
Poznań University of Technology

Scheduling malleable tasks for mean flow time criterion

Massimiliano Caramia, Maciej Drozdowski

Research Report RA-008/05

2005

Institute of Computing Science, Piotrowo 3A, 60-965 Poznań, Poland

Scheduling malleable tasks for mean flow time criterion

M.Caramia1, M.Drozdowski2

Abstract

In this paper we study scheduling malleable tasks with limited par-
allelism, for mean flow time criterion. Malleable tasks may use more
than one processor at the same time, and the number of processors
used may change over time. The maximum number of processors that
can be used by some task is limited. We examine the computational
complexity of this problem, and present polynomially solvable cases.

Keywords: Deterministic scheduling, malleable tasks, mean flow time.

1 Introduction
Malleable tasks can be executed by more than one processor at the same
time. Furthermore, the number of used processors can be changed over the
course of a task execution. Malleable task model may be applied to represent
parallel applications executed in environments in which migration is possible.
For example, on a parallel computer with shared memory a parallel appli-
cation can create threads. These threads can be executed simultaneously.
Operating system assigns the threads to the processors for time quanta in
a round-robin fashion, and preempts the threads when the quanta expire.
When the load of the computer system is low all the application threads
may run in parallel in real time. When the load is increasing, operating sys-
tem assigns the application threads to fewer processors. Thus, the number
of processors used over time can be changed according to the decisions of
the operating system. An upper limit on the number of usable processors
may exist. This may be either the number of threads created by the appli-
cation, or a limit imposed by the operating system protecting its resources

1Istituto per le Applicazioni del Calcolo, CNR, V.le del Policlinico, 137 - 00161 Rome,
Italy.

2Institute of Computing Science, Poznan University of Technology, Piotrowo 3A,
60-965 Poznan, Poland. The research of this author has been partially sup-
ported by Polish Committee for Scientific Research. Corresponding Author. Email:
Maciej.Drozdowski@cs.put.poznan.pl

1

from overuse. Another example of malleable tasks is in bandwidth alloca-
tion. Bandwidth of a communication link is a resource which can be divided
among many simultaneously operating channels. The bandwidth assigned to
a channel may vary over time. However, the channels have an upper limit
on the usable bandwidth (e.g. Peak Cell Rate in ATM networks). A router
must divide the bandwidth between the simultaneous communications such
that the maximum for each channel is not exceed. Malleable task model for
loom production scheduling has been presented in [9]. A single request for
production of a certain fabric can be distributed over several looms. The
number of looms used during the course of satisfying the request may vary.

The scheduling problem studied in this paper can be formulated in the
following way. Set T of n tasks is to be executed on set P of m parallel iden-
tical processors. Each task j ∈ T is defined by the parameters: processing
requirement pj, maximum number of processors that can be used δj, ready
time rj, and deadline dj which cannot be exceeded in any feasible schedule.
Tasks can be suspended, and restarted later without any additional cost.
Each task can migrate to a different processor, increase or decrease the num-
ber of used processors, also without cost. The only restriction is that no
more than δj processors can be used simultaneously. To verify if task j has
received the required processing and can be finished, one has to calculate the
area occupied by task j in the time × processors space, and compare it with
pj. The completion time of task j will be denoted by cj. The objective is the
minimization of the mean flow time 1

n

∑n
j=1(cj−rj). Since

∑n
j=1 rj is constant

for any instance, the minimization of the mean flow time is equivalent to the
minimization of

∑n
j=1 cj. Therefore, in the following discussion we will refer

to the minimization of
∑n
j=1 cj as to the mean flow time criterion.

Malleable task scheduling has been considered in earlier publications. The
first works considering parallel tasks, i.e. tasks executed on several processors
simultaneously, seem to be [8], and [1]. Unfortunately, the lack of generally
accepted terminology may confuse. It is often the case that the name mal-
leable tasks is applied to parallel tasks that can be executed on several pro-
cessors, but the number of processors must be selected before the task starts,
and cannot be changed during the execution of the task. We follow the nam-
ing conventions proposed in [4, 6] where such tasks are called moldable. We
do not consider moldable tasks here. The concept of malleable, moldable,
and more generally parallel tasks, and the problems of scheduling them have
been presented in [3, 4, 6]. The first study of scheduling malleable tasks ap-
peared in [10]. Tasks had due-dates, and the objective was the minimization

2

of maximum lateness. This problem can be solved by means of binary search
and maximum network flows. Scheduling chains of three malleable tasks for
schedule length criterion has been studied in [5]. The first, and the last task
in the chain had parallelism limited to one processor (δj = 1). The second,
central task had unlimited parallelism (δj ≥ m). This problem has been
shown to be NP-hard, and special cases solvable in polynomial time have
been identified [5]. However, to our best knowledge not much is known about
the problem of scheduling malleable tasks for the mean flow time criterion.

