The combinatorics in divisible load scheduling

M.Drozdowski!, M.Lawenda?

Abstract

Divisible load scheduling problem is studied in this work. Though
tractability of this problem in the practical cases is considered as its
great advantage, we show that it has a hard combinatorial core. Com-
putational hardness and polynomial time solvability of some special
cases are shown.

Keywords: divisible loads, scheduling, computational complexity.

1 Introduction

Divisible load theory (DLT) is a new branch in the scheduling theory. DLT
is used to represent communications and computations in distributed com-
puter systems, or transportation and production systems. It is assumed in
DLT, that the job (e.g. computation, production) can be divided into parts
of arbitrary size. These parts can be processed in parallel by remote pro-
cessing elements (computers, factories, etc.). The communication, or trans-
portation, time must be taken into account. DLT was proved to be a ver-
satile tool for modeling distributed computations, analyzing various commu-
nication topologies, and in performance evaluation. DLT predictions have
been verified and confirmed experimentally. Surveys of DLT can be found in
|2, 3, 5, 7, 10]. In the further discussion we will use distributed computing
metaphor in divisible load processing. In the earlier literature, computational
tractability of the divisible load model was considered as its great advantage.
Though it is a justified observation for many practical cases, we will show
that divisible load scheduling problems have hard combinatorial core.

Institute of Computing Science, Poznaii University of Technology, ul.Piotrowo 3A,
60-965 Poznan, Poland. This research was partially supported by a grant of Pol-
ish State Committee for the Scientific Research. Corresponding author. Email:
Maciej.Drozdowski@cs.put.poznan.pl

2Poznan Supercomputing and Networking Center, ul.Noskowskiego 10, 61-794 Poznan,
Poland.

In this work we consider star interconnection (a.k.a. a single level tree)
of set P of processing elements. In the center of the star a computer F,
called originator (or master, server) is located. Originator distributes the
load to processing elements P, ..., P, (slaves, workers, clients). The load
is sent from the originator to a processing element in only one message. No
other communications are performed. We assume that the time of returning
the results can be neglected. The reasons for this assumption are twofold.
First, we intend to consider the simplest, rudimentary cases of DLT. Second,
this assumption is made for the simplicity of presentation. It is not limiting
the generality or practicality of the considerations. It was shown in the
earlier DLT literature |2, 3, 7, 10] that the process of result collection can be
incorporated in the DLT models.

Assume that load chunk of size «; is processed by P;, where «; is expressed
in load units, e.g. bytes. The time of transferring this load to P; is S; +
o;C;. S; is communication startup time, Cj is reciprocal of bandwidth. The
computation time is p; + a; A;, where p; denotes computation startup time
which elapses before computations start, and A; is processing rate (reciprocal
of computing speed). Using processor P; bears cost f; + a;l;. If memory size
is limited to B; load units, then load chunk must not exceed it, i.e. o; < B;.
Due to the existence of other more urgent computations, or maintenance
periods, the availability of processor P; may be restricted to some interval
[ri,d;]. By such a restriction we mean that computations may take place
only in interval [r;, d;]. A message with the load may arrive, or start arriving
before r;. We assume that computations start immediately after the later of
two events: r;, or the load arrival. The computation time p; + o;A; must
fit between the latter of the above two events, and d;. Scheduling divisible
load computations involve three decisions: selecting subset P’ of the used
processors from set P, sequencing activation of processors in P’, dividing
total load V' into chunks «; for P; € P’. The goal is to schedule divisible load
computations such that schedule length C),4 = maxpep{t;} is minimum,
where t; is the completion time of the computations on F;, and processing
cost G = Y ,cp(fi + a4l;) is bounded. An alternative formulation of the
problem is to find a schedule with minimum cost G, such that its length
Chnaz 18 limited. In the appendix we summarize the main notation used in
this paper.

