&

PARALLEL
COMPUTING

RN
G £ A

ELSEVIER Parallel Computing 21 (1995) 1945-1956

Scheduling divisible jobs on hypercubes’

J. Btazewicz *, M. Drozdowski

Institute of Computing Science, Pozna# University of Technology ul. Piotrowo 3a, 60-965 Poznan,
Poland

Received 3 July 1994; Revised 6 June 1995

Abstract

In this work a problem of finding an optimal distribution of a divisible computational job
among a set of processors is considered. In the model of parallel computer systems two
important factors must be taken into account: speeds of processors and speeds of communi-
“cations links. With regard to this, we propose a deterministic approach finding an optimal
distribution of the job’s load on a hypercube of processors. The method used allows also the
determination of performance bounds on the hypercube architecture.

Keywords: Parallel processing; Deterministic scheduling; Performance analysis; Hypercube

1. Introduction

Parallel computer systems receive a lot of attention for many years. There are
many models of such systems. The progress in technology created a new situation
in this field. Computers based on the parallel architecture are not only successtully
implemented, but are becoming an everyday tool. Such systems are no longer
designed to run only one dedicated application, but must be capable of executing
many concurrent jobs competing for system’s resources [13,14]. Thus, the problem
of representation and modelling of parallel applications is becoming more and
more significant from the point of view of the operating system designer. There are
many aspects of this problem, and many ways of dealing with them. There is, for
example, a concept of multiprocessor tasks (also known as co-scheduling)
[3,4,8,12,19], where each task may require more than one processor at the same
time. There are also other approaches (see e.g. [2,9,17,18] and [6,7] for the problem
taxonomy).

" Corresponding author. Email: blazewic@poznlv.tup.edu.pl
This research has been partially supported by KBN grant 3P40600106.

0167-8191 /95 /$0.9.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0167-8191(95)00046-1

1946 J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945- 1956

In this work we propose a method of finding an optimal distribution (in the
sense of the minimum execution time of a job) of a divisible job among a set of
processors connected by communication links and forming a hypercube. This
method is also useful in estimating the ultimate performance bounds of the
hypercube architecture. Unlike in many other works based on a probabilistic
approach [11,15] the performance assessment here is based on a more practical
deterministic model. The methodology we apply is similar to the one introduced in
a series of works [1,2,9,10], were various interconnection networks have been
analysed. In [9] the problem of optimal distributing a computational problem on a
chain of processors has been addressed. The processing elements could have
communication co-processors or not, their speeds were assumed to be different. In
[10] this model has been applied to solve the problem of a job distributing on a tree
network of processors, and in [1] on the processors interconnected through a bus
type medium. Finally, in [2] the performance limits are given for infinite chain and
tree networks of processors. The same methodology has been applied to analyse
two-dimensional mesh of processors [5].

Let us set up our problem more formally. We consider a computer system
consisting of a set of identical processing elements (PE’s): processors with local
memories connected by a network of communication links. The architecture of the
interconnection network is assumed to be a hypercube [16], i.e. each processor is a
node of a multidimensional cube. For the hypercube of dimension d there are 2¢
processors in the system. Each of the processors has direct links to d neighbours. A
useful method of naming the processors is to use label consisting of a binary string
d- position long. Hence, the label of a processor is a binary number from the
interval [0,2¢ — I]. Note, that each of the processor’s neighbours has a label
differing on exactly one position. The processors’ speeds and the speed of the
transmission are limited.

At time 0 a job arrives at the processor numbered 0. It is assumed that the job
(the load) can be arbitrarily divided and processed independently (in parallel) on
many processors. It can be the case of processing large database files, signal
processing [9], modelling etc. Some part «, of the total load is processed by

~processor 0, the rest of the load (I —) is transmitted in equal parts to the d
neighbours of processor 0 for processing. The immediate neighbours of processor 0
take some part a, of the total load and re-transmit the rest to the still idle
neighbours. This process is continued until the last idle processor in the hypercube
is reached. We assume that the processing time of the job on a standard processor

is T, while one processor with a different speed it is wT; . Thus, w is proportional
to the reciprocal of the processor’s speed. On the other hand, the transmission
time of the whole job’s data is T,,, for a standard data link, while for a link with
different capabilities it is z7,,. Hence, z is reciprocal of the link bandwidth.

Although the links are identical and the processors are identical, we will still use w
and z, which will be useful in the following sections. We assume two things about

the processing element: it must receive all its load before transmitting the proper
part to the neighbours, and it is capable of simultaneous transmitting and comput-

J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 19451956 1947

ing (i.e. it has some kind of DMA, which is true for most of contemporary
computers and many processors, e.g. transputers)

In the following section, the way to divide the load on the hypercube so that the
completion time of the computation is minimised will be given. Then, formulae
describing performance of the hypercube network of processors will be presented.
In Section 3, the results of modelling performance of the system according to the
formulae from Section 2 will be described. The last section presents conclusions.