The rest of this paper is organized as follows: In Section 2 we study the
complexity of the proposed problem. Section 3 is dedicated to the case of
fixed sequences of task completion times. A low-order polynomial time algo-
rithm is proposed in Section 4 for agreeable processing times and parallelism
maxima.

2 Complexity of the problem
In this section we demonstrate that the problem of scheduling malleable tasks
with bounded parallelism is NP-hard in general.

Theorem 1 The problem of scheduling malleable tasks with limited paral-
lelism, ready times, and deadlines, for mean flow time criterion is NP-hard.

Proof. We start by proving that this problem is in NP. A solution of
the problem can be represented as a set of intervals in which the number
of processors assigned to the tasks does not change. The number of such
intervals isO(n2) because ready times, completion times, and deadlines define
O(n) periods, in which the processor assignment to the tasks changes O(n)
times (we discuss it in more detail in the next section). For each interval one
has to verify if no task uses more than the admissible number of processors.
By summing the amounts of work performed on the tasks in the consecutive
intervals one can verify that each task is fully completed. Finally, the mean
flow time is calculated by checking the sum of completion times of the tasks.

We will show now a polynomial time transformation from the problem
partition into equal cardinality subsets [7] to a decision version of
our problem. Partition into equal cardinality subsets is defined as
follows:
Instance: a set of 2k integers A = {a1, . . . , a2k}, such that

∑2k
j=1 aj = 2B.

3

Question: is it possible to partition A into two disjoined subsets A1, A2 such
that |A1| = |A2| = k, and

∑
j∈A1

aj =
∑
j∈A2

aj = B?

The decision version of our problem is defined as follows:

Instance: set T of n malleable tasks with processing requirements pj ∈ Z+,
maximum number of usable processors δj ∈ Z+, ready times rj ∈ Z+, and
deadlines dj ∈ Z+, for j = 1, . . . , n, integer m, a positive rational number y.
Question: is it possible to execute tasks from set T such that

∑n
j=1 cj ≤ y?

The polynomial time transformation is defined as follows:
m = kMB2 −B2;n = 2k + 2;
δj =MB2 − ajB for j = 1, . . . , 2k;
pj = δj + aj for j = 1, . . . , 2k;
rj = 0, dj =∞ for j = 1, . . . , 2k;
δ2k+1 = m− 1; p2k+1 = (m− 1)B; r2k+1 = 0; d2k+1 = B;
δ2k+2 = m; p2k+2 = mL; r2k+2 = B + 1; d2k+2 = B + L+ 1;
y = B +B + 1 + L+ k(B + 1) + k(B + 1 + L) + 2k;
where L > (B + 3)k, and M > k are big constants. Tasks 1, . . . , 2k will be
called partition tasks, task 2k + 1, 2k + 2 will be called blocking tasks.

Let us assume that there is a partition into equal cardinality subsets.
Then, a feasible schedule for our problem can be as the one presented in Fig.1.
Task 2k + 1 is finished at time B, task 2k + 2 is finished at time B + 1 + L,
and the k tasks corresponding to the elements of set A1 are completed at
time B + 1. The k tasks corresponding to the elements j ∈ A2 complete at
times B +1+L+ pj

δj
, where pj

δj
= 3B2−aj(B−1)

3B2−ajB ≤ 2. Together we obtain mean
flow time

∑n
j=1 cj = B+B+1+L+k(B+1)+k(B+1+L)+

∑
j∈A2

pj
δj
≤ y

Suppose that a feasible schedule with mean flow time at most y exists.
We will demonstrate that also a partition into equal cardinality subsets must
exist. Note that by the selection of their ready times, deadlines, and the
shortest execution times pk

δk
, pk+1

δk+1
, tasks 2k + 1, and 2k + 2 must be finished

at times B and B + 1+L, respectively. This leaves free intervals [0, B] with
one processor, [B,B+1], [B+1+L,∞) with m processors, available for the
partition tasks 1, . . . , 2k.