The combinatorial nature of DLT has been studied before. In [1] it has
been shown that the sequence of processor activation in a star network af-
fects schedule length. It was proved in [1, 2|, and independently in [4], that

when there are no communication startup times (Vp,.S; = 0) the processors
have to be activated according to the order of decreasing bandwidth of com-
munication links. The case with non-negligible startup times (Vp,S; > 0)
was studied in [4, 12]. It was determined in [4], and independently in [12],
that if communication parameters are identical (i.e. C; = C,S; = S for
i =1,...,m) then for the shortest schedule the order of decreasing processor
speed should be the order of processor activation. This result was obtained
under condition that all processors in P receive non-zero load and thus, can
participate in processing. In [4] it was determined that the problem of di-
visible load scheduling on a system with startup times and multiple buses
is NP-hard. The case of non-negligible startup times and limited memory
buffers was shown to be NP-hard in [8]. The problem of optimizing the cost
of a schedule has been studied in |6, 11]. Heuristic rules have been proposed
in [6, 11] to select the set of used processors, and determine load assignment,
efficiently in terms of cost and schedule length.

The rest of this paper is organized as follows. In Section 2 we demonstrate
that the problem of divisible load scheduling on a star network can be solved
in polynomial time for G, and for C,,,, criteria, provided that the set of used
processors and the sequence of their activation are given. In Section 3 we
show that various special cases of these problems are NP-hard.

2 Fixed processor activation sequence

The problem we consider is a bi-criterial optimization problem. The criteria
are schedule length C),,.,, and processor usage cost G = Y ,cp/(fi + ail;),
where P’ is a set of the exploited processors. This bi-criterial problem can be
relaxed to two simpler problems: (i) minimization of C,,,, on condition that
G < G, (ii) minimization of G on condition that Cyup < Chnee, Where G is a
predetermined upper bound on the schedule cost, and C,,,, is a given upper
bound on the schedule length. Both problems can be solved in polynomial
time by use of linear programming, provided that the set P’ of used processors
and the sequence of their activation is known. Let us consider problem (i)
first. We assume that |P’| = m/, and without loss of generality, the sequence
of processor activation is Pj, P, ..., P,,. Then, the linear program for (i) is
as follows:

minimize C),.,

subject to:

)

Z(Sk + akck) + Di + aiAi S Cmaa} 1= 17 7m, (1)

k=1

k=1
T + Di + OéiAi S Cmax 1= 17 . ?m, (3)
ri+pi oAy <d; i=1,...,m (4)
Y (fitagly) < G (5)
j=1

0<

2
A
Sy
<.
[
\-P—‘
s,
=

ml
Z Qj
j=1

I
<
—
\]
SN—r

In the above formulation constraints (1)-(4) guarantee that computations
are performed in an admissible interval. The left side of inequalities (1),
(2) is the earliest possible completion time of the computations provided
that they are started immediately after the end of the load transfer. The
left side of inequalities (3), (4) is the earliest possible completion time of
the computations provided that they are started immediately after processor
release time. By inequality (5) total cost of the schedule does not exceed the
limit G. Constraints (6) ensure that memory buffer size is not exceeded, and
by (7) all the load is processed. Consider an example.

Example. m’ = 4,V = 20, parameters of the processor system are the
following:

parameter \ processor | P, | P» | P35 | P,
yy 2 [05] 1] 2
B; 10 | 10 | 10 | 20
C; 1 10.1] 2 2
S; 1 1 1 2
D 0 1 1 0
d; 10 | 20 | 30 | 200
5 0 |10] 20| 20
2 1|5 |3
l; 05 1 (03| 1

The solution for this instance depends on _the value of cost limit G. This is
demonstrated for some example values of GG in the following table:

G (03] [6%) Q3 g Omaa:
>25.7669 | 3 10 5.3333 | 1.3333 | 26.333
24.25 3 5) 7.5 4.5 41.5
24.1334 | 3 | 0.00285 | 7.6666 | 9.3306 | 60.656

<24.1334 infeasible

Observe that schedule length increases as the limit put on the costs decreases.
For G > 25.7669 inequality (5) is ineffective. For G < 24.1334 the problem
is infeasible. The schedule for G >25.7669 is presented in Fig.1. The vertical
arrows indicate the end of communication from the originator to a certain
processor.

Problem (ii) can be also solved in polynomial time by modifying linear
program (1)-(7). Namely, the roles of the objective function and constraint
(5) must be exchanged. Thus, to solve problem (ii) the minimized objective
function should be Z;”;l(fj + a;l;), while inequality (5) should be replaced
by Criaz < Chuaz. Both problems can be solved provided that we know set P’
of active processors and the sequence of their activation. In the next section
we will demonstrate that determining them is computationally hard.

