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Abstract

In this paper we study the scheduling of multiple divisible
loads on a star network of processors. We show that this
problem is computationally hard. Special cases solvable
in polynomial time are identified.
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1 Introduction

Divisible loads are computations that can be divided into
parts of arbitrary sizes and the parts can be processed
independently in parallel. Divisible load theory (DLT) has
emerged as a new paradigm in parallel processing, which
links scheduling, communication optimization, and per-
formance modeling. Surveys of DLT literature can be found
in Bharadwaj et al. (1996), Drozdowski (1997), and Rob-
ertazzi (2003).

1.1 Problem Formulation

In this paper we consider scheduling multiple divisible
loads in a star network. Each load, which is a separate
parallel application, will be called a task. The set of tasks
is � = {T1, …, Tn}. Each task Tj is represented by the vol-
ume of load Vj that must be processed.

The tasks (loads) are to be processed on a set of distrib-
uted computers interconnected by a star network. For the
simplicity of presentation we use the word “processor”
when referring to a computer–communication link pair.
The set of processors is � = {P1, …, Pm}. In the center of
the star a scheduling controller (or master, or server) P0
called the “originator” is located. In star topology, proces-
sors P1, …, Pm communicate only with the originator P0.
The originator is not computing. Were it otherwise, the
computing capability of the originator can be represented
as an additional processor. Tasks in � may be reordered
by the originator to achieve good performance of the
computations. The originator splits the loads of the tasks
into parts and sends them to processors P1, …, Pm for
remote processing. Only some subset �j  � of all proc-
essors may be used to process task Tj. We denote by αij
the size of the part of task Tj sent to processor Pi. αij are
expressed in load units (e.g. bytes). αij = 0 implies that
Pi �j. The sizes of the load parts sum up to the task load,
i.e.  αij = Vj. Not only �j is selected by the originator,
but also the sequence of activating the processors in �j is
chosen by the originator.

Each processor is described by three parameters: com-
puting rate, communication rate of the link to the originator,
and communication startup time. Computing and commu-
nication rates are expressed in time units per load unit
(e.g. seconds per bytes), and are reciprocals of speeds.
Startup time is expressed in time units. Depending on the
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heterogeneity of the computing environment, three forms
of the star system can be distinguished (we use schedul-
ing theory naming convention; Pinedo 1995; Blazewicz
et al. 1996).

• Unrelated processors. Communication rates and startup
times are specific for the communication link and for
the task. Similarly, processor computing rates depend
on the processor and task. We denote by Cij the commu-
nication rate, and by Sij the startup time, of the link to
processor Pi perceived by task Tj. Transferring αij load
units to Pi takes Sij + Cijαij time units. Aij denotes the
processing rate of processor Pi perceived by task Tj.
Computing for load αij lasts for Aijαij. The case of unre-
lated processors is the most general case. Both the proc-
essors and the tasks differ because of variations in the
solved problems, and the computer or network archi-
tecture.

• Uniform processors. Communication rates Ci, startup
times Si, and computing rates Ai are specific for the proc-
essors but are the same for all tasks. In other words, ∀
Aij = Ai, Cij = Ci, Sij = Si, for Pi  �. The class of uniform
processors is a special case of the more general class of
unrelated processors. Uniform processors represent iden-
tical, or similar, parallel programs executed on heteroge-
neous system.

• Identical processors. Communication rates, startup times,
and computing rates are the same for all processors and
tasks. Thus, ∀ Ai = A, Ci = C, Si = S. Identical proc-
essors are a further specialization of the uniform proc-
essors. They represent, for example, the same parallel
program executed in a homogeneous environment for
different input data sets.

We assume that processors have sufficient memory
buffers to store the received loads, and computations do
not have to start immediately after receiving the load. Note
that even for uniform and identical processors n tasks are
not equivalent to a single task with load Vj because each
task is a separate scheduling entity, separate memory object,
and requires a separate set of communications.

By constructing a schedule the originator decides on: the
sequence of the tasks, the sets of processors assigned to
the tasks, the sequence of processor activation, and the sizes
of the load parts. Our objective is minimization of the sched-
ule length, denoted by Cmax. Let us now point out several
possible assumptions on the structure of the schedule.