Let us observe that in order to have mean flow time not greater than y,
at least k tasks from the set 1, . . . , 2k must be completed before task 2k+2,
i.e. before time B + 1. Suppose it is otherwise and x > k partition tasks are
completed after task 2k + 2. Then, the sum of the completion times for the
blocking tasks, and x partition tasks completed after task 2k + 2 is at least

4

T
2 +1k T

2

T
2

T
1

T
1

a
1

d
1

d
2

a
2

T
2 +2k

A
2

A
1

B B+1

.
.

.

. . .

. . .

B L+1+

Figure 1: Illustration to the proof of Theorem 1.

B + B + 1 + L + x(B + 1 + L) ≥ B + B + 1 + L + (k + 1)(B + 1 + L) >
y = B + B + 1 + L+ k(B + 1) + k(B + 1 + L) + 2k because L > k(B + 3).
On the other hand at most k partition tasks can be completed before time
B+1. Suppose it is otherwise and x > k partition tasks are completed before
B + 1. Since for each partition task pj = MB2 − ajB ≥ MB2 − B2, these
tasks require at least x(MB2 −B2) ≥ (k + 1)(MB2 −B2) processing, while
the available area is B + m = B + kMB2 − B2, which is smaller because
M > k. Hence, no more than k partition tasks can be completed before
B + 1. Together we have that exactly k partition tasks must be completed
before B + 1. If we denote the set of tasks completed before B + 1 by A1,
and the rest as A2, then we have |A1| = |A2|.

Note that a partition task j executed in the interval [B,B+1] can receive
at most δj processing. The remaining part pj − δj = aj must be processed
in the interval [0, B]. Now we will prove that also

∑
j∈A1

aj =
∑
j∈A2

aj = B.
Suppose that it is otherwise, and

∑
j∈A1

aj > B. Then,
∑
j∈A1

(pj − δj) =∑
j∈A1

aj ≥ B + 1, at least one unit of work must be processed after B + 1,
and the criterion value y is not met. Note that there is free space in the
interval [B,B + 1] in the amount of m−∑

j∈A1
δj = kMB2 −B2 − kMB2 +

B
∑
j∈A1

aj > B, but it cannot be exploited by any partition task in A1

because the maximum number of processors is already used. Suppose that∑
j∈A1

aj < B. Then, the total processing requirement of the tasks in A1 is∑
j∈A1

pj =
∑
j∈A1

(δj+aj) =
∑
j∈A1

(MB2−aj(B−1)) ≥ kMB2−(B−1)(B−

5

1) = kMB2 −B2 + 2B − 1 which is greater than the space B + kMB2 −B2

available in [0, B+1]. Hence, tasks in A1 cannot be feasibly completed before
B + 1. Thus, we conclude that a feasible schedule not exceeding mean flow
time y exists if

∑
j∈A1

aj =
∑
j∈A2

aj = B, and the answer to partition with
equal cardinality subsets is also positive. 2

3 Fixed sequences
In this section we present a linear programming solution for the case when
the sequence of task completions, ready times and deadlines are known. We
start the presentation with a simpler case.

3.1 Fixed sequence of completion times

In this paragraph we assume that all tasks are available at time 0, and have
not bounding deadlines (e.g. ∀j dj = ∞). Without loss of generality let us
assume that the sequence of task completions is c1 ≤ c2 ≤ . . . ≤ cn. Let us
denote by xij the amount of processing that task j receives in the interval
[ci−1, ci], for i = 1, . . . , n. For completeness of arguments we assume c0 = 0.
The linear program is as follows:

minimize
∑n
i=1 ci

subject to:

xij ≤ δj(ci − ci−1) j = 1, . . . , n; i = 1, . . . , j (1)
n∑
j=i

xij ≤ m(ci − ci−1) i = 1, . . . , n (2)

j∑
i=1

xij ≥ pj j = 1, . . . , n (3)

In the above linear program inequalities (1) guarantee that no task j uses
more than δj processors in the interval [ci−1, ci]. By inequalities (2) tasks
processed in the interval [ci−1, ci] use no more processing than the capacity
of the m processors. Inequalities (3) ensure that all tasks receive necessary
processing.

