of the current interval in schedule S*)
τ := min{τ ′, τ ′′, τ ′′′};

17

2.5: schedule piece τβi of Ti = head(j) in interval [t, t + τ], using ex-
tended McNaughton’s rule (Proposition 4), for j ∈ C;

2.6: h(j) := h(j) − τβj for j ∈ C; t := t + τ ;
ti := ti − τβi, remove tasks with ti = 0 from chain j and from T ,
for Ti = head(j) and j ∈ C;

2.7: B := {j : j ∈ H, h(j) = h(m)}; H := H− B;
A := A∪ B ∪ {j : j ∈ L −A, h(j) = h(m)};

2.8: if B 6= ∅ then begin remove j ∈ B from the end of S starting at
time t; compact(t, S) end;
end;

3: if h(m) > 0
then schedule the tasks remaining in chain j as a single task of length

h(j) in interval [t, t+
∑

j∈T tj/m] using McNaughton’s rule [15], for
j ∈ C

else concatenate the remaining part of S starting at t;
(* end of the algorithm *)

Description of the algorithm for P |spdp− lin−δj , pmtn, chain|Cmax. Un-
like in the preceding sections, procedure capabilities has been incorporated
in the rest of the code. The algorithm builds subintervals in the intervals of
the initial schedule S. The compactness of these subintervals is maintained
during the whole algorithm run by lines 1 and 2.8. Tasks from high chains
receive the same processing capabilities as in the original schedule S. Thus,
the part of the schedule for high chains remains intact. The remaining avail
free processors are shared by tasks from the highest low chains (line 2.3). In
line 2.4 length of the subinterval is calculated such that for the current values
of capabilities, no high chain may reduce its height below the level of chains
in set A (time τ ′), no chain from A may reduce its height below the level
of chains in set L − A (time τ ′′). In line 2.5 pieces of tasks heading chains
are scheduled. Tasks from low chain j consume τβj units of time. Hence, if
ti < τβj for Ti ∈ head(j), then after completing Ti its successor is immedi-
ately started. In line 2.6 heights of the processed chains and the remaining
processing requirements are appropriately decreased. In line 2.7 chains from
the set of high and low chains which became equal in height with the m-th
highest chain are shifted to set A. If h(m) > 0 in line 3 then all high chains
have been shifted to set A, and |A| ≥ m. Therefore, McNaughton’s rule
can be applied to whole remaining chains treated as single tasks of length
h(j), for ∈ C. Note that in this case all processors finish simultaneously, and
since no available processor was left idle during the whole algorithm run,

18

the schedule must be optimal. In the opposite case (h(m) = 0 in line 3),
all low tasks are completed and the remaining part of the schedule is the
initial schedule S for high chains. In this case optimality of the schedule de-
pends on optimality of schedule S for high tasks. The proof of the algorithm
correctness and optimality of the schedules it builds is presented in [8].

Optimal schedule S for high chains can be obtained by applying linear
programming to any feasible permutation π of task completions and selecting
the best one. The method of constructing optimal schedule for the given
permutation π is presented in [8]. Suboptimal schedule S also can be used.

Complexity of the algorithm for P |spdp−lin−δj , pmtn, chain|Cmax. Note
that the number of chains r is O(n). Procedure compact requires O((m+n)p)
time in line 1 (cf. [8]). Loop while 2 can be executed at most the number of
times the events mentioned in line 2.4 take place. A high chain may have its
height reduced to the level of chains in set A at most m − 1 times. Chains
from L −A my join set A, O(n−m) times. Some interval of schedule S may
finish p + n times, where n are the additional intervals which may appear as
results of running procedure compact. Lines 2.5-2.7 require O(n) time. Line
2.8 requires O(mp(m + n)) time over all the algorithm run time because the
condition in line 2.8 is satisfied at most O(m) times and compacting needs
O((m + n)p) time. Line 3 requires O(n) time. Thus, the total complexity of
the algorithm is O((m − 1 + n + p + n − m)n + (n + m)mp). Since m < n,
the complexity is O(n(n + mp)).

Let us note that schedules built by the above algorithm (also the optimal
ones) have a crucial property: low tasks are executed on one processor at
a time, and their parallelism is not exploited. As pointed out in [9], it is
important information for designers of parallel systems: there are optimal
schedules where only at most m−1 tasks take advantage of their parallelism.

4 Conclusions

In this work we demonstrated that the MC algorithm is a very efficient
’vehicle’ for solving many diverse scheduling problems. Thus, MC algorithm
seems to be one of the fundamental algorithms of deterministic scheduling
theory. The reason for its potency has been identified in Theorem 3. At the
end of this work one may ask ’where else can we go with this algorithm?’
That is the question.

