Annals of Operations Research 90(1999)221-246

1.

Scheduling parallel tasks with
sequential heads and tails*

Maciej Drozdowski® and Wiesfaw Kubiak

Faculty of Business Administration, Memorial University of Newfoundland,
St. John's, Newfoundland, Canada

E-mail: maciej_d @sol.put.poznan.pl

This paper considers scheduling of parallel tasks in a multiprogrammed, multiprocessor
system. The problem of preemptive scheduling of n tasks on m processors to minimize
makespan is studied. Task j starts and finishes with sequential parts head; and tail;, respec-
tively. Between these two, j runs its parallel part parallel;. The sequential parts have to be
executed by one processor at a time. The parallel part can be executed by more than one
processor at a time. It is shown that this problem is NP-hard in the strong sense even if there
are fewer tasks than processors. A linear program is presented to find an optimal schedule
for a given sequence of completion times of heads and start times of tails. If the optimal
schedule for tasks longer than the mth longest task is given, an efficient, polynomial-time
merging algorithm is proposed to obtain an optimal schedule for all » tasks. The algorithm
builds an optimal schedule with at most m — 1 tasks running their parallel parts on more
than one processor at a time, the remaining tasks run their parallel parts as if they were
sequential. Therefore, there always exist optimal schedules with only a few tasks exploiting
the parallel processing capability of a parallel system. Finally, polynomially solvable cases
are discussed, and the worst-case performance of three heuristics for the problem is analyzed.

Keywords: parallel processing, multiprocessor tasks, preemptive scheduling, complexity
analysis

AMS subject classification: 68Q25, 90B35

Introduction

221

A constantly increasing demand for fast computer systems has attracted attention
for years. Due to physical limitations of sequential computers, parallel computers seem
to be the only known way of further increasing speed of computations. However, the
advantage of parallel execution of tasks can only be obtained if it is properly scheduled.
This creates a need for good scheduling algorithms in parallel computer systems. Such

* This research has been supported by the Natural Sciences and Engineering Research Council of Canada

under Grant OGP0105675.

* On leave from Instytut Informatyki, Politechnika Poznariska, Poznari, Poland. This research has been

partially supported by KBN Grant 8T11C 04012.

© J.C. Baltzer AG, Science Publishers

222 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

algorithms often use a directed acyclic graph (DAG) representation of tasks [5]. The
DAG representation allows any two independent nodes of the graph to be scheduled
in parallel. However, no node is allowed to use more than one processor at a time.
Recently, a new model of scheduling in parallel computer systems, called multi-
processor task systems [3], has been proposed. This model allows tasks to use more
than one processor at a time. Two branches have emerged from this assumption. One
is where a task can be processed simultaneously on any set of processors [3,7,10,
14,17], the other where a fixed set of simultaneously required processors is specified
for a task [1,2,13]. Both, however, assume that the number of processors used by a
task does not change during its execution.

In this paper, we relax this assumption and allow that the number of processors
executing a task change over time. We call such tasks parallel. These parallel tasks
start and finish with sequential parts, heads and tails, respectively. The completion of
a head naturally corresponds to the execution of a fork operation and the completion
of a parallel task naturally corresponds to the execution of a join operation. This model
is also motivated by a very common situation where unfolding application code on
parallel processors and/or distribution of input data yield sequential heads. The bulk
of computation is then done in parallel. Finally, the collection and consolidation of
results give the sequential tail. Also in the master—slave model of parallel computa-
tions (e.g. [12]), master operations are sequential and thus constitute heads and tails,
and slave operations constitute parallel parts of tasks.

We consider set T of n tasks scheduled on set P of m parallel, identical proces-
sors. Task j starts and finishes with sequential parts, head; and tail;, respectively.
Between these two, j runs its parallel part, parallel;. The sequential parts have to be
executed by one processor at a time. The parallel part can be executed by more than
one processor at a time. The execution times of head; and tail; are h; and t;, respectively.
The execution time of parallel; on a single processor is p;, p;> 0. The sequential as
well as parallel parts are preemptable. More precisely, any feasible schedule is a
sequence of / intervals. In any interval, the number of processors assigned to a task
does not change. Thus, interval k (k = 1,...,I) uniquely determines set Q, of tasks
executed in it, the number of processors proc,(j) occupied by task j in it, and its
length L,. In any feasible schedule, ZL, procy(j)Ly = hj+ p;+ t;, forj€ T,

To illustrate the difference between sequential, multiprocessor and parallel tasks,
letus consider anexample:m =3, n=2, hy=h,=1,p;=3,p,=6,1;,=2,and t,=0.5.
The two tasks executed sequentially require 7.5 units of time, see figure 1(a). When
executed as multiprocessor tasks, their parallel parts cannot change the number of
processors used. If we assume that parallel; and parallel, use all available processors,
then this will result in a schedule of length 6, see figure 1(b). Finally, if parallel, and
parallel, can change the number of processors used during their executions, which is
the case for parallel tasks, a shorter schedule of length 5 is possible, see figure 1(c).

We focus on the problem of minimizing the makespan. Our problem will be
referred to as P|lanyl, pmtn|C,,,. Moreover, we use notation P|lany, pmtn|C

max?»

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 223

a
@ ey i
heady parallel tarily
0 T 4 6 7 75
(b)
e a

0 1 2 4 6
C
(© i ! i

heady | parallely paraliely tail;

0 1 2 45 5

Figure 1. Example schedule: (a) sequential tasks,
(b) multiprocessor tasks, (c) parallel tasks.

and P|anyl, pmtn|C,,,, for the problem without tails and without heads, respectively.
This notation extends the one introduced in [11] (see also [19]) to classify machine
scheduling problems.

Although our model allows parallel parts to use more than one processor at a
time, we show that it is also rooted in earlier results obtained on scheduling the DAG
model of tasks. In particular, [16] shows that level schedules are optimal for preemptive
scheduling tasks with arbitrary execution times and tree-like precedence constraints.
In [6] and [9], more general precedence constraints and unit-time execution tasks are
considered. However, neither model applies directly to our situation. First of all, the
DAG representation of parallel parts becomes known only after a schedule is complete.
Secondly, the level schedules are not optimal in our model since any given DAG
representation of parallel parts results in a DAG representation of tasks which is not
tree-like.

The paper is organized as follows. In section 2, we present a linear program to
find an optimal schedule for a given sequence of the completion times of heads and
the start times of tails. In section 3, we show a case with fewer tasks than processors
to be NP-hard in the strong sense. Section 4 gives an efficient, polynomial-time merging
algorithm to obtain an optimal schedule for n tasks if an optimal schedule for tasks

224 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

longer than the mth longest task is given. The algorithm builds an optimal schedule
with at most m — 1 tasks running their parallel parts on more than one processor at a
time, the remaining tasks run their parallel parts as if they were sequential. Therefore,
there always exist optimal schedules with only a few tasks exploiting the parallel
processing capability of a parallel system. This seems to be of great importance for
any scheduling rule used to schedule tasks in such systems. Section 5 discusses some
cases solvable in polynomial time, and presents a heuristic which is optimal in prob-
ability. Finally, section 6 analyzes the worst-case performance of three heuristics for
the problem, and presents results of computational experiments with these heuristics.