Though the above linear program includes constraints necessary for fea-
sibility of a schedule, it is not known yet if a feasible schedule can be con-
structed using the solution of (1)-(3). A feasible schedule can be built using

6

an extension of McNaughton’s algorithm proposed in [5] for schedule length
criterion (Cmax). We describe the extension for the sake of completeness
of the presentation. Tasks with processing requirements pj, and parallelism
bound δj, can be scheduled in time

Cmax = max

max
j

{
pj
δj

}
,
1

m

n∑
j=1

pj

 . (4)

This is necessarily a lower bound because no schedule can be shorter than
the length of the longest task or the total processing requirement equally
distributed on all processors. A schedule of this length is built by using
McNaughton’s wrap-around rule. However, here if a task is wrapped it
may use more than one processor at the same time. By the selection of
Cmax ≥ maxj

{
pj
δj

}
it is guaranteed that no task j uses more than δj proces-

sors simultaneously. Let us return now to scheduling the pieces xij of the
tasks in the intervals [ci−1, ci]. By constraints (1)-(2), pieces xij fulfill con-
dition (4) imposed by the extended McNaughton rule, and can be feasibly
scheduled in the intervals [ci−1, ci].

We conclude this section with an example in which we have m = 4 pro-
cessors, and three tasks such that c1 ≤ c2 ≤ c3, p1 = 2, p2 = 5, p3 = 4, and
δ1 = 2, δ2 = 4, δ3 = 1. The linear program is as follows:

minimize c1 + c2 + c3
subject to:

x11 ≤ 2c1

x12 ≤ 4c1

x22 ≤ 4(c2 − c1)
x13 ≤ c1

x23 ≤ (c2 − c1)
x33 ≤ (c3 − c2)

x11 + x12 + x13 ≤ 4c1

x22 + x23 ≤ 4(c2 − c1)
x33 ≤ 4(c3 − c2)
x11 ≥ 2

x12 + x22 ≥ 5

7

T1

T2

T3 T3 T3

T2

1 7_
3

4

Figure 2: Illustration to the example in Section 3.1.

x13 + x23 + x33 ≥ 4

(5)

By solving the above linear program we obtain: x11 = 2, x12 = 1, x13 =
1, x22 = 4, x23 = 4

3
, x33 = 5

3
, c1 = 1, c2 = 7

3
, c3 = 4. The optimal schedule is

depicted in Fig.2.

3.2 Fixed sequence of all events

When the sequence of rj’s, dj’s, and cj’s is fixed, our problem can be for-
mulated as a linear program. Let us consider simultaneously all such events:
ready times, due dates, completion times. We will denote the number of
these events by l. Let τi and τi+1 denote the endpoints of an interval de-
termined by two consecutive events, for i = 1, . . . , l − 1. Note that τi is a
constant if it represents a ready time, or a deadline. τi is a variable if event
i is a completion time. Thus, we have the following formulation:

minimize
∑l
i=1 τi

subject to:

xij ≤ δj(τi − τi−1) i = 1, . . . , l (6)
n∑
j=1

xij ≤ m(τi − τi−1) i = 1, . . . , l (7)

l∑
i=1

xij ≥ pj j = 1, . . . , n (8)

xij = 0 if τi−1 < rj i = 1, . . . , l (9)
xij = 0 if τi > dj i = 1, . . . , l (10)

8

The main difference with respect to yhe linear program (1)-(3) is that
in the above formulation we consider consecutive events which are not nec-
essarily two completion times. Though, the objective function is a sum of
time instants of all events, ready times and deadlines are fixed, and the sum
of the τi’s corresponding to them is constant. Therefore, minimizing

∑l
i=1 τi

is equivalent to minimizing
∑n
i=1 ci. Furthermore, we force to zero xij in in-

equalities (9) and (10), for those intervals i which are before the availability
of task j, or after the deadline of task j.

Note that for a fixed number of tasks, the number of possible permutations
of task completion times, ready times, and deadlines is also fixed. Hence, we
have an observation.

Observation 1 The problem of scheduling malleable tasks with ready times
and deadlines is solvable in polynomial time for any fixed number of tasks.