19

Acknowledgement

The author expresses his thanks to the Referees for their suggestions on
improving quality of this work.

References

[1] Błażewicz J, Drabowski M and Węglarz J. Scheduling multiprocessor
tasks to minimize schedule length. IEEE Transactions on Computers
1986; 35(5): 389-393.

[2] Błażewicz J, Drozdowski M, Formanowicz P, Kubiak W and Schmidt G.
Scheduling preemptable tasks on parallel processors with limited avail-
ability, Parallel Computing 2000; 26(9):1195-1211.

[3] Błażewicz J, Ecker K, Pesch E, Schmidt G and Węglarz J. Scheduling
Computer and Manufacturing Processes, Springer-Verlag: Heidelberg,
1996.

[4] Coffman EG Jr. and Graham RL. Optimal scheduling for two-processor
systems, Acta Informatica 1972; 1(3): 200-213.

[5] Drozdowski M. Scheduling multiprocessor tasks - An overview, European
Journal of Operational Research 1996; 94(2): 215-230.

[6] Drozdowski M. Real-time scheduling of linear speedup parallel tasks,
Information Processing Letters 1996; 57(1): 35-40.

[7] Drozdowski M. Selected problems of scheduling tasks in multi-
processor computer systems, Series: Monographs, No.321, Poz-
nań University of Technology Press, Poznań, (1997), (see also
http://www.cs.put.poznan.pl/˜maciejd/h.ps).

[8] Drozdowski M. Scheduling parallel applications with known parallelism
profile, Technical Report RA-002/2001, Institute of Computing Science,
Poznań University of Technology, 2001.

[9] Drozdowski M and Kubiak W. Scheduling parallel tasks with sequential
heads and tails, Annals of Operations Research 1999; 90: 221-246.

20

[10] Gonzalez T and Sahni S. Preemptive scheduling of uniform processor
systems, Journal of the ACM 1978; 25(1): 92-101 .

[11] Graham RI, Lawler EL, Lenstra JK and Rinnoy Kan AHG. Optimiza-
tion and approximation in deterministic sequencing and scheduling: A
survey, Ann. Discrete Math. 1979; 5: 287-326.

[12] Horn WA, Some simple scheduling algorithms, Naval Research Logistics
Quarterly 1974, 21: 177-185.

[13] Horvath EC, Lam S and Sethi R. A level algorithm for preemptive
scheduling, Journal of the ACM 1977; 24(1): 32-43.

[14] Hu TC. Parallel sequencing and assembly line problems, Operations Re-
search 1961; 9: 841-848.

[15] McNaughton R. Scheduling with deadlines and loss functions, Manage-
ment Science 1959; 6: 1-12.

[16] Muntz RR and Coffman EG Jr., Optimal Preemptive Scheduling on
Two-Processor Systems, IEEE Transactions on Computers 1969; 18(11):
1014-1020.

[17] Muntz RR and Coffman EG Jr., Preemptive scheduling of real-time
tasks on multiprocessor systems, Journal of ACM 1970; 17(2): 324-338.

[18] Veltman B, Lageweg BJ and Lenstra JK, Multiprocessor scheduling with
communications delays, Parallel Computing 1990; 16: 173-182.

21

List of figure captions

Fig. 1 Example 1. a) PCG, b) schedule.

Fig. 2 Optimal schedule for Example 2.

Fig. 3 Example 3 optimal schedule.

22

b)

a)

0

Tn-1 Tn-1 Tn-1 Tn-1

TnTn-2

Tn-2 Tn-2Tn-2

Tn-2Tn-3 Tn-3

Tn-3

Tn-3Tn-4 Tn-4Tn-5

1 2.5 4.5 7 n n(-2)
2

n n(-2)
2 +1

...

Tn-1

Tn

T1 Tn-2Tn-3Tn-4

Maciej Drozdowski, JOS-170-E

Fig.1

Fig.2

T1 T1

T1 T1

T1 T1

T2

T2

T2

T2

T2

T2T2

T2T3 T3

T3

T3

T3

T4

P s1 1=3

P s2 2=2

P s3 3=1

0 1 2 4 6 6
_

+2
3

Maciej Drozdowski, JOS-170-E

Fig.3

T1 T1
T1

T2

0 1 1.5 2.5 3.5

T2
T3

T3

T5

T4

Maciej Drozdowski, JOS-170-E