2. Linear program for P|lanyl, pmtn|C,,.,

In this section, we present a polynomial-time algorithm for the case with given
sequence of the completion times of heads and the start times of tails.

Denote by H; and T; the completion time of head; and the start time of rail;,
respectively. For task j, head; can only be executed by H;, parallel; can only be
executed between H; and T}, and tail; can only be executed after 7;. Suppose that a
sequence of such events, i.e. completion and start times, is given for the tasks in T
This sequence creates 2n + 1 periods, some may be empty. A period determines a set
of tails, heads, and parallel parts that are available for processing in it; any two dif-
ferent periods define two different sets.

We formulate a linear program which finds the shortest feasible schedule for a
given sequence 7 of s(j)’s and f(j)’s, where

s(j) : the index of the last period where head; is allowed to appear,
f(j) : the index of the first period where tail; is allowed to appear, (f(j) > s(/)),
x; : the length of period i,

u;; : the amount of task j processed in period i.

i

The formulation is as follows:

2n+l
LP: minimize Cpgr = 3, X
=1
s(J)
subject to zu,-j =hj, j=1...,n, (1)
=
f(h-1
Uij = Pj» j=1,...,ﬂ, (2)
i=s(j)+1
2n+1
2 Ujj = L‘j, j= 1,....n, (3)

i=f())

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 225

Uy S X A=l S(G), Fern2n+l j= Lo, 4)

n
Nouy Smx, i=1..,2n+1, ©)
j=1

Ujj 20, i=1,...2n+l,j=l,...,n,
x; 20, i= Lo 20 1,

Constraints (1), (2) and (3) guarantee that all tasks are fully executed. Constraints (4)
guarantee that no sequential part of any task exceeds the length of any period in which
it is executed. Constraints (5) guarantee that the demand for processing does not exceed
the capacity of any period.

LP has 2n+ 1 + (2n + 1)n variables and O(n®) constraints. Hence, it can be
formulated and solved in polynomial time. From the solution to LP, we can build a
schedule by concatenating partial schedules for consecutive periods 1,...,2n + 1 built
in this order. A schedule in each period can be obtained according to McNaughton’s
wrap-around rule [15], where each parallel part is treated as a sequential task for which
the overlap of processing on different processors is allowed. This way of building
schedules for periods is always feasible due to constraints (4) and (5). Thus, a solution
to LP can be converted into a solution to P|1anyl, pmtn|C,,,, for a given sequence .
Since for each task the completion of its head must precede the starting of its tail,
the number of such sequences equals (2n)!/2". Furthermore, for fixed m and n < m,
problem Pm|lanyl, pmtn|C,,, can be solved in polynomial time. The next section
addresses the time complexity of problem P|lanyl, pmtn|C,,,,.

3. Complexity of P|lanyl, pmitn|C,,,,

In this section, we show that problem P|lanyl, pmtn|C,,,, is NP-hard in the
strong sense.

Theorem 1. Problem P|lanyl, pmin|C,,, is NP-hard in the strong sense.

Proof. We consider a decision version of problem P|lanyl, pmtn|C,,,., where we
ask if there is a feasible schedule with C,,,, < y. This decision version is in NP because
it is enough to guess an optimal sequence of s(j)’s and f(j)’s and use LP to check if
there exists a schedule not longer than y for the sequence. We now show that the 3-
PARTITION problem [8] pseudo-polynomially transforms to P|1anyl, pmtn|C,,,. < y.

3-PARTITION

Instance. Set A of 3q elements, a positive integer weight a; for each i €A, a positive
integer bound b such that for each i €A: b/4 <a; < b/2, and ¥, 4a; = bq.

Question. Can A be partitioned into ¢ disjoint sets Ay,...,A, such that 3, a;ai= b for

j=1lu..,q?

226 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

For a given instance of 3-PARTITION, we define a set of n = 44 tasks, 1,...,q,
g+ 1,...,4q. Tasks 1,...,q will be called profile-defining tasks. Tasks g + 1,...,4¢g will
be called filling tasks. The tasks are defined as in table 1.

Table 1
Task h; p; 4
1 ! BB’ g-1+(q-DB
i i+G-DB BB q-j+(g-pB
5.1 q+ (q.— 1B Bé' 0
g+1 0 Ma, Qa,
i e 0
q -|:3q 0 M;13q Ql;!gq

Intable 1, B°=Mb, B=Qb, Q=q(3q+ 1), M=7¢*3q-1) + .

We ask if there exists a schedule on m = B’ + g processors which is not longer
than y = ¢ + Bq. The transformation is pseudo-polynomial.

Our proof bears some resemblance to the proofs using profiles, see [6,9,18],
where the profile is a function defining processors available at any point in time. In
these proofs, the profile either makes a part of an instance or can readily be emulated
by nonpreemptable tasks and precedence constraints between them. Our proof follows
the latter; however, it is more involved since the task preemptability and relatively
weak (chain) precedence constraints between the three possible parts of a task make
the profile emulation (done by scheduling the profile-defining tasks) more difficult. A
rough idea of the profile emulation is as follows. Our choice of M and Q makes sure
that the total time in [0, y] when a profile-defining job j is not executed does not
exceed €= Bg/m, and & can be made as small as we want by choosing M sufficiently
large. Moreover, the total duration of all nonoverlapping intervals with the tails of
filling jobs is close enough to y (notice that no more than 3q processors can work in
parallel on these tails, which are made small enough in comparison to the number of
processors m by our choice of M). Thus, intuitively, any schedule of the profile-
defining jobs which is not longer than y becomes “close” enough to the profile shown
in figure 2(a).

Suppose that sets Aj,...,A, make up the required partition of set A. Then, the
schedule of the profile-defining tasks is given in figure 2(a). The filling tasks in A;
have their parallel parts executed between the parallel parts of profile-defining tasks

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 227

(a) g I
hg-1 [Bl [Y41
hi+1 [A | 1
W 7 i : P
a hi-1 [Fr] -1
hp [P | B
hy 1y
Py Py |e..| B] Bt oee | Bl]
.
A, 4, A Al A,
o7 B [1[B J... . B Jil. B J1l B wan B 1l B
(b) kg
hy-1 [Bg1 [gt
Fixl [B | i+
L i tj
g hi-1 [Fi1] : Y
B [P | B
fl] : i
Py P2 |...| B2 b Bt | ... | Rl Iy
e
I bk BT A A Tl lg_Jg
o TR L B BrH T U Ha e R W A

Figure 2. The proof of theorem 1.

j—1andjforj=2,..,q. A is scheduled between time 0 and the parallel part of profile-
defining task 1. The tails of the tasks in A; are executed in parallel with the parallel
part of profile-defining task j forj=1,...,q.

228 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

Suppose that a schedule not longer than y exists. We will show that then the
required partition of A exists. Let us start with some simple observations.

Observation 2. No schedule shorter than y exists. Furthermore, no schedule of make-
span y allows for idle time.

Proof. Notice that the total processing time equals my. O
Observation 3. We have £(7g— 1) < 1 and M > (1 + 2¢)3¢>

Proof. Notice that
2 =
Ty bg 3§3q +1)(7g - 1)
b(7°Bg+1)+ 1) +gq

and
2bg*(3q + 1)
b(1¢°Bg+ D) +1) +gq

(1 + 2¢)3¢> = 3¢> [1 +] <3421 +1) < M.