2. A model of the computation process

In this section we present a formal analysis of the computational process. The
expected results are the answer to the question how to divide the load between the
processors, formulae expressing the equivalent speed of the whole network, speedup
and utilisation of processors. Firstly, we will analyse the process of data distribu-
tion, later on we will present the formulae.

The processing and distributing the data is depicted in the form of a Gantt chart
in Fig. 1. When processor 0 receives a burst of data to process, it takes «, of it for
local processing; (1 — a,) of the load is transmitted to d neighbours. The computa-
tion on processor 0 last a,wT,,. Since processor 0 has no 1 in its address, its
neighbours have exactly one 1 in their addresses. The part (I — «,) transmitted
from processor 0 is fairly divided among all d neighbours. Thus, the transmission
time is (I — &,)zT,,,/d. When transmission is finished, each of the processors with
only one 1 in the address takes «; of the whole load for local processing from the
part it receives from processor 0. The rest is transmitted, in equal shares, to its idle
neighbours. Processors with one 1 in the address have d — I idle neighbours with
exactly two 1’s in the address. Hence, this transmission time is (1 — o, —da;)27,
/d /(d— 1). Note, that processors with one 1 in the address can be reached from
the originator of the load via only one link, while processors with two 1’s can be
accessed via two links. The process of data dissemination is repeated until the last
processing element with address 11 .. 1 is reached via d links. Let us call by layer i
a set of all processors reached in the same number i of hops, starting from layer 0
consisting of the originator only (processor 0). The last layer d consists of a single
processor. Note, that data transmission does not cause contention in use of any
communication link because each link is used only once and each communication
path is one link long. It can be observed, that the computation stage must finish on
all exploited processors at the same moment of time. This can be explained in this
way, that if some processor(s) stop earlier, we can move some part of the load to
these processors and reduce the completion time of the job. Let us denote by &; a
part of the received load that is intercepted for local processing in a processor of
layer i. The @, will be used to facilitate the process of finding proper solutions.

The following lemma describes useful topological properties of a hypercube.

Lemma. In each layer i of d-dimensional hyper cube there are (¢) processing
elements each of which can be accessed through i communications links and is
capable of transmitting to d-i still idle processors.

1948 J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945—1956

0 {(1-ap)idjzT,,, communication

agwlp computat’on

’ {(1- oh—d a JAifd-1)}zT,,, communication

a]wgp computat’on

layers of processors
—

d-1 communication
computation Poagw TCL
d :
computation [alen
0 time

Fig. 1. Process of computation and data transfer.

Proof. First, let us note that the method of originator’s connection to the outside
of the hypercube is beyond our consideration.

We can observe that it is a general rule in the hypercube architecture that any
link joins two PE’s differing in only one position of their addresses. We can assume
that in the process of data distribution we get from a busy processor to idle
processors via links reflecting 0 in the current processor address. Thus, processor 0
is connected with d neighbours, each of which represents one of d dimensions of
the hypercube. Since the originator has the address 0,0,...0,, its neighbours have
addresses with exactly one 1 (i.e. addresses: 1,0,...0,, 0,1,..0,,..0,0,..1,). Then,
PE’s with exactly one 1 in the address have idle neighbours with exactly two 1’s in
the address, and so on. Let us consider layer i. Each of its processors can have an
address with i 1’s and can be reached from processors with i — 1 1’s. Since the
address is d position long and i of its positions are 1, then there are (¢) processors
in layer i. Next, each of processors in layer i transmits some part of the load to
d —i processors (the number of 0’s in the current address) with i+ 1 1’s in the
address. On the other hand, address of the current processor with i 1’s can be
accessed from processors with i — I 1’s. There are i such processors that differ in
exactly one position (number of 1’s). The induction over i finishes the proof. 0O

Now, we are ready to present the qualitative model of computation. Let us
consider layer i and denote by Vol, the amount of data received by a processors in
layer i. Hence, Vol, = 1. The processor in layer i works the same amount of time
as it takes to transmit data to d —i processors in layer i + I and to compute in
layer i+ 1 (cf. Fig. 1). What is more, processors in layer i+ I receive data to

J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945-1956 1949

process from i+ 1 links. Thus,

(1 - &)Vol (G + Dw, T, +2T,,)
d—i

aVolwT, , = fori=0,.d—1, (€))

where w;, ; is equal to a reciprocal of the equivalent speed for all processors in
layers i + d,...,d which receive some part of the load from the considered processor
in layer i. Hence, ¢; is equal to

A 1 P _
&, = @, fori=0,...,d—1)
1+

(l + 1)Wi+1Tcp +ZTcm

Layers i,...d process Vol; of the load in time &,Vol, wT, . Taking into account the
above-introduced rec1proca1 of the equivalent speed W,, the above load could be
processed in layers i, i +1,...,d in time w; Vol,T, . Thus,

itepe

aVolwT,, »

w; = —Vol,Tcp = qw.