4 Agreeable processing requirements
and parallelism maxima

In this section we study a special case of agreeable processing requirements
and parallelism bounds. For this case a low-order polynomial time algorithm
can be given.

By agreeable processing requirements, and parallelism bounds we mean
the instances for which tasks can be ordered such that p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δn
and δ1 ≤ δ2 ≤ . . . ≤ δn. The agreeable feature of an instance can be checked
in O(n log n) time by sorting the tasks. We also assume rj = 0, dj = ∞, for
all tasks j. The algorithm can be formulated as follows:

Algorithm Agreeable
1: for j:=1 to n do
2: assign task j to the earliest possible time intervals using maximum possible
number of processors, i.e. either δj or all the processors remaining available
in a given time interval.

Let us illustrate this algorithm with an example. Processing requirements
are given in a vector p = [2, 4, 4, 5, 7], parallelism bounds are given in a vector
δ = [1, 1, 2, 2, 4], m = 5. The schedule built by algorithm Agreeable is shown
in Fig.3.

9

T
1

T
2

T
2

T
3

T
4

T
4

T
5

2 4 4.53.5

Figure 3: Illustration to the example in Section 4.

Tj

Tj+1

Tj+1

Tj

a

ta
Tj

dj

dj
dj+1

Figure 4: Illustration to the proof of Theorem 2.

Let us make some observations about the schedules built by algorithm
Agreeable. Let αj denote the number of processors used by task j at the end
of its execution in a schedule constructed by algorithm Agreeable.

Theorem 2 αj = min{δj,m}, for j = 1, . . . , n.

Proof. The proof is inductive in nature. The theorem is satisfied for j = 1.
Assume it is satisfied for tasks 1, . . . , j, where j ≥ 1. Let us consider the time
interval a in which task j is executed (cf. Fig.4). Interval a is the earliest
possible time where task j + 1 can be executed because there are no idle
intervals to the left of a. Otherwise task j would have been shifted to such
earlier intervals.

a) Suppose there are some free processors in interval a, and task j+1 fits
completely in interval a. Let τa denote the length of the sub-interval with free
processors within a. We have τa ≤ pj

δj
because task j may be executed also

before the sub-interval with free processors. On the other hand for task j+1

10

we have pj+1

δj+1
≤ τa because j + 1 fits completely in the interval. Together

we get pj+1

δj+1
≤ τa ≤ pj

δj
. But due to the agreeable condition pj+1

δj+1
≥ pj

δj
.

Consequently, pj+1

δj+1
= τa = pj

δj
, and αj+1 = δj+1. Furthermore, if one task is

completely processed in parallel with some other task then they are finished
simultaneously.

b) Suppose j+1 does not fit completely in the interval a. Thus, cj+1 > cj.
It follows from the previous case that after completion of task j all processors
are free because all tasks executed in parallel with j finish no later than by
cj. Hence, αj+1 = min{m, δj+1}. 2

Theorem 3 Algorithm Agreeable constructs the optimum schedule in O(n2)
if p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δn
and δ1 ≤ δ2 ≤ . . . ≤ δn.

Proof. This proof has inductive nature.
1) Schedule task 1 using α1 = min{m, δ1} processors. Mean flow time c1 is
minimum.
2) Suppose an optimum schedule for tasks 1, . . . , j is constructed by algorithm
Agreeable. We schedule task j+1 using algorithm Agreeable.

∑j+1
i=1 ci cannot

be reduced by:
a) reducing

∑j
i=1 ci because the schedule for tasks 1, . . . , j is optimal,

b) reducing only cj+1 because it is infeasible,
Thus, reducing cj+1 and increasing

∑j
i=1 ci is the only way of reducing∑j+1

i=1 ci. Suppose we reduce cj+1 by εj+1. This reduces the area available
for task j + 1 by εj+1αj+1 which must be compensated for by delaying the
completion times of some tasks among 1, . . . , j. Without loss of generality,
let them be tasks 1, . . . , k and their completions are delayed by ε1, . . . , εk,
respectively. This creates available area of at most

∑k
i=1 εiαi. This new area

can be consumed by task j + 1, in exchange for area εj+1αj+1. Thus, we

reduce the completion time of task j + 1 by no more than
∑k

i=1
εiαi

αj+1
≥ εj+1.