3 Complexity of divisible load scheduling

In this section we will demonstrate that even restricted cases of scheduling
divisible load computations in star networks are computationally hard. All
the cases we study are in class NP because it is enough to guess set P’ of the
used processors, and the sequence of their activation. Then, the load sizes
can be calculated in polynomial time using the methods presented in Section
2. We will provide polynomial time transformations from an NP-complete
problem PARTITION defined as follows [9]:

INSTANCE: A finite set £ = {ey, ..., ¢,} of positive integers.
QUESTION: Is there a subset £’ C E such that

Zei: Z ei:%iei:F? (8)

i€E i€E—E'
We will use DLS abbreviation for divisible load scheduling. Some parameters
are not binding for some of the studied cases of DLS. We do not repeat

3

nsert
Fig.1
here

definitions of such parameters, and unless specified otherwise, it is assumed
that BZ = dl = 00, Cz = fz = ll =pP; =T; = 0, for all P@ € P. In the following
w present NP-hard cases of DLS problem.

DLS WITH PROCESSOR RELEASE TIMES (DLSPRT)

INSTANCE: Heterogeneous star P, load size V, time interval T, non-zero
processor release times 11, ..., 7y

QUESTION: Can load V' be processed on P in at most 7T units of time?

Theorem 1 Problem DLSPRT is NP-hard.

Proof. The proof is based on the polynomial time transformation from the
PARTITION problem. The instance of DLSPRT is constructed in time O(q)
as follows: m = ¢q; A; = eii,C’i =05 =e¢,r;, = Ffori=1,...,¢;T =
F+1,V=F.

Suppose PARTITION has a positive answer. Then the processors corre-
sponding to the elements in set E’ receive the load in > ;cp S; = Y icp € =
F =T — 1 units of time. Their total speed is > ;cp A% = Yiep € = F.
Thus, V = F units of load can be processed in the last time unit of the
schedule (cf. Fig.2). On the other hand, when the answer to DLSPRT is
positive then some set P’ of processors is activated in at most 7' = F + 1
units of time, to process at least F' units of the load. Note that all processors
become available at ; = T"— 1. Since Vp,cpS; > 1, any processor activated
in the last time unit of the schedule does not process any load. Thus, the
duration of all communications to the processors in P’ does not exceed T —1:
Yopep Si = Ypep € < T—1=F. The whole load V is processed in the last
time unit of the schedule because processors become available at r; =T — 1.
Hence, V = Zpiep,A% =Y pep € = F. As A% =5, =¢,fori=1,...,m,
the answer to PARTITION is also positive. O

Before proceeding to the next special case of DLS let us study the amount
of load that can be distributed, and processed on a star network with C; = 0,
and processors available until finite time d;, for i = 1,...,m. Let us assume
that the sequence of processor activation is fixed, but the set of processors to
be activated is yet to be decided. Without loss of generality, let the sequence
be P, ..., P,. Let binary variable x; = 1 denote that processor P; has been
activated in the sequence Pi,..., P, and x; = 0 that processor P; is not
activated, for = 1,...,m. The amount of load V that can be distributed,

insert
Fig.2
here

and processed in time 7' is

s ZL‘ZdZ m Sz
V:Z A; T Z xixjx (9)

i=1 1<i<j<m J

In the above equation term > ", xAd is the amount of load that would be

processed by the selected processors provided that they were activated simul-
taneously at the beginning of the schedule (i.e. communication is timeless).
Still, the communication is not timeless. Startup time S; of the selected
processor P; delays the activation of all processors P; for j > i . Therefore,
S; decreases the total load that could be processed by x; Z;”:i xjj—;. Term
m

l<i<i<m z;z; 3¢ in (9) is the amount of lost load that could not be processed
=t=J= i

due to the communication delays. Equation (9) has a graphical interpretation

shown in Fig.3. The shaded area is the amount of lost load >_7%,-;,, xixj%. insert
=r=J= J
Fig.3
DLS WITH PROCESSOR DEADLINES (DLSPD) héfe

INSTANCE: Heterogeneous star P, load size V, finite processor deadlines
[dy, ..., dy).
QUESTION: Can load V' be processes on P before the deadlines [dy, ..., d,,]?

Theorem 2 Problem DLSPD is NP-hard even if the sequence of processor
activation 1s known.

