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Summary. The problem addressed here is the complexity of scheduling multiprocessor
tasks, i.e. tasks which may require more than one processor simultaneously. This model
seems natural for many parallel applications, however, is different than the standard ap-
proach in the scheduling theory. In this paper, we analyse both cases when the task requires
a number of processors simultaneously, and when the task requires a set of processors si-
multaneously. In the former case the problem of preemptive scheduling is N P-hard in
general. Next, we show that the problem of non-preemptive scheduling on four processors,
when tasks can be executed on any subset of processors, is solvable in pseudo-polynomial
time in the absence of uni-processor tasks. Finally, the problem of non-preemptive schedul-
ing multiprocessor tasks, requiring a set of processors simultaneously for Imax criterion,
is shown to be strongly IN P-hard even for two processors.

1. Introduction. In classical scheduling models it is assumed that each
task requires, for its processing, one processor at a time [3, 9, 12]. In systems
of microprocessors, however, one often has tasks requiring several processors
simultaneously (e.g. [5, 23] and many others). It is, for instance, the case
of self-testing multi-microprocessor systems in which one processor is used
to test other processors, or in fault-detection systems in which test signals
stimulate the elements to be tested; then the outputs are analysed simulta-
neously [2, 14].

Novel parallel algorithms and corresponding future task systems create
another branch for application of this kind of scheduling [1, 16, 17, 21].
Transferring files between computers engages two computers simultaneous-
ly {13]. We will be calling such tasks the multiprocessor tasks (a problem
of scheduling such tasks is also called the coscheduling problem [1] or gang
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scheduling problem [16]). More details about practical uses of multiprocessor
tasks can be found in [8].

When modelling task sets for the above applications, it is often assumed
that either the number of simultaneously required processors is important,
or that the set of required processors is crucial for the execution of task.

In this work we will denote scheduling problems according to the three-
field scheme proposed in [18] and [10, 24]. Multiprocessor requirements of
tasks will be represented by using one of the words: size;, any, fiz;. The
word size; is used when tasks require for their execution a certain fixed
number of processors. The word any means that each task can be executed
on any subset of processors, but the execution time depends ©n the number
of assigned processors. fiz,; denotes tasks requiring a fixed set of processors
simultaneously.

Before going into further details, let us formulate the problem in a more
formal way. When the number of simultaneously required processors is im-
portant, we can divide the set of tasks 7 into subsets T%,T?,..., T* with
[T = ni,t =1,...,k, and ny + ng + ...+ ngx = n. Bach task 77 requires
exactly j arbitrary processors simultaneously during a prespecified period
t] of its processing. If the model any of requiring processors is considered, ¢!
will denote the processing time of task ¢ executed on 7 processors simultane-
ously. We assume that the number of processors assigned to a task does not
change during its processing. This model is useful both from the theoreti-
cal and practical points of view. For it is often the case that changing the
number of processors used by a task during its execution, if not impossible,
is very time-consuming. This is, for example, the level of a scheduler in the
operating system. What is more, it enables the derivation of complexity re-
sults valid also for more sophisticated models. In the case of tasks requiring
a set of processors simultaneously, we will denote by TP the set of tasks
using the set D of processors, and by T task i which uses the set D of
processors. We assume that the tasks are independent, and each processor
can be assigned to only one task at a time. There are two objectives con-
sidered in this work. The first one is to find the shortest feasible schedule,
i.e. minimize Crnax = maxigjgn{c;}, where ¢; is the completion time of the
jth task, and the second one is the maximum lateness defined as follows:
Lmax = minigjgn{c; — d;}, where d; is the due-date of task j.