O

Lemma 4. Let S be a schedule with makespan y. Let H;, T; be the completion time of
the head and the start time of the tail, respectively, for profile-defining task j (cf.
figure 2(b)). Then,
0 H;-h = i=1..,q (6)
V2P~ ~G2 e J=laul 7
and T, =y in (7).

Proof. We prove (6) only. The proof of (7) is similar and will be omitted. Consider a
profile-defining task j. Let parallel; start at s; and complete at fjin S. Suppose that (6)
does not hold for j. Obviously, 0 < H;- h;, so H;— h; > g. Then,

fi=siSy—(Hj+t;)<y-(hi+€+1t), (8)
where €= Bg/m. By the definitions of k; and ¢;, we have

y—{(hj+t;)—€=B-E (9)
From (8) and (9), we have

fj—sj<B—e—%§—£. (10)
On the other hand,
fi=uE EL, (11)
From (10) and (1), "
5 W
m B

or

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 229

= E&.

.(L_sz m-B _ BB(B'+q-B) _Bg
Pimmp mB’ m

Thus, we get a contradiction. Consequently, we must have H; — h; < €.
By observation 2, no idle time is allowed in [0, y]; moreover, at mostn — 1 <m
tails can be finished at y. Thus, parallel, must finish at y and T, = y. O

Lemma 5. Let S be a schedule with makespan y. Let H;, T; be the completion time of
the head and the start time of the tail, respectively, of profile-defining task j. Then,

1= Hy,j—~Tis1+2e (12)
and

B-2e<T;- H;<B, (13)
where T, =y in (13).

Proof. We begin with proving the right-hand side of (12). By lemma 4, we have
Hypoy ~ T8 g+ € =~~~ E) (14)
forj=1,...,q — 1. By the definition of 4;,,,; and from (14), we have
Hig-Tisha+tj—-y+2e=y+1-y+2e=1+2e¢

Forj=0,wehave H < h;+e=1+¢e<1+2¢.
Now we prove the left-hand side of (12). By lemma 4, we have

Hj+]—1}2hj+]+tj—y=y+l—y:l

forj=1,...,g— 1. For j =0, we have H, 2 1. This ends the proof of (12). Inequalities
(13) can be obtained from lemma 4 and equation (9). O

Obviously, when £ tends to 0, then H; — h; tends to O (see (6)), (y — ;) — T} tends
to 0 (see (7)), H;,; — T; tends to 1 (see (12)), and T; — H; tends to B (see (13)). From
lemma 5 (see (12)), the parallel parts of the profile-defining tasks may not mix.

Lemma 6. No more than B + £(g — 1) capacity in J; = [H}, T}] is occupied by tails of
the filling tasks.

Proof. Without loss of generality, we may assume that the tail and the head of profile-
defining task j are processed on processor j only. Therefore, by lemma 4, the total
capacity not occupied by the heads and tails of profile-defining tasks 1,...,j -1,
j+1,..,q on processors 1,...,j—1,j+1,...,q in J; does not exceed £(q —1). By
lemma 5, processors j, g + 1,...,¢4 + B’ offer not more than (B” + 1)B capacity. There-
fore, the total capacity available in J; is at most (B’ + 1)B + £(g — 1). The parallel part
of j needs BB’ of this capacity. Consequently, at most B + £(g — 1) is left for the tails
of the filling tasks. O

230 M. Drozdowski, W, Kubiak / Scheduling parallel tasks

Lemma 7. No more than (1 + 2€)3q capacity in [; = [T;_,, H}] is occupied by the tails
of filling tasks.

Proof. Follows from lemma 5 and the fact that each tail uses at most one processor at
a time. 0

Now, let us define recursively the following sets of filling tasks:

A, = {J: the parallel part of j is processed in I, = [T,_,, H,]};

A, = {J: the parallel part of j is processed in I,_ = [T, _,_;, H,_;] and
JEA, U . UA}fork=1,...,9-1.

We have the following lemma.

Lemma 8.
2 aj=b fork=0,...,q-1.

jEAq—k

Proof. By induction on k. Consider k = 0. Assume ZjeAqa > b. Then EJEA Qa;=2B +
Q, and the tails of tasks in A, require at least B + Q processing. By lcmmas 6 and 7,
the maximum capacity available for tails in intervals I, = [T, _,, H,) and J,=[H,, y]
is at most 3g(1 + 2¢) and B + &(q — 1), respectively. Together it is equal to B +
£(7q — 1) + 3q. By observation 3, we have B + &(7q - 1) + 3qg < B + 3q + 1. This capa-
city, however, is not big enough to accommodate B + Q of tails processing requirement
because Q = g(3g + 1). Hence, X,c4,a; < b.

Assume X 4 ,aj <b. Then, the processing requirement of parallel parts in 7, is
not more than EjeAqMaj <M(b-1)=B"-M. By lemma 5, the minimum capacity of
interval I, is B”. The demand for processing tails in I, may not exceed (1 + 2£)3q by
lemma 7, and the demand for processing parallel parts in I, may not exceed B’ —

By observation 3, we have M > (1 + 2€)3g>. Thus, the total demand for processmg in
1, is smaller than the available processing capacity in /,; consequently, idle time is
inevitable and a feasible schedule of makespan y does not exist.

Now, assume that the lemma holds for any /, k — 1 = [> 0. We prove that it holds
for k. We have Zje,,q_,aj =bforl=0,...,k— 1. Assume that ZjeAq_kaj > b. Then the
tails of the tasks in A, , demand at least ZjEAq_ka 2 B + Q. Thus, the tails in
Ay Vsl Aq demand at least kB + B + Q units of processing time. By lemma 6,
intervals J,_,...,J, provide at most (k + 1)[B + e(q — 1)] processing capacity for the
tails of f1111ng tasks By lemma 7, intervals I,_y,...,I, provide at most (k + 1)(1 + 2€)3g
processing capacity for the tails of filling tasks Together, it is (by observation 3):
(k+1)(B+3g+e(lg-1))<(k+1)(B+3q+1)<kB+ B+ Q,because Q =qg(3g + 1).
Hence, tails cannot be feasibly scheduled, and ¥, Ag-13jSh.

Assume that ¥, Ag_x@j < b. Then, the parallel parts of A,_; require at most
Sl a-kMa; < M(b - 1) = B’ — M processing capacity, and all the parallel parts of tasks

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 231

inA, ;U ...UA, demand at most (k + 1)B” - M processing capacity. By lemma 7,
the demand for processing tails in /,_,...,/, may not exceed (k + 1)(1 + 2¢)3g. The
minimum capacity of I, _,...,1, is (k + 1)B". Since M > (1 + 2£)34?, this results in some
idle time and a schedule of makespan y does not exist. Thus, the lemma holds for k.