For i =0 Eq. (1) has the following form

(1 - &0)(W1T|CP +2T;m)

A

agwT,

cp = d ?
hence,
n 1
aO = aO = dwTCp (3)

1+ wl.Tcp +ZTcm

Egs. (2) and (3) form a set of expressions which can be solved for &;, recursively
starting from i =d — 1, for which we know that &, =1, w, =w, until i = . Then,
the portions e; of the whole load can be calculated. Thus, the originator processes
locally «, of the whole load, sends to each of it’s d neighbours a share of load
equal to (1 — «,)/d. Each processor in layer i (i = I,...,d) receives through each of i
links a share of load equal to

1-a,_WVol,_, ~ (1—-&_pivol,_,
d—itD , thus totally Vol, = d—itD

1950 J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945—1956

from which

41— 4&,_pivol,_,
G T A=+ D

is intercepted for local processing.
We can calculate an equivalent reciprocal of the speed for the whole hypercube
of processors:

agwT, »

wél =
T,

= agw

Then, we can find speedup (S - measured as a ratio of the sequential computa-
tion time, i.e. on the sole originator, to the working time of the originator
embedded in the hypercube) and average utilisation of processors (U):

wT, awT,
S = o1 _ 1+——-2F_ U= s __1 ,
c10]"‘}T(:p] lelp +ZTcm 2d 2da0

where w, is calculated according to the above recursive procedure.

From the above formulaec we can derive several qualitative conclusions. The
speedup depends on the dimension d of the hypercube but depends also on the w;,
which would have to decrease at least linearly with d in order to preserve linear
speedup. The average utilisation of the processors has 24 in the denominator, then
again, to preserve linear speedup and utilisation close to 1, &, must decrease very
fast.

We conclude this section with an example. Consider a hypercube with d =2,
z=w=T, =T, =1. We know that &, =1, w,=w =1. From Eq. (2) we get &,

= 3=w,, and from (3) &, = &, = 5. By definition VoI, = 1, hence we calculate

(1 —-ayvol,

Voh=g—7+p —

_ A _ 3
a, = a;Vol, = 33,

and

(1 - &1)V011 _ 2

— A — 2
s Oy = anOIZ = 13-

From the above we obtain wl =%, § =¥, U= 3.

In the next section we present results of modelling the above expressions for
different values of network parameters (or performance evaluation of the hyper-
cube network, in other words).

J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945-1956 1951

3. Modelling

In this section we present results of modelling the set of equations introduced in
Section 2. If not stated otherwise, in the following graphs z=1,w =1, T, =1
We will present dependence of «;, total processing time (w7, ,), S U on the
parameters describing the hypercube in the above model.

Firstly, we will illustrate the distribution of the load in the hypercube. Figs. 2
and 3 present dependence of the load share on the dimension of the hypercube
(d). Fig. 2 shows what part of the total load is distributed in a processor of a given
layer, while Fig. 3 shows what part of the total load is processed in a given layer of
processors. The load of processors across the layers decreases very fast. We can
conclude from this that processors in deeper layers compute less. The total load of
a layer is a function which maximum moves from the originator, for small
dimensions, to the internal layers, for bigger dimensions. Thus, we can say that for
bigger dimensions central layers are computing more, while the front layers are
communicating more.

As a second topic, we have analysed the dependence of the total processing time
of the job on the speed of processors (Fig. 4), communication medium (Fig. 5) and
the size of computing job (Fig. 6). The execution time of the job decreases with the
increase of the dimension of the hypercube. However, for faster processors
(w=0.1) this reduction is relatively smaller than for slow processors (w = 10)
where execution time can be reduced by two orders of magnitude. Conclusion is
that gain from parallel processing on slow processors is higher than on fast
processors. In Fig. 5 we can see that fast communication network (z = 0.1) is more
reasonable than the slow one (z=10). In this picture we have also included a

08

06 + \

0.2 +-

0 t + Y ¥ e

A 3
Sk 3
N
%X

layer

|-~ d=1 = d=2 = d=4 > ¢=8

Fig. 2. Load of processors vs. layers and dimension d. '

1952 J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 19451956

08

> d=1 % =2 = d=4 + d=8

Fig. 3. Load of layers for different dimensions d.

curve for z =0 which is the case of the ideal network introducing no transporta-
tion delays. We can see in Fig. 5 that the reduction of the execution time between
the curve for z = 0.1 and for z = 0 is not very high. Although this reduction is not
big in the absolute terms of time, for z = 0 the executiontime decreases proportio-

execution time

o E%

0.01 t } + + t
0 1 2 3 4

ol
<
oo
o
s

}
5
d

[we0.1 > w=l = w=10

Fig. 4. Execution time vs. processor speed and dimension.

