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1 Introduction

In this presentation we study scheduling malleable tasks with limited paral-
lelism, for mean flow time criterion. Malleable tasks can be executed by more
than one processor at the same time, while the number of used processors
can be changed during execution of the task. More formally, the scheduling
problem studied here can be formulated as follows. Set T of n tasks is to
be executed on m parallel identical processors. Each task j ∈ T is defined
by the parameters: processing requirement pj, maximum number of proces-
sors δj that can be used in parallel, ready time rj, and deadline dj which
cannot be exceeded in any feasible schedule. Tasks can be interrupted, and
restarted without cost. A task can migrate to a different processor, increase
or decrease the number of used processors without cost, but the number of
simultaneously used processors cannot exceed δj . Task j is finished when
the sum of the lengths of the intervals occupied by task j on all processors
is at least pj . The completion time of task j will be denoted by cj . The
objective is the minimization of the sum of completion times:

∑n
j=1 cj.

The problem we study can be justified by parallel computer applica-
tions. Parallel applications may use more than one processor. The number
of processors exploited in parallel in real time depends on the load of the
computer system. The number of processors simultaneously used may be
limited to avoid overuse of the processor resource by a single program. The∑n

j=1 cj criterion reflects the mean task waiting time. According to the nam-
ing conventions of [4] malleable tasks may change the number of exploited
processors during the runtime. These should be distinguished from mold-
able tasks for which the number of used processors must be selected before
starting a task. The concept of scheduling tasks using many processors in
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parallel is explained in more detail in [2, 4]. Problem P |pmtn, rj|
∑

cj is
NP-hard [3], so NP-hard is our problem. Here we present two polynomially
solvable cases, and an approximation result.

2 Fixed sequences

When the order of rj’s, dj ’s, and cj ’s with the respect to each other is
known, our problem can be formulated as a linear program. Let l ≤ 3n
be the number of these events, and let τi−1, τi denote the endpoints of an
interval determined by two consecutive events, for i = 2, . . . , l. Let xij be
the amount of processing that task j receives in the interval [τi−1, τi]. We
have the following linear programming formulation:
minimize

∑l
i=1 τi

subject to:

xij ≤ δj(τi − τi−1) i = 2, . . . , l, j = 1, . . . , n (1)
n∑

j=1

xij ≤ m(τi − τi−1) i = 2, . . . , l (2)

l∑

i=2

xij ≥ pj j = 1, . . . , n (3)

xij = 0 if τi−1 < rj i = 2, . . . , l (4)

xij = 0 if τi > dj i = 1, . . . , l − 1 (5)

τi ≤ τi+1 i = 1, . . . , l − 1 (6)

In the above linear program minimizing
∑l

i=1 τi is equivalent to min-
imizing

∑n
i=1 ci, because τi’s corresponding to ready times and deadlines

are constants. Inequalities (1) guarantee that no task j uses more than δj

processors in the interval [τi−1, τi]. By inequalities (2) tasks processed in the
interval [τi−1, τi] use no more processing than the capacity of the m proces-
sors. Inequalities (3) ensure that all tasks receive necessary processing. By
constraints (4),(5),(6) tasks are processed within the bounds of their ready
times, and deadlines, and the order of the events is preserved. A feasible
schedule can be built in each interval [τi−1, τi] using an extension of Mc-
Naughton’s wrap-around rule. If a task is wrapped it may use more than
one processor at the same time. By constraints (1) it is guaranteed that no
task uses more than δj processors simultaneously in interval [τi−1, τi].

The above formulation can be extended to the criterion
∑n

i=j wjcj if the
weights wj of the tasks were given.
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Figure 1: Example from Section 3.

3 Agreeable
pj

δj
and δj

In this section we propose a low-order polynomial time algorithm for agree-
able orders of the minimum processing times

pj

δj
and parallelism bounds δj ,

i.e. p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δn
and δ1 ≤ δ2 ≤ . . . ≤ δn. The agreeable feature of

an instance can be checked in O(n log n) time by sorting the tasks. We also
assume rj = 0, dj = ∞, for all tasks j. The algorithm can be formulated as
follows:

Algorithm Agreeable

1: for j:=1 to n do

2: assign task j to the earliest possible time intervals using maximum pos-
sible number of processors, i.e. either δj or all the processors remaining
available in a given time interval.

Theorem 1 [1] Algorithm Agreeable constructs the optimum schedule in
O(n2) time if p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δn
and δ1 ≤ δ2 ≤ . . . ≤ δn.

Consider an example: m = 5, n=5, processing requirements of the tasks are
[1, 2, 5, 9, 13], maximum usable numbers of processors are [1, 2, 2, 3, 4]. The
optimum schedule built by algorithm Agreeable is shown in the Fig.1.

Algorithm Agreeable can be applied in the general, not agreeable case. If
the tasks are scheduled according to the increasing processing requirement,
i.e. p1 ≤ p2 ≤ . . . ≤ pn, then algorithm Agreeable builds schedules with
criterion

∑n
j=1 cj not worse than twice the optimum.

Theorem 2 [1] Algorithm Agreeable has the worst case performance ratio
at most 2.



4 Conclusion

The above problem can be the subject of further work. To our best knowl-
edge, the complexity status of the case without ready times or deadlines
remains open. Approximation algorithms for this problem can be also the
subject of the further research.

References

[1] M.Caramia, M.Drozdowski, Scheduling malleable tasks for mean
flow time criterion, Technical Report RA-008/05, Institute
of Computing Science, Poznan University of Technology, 2005
http://www.cs.put.poznan.pl/mdrozdowski/rapIIn/RA008-05.pdf

[2] M.Drozdowski, Scheduling parallel tasks - Algorithms and complexity,
in: J.Y.-T.Leung, ed., Handbook of Scheduling: Algorithms, Models,
and Performance Analysis, Chapman & Hall/CRC, Boca Raton, 2004,
chapter 25.

[3] J. Du, J.Y.-T. Leung, G.H. Young, Minimizing mean flow time with
release time constraint, Theoretical Computer Science 75, No.3, (1990)
347-355.

[4] D.G.Feitelson, L.Rudolph, U.Schweigelshohn, K.Sevcik, and P.Wong,
Theory and practice of job scheduling, Lecture Notes in Computer Sci-
ence 1291, Springer, Berlin, (1997) 1-34.