Therefore, we have X,c4,_ja;=bfork=0,...,q- 1. O

From lemma 8, we have that sets A,,...,A, form the required partition. This
finishes the proof of theorem 1. O

Theorem 1 has important consequences for multiprocessor scheduling problems;
it proves that problem P|size;, pmtn, chain|C,,,,, where each multiprocessor task uses
a fixed number of processors in parallel, is NP-hard in the strong sense. Another
consequence is that preemptive scheduling of parallel tasks with a given parallelism
profile is NP-hard in the strong sense (parallelism profile is the number of processors
used over time, and it is measured in a computer with an unbounded number of proces-
sors [10]). In the following sections, we identify some polynomially solvable cases of
problem P|lanyl, pmtn|C,,,,.

4. Pm|lanyl, pmin|C,,,, and m<n

In this section, we consider the case where the number of tasks n is not less than
the number of processors m. We present a polynomial-time algorithm, MERGE, that
merges an optimal schedule S of at most m — 1 highest tasks with the remaining tasks
to get an optimal schedule S” for the whole set 7. Intuitively, MERGE can be described
as filling the periods of processor inactivity in S with the tasks of equal height. This
algorithm exploits both ideas developed in [6] for scheduling unit execution time tasks
with precedence constraints and the method for preemptive scheduling tasks with
arbitrary processing times and tree-like precedence constraints based on the concept
of processing capabilities [16]. We first introduce some necessary notation.

By height h(j) of task j, we mean the time that remains to finish it provided that
it is executed on one processor only. This value is h; + t; + p; initially, and changes
during the execution of j. Let us assume that tasks are ordered in descending order of
their initial heights, thus A(1) = A(2) = --- 2 h(n). By a high task, we mean a task which
is strictly higher than the mth task in 7. The set of all high tasks is denoted by #, i.e.
H = {j: h(j)> h(m)}. Note that there can be at most m — 1 high tasks. The tasks in
set £ =T — F{ are called low tasks.

Schedule § of high tasks is a sequence of intervals 1,...,1. For any interval, the
number of processors assigned to a task does not change. Thus, interval k (k= 1,...,1)
uniquely determines set Q, of tasks executed in it, the number of processors proc(j)
occupied by task j € Q, in it, and its length L;,. We say that interval k is compact if
either the number of available processors in k (equal to m — X, o, proc(i)) is zero or
all high tasks which have not been finished in intervals 1,...,k— 1 are in £.

232 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

We can convert any interval k into a compact one as follows. If m — ¥, o, proc(i) >
0 in interval k and there is a task j in intervals &k + 1,...,/ which is not in interval £,
then we move to interval k a piece g; = min{/;, L;} of task j from intervals k + 1,..., 1,
where ; is the total time spent onjin k + 1,..., [. Then, we schedule the piece moved
to interval k on a single processor, starting at the beginning of k. Next, we remove
from intervals & + 1,..., [the piece of j transferred to k. For [; > L, the removal is done
as follows. Let interval k; > k be the first interval such that task j occupies at least g;
units in intervals k + 1,...,k;, 1.e. Zf’;kﬂ,jeg, proc.(j)L, 2 g;. Calculate 0 < ;< L,
such that Zfl:k1+ 1,jeo, proc,(j)L, + procy, (j)(ij —tj) = q;. Then, remove j from
intervals k + 1,...,k;— 1 and from k; between #; and L;. Notice that this creates at
most one additional interval. This interval is obtained by splitting interval k; at ¢;, for
0<f<Ly. A pair (fo:l' L +t,j), for0<< Ly, will be called a split of interval
k;.
’ In the presentation of the MERGE algorithm, the following notation is used:

k : interval index;

l : the number of intervals in the initial schedule S of high tasks;

oy : the set of high tasks in interval k of S;

proc,(J) : the number of processors occupied by high task j in interval k of S;
T, : the current time moment in S;

avail : the number of processors available for low tasks;

B; : the processing capability of task j;

T : the duration of the current processing capabilities assignment;

compact(t, S) : procedure making compact the interval of S that starts at .

Algorithm MERGE
Input: Aset L C T, such that V;. £ h(j) < h(m);
A set H C T, such that V¢ 3ch(j) > h(m) and | H| + [L] 2 m;
An optimal schedule S for #{ on m processors.
Output: An optimal schedule S’ for 7 on m processors.
begin
Step 1. compact(0, S); T} :=0;
Step2. A:=(j:jE€L, h(m)=h(j)};
Step 3. while H # & and h(m) > 0 do
begin (* consider the interval of S starting at T}, *)
3.1. Let k be the interval of S starting at T};
3.2. ﬁj:=0forje’1”;

3.3. B :=procy(j) for j € Qy;
3.4. avail :=m - 3., proci(J);

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 233

3.5. if avail > 0 then B, := avail/|A| for j € A;
3.6. for the current values of f§; calculate the following times:

(a) L - the length of interval k;

(b) 7’ :=(h(m) - h(;*))/B, if B,,> 0 — the shortest time required for
the mth highest task to reach the height of the highest task j* in
L -A (if £ - A=, then assume A(j*) = 0);

(©) 7”:= minje s {(h(j) — h(m))/(Bj~ Bn) : B;> Bu} — the shortest
time required for the height of a high task to drop to the height of
the mth highest task;
vi=mmi{ly, 7,7)

3.7. Assign ;7 piece of task j to interval [T}, T, + 7] forj € T

3.8. Reduce h(j) by 7, forj € T;

3.9. Tb = Tb + T,

310.B:={j:jeH, h(j)=h(m)}; C:={j:j €L - A, h(j) = h(m));

A=AUBUC, H:=H-B;

3.11. if B # & then remove j € B from the end of S starting at 7},;
3:12.compact(T,, S)
end;
Step 4. if h(m) > 0 then assign A(;) piece of j € T to interval [T}, T}, + YieTh(j)/m);
Step 5. In each interval, schedule assigned pieces according to McNaughton’s rule.
Do not change the part of S starting at T},;

end (* of algorithm MERGE *)

High level description. Interval 1 of initial schedule S is made compact in line 1.
Intervals of S are considered one by one. The compact interval of S starting at 7, is
considered in the while loop 3 (lines 3-3.12). In this interval, MERGE creates sub-
intervals where processing capabilities assigned to tasks do not change. The sub-
intervals are built in lines 3.1-3.7. In each, the high tasks remain with the same
processing capabilities (line 3.3) as in the original interval. The number of processors
left free by these tasks is calculated in line 3.4. These processors are fairly shared by
the highest low tasks (line 3.5). Length 7 of the subinterval calculated in line 3.6
prevents the height of some initially higher task from dropping below the height of
some initially lower task inside the subinterval. A feasible assignment of tasks to each
subinterval is obtained in line 3.7. The reduction of task heights in line 3.8 reflects the
amount of processing the tasks receive in the subinterval. All high tasks that fall to
h(m) are transferred to A in line 3.10. The low tasks with heights equal to h(m) are
added to A. Any task that has been deleted from # is also deleted from the remaining
part of the schedule for high tasks in line 3.11. The compactness of the next interval
to be considered is restored in line 3.12. Hence, the compactness of the interval of S
that starts at T, is maintained throughout the whole MERGE run. Upon completing
the while loop in line 3, we have H = @, or h(m) = 0. In the former case, all tasks are
low and there are at least m highest among them with their heights equal to A(m).