The computational complexity of the multiprocessor task scheduling has
already been analysed in a number of works. In the case of tasks requiring
a certain number of processors simultaneously, it has been shown in [15]
that the problem of non-preemptive scheduling with precedence constraints
consisting of chains is strongly N P-hard when tasks can be executed on
two processors (i.e. problem P2 | size;, chain | Cpyax). When the tasks have
unit execution times, the above problem can be solved in O(n?) time for
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arbitrary precedence constraints (P2 | sizej,<,p; = 1 | Cmax) [20]. The
independent tasks scheduling problem is strongly N P-hard for five pro-
cessors [15] (problem P35 | size; | Cmax). When tasks require processors
according to the model any, the problem of scheduling on four processors
(i.e. P4 | any | Cmax) is open in that sense that it is not known whether the
problem is strongly /N P-hard or solvable in a pseudo-polynomial time. The
cases of two and three processors (P2 | any | Cmax, and P3| any | Cpax, Te-
spectively) can be solved in pseudo-polynomial time {15]. A polynomial-time
algorithm based on the integer linear programming with a limited number
of variables is known for the special case of the unit execution time tasks,
namely, for problem P | sizej,p; = 1 | Cmax, where size; € {1,...,k}, and
k is bounded [5].

For the preemptive multiprocessor task scheduling and identical proces-
sors, some results have been obtained. For independent multiprocessor task
systems with m fixed (m is the number of processors), the problem can be
solved in the polynomial time using a linear programming formulation [5].
If there are only tasks requiring either one or k processors simultaneously,
the optimal schedule can be constructed in O(n) time [5]. A special case
of the preemptive version of the problem is scheduling on a hypercube of
processors [7, 11, 22]. An O(nm? 4 nlogn) algorithm was proposed in [7]
to schedule preemptively tasks requiring a number of processors which is a
power of two.

When tasks require a set of processors simultaneously, nonpreemptive
scheduling on two processors (P2 | fiz; | Crmax) is trivially solvable in O(n)
time. The case of three processors (P3| fiz; | Cmax) is already N P-hard in
the strong sense [4].

In this paper, we prove that the problem of scheduling independent pre-
emptable multiprocessor tasks on identical processors, for the maximum
length criterion, is IN P-hard when the number of processors is not bounded.
This result can be surprising when considering the above-mentioned low-
order polynomial-time algorithms (e.g. [5, 6, 7, 11, 22]) for very closely
related problems. Next, we show that problem P4 | any | Cmax can be
solved by a pseudopolynomial algorithm when there are no uni-processor
tasks (i.e. 7' = ). Finally, for tasks requiring a set of processors simul-
taneously, we show that the non-preemptive scheduling with due-dates is
strongly /N P-hard even for two processors.

2. Complexity of the problem.

2.1. P | sizej,pmtn,p; = 1 | Cmax- In this section the computational
complexity for preemptive scheduling multiprocessor tasks, requiring some
number of identical processors, will be established. As it has been mentioned
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in the previous section, for some sub-cases of the problem, the low-order
polynomial time algorithms exist. In the following theorem and proof we
restrict ourselves to considering tasks of equal length. Hence, p; = 1 in the
notation of the problem.

THEOREM 1. The problem of preemptive scheduling of independent unit-
ezecution-time multiprocessor tasks on identical processors for Cpax crite-
rion (i.e. problem P | sizej,pmin,p; = 1 | Cmax) i N P-hard.

Proof. In order to show IN P-hardness of the above problem, we will
present the polynomial-time transformation of a known N P-complete prob-
lem to a decision version of our problem. As a known N P- complete problem,
we will use a partition problem.

PARTITION PROBLEM.

" Data. A finite set A = {ay,...,a,}, for each a; € A, there exists a
finite size s(a;) € Z7.
Question. Does aset A" C A satisfying >, e S(ai) =30

a;EA-A'
s(a;) = B exist?

Now, we will describe a reduction from any instance of the partition
to the instance of our problem. We set the parameters of the scheduling
problem as follows:

n = q7

Ts(a’),j =1,...,n tasks are created,
;(a’) =1,7=1,...,n,

Chmax = 2,

m := B.

