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Abstract. Effective exploitation of a parallel computer system is a re-
sult of cooperation between the communication and the computing parts
of a parallel computer system, and the application. These elements are
described by various parameters. It is not easy to grasp the connection
between the values of particular parameters and the efficiency of parallel
computations. In this paper we propose a new way of representing the
relations between the parameters of a parallel computer system, and its
performance. Results of simulations are presented and discussed.
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1 Introduction

Performance of a parallel computer system is guided by complex relations be-
tween the computer system components and the application. Understanding the
reasons for the limitations in the performance is the first step towards using the
power of the hardware effectively.

In this paper we make an attempt to gain new insights into the relation-
ships between the performance of parallel systems and their key parameters.
The method we propose is built on the basis of divisible load theory (DLT) [2—4],
and isoefficiency function [6]. DLT assumes that computations (the load) can be
divided into parts of arbitrary sizes. The parts can be processed independently
by remote computers. DLT appeared to be useful in representing distributed
computations in various interconnection topologies. It has become not only the-
oretically useful, but also practically viable which has been demonstrated by a
series of parallel applications [5]. Surveys of DLT can be found in [2—4]. The iso-
efficiency function has been defined as problem size required to sustain constant
efficiency for changing processor number. We generalize this concept.

The rest of this paper is organized as follows. In Section 2 the notion of isoef-
ficiency is presented, and generalized. In Section 3 a DLT model of a distributed
computation is presented. Section 4 gives results of performance modeling, and
discusses the consequences.
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2 The concept of isoefficiency

In this section we present, and generalize, the concept of isoefficiency function
defined in [6].

Let m denote the number of processors used by a parallel application. We
will denote by T'(m) the execution time of a parallel application when run on
%. Speedup is the most
commonly used measure of a parallel application performance. Efficiency E =
% = ng))m is a measure derived from speedup. Note that both speedup, and
efficiency are dimensionless measures. In a sense speedup indicates how much
an application can be accelerated by using additional processors. The higher
speedup is the better. Efficiency is an indicator showing how well a parallel
application uses the processors. Efficiency can be also understood, as an average
fraction of all m processors that really work in the parallel application. Thus,
the closer efficiency to 1 is, the better.

It has been observed that speedup and efficiency depend on the size of
the problem that a parallel application solves. It is hard to maintain high ef-
ficiency for small problems and big processor number m. Consequently, with
growing processor number m also problem size should increase in order to pre-
serve constant efficiency. This observation resulted in a definition of the isoef-
ficiency function f(k,m) in [6], as the problem size for which efficiency of a
parallel application is £ = k on m processors. For example, consider an algo-
rithm calculating a minimum spanning tree in a graph with n vertices, where n
expresses the size of the problem. There exists an algorithm [1] with running time

m processors. By speedup we mean ration S =

T(m) = clﬂ’f +canlogm, and T(1) = c¢;n?, where c1, ¢z are constants. Thus, effi-

ciency of this algorithm is E = ein®

cin2+comnlogm

efficiency value k < 1, the size of the problem should be f(k,m) =

= k. In order to maintain constant
comlogm
cl(%fl) .
Thus, n should be proportional to m logm.

The above idea of isoefficiency function can be further generalized. Efficiency
depends not only on the problem size, and the number of processors m, but also
on other parameters of a parallel system, e.g., communication, and computation
speeds. Therefore, we can define a set of isoefficient points in a multidimensional
space of the parallel system parameters as the points for which efficiency is
constant. It is convenient to think about isoefficient points, or isoefficiency lines,
as of analogues of isolines in other branches of science, such as isobars, izohyets,
isotherms, isodoses, etc. In order to draw a diagram of the isoefficiency lines
a mathematical model linking system parameters and efficiency is needed. We
present such a model in the following section.

3 Divisible load model

In this section we present a DLT model for a simple distributed system working in
a star interconnection (cf. Fig.1). In the star interconnection the load in amount
V initially resides on processor Py called originator. The originator sends «; units
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Fig. 1. Star interconnection.  Fig. 2. Gantt chart depicting communications and
computation in a star.
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of load to processor P;, fori = 1,..., m. Processors receive their load parts one by
one from P; to P,,, and immediately start processing the load. Messages are sent
only between the originator, and the processors. Thus, the star interconnection is
equivalent to a bus interconnection, or a master-slave, and client-server systems.
For simplicity of presentation we assume that the originator is not computing,
but is communicating only. This assumption does not limit the generality of
the considerations because otherwise the computing ability of the originator can
be represented as an additional processor. For simplicity of the presentation we
assume that the time of returning the results is negligible. Also this assumption
does not limit the generality of the study, because the process of returning the
results can be easily included in the model [2-5]. The time of sending «; units of
load to P; is S;+a;C;, where S; is communication startup time, C; is reciprocal of
bandwidth. The time of computing on P; is ai; A;, for i = 1,...,m, where 4; is a
reciprocal of computing speed. A Gantt chart depicting the communications and
computations for the above described system is shown in Fig.2. It is possible to
control the computation completion times by the selection of part sizes a;. When
the results are not returned the schedule is the shortest when all processors finish
their computations simultaneously [2]. Consequently, the time of computation on
a processor activated earlier is equal to the time of sending the load to the next
processor and computing on it. Hence, it is possible to formulate the problem of
finding the optimum schedule length as a set of linear equations:

Ajoiy = Sip1 + a1 (Cigr + Ajpr) fori=1,...,m—1 (1)

V= ZO@L‘, (2)

where the length of the schedule is S;+(Cy 4+ A1)a;. Due to the simple structure,
the above equation system can be solved for «; in O(m) time provided that a
feasible solution exists. A solution of (1)-(2) does not exists when «; < 0 for some
1. This means in practice that load size V is too small to keep all m processors
working, and communication delay incurred in activating all m processors is
longer than the time needed to process load V' on less than m processors. Using



the solution of (1)-(2) efficiency can be calculated as

S+ G+ AV
E= m(S1 + (C1 + A1)an) ®)

Consequently, we obtained a method of modeling the performance and calculat-
ing the isoefficiency diagrams.