In some cases the time of returning the results may be
so short in comparison with the load scattering and com-
puting phases that the result returning may be neglected
in the construction of the schedule. This assumption is
commonly used in modeling divisible load computa-
tions (Bharadwaj et al. 1996; Drozdowski 1997; Rober-
tazzi 2003). It has been observed in earlier DLT papers

that if the result returning time may be neglected, then the
schedule for a single task is shortest when all the activated
processors complete computations at the same moment. This
requirement may be extended to the multiple loads case.
We say that a schedule has a simultaneous completion prop-
erty if the computations on all parts of each task finish
simultaneously. Simultaneous completion of the computa-
tions may be also justified by technological reasons. When
a parallel application finishes at the same time on all proc-
essors, then managing it in a parallel computer batch system
is simpler than if it were finishing on different processors
in widely scattered moments of time.

However, the process of result returning may be as time-
consuming as load distribution and computations. In such
cases we assume that the amount of returned results is βjαij,
which means that the volume of results is proportional to
the amount of received load, and coefficient βj is applica-
tion specific. The result returning phase must be explicitly
scheduled. We assume that transfer rates and startup times
are the same for sending the load to the processors, and
for returning the results.

It is assumed in this paper that the originator constructs
permutation schedules (see, for example, Pinedo 1995
and Blazewicz et al. 1996 for a classic definition). By per-
mutation schedule, we mean that a task is sent to the proc-
essors only once, that a processor executes the task only
once, and the sequence of the tasks is the same on all proc-
essors. Consequently, communications and computations
are non-preemptive, i.e. cannot be suspended and restarted
later. If Pi  �j, then a dummy computation interval of
length 0 is inserted on Pi. An example of permutation
schedule is shown in Figure 1. When returning of the results
is considered, we also assume permutation schedules, by
which we mean that the order of the tasks in the distribution,
computation, and result collection phases is the same.

1.2 Related Work

Scheduling multiple divisible loads has already been con-
sidered in DLT for communications without startup
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Fig. 1 An example of a permutation schedule.
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times. In Bharadwaj et al. (1996) and Sohn and Robertazzi
(1994), it was assumed that the task execution sequence
was first-in first-out, processors were uniform, and task
computations finished simultaneously. Furthermore, all
processors were used by each task. In the multijob scheme
proposed in Bharadwaj et al. (1996) and Sohn and Rober-
tazzi (1994), communications of some task Tj overlap with
computations of task Tj – 1 preceding Tj in the execution
sequence. This allows computations to be started for Tj on
some processors P1, …, Pm immediately after the end of
task Tj – 1. Processors P , …, Pm are idle until receiving
their load share of Tj. Using the formulae provided in
Bharadwaj et al. (1996) and Sohn and Robertazzi (1994)
the distribution of the load for Tj can be found in O(m)
time, for a given m . The actual value of m  can be found
iteratively in, at most, m steps. Thus, for a sequence of n
tasks, the complexity of the algorithm is O(m2n).

Veeravalli and Barlas (2002) made the same assumptions
on the task sequence, processor selection, simultaneous
computation completion, and zero startup time. Under the
above assumptions a multi-installment load distribution
strategy has been proposed to ensure that all processors
work continuously on tasks T2, …, Tn. When the overlap
of computations on Tj – 1 with the communications of Tj is
too short to send the whole load Vj to the processors, and
thus avoid idle time (i.e. if m  < m), then the load is
divided into multiple smaller installments. As communi-
cations are shorter, all processors may receive some load
earlier, and may work continuously on Tj. Unfortunately,
it was observed in Veeravalli and Barlas (2002) that this
strategy does not work for certain combinations of task
and processor parameters. Four heuristics have been pro-
posed in Veeravalli and Barlas (2002). It was demonstrated
by a set of simulations that a multi-installment strategy
gives the shortest schedule in most of the cases.

Ko and Robertazzi (2002) have given a probabilistic
analysis for multiple loads arriving at multiple nodes of a
fully connected network of identical processors. Marchal
et al. (2004) have studied a steady state of multiple divisible
loads executed in an arbitrary network. Sequencing of the
communication and computation is ignored in the steady
state. Instead of minimizing schedule length, the total load
executed in a unit of time is maximized. Only the fraction
of processor time or communication channel bandwidth
dedicated to an application has to be determined.

In this paper we analyze the multiple divisible load
scheduling problem along the lines of computational com-
plexity. In the earlier literature DLT has been considered
as a generally tractable linear model of distributed com-
putations. The paper is organized as follows. In Section 2
we identify computationally hard cases. In Section 3 we
present some polynomially solvable cases of the problem.
We give bounds on the quality of approximation algorithms
in Section 4.

2 Complexity

In this section we identify computationally hard (strictly
speaking NP-hard, or NP-hard in a strong sense; see Garey
and Johnson 1979) cases of the multiple divisible load
scheduling problem. In our proofs of the computational
complexity we use the NP-complete PARTITION problem,
and the strongly NP-complete 3-PARTITION problem,
defined as follows (Garey and Johnson 1979).