If for the partition problem the answer is positive, then tasks correspond-
ing to elements a; € A’ are scheduled feasibly in the interval of time [0 1},
and the rest of tasks in the interval [1, 2] (cf. Fig. 1).

On the other hand, if a feasible schedule exists, then also, for the partition
problem, the answer must be positive. This can be explained in the following
way. In the feasible schedule there can be no idle time on any processor.
This means that, in any moment of time 0 € 7 < 2, the sum of processor
requirements of tasks is equal to B. That, however, is equivalent to the
existence of A' consisting of the elements a; corresponding to the tasks
executed in the instant 7. The rest of the tasks correspond to the elements of
set A—A'. Note, that the set of simultaneously executed tasks corresponding
to A — A’ may be absent from the schedule. This finishes our reduction and
the whole proof. O
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Fig. 1. A feasible schedule with Crnax = 2 for the proof of Theorem 1

From the above theorem, we conclude that our problem is N P-hard
when the number of processors is not fixed.

2.2. P4 | any | Cmax- In this section we show that the problem of non-
preemptive scheduling multiprocessor tasks requiring processors according
to the model any on four processors for the schedule-length optimality crite-
rion (i.e. P4 | any | Cmax) can be solved by a pseudo-polynomial algorithm
when there are no uni-processor tasks (i.e. T* = §)). The above result may
also shed some light on the complexity of problem P4 | any | Cmax, when
uni-processor tasks are allowed. The complexity of the latter problem is con-
sidered open [15]. The cases of two and three processors (P2 | any | Cmax,
and P3 | any | Cmax, respectively) are N P-hard but solvable in pseudo-
polynomial time [15]. For five processors (P5 | size; | Cimax), the problem is
strongly IN P-hard.

When there are no uni-processor tasks, all the schedules on four pro-
cessors can be transformed into the schedule presented in Fig. 2a. Four-
processor tasks and triple-processor tasks cannot be executed in parallel
with any other tasks. Thus, without changing the length of the schedule,
we can group them according to the set of used processors. Duo-processor
tasks c¥n be executed in parallel only with the duo-processor tasks requir-
ing the two complementary processors. Thus, we can shift complementary
duo-processor tasks executed in parallel so that duo-processor tasks using
the same set of processors are executed together. Finally, if there are any
duo-processor tasks executed alone, we can shift them, without increasing
the schedule length, such that they are executed together with tasks using
the same set of processors. Hence, there is no advantage in moving tasks in
Fig. 2a anywhere else in the schedule. What is more, executing duo-processor
tasks in another way (but without changing assignment to the processors)
may only incur increasing the length of the schedule.
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Fig. 2a. A schedule for problem P4 | any | Cmax with all the possible ways of using
processors in the absence of the uni-processor tasks

Since in the model any the number of simultaneously required processors
is important for scheduling a task, we can force triple-processor tasks to use
processors Py, P3, Py. Next, we can force duo-processor tasks to use either
processors Py, P, or processors Py, P;. Without loss of generality, we can
assume that the duo-processor tasks, which are executed longer than these
duo-processor tasks requiring complementary two processors, are scheduled
on processors P3, Py (cf. Fig. 2b). Thus, we conclude that each schedule on
four processors, in the absence of uni-processor tasks, can be transformed
to the schedule of the same length with a normalized structure presented in
Fig. 2b.

Fig. 2b. A schedule with the normalized structure fqr problem P4 | any | Cmax

For a schedule with the fixed structure as the one in Fig. 2b, we can devise
a dynamic programming algorithm. Let us denote, in Fig. 2b, by z; and z,
the sum of processing times of the tasks scheduled as the four-processor and
triple-processor tasks, respectively, by z3 and z4 the sum of processing times
of the tasks scheduled as the duo-processor tasks on processors Py, P, and
Ps, Py, respectively. The dynamic programming algorithm can be based on
calculating the following function