J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945— 1956 1953

08

e
EN

execution time

o
'Y
:
t

0.2

B z=0 X z=01-+z=1 ->¢z=10

Fig. 5. Execution time vs. communication speed and dimension.

nately to the number of processors (cf. Fig. 7 and Fig. 8). Finally, Fig. 6 demon-
strates relative processing time as a function of 7, and d. The relative execution
time is equal to the quotient of the actual processing time and processing time on
one processor. We can see that the gain from parallel processing is bigger for big
tasks (7., = 10).

08

=
=)
}

relative execution time
(=]
e
L

o
)

—~ Top=0.1 -5 Tep=1 > Tep=10 |

Fig. 6. Execution time vs. size of the computation task (7, ,) and dimension.

1954 J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945~ 1956

1000

JOO e

speedup

10

T 2 4 8 16 32 64 128 25 Si2 1024
number of processors

= 2z=0 X =001->¢z01 —+2z=1 -©-z10

Fig. 7. Speedup for different z vs. number of processors.

The last parameters we consider are speedup (Fig. 7) and utilisation of proces-
sors (Fig. 8). In both cases curves are presented for different values of z, among
which a curve of z=0 is present. The network with z =0 represents an ideal
network. As it can be seen, the linear speedup can be achieved when the
communication medium is perfect. In more realistic cases (z>0) the speedup

0.8

utilization

0.4 J N—

0.2

awl

B0 =001 < =01 +—z=l ©z10 |

Fig. 8. Utilisation for different z vs. dimension.

J. Blazewicz and M. Drozdowski / Parallel Computing 21 (1995) 1945— 1956 1955

curve levels off very fast, especially for slow networks (z = 10). The utilisation of
processors decreases with the size of the network. Only for the perfect communica-
tion network, can utilisation equal to 1 be achieved.

4, Conclusions

In this work we have presented an analytical model for parallel computations.
The model presented here is strictly deterministicc. We have assumed that a
computational job can be arbitrarily divided and processed in parallel. Next, the
cost of computations and transmissions have been assumed to be linearly depen-
dent on the size of the task. The architecture of the network is a hypercube of
processors. Various parameters can be derived from the model presented in this
paper e.g. execution time of the job, speedup and utilisation of the network. The
intuitive expectations are fully supported by the model. The faster the processors
and the communication links are, the more efficient the hypercube is. On the other
hand, the gain from parallel processing is more significant on slower (cheaper)
processors than on fast processors. What is more, big computational task gain more
from parallel processing than small tasks. Finally, we have shown that the linear
speedup in the hypercube can be obtained only in a perfect network introducing no
communication delays.

References

[1] S. Bataineh and T.G. Robertazzi, Bus-oriented load sharing for network of sensor driven proces-
sors, IEEE Trans. on Systems Man, and Cybernetics 21 (1991) 1202-1205.

[2] S. Bataineh and T.G. Robertazzi, Ultimate performance limits for networks of load sharing
processors, State University of New York at Stony Brook, CEAS Tech. Rept. 623, 1992.

[3] J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize schedule
length, IEEE Trans. Comput. 35 (1986) 389-393.

[4] J. Blazewicz, P. Dell’Olmo, M. Drozdowski and M.G. Sperana, Scheduling multiprocessor tasks on
three dedicated processors, IPL 41 (1992) 275-280.

[5] J. Blazewicz and M. Drozdowski, Performace limits of two-dimensional network of load-sharing
processors, Foundations of Computing and Decision Sciences, to appear.

[6] J. Btazewicz, K. Ecker, G. Schmidt and J. Weglarz, Scheduling in Computer and Manufactunng
Systems (Springer, Berlin New-York, 1993).

[7]1 T. Casavant and J. Kuhl, A taxonomy of scheduling in general-purpose distributed computing
systems, IEEE Trans. on Software Eng. 14 (1988) 141-154.

[8] G.I. Chen and T.H. Lai, Preemptive scheduling of independent jobs on a hypercube, IPL 28 (1988)
201-206.

[9] Y.C. Cheng and T.G. Robertazzi, Distributed computation with communication delays, IEEE
Trans. Aerospace and Electronic Syst. 24 (Nov. 1988) 700-712.

[10] Y.C. Cheng and T.G. Robertazzi, Distributed computation for a tree network with communication
delays, IEEE Trans. Aerospace and Electronic Syst. 26 (1990) 511-516.
[11] S. Dandamundi, Performance analysis of a class of hierarchical hypercube multicomputer networks,

Performace Euvaluation 13 (191) 159-179.