234 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

They are assigned to the last subinterval in line 4. In the latter case, all low tasks have
been completed, and the remaining intervals of § can be concatenated with the new
schedule (line 5). The schedule for the subintervals constructed in loop 3-3.12 is
obtained by applying McNaughton’s wrap-around rule (line 5).

Lemma 9. The following are invariants of the while loop in line 3:

(1) h(j)=h(m) =0 for j €A,
(2) h(j)> h(m) for j € H,

(3) h(m)>h(j)=0forjeL -A,
4 |H|+ Al Z2m.

Proof. We first prove that (1) holds. Line 3.5 sets capabilities of all tasks in A equal,
and thus, line 3.8 reduces the height of each task in A by the same amount. Conse-
quently, all tasks in A have the same height equal to h(m) at the beginning of line 3.10.
Since set A is extended in line 3.10 by adding to it only those tasks from #{ and £ — A
whose heights are equal to h(m), then h(j) = h(m) for j €A at the end of the loop.
Furthermore, the values 7’ and 7 are set in line 3.6 to prevent h(m) from becoming
negative. Thus, (1) holds.

Next, we prove (2). Since line 3.10 moves all tasks with their heights equal to
h(m) from H to A, it suffices to show that no task in H is lower than h(m) in line
3.10. This holds since the values of 7”7 and 7 are set to prevent the height of any high
task from dropping below the height of the mth highest task. Thus, (2) also holds.

Finally, we show that (3) holds. It suffices to show that no task in £ — A is higher
than A(m) in line 3.10. This must hold since the values 7° and 7 are set to prevent the
mth highest task from dropping below the height of the highest task in L — A. More-
over, B; = 0 for j € £ — A. Therefore, (3) holds. (4) holds since nothing is ever removed
from A, and any task removed from J{ is added to A in line 3.10. O

Lemma 10. In line 3.5, |A| 2 avail and ;< 1 for j €A.

Proof. For each interval k that starts at T,,, its compactness is guaranteed by line 3.12.
Hence, for k in line 3.1, either avail = m — ¥,;¢ 3r procy(j) =0 < |A| or H - 0, =D.
In the former case, the lemma holds. In the latter, at least | #{| processors are used by
high tasks. Consequently, at most m — | H| processors are available to tasks in A. By
the definition of and lemma 9, |A| + | H| = m. Thus, |A| 2m - | H| = avail and
the lemma holds. O

Lemma 11. The while loop 3 is executed no more than n + Im times.

Proof. In line 3.6, T= 7" at most n —m + 1 times, 7= 7" at most m — 1 times, and
7 = L} at most [m times. We now prove that the last claim holds. A compact interval in

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 235

line 3.12 starts at T}, and ends at E,, for some moment E,. E, either equals T*_, L, for
some original interval k or equals $¥Z{ L, + ¢}, for some split (32! L, + t;, J) of
some original interval k or equals the completion time of some high task. Moreover,
for any original interval k, inequalities Zf;} L <E,<¥*_|L withE, = Zf;ll L+
tj, for some split ():f;l] L, +t;, j) of some original interval k, hold at most m — 1 times
in line 3.12. Otherwise, there would be two different splits (z, j) and (¢',), t < ¢’, of
original interval k with the same high task j. Thus, E, would assume value ¢ on one
pass through line 3.12 and value ¢’ on some later pass through the same line. This,
however, cannot happen because by the definition of split, there is no task j between
t and 3%_,| L, when E, = . Therefore, split (¢/, j) would have not been created by
procedure compact. Finally, the completion time of a high task either equals ¥%_, L,
for some original interval k or equals T¥Z1 L, + #;, for some split (X*Z1 L, + t;, J) of
some original interval k. Therefore, 7= L; at most [+ I(m — 1)times.

Thus, T assumes at most n + /m different values and, consequently, the while
loop 3 is executed no more than n + Im times. O

Theorem 12. MERGE is a correct optimization algorithm.

Proof. By lemma 11, MERGE halts. Thus, it suffices to prove that it provides a fea-
sible and optimal schedule S’.

The tasks assigned to the interval [T}, T}, + 7] in line 3.7 meet the following
conditions:

(i) The tasks in O, have the same processing capabilities as in S. They occupy
Yjec0.B;T= t(m - avail) of the interval’s capacity.

(if) The tasks in A get no more than 7 processing each, by lemma 10. They occupy
2jea Bit=1%,c4 B; = t|Alavail/|A| = Tavail of the interval’s capacity.

(i) and (ii) make sure that a feasible schedule on m processors can be obtained
by McNaughton’s wrap-around rule in [T}, T}, + 7]. Also, the precedence relations
among parallel part and sequential operations are not violated for any task, because
no task in A receives more than one processor at a time. Notice that this schedule
leaves no idle time in [T}, T, + 7].

In line 4, if h(m) >0, then H = . By lemma 9, |A| = m and h(j) = h(m) for
J €A. Consequently, X;c 7 h(j)/m 2 max;c {h(j)} = h(m), and a feasible schedule
on m processors can be obtained by McNaughton’s wrap-around rule in [T}, 7,
+ ZjETh(j)/m]. Therefore, if the while loop 3 finishes with A(m) > 0, then the final
schedule has no idle time inserted and so it is optimal. The theorem holds. It also
holds if h(m) = 0 and H = D in line 4. For h(m) = 0 and 7 # & in line 4, the makespan
of S equals the makespan of S’. Again, the theorem holds. O

Lemma 13. MERGE has time complexity O((n + Im)(n + m(l + m))).

236 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

Proof. By lemma 11, the while loop in line 3 is executed at most n + /m times. Lines
3.1-3.10 can be executed in time O(n). In line 3.11, the removal of a high task from
the intervals following the current one can be done in O(/ + m) time. Notice that the
number of such intervals never exceeds [+ m — 1. Since there are at most m — 1 high
tasks, line 3.11 requires O(m(l + m)) time during the whole MERGE run. Procedure
compact(T}, S) in line 3.12 can be implemented to run in O(m(! + m)) time. Hence,
the while loop in line 3 requires O((n + Im)(n + m(l + m)) time. Line 4 can be executed
in O(n) time, and line 5 in O(n(! + m — 1 + n)) time. Therefore, the time complexity of
the algorithm is O((n + Im)(n + m(l + m)). O

Theorem 14. There is an optimal schedule with only high tasks using more than one
processor at a time.

Proof. The theorem follows immediately from the fact that §; < 1 for j € A in the while
loop in line 3, see lemma 7. L]

The quality of schedule S for high tasks is of great importance because algorithm
MERGE ends up with either an optimal schedule or a schedule not longer than S.
Obviously, even suboptimal schedule S can be used by MERGE. Note that for fixed
m, problem Pm|1lanyl, pmtn|C,,, can be solved in polynomial time as follows. An
optimal schedule for m — 1 or less high tasks can be obtained by applying LP to any
feasible permutation of their s(j) and f(j) indices, see section 2. A complete optimal
schedule for all n tasks can then be found by MERGE. Since the number of the
permutations does not exceed fixed (2m)!/2™, this approach leads to a polynomial
time algorithm.

MERGE can be used to solve a more general problem with chain precedence
constraints between parallel tasks. This holds even for the problem with an upper
bound on the number of processors a parallel task is allowed to use in parallel, i.e.
problem P|any, pmtn, chain|C,,,,. We have the following corollary.