Proof. We assume that the sequence of processor activation is given. With-
out loss of generality it is P, ..., P,. We will prove NP-hardness of DLSPD
by a polynomial time transformation of PARTITION problem. The transfor-
mation is as follows: S; = 2e;, A; = Q%i,di = 2F +e¢;, fori =1,...,m.
V = 2F?. By substituting these values in equation (9) we obtain:

V=
m m m
2 _
4F2xiei + 2 Z xie; —4 Z TixTjeie; =
i=1 i=1 1<i<j<m
m m m m
AFY wie; +2) ajel —4) aiel —4 Y mzjee; =
i=1 i=1 i=1 1<i<j<m
m m m
2 2 _
4F2xiei — Qin e; —4 Z Tixjee; =
i=1 i=1 1<i<j<m
m
i=1

In the second line of the above equation we used the fact that z; = 27 for

x; € {O, 1}
By activating the processors corresponding to the elements in set £’
in PARTITION problem we have z; = 1 for ¢ € E’, and z; = 0 other-

wise, in formula (10). If there is a positive answer to PARTITION, then
S wie; = Yiep xie; = F. Therefore, V = 2F? units of load are distributed
and processed before processor deadlines, as demonstrated in equation (10).
And vice versa, when a feasible schedule exists in which V' = 2F? units of the
load is processed, then by inequality (10), it is possible only if > | z,¢; = F,
and the answer to PARTITION is positive. O

DLS WITH PROCESSOR STARTUP TIMES (DLSPST)

INSTANCE: Heterogeneous star P, load size V, time interval T, non-zero
processor computation startup times [pi, ..., ppy).

QUESTION: Can load V' be processed on P in time at most 717

Theorem 3 Problem DLSPST is NP-hard.

Proof. This theorem can be proved by a modification of the proof of The-
orem 2. In Theorem 2 the maximum computation time available on PF;,
provided that communication is timeless, is d;. In the case of problem DL-
SPST this amount of time is equal to T — p;. By setting T' = 3F, and
p; = F'—e; > 0 we obtain that T'— p; = 2F + ¢; > 0. Note that T"— p; here
is equal to d; in the proof of Theorem 2. If we set other parameters of P’ as
in the proof of Theorem 2, then the rest of this proof follows from the proof
of Theorem 2. O

DLS WITH FIXED PROCESSOR CHARGES (DLSFPC)

INSTANCE: Heterogeneous star P, load size V, time interval T, non-zero
charges [fi, ..., fn] for using the processors, total cost G.

QUESTION: Can load V' be processed on P in time at most 7" and cost at
most G?

Theorem 4 Problem DLSFPC is NP-hard.

Proof. The problem is based on the polynomial transformation of the PAR-
TITION: m = ¢q,T = 1,6 =FV =FA = e%,cz‘ =5, =0,f = ¢, for
i = 1,...,m. Note that communications are timeless, and processors have
one time unit for computations. Thus, the load processed is V' = 3" p cp/ A% =

> p.epr €y Where P € P’ is the set of activated processors. The cost of ac-
tivating these processors is G = Y pcp fi = Spepr €. Thus, if the cost is
G < F, and the size of processed load V > F, then a positive answer to PAR-
TITION must exist. And vice versa, positive answer to PARTITION implies a
positive answer to DLSFPC. O

MAXIMUM SPEED PROBLEM (MS)

INSTANCE: Heterogeneous star P, time interval T', speed R.

QUESTION: Is there a subset P’ of P with total speed at least R that can
be activated in time at most 17

Theorem 5 MS problem is NP-hard.

Proof. MS problem is in NP because NDTM must guess set P’, of proces-
sors. Then it is enough to check if }~,cp, S; < T, and > ;cpr A% > R.

An instance of the MS Problem can be constructed on the basis of PAR-
TITION instance in the following way: m = ¢q; A; = eii,C’Z- =0,5; = e; for
1=1,...,q. R=F, T = F. The instance can be constructed in polynomial
time O(q).

Suppose the answer to the PARTITION problem is positive. Then, there is
set E’ satisfying equation (8). If we activate the processors corresponding to
the elements in set £’, then their total speed is > ;cp A% =Y icmei =F =R
The time needed to activate these processors is > ;cp Si = > e i = F =1T.
Thus, the set of processors satisfying the conditions of MS exists.