PARTITION
INSTANCE: A finite set E = {e1, …, eq} of positive integers.
QUESTION: Is there a subset E   E such that

(1)

3-PARTITION
INSTANCE: A finite set G = {g1, …, g3q} of positive integers,
such that gj = Hq and H/4 < gj < H/2 for j = 1, …, 3q.
QUESTION: Can G be partitioned into q disjoint subsets
G1, …, Gq such that gj = H for i = 1, …, q?

Theorem 1. The multiple divisible load scheduling prob-
lem is NP-hard even for one (m = 1) unrelated processor,
when result returning is considered.

Proof. For m = 1 this problem is obviously in NP
because NDTM has to guess the sequence of tasks execu-
tion. We show that our scheduling problem is NP-hard
using the following polynomial time transformation from
PARTITION:

n = q + 1,

Vj = 1, βj = 1 for j = 1, …, n,

S1j = 0 for j = 1, …, n,

C1j = 0 for j = 1, …, q, C1n = F,

A1j = ej for j = 1, …, q, A1n = 1.

We ask if a schedule with length at most y = 2F + 1 exists.
Suppose that the PARTITION instance has a positive answer.
Then a feasible schedule of length 2F + 1 can be con-
structed as shown in Figure 2.

Suppose the scheduling problem instance has a posi-
tive answer. Then task Tn is continuously performed
because S1n + VnC1n + VnA1n + S1n + βnVnC1n = 2F + 1 = y.
As computations are non-preemptive, each of the tasks
T1, …, Tq must fit into either interval [0, F], or interval
[F + 1, 2F + 1]. For the set of tasks �[0, F] for which com-
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putations are performed in [0, F], we have A1jVj =
ej ≤ F. Analogously, for the tasks in interval [F +

1, 2F + 1]: A1jVj = ej ≤ F. Thus, the
PARTITION instance also has a positive answer. Conse-
quently, the scheduling problem is NP-hard. �

Theorem 2. If the result returning time is negligible, then
the multiple divisible load scheduling problem for two
(m = 2) unrelated processors is NP-hard in the strong
sense.

Proof. We prove the theorem by reduction from 3-PARTI-
TION. We assume (without loss of generality) that H > q.
Were it otherwise, all gj can be multiplied by q > 1 to ful-
fill this requirement. The instance of the scheduling prob-
lem can be constructed as follows:

n = 4q + 1, Vj = 1 for j = 1, …, n,

S1j = 0, S2j = 0, C1j = 1, C2j = gj, A1j = ∞, 

A2j = H3gj for j = 1, …, 3q,

S1, 3q + 1 = 0, S2, 3q + 1 = 0, C1, 3q + 1 = 1, C2, 3q + 1 = 1, 

A1, 3q + 1 = H4 + H, A2, 3q + 1 = ∞,

S1j = 0, S2j = 0, C1j = H4, C2j = 1, A1j = H4 + H, 

A2j = ∞ for j = 3q + 2, …, 4q,

S1, 4q + 1 = 0, S2, 4q + 1 = 0, C1, 4q + 1 = H4, 

C2, 4q + 1 = 1, A1, 4q + 1 = 1, A2, 4q + 1 = ∞,

y = q(H4 + H) + 2.

We ask whether a schedule no longer than y exists. If
the 3-PARTITION instance has a positive answer, then a fea-
sible schedule of length y may look like that in Figure 3.
Observe that processor P2 can start executing tasks imme-
diately after its first communication. Thus, there can also be
other schedules no longer than y when a 3-PARTITION exists.

Suppose a feasible schedule no longer than y exists.
Due to the values of parameters Aij, tasks T1, …, T3q can
be executed on P2 only, and tasks T3q + 1, …, T4q + 1 on P1
only. The total computing time on P1 is q(H4 + H) + 1 =
y – 1, while the shortest load distribution operation lasts
one unit of time. As a result, P1 must compute all the
time with the exception of the first time unit when the
load of T3q + 1 is sent. The sum of all communication
times is equal to y – 1. Thus, the originator must commu-
nicate all the time with the exception of the last time unit
when task T4q + 1 must be executed on P1.