Corollary 15. MERGE solves problem P|any, pmtn, chain|C,,,, for a given optimal
schedule S for chains higher than the mth highest chain.

Proof. Corollary 15 follows from the fact that tasks in £ are scheduled using at most
one processor at a time. O

In the following section, we identify some special cases for which polynomial
algorithms exist.
5. Polynomially solvable cases of P|1anyl, pmtn|C,,,,

This section presents special cases of P|lanyl, pmtn|C,,,, for which low-order
polynomial time algorithms exist. First, we consider problem P|lanyl, pmtn|C,,,

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 237

with tasks without tails. The algorithm we give is based on McNaughton’s and the
earliest completion time rules. We call it XMECT (eXtended McNaughton — Earliest
Completion Time) for short. Although we define it for tasks without tails, it can also
be applied to optimally schedule tasks without heads, i.e., to problem P|anyl, pmtn|
C,nac- Let us assume that hy 2 hy 2 ... 2 h,. The algorithm is as follows.

Algorithm XMECT

begin
Step 1. j:=1; (* scheduling heads — beginning *)

Step 2. while i, > (1/(m -)Z}_;,, h; do

(* head; is longer than the optimal makespan for heads head;,,,..., head,
scheduled on processors j + 1,...,m *)

begin

2.1. schedule whole head; on processor j starting at 0;

22 j:=j+1;

end;

(* heads 1,...,j — 1 are scheduled on processors 1,...,j — 1 %)

Step 3. schedule heads head,,..., head, on processors j,...,m according to Mc-
Naughton’s wrap-around-rule; (* scheduling heads — end *)
(* scheduling parallel parts — beginning *)

Step 4. schedule parallel parts as soon as their heads are finished so that there be no
idle time between them, use as many processors as available.

end. (* scheduling parallel parts — end *)

High level description. The heads are scheduled first. They are divided into two
subsets (line 2): the set of long heads and the set of short heads. The long heads are
assigned to one processor each (line 2.1), while the short heads are scheduled accord-
ing to McNaughton’s wrap-around rule (line 3) on the remaining processors. The
parallel parts are started as soon as possible and using all available processors, i.e. not
occupied by heads (line 4).

We have the following theorem.

Theorem 16. XMECT solves P|1any, pmtn|C,,, to optimality in O(n log n) time.

Proof. We start from the second part of the theorem. To find the order of heads,
O(n log n) time is needed for sorting. The while loop in line 2 can be executed in time
O(min{n, m}). Lines 3 and 4 can be executed in time O(n). The whole algorithm can
be executed in O(n log n) time.

Suppose XMECT gives suboptimal schedules. Then, there exists an instance for
which it fails to give an optimal schedule. Let us consider such an instance I*, with

238 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

the smallest number of tasks n*. Apply XMECT to I” to get schedule S. Since S is
suboptimal, there is some idle time in S. Let ¢ be the time when the latest idle interval
begins in S. Delete all the tasks that finish by ¢. Let / ** denote the instance with the
tasks left after the removal. Now, we can distinguish two cases.

Case 1. I""=1". Then, t = 0 and n < m. Thus, the total idle time inserted in any
schedule for I is at least (m — n)h,,. Since XMECT inserts exactly (m — n)h, idle time
into §, S is optimal.

Case 2. I"* C I". Then, the number of tasks in /™" is smaller than n*. Thus,
c"= ;;,, where C** and C;;, are the makespan of the schedule obtained by XMECT
for I"* and the optimal makespan for I"*. On the other hand, we have I"'=1"U
{Tis1s..., T,} for some i*. Therefore C™ = C". Obviously, C,,, = C,,, because I C I".
Thus, we get C,,, = C" and this is possible only if C,, = C". Hence, we get a contra-
diction with the assumption that C,,,, < C", and XMECT solves P|1any, pmtn| C,,,, to
optimality. O

Theorem 17. If H = @, then P|lanyl, pmtn|C,,, can be solved in O(n) time.
Proof. MERGE reduces to lines 4 and 5 in this case. O

Theorem 18. Problem P2|1anyl, pmtn|C,,, can be solved in O(n?) time using the
MERGE algorithm.

Proof. For m = 2, there is at most one high task. The optimal schedule for one task is
easy to find. It has [<3 intervals. By lemma 9, the time complexity of MERGE is
O(n?) in this case. O

Now, we consider P3|lanyl, pmtn|C,,,.

Theorem 19. Problem P3|lanyl, pmtn|C,,, can be solved in O(n?) time by the
MERGE algorithm.

Proof. For m =3, the number of high tasks cannot be greater than two. Thus, it is
sufficient to find an optimal schedule for two tasks. Without loss of generality, we can
assume that there is at most one tail and at most one head in an instance of two tasks
1 and 2. We can distinguish two cases.

Case 1. The head and the tail belong to the same task. Without loss of generality,
we assume that task 2 has no sequential operations. The optimal schedules are shown
in figures 3(a) and 3(b).

Case 2. The head and the tail belong to different tasks. Without loss of generality,
we assume that task 1 has a head, and task 2 has a tail. We can assume h; +

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 239

4
g £
§ para!lelz parallel y para!!e!2 5 para!!e[2 parallel 1 paral!e12
g g
a, a,
headl tail, L head i tail, \
time time
(a) (b)
Figure 3. Optimal schedules for two tasks only:
the tail and the head belong to task 1.
i 1
g tail £ tail
g 2 3 2
% parallelz 4 pamllen’z
: 2
=) W’ﬂ”ﬂ'] & parallel ;
head head
1 1 N
time time
(a) (b)

Figure 4. Optimal schedules for two tasks only:
task 1 has a head, task 2 has a tail.

p1/(m—1) 2 t, + p,/(m - 1). The opposite case can be dealt with by renaming tail for
head, head for tail and by reading a schedule from its end. For p,/(m — 1) < h;, an
optimal schedule is presented in figure 4(a). The opposite, p,/(m — 1) > h,, implies
p1/(m — 1) > t, with an optimal schedule depicted in figure 4(b). Thus, we have shown
how to obtain the optimal schedule for two tasks only. The complexity of identifying
a proper case and building the corresponding schedule is O(1).

Such a schedule has [€6, which results in the time complexity of O(n?) for
MERGE. Il

Theorem 20. Problem P|1lanyl, pmtn|C,,, can be solved in O(n min{log n, m}) time
if .

1

=~ Z:l(h, +1;) 2 max{h; +1;).
Proof. The construction of an optimal schedule is done in two steps. First, heads and
tails are scheduled. Then, parallel parts are inserted into the resulting schedule.

To do the first step, we replace head; and tail; of task j with compound task j
with execution time h; + ¢, for j = 1,...,n. For such compound tasks, McNaughton’s
wrap-around rule produces a schedule without idle time in [0, ¥, (k; + t;)/m]. In this
schedule, we can identify, for compound task j, a moment of time when exactly h;
units of this task are executed. Let us call such moments cracks. This step can be
implemented to run in O(n) time. The second step consists in inserting parallel parts

240 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

of the tasks on all processors in the cracks of the compound tasks. All tasks executed
at the crack of compound task j (j =1,...,n) are preempted and parallel; is inserted on
all processors for p;/m units of time. Then, the original schedule resumes. It can be
observed that the insertions of parallel parts do not introduce idle times in the schedule.
These insertions on m processors can be done in O(min{log n, m}) time each. Hence,
the time complexity is O(n min{log n, m}). O

In the following lemma, we show that the algorithm described in theorem 20 is

asymptotically optimal in probability.