f(j,z1,22,23,24) = 1 if and only if tasks Ty,...,T; can be feasibly
executed using the units of time z; and z, for the tasks scheduled
as the four-processor and triple-processor tasks, respectively, units of
time z3 and z4 for the tasks scheduled as the duo-processor tasks
on processors Py, P, and P3, Py, respectively. In the opposite case
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f(ja$17z2ax3?z4) = 07j= 1a"'zna

n
T1,%2,T3,T4 = 0,...,z:min{t?,t?,t;1 .
=1
The above formulation can be rewritten to the recursive form.
£(1,#,0,0,0) = £(1,0,13,0,0) = £(1,0,0,%,0) = £(1,0,0,0,) = 1,
otherwise
n
f(l,z1,22,23,24) =0 for zq,29,23,24 = 0, ...,Zmin{t?,t?,t?}.
i=1

-

The above formulation states that the partial schedule consisting of the
first task only must finish after executing the first task in one of the allowed
processing modes, i.e. as a four-processor task, as a triple-processor task or
as a duo-processor task.

For j > 1, f(j,z1,%2,23,24) = 1 if and only if one of the following cases
happens

Case 1.
f(j—l,:cl—tﬁ,asg,x;;,m):l forj=2,...,n,

n n

4 (42 43 44 _ (42 43 44

1 =15,..., E min{t;,t7,t;}, Z9,23,24 =0,..., E min{t;,t;,1;},
i=1 i=1

which means that task T’ is scheduled in a four-processor mode (cf. Fig. 3a).

Case 2.

f(j—l,zl,a:2—t:},x3,:1:4)=1 forj=2,...,n,
n n

Ty = t?,...,Zmin{t?,t?,tf}, Z1,%3,T4 = 0,...,Zmin{t?,t‘?,t?},
i=1 i=1

which means that task T is scheduled in a triple-processor mode (cf. Fig. 3b).
Case 3.
f(j——l,:cl,xQ,:cg—-tﬁ,ml;):l forj=2,...,n,

n n
_ g2 142 43 44 _ 42 43 4
z3 = 1j,..., E min{t;,t;,¢; }, T1,T2,4 =0,..., E min{t;,%;,t;},
i=1 i=1

which means that task 7 is scheduled in a duo-processor mode on processors
Py, Py (cf. Fig. 3c¢).
Case 4.

f(j—l,zl,:cg,x3,x4—t§):l forj=2,...,n,
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n n

2 42 43 _ g2 43 44

Ty =15,..., E min{¢;,¢;,t; }, z1,T3,23 =0,..., E min{t;, 7,1t },
i=1 i=1

analogously to Case 3, but T is scheduled on processors P, Pj.

By
)
L)
By
Py
P2 T3 X3
o | T m )
3 é T2
, X1 ) ’ X4
Fig. 3b
T2
T2
x tJ%

P, 3

T4 T3
Py T2

xl X2 X 4
By .

Fig. 3c

Fig. 3. A partial schedule built by a dynamic programming algorithm for problem P4 |
any | Cmax in the absence of uni-processor tasks, a — case 1, b — case 2, ¢ — case 3

It takes time O(n(XY_ 1, min{t?,13,t})*) to calculate the values of the

11717

above function. The length of the optimal schedule is
Ckax = min{z; + 25 + max{zs, z4} | f(n,21,%2,3,24) = 1}.
The optimal schedule can be found by backtracking from the function en-

try for which C} ., has been found, i.e. equal to one for j = n, and with

minimal z; + zo + max{zs,z4}. The correctness of the algorithm follows
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from two facts. Each feasible schedule for the considered problem can be
transformed, without increasing its length, to the one presented in Fig. 2b.
The second fact is that the length of such a schedule does not depend on
the order of tasks. However, it does depend on the values of z1, z9, 23, 24.
While calculating function f(j,z1, 2,23, 4), we have analysed all the pos-
sible values of z1,z2,z3,z4. Hence, problem P4 | any | Cphax can be solved -
in the pseudo-polynomial time provided T! = §),

2.3. P2| fix ; | Limax- The problem of scheduling non-preemptable multi-
processor tasks requiring sets of processors simultaneously is easily solvable
for two processors. For three processors (P3| fiz; | Cmax) is IN P-hard in the
strong sense [4]. In this section we show that also problem P2 | fiz; | Liyax
is strongly IN P-hard. Let us remind that here T]-D denotes task j which is
the requiring set D of processors simultaneously. For example, TJ12 is task
J, and requires processors { Py, P»} simultaneously.