By Theorem 2 and agreeable condition αi ≤ αj+1, for i = 1, . . . , k. Hence,
we have:

ε1 + . . .+ εk ≥
∑k
i=1 εiαi
αj+1

≥ εj+1 (11)

which means that the increase of the mean flow time by ε1+ . . .+ εk exceeds
the reduction of εj+1. This conclusion can be invalidated only if some task(s)
i ∈ {1, . . . , k} use α′i > αj+1 processors. Due to the agreeable condition, and
Theorem 2, we have α′i ≤ δi = αi ≤ αj+1 and (11) holds.

11

The complexity of the algorithm is a result of the fact that in step 2 of
algorithm Agreeable the number of available processors for task j changes
at most n− 1 times, and at most this many times the remaining processing
requirement of task j must be recalculated. 2

5 Conclusions
In this paper we studied a problem of scheduling malleable tasks with bounded
parallelism. The problem is NP-hard in the presence of ready times and
deadlines. For fixed sequence of ready times, deadlines, and task comple-
tion times it can be solved in polynomial time by use of linear program-
ming. When processing requirements and parallelism bounds of the tasks
are agreeable, a low-order polynomial time algorithm was proposed. Yet,
the complexity of a more fragile problem of scheduling malleable tasks with
bounded parallelism without ready times and deadlines remains open.

References
[1] J.Błażewicz, M.Drabowski, J.Węglarz, Scheduling multiprocessor tasks

to minimize schedule length, IEEE Transactions on Computers 35, No.5,
(1986) 389-393.

[2] J.Błażewicz, K.Ecker, E.Pesch, G.Schmidt, J.Węglarz, Scheduling Com-
puter and Manufacturing Processes (Springer, Berlin, 2001).

[3] M.Drozdowski, Scheduling multiprocessor tasks - an overview, European
Journal of Operational Research 94, (1996) 215-230.

[4] M.Drozdowski, Scheduling parallel tasks - Algorithms and complexity,
in: J.Y.-T.Leung, ed., Handbook of Scheduling: Algorithms, Models,
and Performance Analysis (Chapman & Hall/CRC, Boca Raton, 2004),
chapter 25.

[5] M.Drozdowski, W.Kubiak, Scheduling parallel tasks with sequential
heads and tails, Annals of Operations Research 90, (1999) 221-246.

12

[6] D.G.Feitelson, L.Rudolph, U.Schweigelshohn, K.Sevcik, P.Wong, The-
ory and practice of job scheduling, Lecture Notes in Computer Science
1291 (Springer, Berlin, 1997) 1-34.

[7] M.Garey, D.Johnson, Computers and Intractability - A Guide to the
Theory of NP-completeness (Freeman, New York, 1979).

[8] E.L.Lloyd, Concurrent task systems, Operations Research 29, No.1
(1981) 189-201.

[9] P.Serafini, Scheduling jobs on several machines with the job splitting
property, Operations research 44 (1996) 617-628.

[10] V.G.Vizing, Minimization of the maximum delay in servicing systems
with interruption, U.S.S.R. Computational Mathematics and Mathe-
matical Physics 22, No.3 (1982) 227-233.

See also the following pages.

13

Note. This addendum comprises results announced in PMS06 abstract [1] as
Theorem 2, but in fact not present in the original Technical Report of 2008.
Here it is present as Theorem 4. This whole bunch of results was submitted
to DAM, IPL, NRL in 2005 and rejected.

6 δj = 1, or δj = m

Note that if ∀jδj = 1 our problem boils down to the classic preemptive
scheduling on m parallel processors, while if ∀jδj ≥ m then our problem is
equivalent to scheduling on a single processor. If ∀jrj = 0, dj =∞ then exe-
cuting the tasks according the shortest processing time provides the optimum
schedule.

7 Approximation results
In this section we present approximation algorithms for our problem. Algo-
rithm Agreeable can be applied in the general, not agreeable case (but still
∀jrj = 0, dj = ∞). If the tasks are scheduled according to the increasing
processing requirement, i.e. p1 ≤ p2 ≤ . . . ≤ pn, then algorithm Agreeable
builds schedules with mean flow time not worse than twice the optimum.