Lemma 21. For h; + ¢;(j = 1,...,n) being independent and uniformly distributed over
interval [A, B] with A = 0,

n

lim P 2 (hj +1;) 2 max{h; +1;}| =1
n— oo m Fei J
for n = 4m.
Proof. The proof follows from [4, p. 415, inequality (3.7)]. O

Before presenting another polynomially solvable case, let us introduce some
notation. Let us consider 2n numbers: h; and C—-¢; for j=1,....,n, where G =
maxjef(pj/m +1; + h)). We order them in ascending order, 0 = ey < e¢; = min;{h;} <
e; < - £ ey, = max;{ C - ;} < €3, = C, and define sets RS, = {j:h>eorC—t;<e}
and RP;={j: hj<e;_jand C—t;2 ¢;} fori=1,...,2n. We assume that p,/(C - h;— 1)) =
0 for C = h; + t; We have the following theorem.

Theorem 22. Problem P|lanyl, pmtn|C,,,, can be solved in O(n®) time if

) P
V2 <i<2n |RS|+ — >m i5
i<on |RS|+ Y ——t—zm (15)
jERP T

Proof. We prove that if (15) holds, then it is possible to build an optimal schedule
without unnecessary idle times. The main idea of the proof is shown in figure 5. There,
if parallel; is processed at speed B; = p;/(C - h;j—t;) for C— h;—t; time units, then j
will finish at C. Notice that C - h;—t; 2 0.

For parts of tasks in [e;_j, ¢;], i = 2,...,2n in figure 5, we build a feasible schedule
of length C; = ((e; — e;_))/m)(IRS;| + Zjcrp, Pj/(C - hj—1))) 2 e;— e;_;. Since the se-
quential operations of tasks in [e;_;, ¢;] are not longer than ¢; — ¢;_; < C;, this schedule
can be obtained by McNaughton’s rule in O(n) time. Thus, a feasible schedule without
idle time for [e,, e,,] of figure 5 can be obtained in O(n?) time.

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 241

- C »
I - P |
;2 hy I 1 l 1 .
=
g i aes I
g4 pj pj
2 >
g
(=%

P P
C-hprtg
hy fn |

1 % 1 €is1 201 20

Figure 5. The proof of theorem 22.

Schedules for parts of tasks from [e,] and [e,,, €;,,,] of figure 5 can be ob-
tained by McNaughton’s wrap-around rule as well. However, if these intervals are
non-empty and # < m, idle time is unavoidable. O

6. Heuristics for P|1anyl, pmtn|C,,,,

In this section, we present heuristics for problem P|lanyl, pmtn|C,,,. and
analyze their performance. By the worst-case performance ratio of heuristic H, we
mean the ratio S¥ = C% . /C,,., where C_ is the makespan of the schedule obtained
by H, and C,,,, is the optimal makespan. We consider the following three heuristics:

Heuristic H1
Step 1. Schedule all heads according to McNaughton’s rule.

Step 2. Schedule all parallel parts. Use all processors for each parallel part. Start the
earliest parallel part when the latest head finishes.

Step 3. Schedule all tails according to McNaughton’s rule. Start the earliest tail when
the latest parallel part finishes.

Heuristic H2

Step 1. Consider tasks without their tails i.e., for each task j consider only head;
and parallel;. Schedule such a set of tasks according to XMECT to obtain

schedule §;.
Step 2. Schedule tails only according to McNaughton’s rule to obtain schedule S,.

Step 3. Concatenate S; and S,.

Heuristic H3

Step 1. Schedule the compound tasks (see theorem 20 for definition) according to
McNaughton’s rule.

Step 2. Insert parallel; on all processors at the crack point for task j = 1,...,n.

242 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

The following three theorems give tight bounds on the worst-case performance
ratio of the above heuristics.

Theorem 23. Heuristic H1 can be implemented to run in O(n) time. The worst-case
performance ratio of H1 satisfies $7! <3 and this bound is tight.

Proof. The tight worst-case bound for H1 is 3 because in each of the three steps, H1
builds a partial schedule not longer than the optimum. To verify the tightness consider
the following instance: n=3, hj=A, pj=B, p,=B, t=A, p3=(m—-2)(A + B),
1, = hy = ty= hy= 0. The optimal schedule has makespan C,,,, = A + B, while H1 builds
a schedule with makespan CHL =2A + (1 —2/m)(A + B) + 2B/m. Thus, lim,,_, . S"" =
(3A + B)/(A + B) which approaches 3 as B tends to 0. i

Theorem 24. Heuristic H2 can be implemented to run in O(n log n) time. The worst-
case performance ratio of H2 satisfies $72 < 2 and this bound is tight.

Proof. The complexity of obtaining S| and S, is O(n log n) (cf. algorithm XMECT).
Note that neither S, nor S, is longer than C,,,,. Thus, S72 < 2. To see that this bound
is tight, consider the following instance: n=m, h;=A, =B, p,=B, hy=--- =h, =
A+B, ty=---=t,=p,=---=p, =0, where A, B are positive. It can be observed
that an optimal schedule has makespan C,,, = h;+t;,+ p;/m=A + B + B/m. In the
schedule built by H2, heads are processed first without preemption. As soon as head,
finishes, parallel, starts and it is executed on one processor only. parallel, and
head,,..., head,, finish at h; = A + B when tail, starts. Thus, this schedule has makespan
CH2 = h, + p,+ t; = A + 2B. Hence, we have lim,,_,.57*> = (A + 2B)/(A + B). Further-
more, when A, = A tends to 0, then SH2 tends to 2. O

Theorem 25. H3 can be implemented to run in O(n min{log n, m}) time, has the
worst-case bound $73 <2 and this bound is tight.

Proof. The O(n min{log n, m}) complexity of H3 has been shown in theorem 20. The
makespan of the schedule obtained in line 1 may not be greater than C,,,,. In line 2,
the makespan is increased by exactly an= 1 pj/ m. Such an increase must not be greater
than C,,,,. Hence, S72 < 2.

To show that the bound is tight, consider the following: m =n, p;=1,=0,
hy= - =h,=ty= - =t,=h;/2m), py=---=p,=h(1 —1/m), where h, is the
processing time of head). In the optimal schedule, head; starts at moment O on
processor j; head, finishes at h,, while head,,...,head,, finish at h;/(2m). Next,
parallel,,...,parallel,, are executed on m — 1 processors finishing by A, — h;/(2m).
Then, tail,,...,tail,, follow on processors 2,...,m. Thus, the optimal schedule has

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 243

makespan C,,,. = h,. H3 builds the schedule as follows. In step 1, a schedule is
built in which only two processors are occupied: on one processor head, is executed,
on the other head,, tail,..., head,, tail, are executed. Step 2 inserts parallel,,...,
parallel,, which increases makespan to CI3.=h + 2o pi/m=h + h(1- 1/m)?.
Hence, lim,,_,,, 7% =2. O

The above three heuristics were implementated in Borland Pascal 7.0, and run
on a 486 PC with MS-DOS 6.22. Their results were compared against a lower bound
max {max ;e r{h; + p;/m + rj},(l/m)Z;?:l (hj + p; +1;)} on the optimal makespan.
Processing times of heads and tails, /; and #;, were randomly generated from the
uniform distribution in [0, 1]. Processing times of parallel parts, p;, were randomly
generated from the uniform distribution in [0, p], where p > 0. The results of com-
putational experiments are collected in figures 6—8. Each point represents an average
relative (with respect to the lower bound) error in 1000 experiments, over 130 thousand
instances were solved. In figure 8, the horizontal axis represents values of p.