The total computing requirement put on P2 by tasks T1,
…, T3q is qH4. After excluding the first communication of
T3q + 1, P2 can be idle at most qH + 1 time units. To avoid
idling on P1, sending the load for the second task exe-
cuted on P1 must start at time H + 1 at the latest. There-
fore, no further load can be sent to P2 than for three tasks.
Suppose that two tasks Ti, Tj are started on P2 before
sending the load for the second task on P1, and Ti is
started first. Then, there would be excessive idle time on
P2 from the end of Tj computations until the end of the
communication operation of the second task executed by
P1. Let us calculate this idle time. H4 + gj is the span of
the interval from the end of Ti communication operation
(the moment when P2 can start computing) until the end
of the communication operation of the second task exe-
cuted by P1 (when P2 can start receiving any new load).
H3(gi + gj) is the time of computing operations which can
be executed on P2 in this interval. The idle time on P2

Fig. 2 Illustration to the proof of Theorem 1.
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Fig. 3 Illustration to the proof of Theorem 2.
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would be at least H4 + gj – H3(gi + gj). Since H > q and
H > 1 we have H4 + gj – H3(gi + gj) > H4 – H3(H – 1) = H3 ≥
H2 + H2 > qH + 1, while the idle time on P2 cannot be
greater than qH + 1. Hence, exactly three communications
to P2 must be carried out before sending the second task
to P1.

The sum of the computation times of the first three
tasks Ti, Tj, Tk allocated to P2 must be equal to H4. If it is
less, then it is at most H3(gi + gj + gk) ≤ H4 – H3, which
results in H3 > qH + 1 idle time on P2 while communica-
tion of the second task allocated to P1 with the originator.
Suppose it is more, then sending their loads lasts longer
than H and the sending operation of the second task allo-
cated to P1 cannot start at time H + 1, which results in addi-
tional idle time on P1. Consequently, the three tasks must
be processed in exactly H4 time units. Otherwise the sched-
ule of length y cannot exist.

The same reasoning can be applied to the following
tasks assigned to P1. The load distribution operations of
these tasks cannot be started later than by 1 + iH4 + (i + 1)H
for i = 1, …, q – 1. This creates a free time interval for at
most three communications of the tasks assigned to P2.
Also, no fewer than three tasks can be started by the orig-
inator, otherwise there will be excessive idle time on P2.
The processing times of the three tasks must be equal to
H4, otherwise either P2 or the originator must be idle for
too long a time. We conclude that for each triplet of tasks
assigned to P2 their computing time is H4. Hence, the 3-
PARTITION instance has a positive answer. �

In the following theorem we consider a simpler case of
uniform processors, but with simultaneous completion
required, i.e. each task must be finished at the same time
on all used processors.

Theorem 3. If the result returning time is negligible and
simultaneous completion is required, then the multiple
divisible load scheduling on uniform processors is NP-
hard already for two (n = 2) tasks, even if the sequence of
tasks is known.

Proof. First we calculate the amount of a single applica-
tion load that can be distributed, and processed on a star
network with Ci = 0, until time τ. Without loss of gener-
ality, let us assume that the sequence of processor activa-
tion is P1, …, Pm. The amount of load V that can be
distributed, and processed in time τ is

(2)

The term (τ/Ai) is the amount of load that could be
processed if all processors were activated simultaneously

at time 0. Startup time Si of the selected processor Pi delays
the activation of all processors Pj for j ≥ i. Therefore, Si
decreases the processed load by (Si/Aj). The term

(Si/Aj) in equation (2) is the amount of the load that
could not be processed due to the communication delays.
Suppose that (1/Ai) = Si for all i. Equation (2) reduces to

(3)

Note that V in equation (3) does not depend on the
sequence of processor activation.

We show the NP-hardness of the problem by a polyno-
mial time transformation of the PARTITION problem. We
assume that ei > 2 for i = 1, …, q. Were it otherwise, all ei
may be multiplied by 2 without changing the answer to
the PARTITION instance. The transformation of a PARTITION
instance to a scheduling problem instance is as follows:

n = 2, m = q,

Si = ei, Ai =  = , Ci = 0, for i = 1, …, q

V1 = 4F2 – , V2 = F

y = 3F + 1

As already mentioned, the sequence of task execution
is given: T1 precedes T2. We ask if a schedule of length at
most y exists.

Suppose the answer is positive for the PARTITION prob-
lem. A feasible schedule for the instance of the scheduling
problem is shown in Figure 4. Processors corresponding to
set E  in PARTITION are used by T2. Let us check that the
schedule is feasible. T1 completes computations at time τ =
3F. If we supply the values of startup times Si, and process-
ing rates Ai into equations (2) and (3), we obtain