On the other hand, let us assume that the answer to MS problem is
positive. Hence, there is set P’ such that > ;cp/ A% =Yep € > R=F, and
Yiep Si = Y iep € < T = F. Consequently, > ;cpre; = F' and the answer to
the PARTITION problem is also positive. O

DLS WITH COMMUNICATION STARTUP TIMES (DLSCST)

INSTANCE: Heterogeneous star P, load size V, time interval T', processing
rates A;, startup times .S;, are positive for all processors.

QUESTION: Can load V' be processes on P in time at most 77

Conjecture 6 Problem DLSCST is NP-hard.

We conjecture that problem DLSCST is NP-hard due to its similarity
to MS problem: on one hand the activated processors must have sufficient
speed to process given volume of load V', on the other hand their work time
T is limited.

For the end of this section let us consider a special case of DLSCT. When
S; = A%, C; =0, fori=1,...,m, this problem can be solved in pseudopoly-
nomial time. Though this case seems to be very peculiar from the practical
point of view, but still it may give some insight into the combinatorial nature
and the complexity of the problem.

Proposition 7 DLSCT problem can be solved in pseudopolynomial time if

Si:ALi,Ci:OfOT’izl,...,m.

Proof. Consider formula (9). When S; = - for all i, then the load processed
in time 7T is

V=
— T;l;— =
; 4 19;971 jAj
i=1 1<i<j<m
TZ.I’ZSZ - Z’IZS? - Z l’iZL‘jSiSj =
i=1 i=1 1<i<j<m
S 1 & 2 Q2 - 1 & 2 1 2 1 2
TZJZ'ZSZ — = le Sz — Z l'il'jSZ'Sj — = Z.CIZ'ZSZ — =T + =T =
=1 2 =1 1<i<j<m 2 =1 2 2
2 2 i=1 2 i=1

In deriving the above equation we used the observation that z; = x? for
x; € {0,1}. Note that V' does not depend on the sequence of the processor
activations. It depends only on the set of used processors for which x; = 1
because only these processors contribute to Y1, x;S;, and 7, z;52. The
sequence of processor activation is immaterial for these sums.

The maximum load V' can be found by calculating function H (j, 7) which
is the minimum sum of Z{Zl 7;S? such that Z{Zl x;S; = 7. Function H(j,7)
can be calculated using the following recursive equations:

H(j—1,7) for 7<5;

H(j,7) =) H(j—1,7), (12)
mm{H(j_1,7_5]')_‘_5]2 for 7>5;

10

forj:l,,,,,m,T: 17...7T. H(O,T) = o0, for = 17---:T7 H(]a()) =0

for j = 0,...,m. Then, the load processed for particular values of j, 7 is
V(j,7) = min{0, 3(T% — H(j,7) — (I' — 7)*)}. The optimum load is found
for 7 € {1,...,T} such that V(m,7') is maximum. The set of processors

to be exploited can be found by backtracking using equation (12), from the
value of H(m,7’) corresponding with the optimum V(m,7’). A processor is
used in computation if H(j,7) = H(j — 1,7 — 5;) + 5]2, then we backtrack
recursively to H(j — 1,7 — S;), and so on until locating H(j',7') € {0, 00}.
This method can be implemented to run in time O(mT'). O

Based on formula (11) we can draw one more observation. The problem
of maximization of T? — (T — 1, x;5;)? — 7, x;5? has a geometric inter-
pretation (see Fig.4). Suppose a square Y of area T? is given. The diagonal
sequence of squares in Fig.4 is equivalent to 37", x;5?. These squares must
fit in rectangle Y. The last square X has area (T —>7"; 2;5;)?. Maximization
of T? — (T — ¥, 2;5;)? — X, ;57 is equivalent to determining a subset of
{S1,...,Sn} such that the sum of the areas of the squares along the diagonal
is minimal. To our best knowledge, the complexity of this problem, remains
unknown.

4 Conclusions

In this paper we studied the problem of divisible load scheduling on a star
network for the schedule length and the schedule cost criteria. It has been
demonstrated that the optimum load distribution can be found in polynomial
time by using linear programming, on condition that the set of used proces-
sors and the sequence of their activation are known. However, in many cases
determining this set and the activation order is computationally hard.