THEOREM 2. The problem of non-preemptive scheduling of multiprocessor
tasks, requiring a certain set of processors simultaneously for L.y optimal-

iy criterion even for two processors (i.e. P2 | fiz; | Lmax), is strongly
N P-hard.

Proof. To show strong INP-hardness of our scheduling problem, we
will present the polynomial-time transformation from 3-partition.

3-PARTITION.

Data. A finite set A = {a1,...,a3,}, for each a; € A, there exists a
size s(a;) € Z% such that 307, s(a;) = ¢B, and B/4 < s(a;) < B/2 for
t=1,...,3q.

Question. Can A be partitioned into ¢ disjoined sets A1, A,,..., A
such that Za.-eA,» s(a;)=Bforj=1,...,q7

q»

Now, we will present the polynomial-time transformation of the 3-parti-
tion instance to the instance of our problem. The following tasks are created

n = 3¢,

Tj2, i=1,...,q,

T;?, j=q+1,...,2,
T}, j=2¢+1,...,5q.
t? =B, i=1,...,q,

3 == B, j=q+1,...,2q,

t? = s(aj_24), j=2¢+1,...,5¢q,
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(27-1)B forj=1,...,q

dj =S 2(j—¢q)B forj=q+1,...,2q
2qB forj=2¢+1,...,5¢q.

Lmﬂ.l'::()ﬂ

m = 2.

When the 3-partition has a positive answer, then we can build a feasible
schedule with Lyax = 0 as the one presented in Fig. 4.

0 B 2B 3B 4B 5B 6B 7B 8B (2¢-1)B 2qB

Fig. 4. A feasible schedule with Lmax = 0 for the proof of Theorem 2

On the other hand, when there exists a feasible schedule with L., = 0,
for instance, built in the above-defined way, then this must be isomorphic
with the one in Fig. 4. Note that there can be no idle time on processor
P in the schedule with L., = 0. Task T? must be executed first on Py,
and must be immediately followed by T’ qlil in order to have L., = 0. After
qu42.1 task T2 must follow, etc. This reasoning can be applied to the rest of
tasks le?, i=q+2,...,2q, and Tj2, J=2,...,q. This results in creating ¢
slots of size B in which tasks le, j=2¢+1,...,5¢ must fit. Note that also
on P; we may have no idle time to schedule le, j=2g+1,...,5q before
due-date 2¢B. Hence, also for 3-partition, the answer must be positive and
the theorem is proved. O

3. Conclusions and future work. We have proved that problem
P | sizej,pmitn,p; = 1 | Cmax is NP-hard in the ordinary sense, prob-
lem P2 | fiz; | Lmax is strongly N P-hard, and that P4 | any | Chax
can be solved in the pseudo-polynomial time in the absence of uni-processor
tasks. There are, however, still existing multiprocessor task-scheduling prob-
lems with unknown complexity. It is, for example, the case of problem
P4 | any | Cmax, i.e. the problem of non-preemptive scheduling on four pro-
cessors of tasks whose execution time depends on the number of assigned
processors when executing uni-processor tasks are allowed. Yet another per-
plexing problem is P | fiz;,pmin | Crmax, i.e. the problem of preemptive
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scheduling tasks requiring a set of processors simultaneously when the num-
ber of processors is not fixed. N P-hardness of a very similar but slightly
different problem has been shown in [19] (in fact, a “discretized” version of
the problem has been considered in this work, because it has been assumed
that the starting times and finishing times of processing the task, or its part,
have discrete values).
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