Thus, T1 is executed feasibly. The communications of
T1 finish at time 2F, and therefore communications of T1
which take Si = F fit in F time units of available
time. In the last time unit of interval [y – 1, y] the selected
processors process
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units of load. Hence, also T2 is executed feasibly.
Suppose that a schedule of length y exists. Task T1 is

executed first. All m processors must be used by T1. Sup-
pose it is otherwise, and some processor is not exploited.
Without loss of generality we can renumber the proces-
sors such that Pm is the unused processor. Using equation
(3) the volume of the processed load for T1 is at most

because em > 2. Hence, all m processors must be used by
task T1. If all processors are used then T1 communications

complete by 2F, and due to simultaneous completion
requirement, its computations finish at time 3F. This leaves
interval [2F, 3F + 1] free for communications, and interval
[3F, 3F + 1] for the computations of T2. Note that ∀iSi ≥ 2,
and any communication in interval [3F, 3F + 1] gives no
contribution to the processed load of task T2. Consequently,
communications of set �  of the processors selected for
executing T2 must satisfy Si = ei ≤ F. The load of
T2 processed in interval [3F, 3F + 1] must satisfy =

ei ≥ F. Thus, the answer is positive for the PARTITION
instance if the elements corresponding to the processors
in set �  are selected to set E . �

The case of arbitrary processor sequence is no simpler.
We explain it in the following observation.

Observation 4. If the result returning time is negligible
and simultaneous completion is required, then the multiple
divisible load scheduling on uniform processors is NP-
hard even for two (n = 2) tasks, and arbitrary sequence of
the tasks.

Proof. The proof for the previous problem can be adjusted
to the current situation. If the sequence of tasks is (T2, T1),
then the length of the schedule is at least the length of
the communications of T2 plus the length of the schedule
for T1. Communications of T2 last at least {Si} =

{ei} > 1. The duration of T1 processing is at least 3F
(see the proof of Theorem 3). The schedule length is at least
3F + 2. Thus, only sequence (T1, T2) allows for a schedule
of length at most 3F + 1, which by the proof of Theorem 3
exists if and only if PARTITION exists. �

Note that Theorems 1 and 2 can be proved also for non-
permutation schedules. Preemption in computation and
communication can be eliminated by sufficiently long com-
munication or computation startup times. Theorem 3 relies
on the simultaneous completion of T1, and hence it holds
also for non-permutation schedules.

We conclude from the above results that the problem
of scheduling multiple divisible loads is computationally
hard. This means in practice that this problem has a hard
combinatorial core which could not be expected from
the earlier DLT literature. The main sources of the com-
putational complexity are sequencing the tasks, selecting
the processors to use, and sequencing processor activa-
tion.

3 Polynomial Cases

3.1 Fixed Activation Order, no Result Returning

When the task execution sequence, the set of used proc-
essors, and the processor activation orders are known,

Fig. 4 Illustration of the proof of Theorem 3.
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then the optimum distribution of the load can be found by
using rational linear programming. Let us first study the
case when simultaneous completion of the computations
is not required, and the result returning time can be
ignored. For the sake of notation simplicity, and without
loss of generality, let us assume that the order of task
execution coincides with task numbers. The set of proc-
essors exploited by Tj is �j. The order of processor acti-
vation can be different for each task. Let the number of
the ith processor activated for task Tj be given by func-
tion f(j, i). The amount of load from task j = 1, …, n sent
to processor i = 1, …, m is denoted by αij ≥ 0. The opti-
mum distribution of the load can be found by the linear
program: minimize Cmax subject to

[Sf(j,i)j + αf(j,i)jCf(j,i)j]

+ (Sf(l,i)l + αf(l,i)l Cf(l,i)l)

+ αf(l,k)j A f(l,k)j ≤ Cmax

l = 1, …, n, k = 1, …, |�j| (4)

 = Vj                   j = 1, …, n. (5)

The term [Sf(j, i)j + αf(j, i)jCf(j, i)j] in inequalities (4) is
the time of sending the load for tasks T1, …, Tl – 1. Sending
the load to processors f(l, i) activated as i = 1, …, k in the
sequence of processors executing task Tl lasts [Sf(l, i)l +
αf(l, i)lCf(l, i)l]. αf(l, k)jAf(l, k)j is the time of computing the
load parts of tasks Tl, …, Tn, sent to processor f(l, k), acti-
vated as kth for task Tl. Thus, inequalities (4) ensure that
computations complete before the end of the schedule.
By constraints (5) all tasks are fully processed. Let us
consider an example.