References

[1] V.Bharadwaj, D.Ghose, V.Mani, Optimal Sequencing and Arrangement
in Distributed Single-Level Tree Networks with Communication Delays,
IEEE Transactions on Parallel and Distributed Systems, vol. 5, No. 9,
1994, 968-976.

11

insert
Fig4
here

2]

3]

[4]

[5]

(6]

7]

8]

19]

[10]

[11]

[12]

V.Bharadwaj, D.Ghose, V.Mani, T.Robertazzi, Scheduling divisible
loads in parallel and distributed systems, IEEE Computer Society Press,
Los Alamitos CA (1996)

V.Bharadwaj, D.Ghose, T.Robertazzi: Divisible load theory: A new
paradigm for load scheduling in distributed systems. Cluster Computing,
vol.6, No.1, 2003, 7-17.

J.Blazewicz, M.Drozdowski, Distributed processing of divisible jobs with
communication startup costs, Discrete Applied Mathematics, vol. 76,
Issue 1-3, 13 June 1997, 21-41.

J.Blazewicz, M.Drozdowski, K.Ecker, Management of Resources in Par-
allel Systems, in: J.Blazewicz, K. Ecker, B. Plateau, D. Trystram, Hand-
book on Parallel and Distributed Processing, Springer, Heidelberg, 2000,
263-341.

S.Charcranoon, T.Robertazzi, S.Luryi, Load sequencing for a parallel
processing utility, Journal of Parallel and Distributed Computing 64,
2004, 29-35.

M.Drozdowski: Selected problems of scheduling tasks in mul-
tiprocessor computer systems. Poznari University of Technol-
ogy Press, Series: Monographs, No.321, Poznan (1997). Also:
http://www.cs.put.poznan.pl/ maciejd/txt/h.ps

M.Drozdowski, P.Wolniewicz, Optimum divisible load scheduling on het-
erogeneous stars with limited memory, 2002, submitted.

M.R.Garey, D.S.Johnson, Computers and Intractability: A quide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

T.Robertazzi, Ten reasons to use divisible load theory, IEEE Computer,
vol. 36, No.5, 2003, 63-68.

J.Sohn, T.Robertazzi, S.Luryi, Optimizing computing costs using divisi-
ble load analysis, IEEE Transactions on Parallel and Distribute Systems,
vol 9, No. 3, 1998, 225-234.

L.Xjaolin, Studies on Divisible Load Scheduling Strategies in Distributed
Computing Systems: Design, Analysis and Experiments, PhD thesis,
National University of Singapore, 2001.

12

Appendix. Notation

A; - processing rate (reciprocal of speed) of P;,

a; - load assigned to P;,

B; - memory size of P,

C; - communication rate (reciprocal of bandwidth) of the link to P,
Cinar = max{t;} - schedule length,

Conasz - an upper limit on schedule length,

d; - deadline of P;, upper limit of P; availability for computations,
E - set of integers in PARTITION problem,

e; - value of element ¢ in PARTITION problem,

F = £, e; - a number defined for PARTITION problem,

fi - fixed part of the cost of using processor P,

G =Y icp (fi + ail;) - total cost of the schedule on processors in set P,
G - an upper limit on cost G

l; - coefficient of the linear part of the cost of using P,

m - number of processing nodes,

P - set of available processing nodes,

P’ - set of nodes participating in the computations,

P; - processing element, 7,

p; - computation startup time on processor F;,

q - the number of elements in partition problem,

r; - release time of P;, lower limit of P; availability for computations,
S; - communication startup time of the link to P;,

T - upper limit of the schedule length,

t; - completion of the computations on P;,

V - total load size.

13

P, s a,C S,&8, a,C, S, | a,C,
P 1 A, unavailable
v
P, unavailable P, oA, unavailable
P 3 unavailable D O"3143
P, unavailable oA,
7"1 , , , , r2l’d1 , , , , r3’}:'4’d2 , , \ N
0 2 4 6 8 10 12 14 16 18 20 22 24 26

Figure 1: Schedule for the example with cost limit G >25.7669.

Aload
F
1_
4
< €; »
Sl .. Si

< 1> tigl@

F T

Figure 2: Illustration to the proof of Theorem 1

14

¢ “time

=

ANE

~.

A
N

A\

Al

m

<

speed"

Figure 3: Illustration to the proof to Theorem 2

15

A time

A=
I
%!

<> .

Vspeed

Figure 4: Illustration to Proposition 7

16