Figures 6—8 show that the worst performance on average has been observed
when the ratio n/m tends to 1 and/or p tends to 2. Still, the average performance of
H1, H2, and H3 is not worse than 1.5, 1.25, and 1.4, respectively. For large (relative
to m) values of n and small (relative to n) values of m, all heuristics build schedules
close to optimum, see figures 6 and 7. For large m and constant n, only H3 tends to
building schedules close to optimum, see figure 7, while both H1 and H2 converge to
1.1. Then, however, the sequential parts, head; and tail;, dominate the schedule and
the length of a schedule built by either H1 or H2 tends to max;. rh; + max;. t;, while
the length of a schedule built by H3 tends to max;. r{h; + #;}. A similar situation takes

place when p < 0.1, see figure 8.
To conclude, H1 always builds on average worse schedules than H2. Further-

more, there seem to exist two values aand , such that H3 performs on average better
than H2 for n/m < @and n/m 2 o, while H2 performs on average better than H3 for
n/m between o and . Our computations have shown that a good estimate for « is
somewhere between 0.3 and 0.5, and that a good estimate for @ is 1.7. Finally, H3
performs on average better than H2 for p < 0.3, and H2 does better otherwise. This
suggests that H2 and H3 complement each other and should thus be used together
with better solution chosen as an output of the combined heuristic.

7. Concluding remarks

This paper has considered the problem of scheduling parallel tasks with sequen-
tial heads and tails to minimize makespan. The parallel tasks are different from the
multiprocessor tasks because they allow the number of processors processing a task
to change with time. They are also different from the DAG model of parallel
computations because they allow more than one processor at a time to process a task.
Despite this difference, we show that the concept of profiles developed in [6] for the

244 M. Drozdowski, W. Kubiak / Scheduling parallel tasks

14

1.35

184 -

1.25

1.05

—-—H1—0—H24%FH3]

Figure 6. Average relative distance from the lower bound for H1, H2, H3
versus the number of tasks, m=32, p=1.

14

1.35

1.25 4

1.2""'

1454 --

—-—H1—9—H2-€FH3|

Figure 7. Average relative distance from the lower bound for H1, H2, H3
versus the number of processors, n =32, p=1.

M. Drozdowski, W. Kubiak / Scheduling parallel tasks 245

1.5

1454

1.35

1.3 4

1i2h s «

1.15 -

105 4 - -

0.01

—-—H1—o—4H248HHa

Figure 8. Average relative distance from the lower bound for H1, H2, H3
versus p, m=n= 32,

DAG model can be extended to prove that the problem of scheduling parallel tasks is
NP-hard in the strong sense. This holds even if the number of tasks does not exceed
the number of processors. We show that this case remains crucial for the time complex-
ity of the scheduling problem, since any optimal schedule for tasks longer than the
mth longest task can be extended to an optimal schedule for all tasks in polynomial
time. We show that this follows from earlier results obtained in [6] and [19]. In the
resulting optimal schedule for all tasks, only those longer than the mth longest task
use the parallel processing capability of parallel systems, all the remaining tasks are
scheduled as sequential. This property of some optimal schedules seems to be of
importance for scheduling large number of parallel tasks in real parallel systems.

The complexity of scheduling tasks with one sequential operation, either head or
tail, remains unknown.

References

[1] L. Bianco, J. Blazewicz, P. Dell’Olmo and M. Drozdowski, Scheduling preemptive multiprocessor
tasks on dedicated processors, Performance Evaluation 20(1994)361-371.

[2] J. Blaiewicz, P. Dell’Olmo, M. Drozdowski and M.G. Speranza, Scheduling multiprocessor tasks
on three dedicated processors, Inf. Proc. Letters 41(1992)275-280, Corrigendum Inf. Proc. Letters
49(1994)269-270.

246

[3]
[4]

(5]
[6]

(7]
[8]
[9]
[10]
(11
[12]
[13]

[14]
[15]

[16]
(171

(18]
[19]

M. Drozdowski, W. Kubiak / Scheduling parallel tasks

J. Blazewicz, M. Drabowski and J. Weglarz, Scheduling multiprocessor tasks to minimize schedule
length, IEEE Trans. Comput. C-35(1986)389-393.

J.L. Bruno and P.J. Downey, Probabilistic bounds on the performance of list scheduling, SIAM .
on Computing 15(1986)409-417.

E.G. Coffman, Jr., Computer and Job-shop Scheduling Theory, Wiley, 1976.

D. Dolev and M. Warmuth, Profile scheduling of opposing forests and level orders, SIAM J. on
Algebraic and Discrete Methods 6(1985)665-687.

J. Du and J.Y-T. Leung, Complexity of scheduling parallel task systems, SIAM J. on Discrete
Mathematics 2(1989)473—-487.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman, San Francisco, 1979.

M.R. Garey, D.S. Johnson, R.E. Tarjan and M. Yannakakis, Scheduling opposing forests, SIAM J.
on Algebraic and Discrete Methods 4(1983)72-93.

D. Ghosal, G. Serazzi and S. Tripathi, The processor working set and its use in scheduling multi-
processor systems, IEEE Transactions on Software Engineering 17(1991)443-453.

R.L. Graham, E.L. Lawler,].K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation
in deterministic sequencing and scheduling: A survey, Ann. Discrete Math. 5(1979)287-326.
J.L. Gustafson, R.E. Benner, M.P. Sears and T.D. Sullivan, A radar simulation for a 1024-processor
hypercube, in: Proceedings of Supercomputing 1989, ACM Press, New York, 1989, pp. 96—105.
M. Kubale, The complexity of scheduling independent two-processor tasks on dedicated processors,
Inf. Proc. Letters 24(1987)141-147.

E.L. Lloyd, Concurrent task systems, Oper. Res. 29(1981)189-201.

R. McNaughton, Scheduling with deadlines and loss functions, Management Science 6(1959)1—
12.

R.R. Muntz and E.G. Coffman, Jr., Preemptive scheduling of real-time tasks on multiprocessor
systems, Journal of ACM 17(1970)324-338.

K.C. Sevcik, Application scheduling and processor allocation in multiprogrammed parallel process-
ing systems, Performance Evaluation 19(1994)107-140.

J.D. Ullman, NP-complete scheduling problems, J. Comput. Syst. Sci. 10(1975)384 -393.

B. Veltman, B.J. Lageweg and J.K. Lenstra, Multiprocessor scheduling with communication delays,
Parallel Computing 16(1990)173-182.