Example 1. m = 3, n = 2, |�j| = m, f(j, i) = i, for j = 1, 2,
i.e. all processors are used, and the order of processor
activation coincides with processor numbers for both tasks.
Processors are identical: ∀i, jAij = 1, ∀i, jCij = 1, ∀i, jSij = 1.
V1 = 32, V2 = 2. For these values the solution from equa-
tions (4)–(5) is α11 = 18.5, α21 = 9.75, α31 = 3.75, α12 =
2.0, α22 = 0, α32 = 0, Cmax = 40. The last two communica-
tions of T2 contain no load, because α22 = 0, α32 = 0, but
still contribute startup times S1 = S2 = 1. Thus, this is not
the best solution, and processor P3 need not be used in
processing T2. After removing P3 from �2 we obtain from
equations (4)–(5) the optimum solution α11 ≈ 18.333, α21 ≈
9.333, α31 ≈ 4.333, α12 ≈ 1.667, α22 ≈ 0.333, Cmax ≈ 39.333,

shown in Figure 5. The exclusion of both P3 and P2 from
processing T2 does not reduce schedule length any fur-
ther. �

Observe that in the optimum schedule for example 1
computations on T1 do not finish on all processors at the
same time. This demonstrates that simultaneous comple-
tion of the computations on all processors for all tasks is
not necessary for the optimality of the solution.

Suppose that tasks are of equal size ∀ Vj = V proces-
sors are identical, and ∀ �j = �, i.e. each task uses all
processors. We experimentally studied patterns that
appear in the optimal solutions under the above condi-
tions. When communication delays are big in comparison
with computing time, then not all processors are
exploited. This is the case when C  A/m. When com-
munication delays are of similar order as computations,
then the load of each task is distributed nearly equally
between the processors. The exceptions are the leading
and trailing tasks. In the leading tasks, the distribution is
unequal so that waiting for the first load chunk to process
is minimized. In the trailing tasks, the distribution is also
unequal such that processors stop computing at the same
time. This is demonstrated in Figure 6(a) where changes
of αij from task to task are shown. Each line in Figure 6
represents the load from the consecutive tasks assigned
to a certain processor. When communication delays are
short in comparison with computing times, e.g. when C

 A/m, then the total load of all tasks is distributed
nearly equally between the processors, but computations
of each task are concentrated on one processor. This is
demonstrated in Figure 6(b). Such a situation is not very
comfortable for a user of a parallel application because a
distribution optimal globally (for all tasks) is not a solu-
tion which is using parallelism.

It was assumed in equations (4)–(5) that the computation
completion times are arbitrary. If simultaneous comple-
tion is required, then a linear programming formulation can
be given to deal with the simultaneous completion. Let zl
denote the completion of computations on task Tl. The
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∑
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n

∑

αij
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Σj 1=
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Σi 1=
k

Σj l=
n

Fig. 5 Optimal schedule for example 1 (does not pre-
serve proportion).
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following linear program solves the case with simultane-
ous completion: minimize Cmax subject to

zl–1 + αf(l,k)l Af(l,k)l ≤ zl

l = 2, …, n, k = 1, …, |�j| (6)

[Sf(j,i)j + αf(j,i)jCf(j,i)j]

+ [Sf(l,i)l + αf(l,i)l Cf(l,i)l]

+ αf(l,k)j A f(l,k)j ≤ zl

l = 1, …, n, k = 1, …, |�j| (7)

zn = Cmax (8)

 = Vj                   j = 1, …, n. (9)

By inequalities (6), the computations of task Tl can be
feasibly performed in interval [zl –1, zl]. Inequalities (7)
ensure that communications and computations of task Tl
are completed by time zl. By equation (8) the end of the

last task is also the end of the schedule. The tasks are
fully processed by equation (9).

Let us now return to example 1. For linear program (6)–
(9) a solution α11 = 19, α21 = 9, α31 = 4, α12 = 1, α22 = 1,
Cmax = 40 is obtained, which is longer than that presented
in Figure 5. Hence, requiring simultaneous completion of
computations on all processors may prevent obtaining an
optimum schedule.

The methods used above can be extended to deal with
the returning of the results. Linear programming formu-
lations for returning of the results can be found in Droz-
dowski, Lawenda, and Guinand (2004).

3.2 Continuous Computing

In this section we assume simultaneous completion, use
of all processors by each task, and negligible result return-
ing time. Moreover, it is assumed that the tasks occupy
processors continuously from the start of computations on
the first task, until the end of the last task. We call this sit-
uation continuous computing. An example of a continu-
ous computing is shown in Figure 7. Let us start with
some observations.

Observation 5. When computing is continuous, only sched-
ule for the first task decide on the length of the whole
schedule.