4 Performance modeling

In this section we present preliminary results of the simulations performed on
the basis of DLT model. The study we present here is limited by admissible size
of the paper. For the simplicity of the presentation a homogeneous system was
studied. Thus, V;A; = A, C; = C,S; = S. The isoefficiency function is depicted in
2-dimensional maps resembling weather maps, e.g., with isobars. The diagrams
have two axes depicting two variable parameters, the other parameters are fixed.
In the map isoefficiency lines representing points of equal efficiency are shown.
The isoefficiency maps separate two areas: the area of high efficiency (E =~ 1),
and the area of efficiency close to 0 or the equation system (1)-(2) is not solvable.
In the latter case the combination of the parameters prevents activating all
processors with the given load without idle periods. The area of such points
is denoted as £ = 0. Before discussing the results of the simulations let us
comment on the nature of the dependencies presented in the isoefficiency maps.
When an isoefficiency line is parallel to one of the axes of the map, then the
efficiency changes incurred by this parameter does not influence the efficiency.
It also means that one parameter cannot be compensated for by a modification
of the value of the other parameter.

In Fig.3 isoefficiency map for variable m,V, and C' = 1,5 = 1000, A = 1 is
depicted. As the values of A, C, S in Fig.3 are unitless, these can be, for example,
C = lus/byte, S = 1ms, A = 1us/byte. The isoefficiency lines are not smooth
which is a result of approximating the hull span on the discrete points for which
the efficiency values were calculated. It can be seen in Fig.3 that when m de-
creases, efficiency grows. Especially for V' < 1E2 the increase has a character of a
step function which means that only a limited number of processors can be acti-
vated for certain problem size V' (moving along horizontal lines in the map). The
isoefficiency lines have some slope for V' €[1E2,1E6]. This means that with grow-
ing m, also V should increase to exploit the parallel system efficiently. And vice
versa, the number of used processors m should decrease when V' is decreasing.
Thus, this kind of efficiency behavior confirms observations made in the earlier
publications [6]. For big problem sizes V' >1E6 efficiency no longer depends on
V', as the isoefficiency lines are vertical. This phenomenon can be explained in
the following way: When V is very big, the ratio between V and a; approaches

some constant [(A, C,m) < 1 dictated by C, A, and m. The formula (3) can be
: o 514+(C1+A)V : _ 1

rewritten as: F = m(SlJr(lClJrAll)V;(A,C,m))' Hence, limy . F = AT and

efficiency depends on m, but not on V. It can be concluded that parameters

m, V are mutually related in the process of performance optimization.
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Fig. 3. Isoefficiency map as a function of m, and V.

In Fig.4 the isoefficiency relation for variable C,S, and m = 10,V = 1ES,
A = 1E-3 is shown. The dependence of efficiency on C' has a character of a step
function (moving along vertical lines). For S the situation is similar (moving
along horizontal lines). The isoefficiency lines have almost piece-wise linear form
separating a rectangular area of high efficiency from the remaining points in the
map. This rectangular form of the efficient area means that C,S are unrelated,
as far as efficiency is considered. In general, the changes in parameter C' (re-
ciprocal of communication speed) cannot be compensated for by startup time
S. Only in the narrow north-east corner of the efficient area, where the isoeffi-
ciency lines form a kind of a knee, can the changes in S be compensated for by
C'. The increasing startup time S can be compensated for by decreasing C' (i.e.
increasing speed). Yet, the range of such a compensation is very limited. The
rectangular efficient area determines also the methods of optimizing the perfor-
mance of parallel computer systems. For example, efficiency of a parallel system
with S =~ 1E—6, and C' = 1E+5 can be improved by reducing C only, which is
equivalent to increasing speed. Analogously, a system with S ~ 1, and C = 1E-5
can be made efficient only by reducing the startup S. From the above discussion
we conclude that parameters S, and C' are, to a great extent, independent in the
process of a parallel system efficiency optimization.

5 Conclusions

In this paper we proposed a new method of representing the relation between the
parameters determining the performance of a parallel computer system. Simu-
lations demonstrated that there exist parameters of parallel computer systems,
such as m, V', which are mutually related. The changes of one parameter should
be accompanied by the changes of the other parameter, in order to maintain
constant efficiency. On the other hand there are also parameters which are inde-
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Fig. 4. Isoefficiency map as a function of C, and S.

pendent, e.g. C, S. Future applications of the method may include analysis of the
influence of a parallel system heterogeneity, memory limitations, interconnection
topology, and load scattering algorithm, on the efficiency of the computations.
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