Fig. 6 Distribution of the load (ααααij) versus task number (j); m = 3, n = 24, V = 1E4, C = S = 1. (a) A = 3. (b) A = 1E2.
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Proof. Since all processors are used by each task, selec-
tion of the processor set is immaterial. With the excep-
tion of the first task, the sequence of processor activation
can be arbitrary because processors are used in the same
interval due to continuous computing and simultaneous
completion. With the exception of the first task, the load
assigned to processor Pi for task Tj is

and a decision on task chunk sizes is not necessary. �

Note that also the sequence of the tasks matters because
only some task sequences may result in continuous com-
puting (cf. the proofs of Theorem 3, and Observation 4).

Observation 6. If the first task has the shortest possible
completion time, and computing is continuous, then the
schedule for all tasks is optimum.

Proof. The schedule cannot be shorter because all proc-
essors work in parallel from the end of the first task, and
the first task is completed in the shortest possible time. �

Continuous computing is possible when the load of
any task Tj is distributed to the processors before the
computations on Tj are started. This leads to the follow-
ing greedy approach to the construction of continuous
schedules.

1. For i = 1 to n: select Ti as the first task, and con-
struct for it an optimum schedule �i.

2. Select the shortest schedule � in �1, …,�n. Set
�  = � – {Ti}.

3. While � �≠ 0/ do the following.
3.1. Select task Tj whose communication interval

(Slj + Cljαlj) fits in the interval between the
end of communication and the end of computa-
tion of the preceding task, and which maximizes
interval between Tj ends of communications and
computations, i.e. A1jα1j – (Slj + Cljαlj), where

if there is no task satisfying the above condi-
tions then stop.

3.2. Append Tj to the end of schedule �; set �  =
�  – {Tj}.

If the resulting schedule has a continuous computing
property, then it is optimal by Observation 6. Beyond the
construction of the optimum schedule for the first task the
above algorithm can be implemented to run in O(nm + n2)
time.

Unfortunately, it is hard to claim that the above algo-
rithm builds optimum schedules in polynomial time in
general. To the best of our knowledge, the complexity of
scheduling single divisible load (step 1 in the above algo-
rithm) on a heterogeneous star remains open in the general
case. Two decisions must be made: the set of used proces-
sors and the sequence of their activation must be selected.
If ∀ijSij = 0, then it can be shown that all processors take part
in computations, and they should be activated according
to increasing Cij for task Tj (Bharadwaj et al. 1996; Blaze-
wicz and Drozdowski 1997; Beaumont et al. 2005). If
∀ijSij ≠ 0, then it can be shown that processors participat-
ing in the computation should be activated according to
increasing Cij for task Tj (Beaumont et al. 2005). Yet, it is not
known which processors should be used (cf. Figure 4).
Hence, it is not guaranteed that the above method constructs
a schedule with a continuous computing property if such
a schedule exists.

We propose sufficient conditions under which an opti-
mum schedule can be constructed by the above algorithm.
This means that in the set of optimum schedules with con-
tinuous computing there is a subset satisfying our condi-
tions. Suppose the processors are identical. Executing the
tasks according to the increasing sizes (Vj) is called the
shortest processing time (SPT) sequence. Let us assume
that tasks are ordered according to the SPT rule, i.e. V1 ≤
V2 ≤ … ≤ Vn.

Theorem 7. If computing is continuous, and

Fig. 7 Example of (a) continuous and (b) non-continu-
ous computing.
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then the SPT maximizes the interval between the comple-
tion of the task communication, and starting of its com-
putations on identical processors.

Proof. The requirement

can be rewritten as

which means that load distribution time is shorter than
computation using all processors in the same interval. This
requirement should be satisfied by real parallel applications
which have high computing demands. The proof based on
pairwise interchange can be found in Drozdowski, Lawenda,
and Guinand (2004). �

Thus, if it is possible to maintain continuous comput-
ing at all, then the SPT will also do it, provided that

.

The conditions of the optimality of the SPT sequence
in continuous computing are the following.

Theorem 8. The SPT is the optimum task sequence on iden-
tical processors if

and xj > Sm + Vj + 1C for j = 1, …, n – 1, where

,

xj = xj – 1 +  – Sm – VjC for j = 2, …, n – 1

Proof. If it is possible to maintain continuous computing
on identical processors at all, then according to Theorem 7,
the SPT sequence will also have this property because the
SPT maximizes the distance between task communication
completion and computation start. Using Observation 6
the first task must be finished in the shortest possible time.
On identical processors, task T1 with the smallest load V1
satisfies this condition. Hence, the SPT task sequence
is optimal among schedules with a continuous computing
property on identical processors.

It still remains to ensure that continuous computing is
possible. This is the case if xj > Sm + Vj + 1C, for j = 1, …,

n – 1, where xj is the time between end of task Tj commu-
nication, and the start of its computation (see Figure 8).
This condition demands that communication of Tj + 1 fin-
ishes before its computation has to start. The length xj of
the interval for the communication of Tj + 1 is equal to xj =
xj – 1 + (VjA/m) – Sm – CVj for j = 2, …, n – 1. The length
x1 of the first interval is x1 = Aαm1. Now we calculate αm1.
Since computations on T1 must finish simultaneously on
all processors, we have

Aαi1 = S + αi + 1,1(A + C)    i = 1, …, m – 1.

αi1, for i = 1, …, m – 1, can be expressed as a function
of αm1:

The size of the first task is

from which we derive

�

3.3 m = 1

Observation 9. If the result returning time is negligible,
then the multiple divisible load scheduling problem for
one (m = 1) unrelated processor is solvable in O(nlogn)
time using the algorithm of Johnson (1954).
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Fig. 8 Illustration of the proof of Theorem 8.
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Proof. If the results are not returned, and only one machine
(m = 1) is available, then execution of a task reduces to
two operations: the communication operation involving
originator P0, followed by the computation operation involv-
ing P1. This situation is equivalent to a two-machine flow-
shop. The two-machine flowshop is solvable in O(nlogn)
time using the algorithm of Johnson (1954) (or see, for
example, Pinedo 1995; Blazewicz et al. 1996). �

For the completeness of the presentation let us note
that, in our case, Johnson’s algorithm divides the set of
tasks into two subsets: �1 comprising the tasks for which
S1j + C1jV1j < A1jV1j, and set �2 comprising the remaining
tasks. Tasks in �1 are executed in order of increasing S1j +
C1jV1j, while tasks in �2 are ordered according to decreas-
ing A1jV1j. �1 is executed first.

Although this special case may seem trivial, it repre-
sents practical situations when parallel computations both
start and complete in roughly the same time on all proces-
sors. In such situations, all processors are working in par-
allel, and behave as a single processing facility, i.e. a single
processor.

4 Approximability

In this section we study the bounds on the quality of
approximation algorithms for the multiple divisible load
scheduling problem. By a greedy heuristic we mean an
algorithm which is not unnecessarily delaying communi-
cations and computations. This means that if there is
some load to be distributed and a communication medium
is available, then the load is immediately distributed; if
there is some load already at a processor and the proces-
sor is free, then the computation on the load is immedi-
ately started.

Theorem 10. The length C  of a schedule built by any
greedy heuristic H solving the multiple divisible load
scheduling problem on identical processors satisfies:

where C  is the optimum schedule length.

Proof. Intervals of two types can be distinguished in any
schedule for our problem: intervals of total length EC
when the initiator performs communications, and inter-
vals of total length EA when initiator does not perform
any communications because all processors compute. In
the case of identical processors EC = ( S + CVj).
Note that nS + C  Vj ≤ C  because each load must
be sent. In the worst case, some heuristic may activate all
processors while only a single processor is necessary for
each task. Consequently, S – nS = S  (|�j| – 1)

≤ Sn(m – 1) ≤ (m – 1)C . Some heuristic may also tend
to use fewer processors than necessary. In the worst case
|�j| = 1, and EA ≤  AVj. Note that

.

Hence, EA ≤ mC . Altogether we have C  = EC + EA ≤
C  + (m – 1)C  + mC . �

The results of Theorem can be further strengthened. If
S = 0, then in the above proof S – nS = 0, and the
ratio of schedule lengths can be narrowed to

.

If

,

then

.

Consequently (C /C ) ≤ m + 1.
In the latter case a better bound can be obtained by a

heuristic CC attempting to build a schedule with a con-
tinuous computing property. Divide the load of each task
into m equal parts and send them to the processors. For
each task, start computations synchronously on all proc-
essors as soon as all processors have received their share
of the load. Since all processors compute in parallel, we
have EA ≤ C . Hence, EC + EA ≤ 2C , and (C /
C ) ≤ 2.

5 Conclusions

In this paper we have studied the combinatorial aspects
of scheduling multiple divisible loads. It has been dem-
onstrated that this problem is computationally hard for
unrelated processors, and for uniform processors with
simultaneous completion requirement. When the order of
task execution, the used processors and their activation
sequence are given, then the optimum distribution can be
found in polynomial time by applying linear program-
ming. The case of a single processor boils down to a well-
known operations research problem of scheduling in a
two-machine flowshop. Finally, bounds on the perform-
ance of heuristics for the problem have been sought. Still,
the complexity of scheduling on uniform processors with-
out simultaneous completion, and scheduling on identical
processors remains unknown. Improving the bounds on
approximability can be the subject of further study.
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