Theorem 4 Algorithm Agreeable has the worst case performance ratio at
most 2.

Proof. While scheduling task j by algorithm Agreeable one can distinguish
two intervals: when task j is executed in parallel with tasks 1, . . . , j−1 using
less than δj processors and no processor is free, and an interval when j is
executed on min{m, δj} processors. The former interval ends no later than
by

∑j
i=1

pi
m
, the latter interval is not longer than pj

δj
. Hence, cj ≤

∑j
i=1

pi
m
+ pj

δj
.

The mean flow time is
∑n
j=1 cj ≤

∑n
j=1(n − j + 1)pj

m
+

∑n
j=1

pj
δj
. Let OPT

denote the optimum mean flow time. Since OPT ≥ ∑n
j=1(n− j + 1)pj

m
, and

OPT ≥ ∑n
j=1

pj
δj

the observation holds. 2

Below we present an approximation algorithm which can be applied to
solve our problem on-line, i.e. in the presence of different ready times, but
in the absence of the deadlines.

14

Theorem 5 There is an on-line approximation algorithm with the worst case
performance ratio 4+ ε with complexity O(n

2

ε
(logmaxj{pj}+ logmaxj{rj}+

log n)).

Proof. The on-line approximation algorithm is an adaptation of the tech-
nique proposed in [2]. It is shown in [2] that there is a 4ρ-approximation
algorithm provided that there exists a dual ρ-approximation algorithm. We
present a dual ρ = (1 + ε)-approximation algorithm, and outline the argu-
ments of [2] for the completeness of the presentation.

The dual approximation algorithm solves the following problem: Find
a maximum cardinality set S ⊆ T of tasks which can be completed by
deadline D. By equation (4) tasks in S can be feasibly scheduled by D if
D ≥ maxj∈S{pjδj }, and D ≥

1
m

∑
j∈S pj. The tasks violating the first condition

can be excluded because they cannot be feasibly scheduled beforeD. We have
to select a maximum number of tasks such that

∑
j∈S pj ≤ mD. This is a

simplified version of a knapsack problem: the sizes of the objects are pjs, their
values are equal 1, the size of the knapsack is mD. Knapsack problem can be
solved by the fully polynomial time algorithm proposed in [?]. Given ε > 0,
let γ = mDε

n
. We round down the processing times and size of the knapsack

to the multiples of γ, i.e. p′j = b
pj
γ
c, D′ = bmD

γ
c. For the rounded instance

the optimum selection S ′ can be found by applying dynamic programming
in time O(nD′) which is O(n2

ε
). Let S∗ be the optimum selection for the

unmodified instance. Since mD ≥ ∑
j∈S∗ pj ≥

∑
j∈S∗ p

′
jγ, p′j are integers,∑

j∈S∗ p
′
j ≤ D′. Hence, S∗ is a feasible solution for the modified instance. On

the other hand, |S ′| ≥ |S∗| because S ′ is the optimum solution for the rounded
instance. A schedule for tasks in S ′ has length 1

m

∑
j∈S′ pj ≤ γ

m

∑
j∈S′(p

′
j+1) ≤

γ
m
(D′ + n) ≤ (1 + ε)D. Thus, the set S ′ has been constructed which can

be scheduled in interval (1 + ε)D, and its cardinality is at least equal the
maximum possible for deadline D.

Let τ0 = 1
m
, and τl = 2l−1

m
. The on-line algorithm constructs the schedule

iteratively. In iteration l wait until time τl, invoke the dual approximation
algorithm for deadline D = τl and the ready tasks which have not been
scheduled yet. Schedule the resulting tasks in the set S ′ in the interval
[(1+ε)τl, (1+ε)τl+1]. This construction is feasible because (1+ε)(τl+1−τl) =
(1+ε)τl. Let c′j denote completion time of Tj in the above schedule, and c∗j in
the optimal one. It has been shown in [2] that

∑n
j=1 c

′
j ≤ 4

∑n
j=1 c

∗
j . Since no

schedule can be longer than maxj{rj}+nmaxj{pj}, the number of iterations
cannot be greater than O(logmaxj{pj}+logmaxj{rj}+log n), and the total

15

complexity of the algorithm is O(n2

ε
(logmaxj{pj} + logmaxj{rj} + log n)).

2

Note that it would be purely technical modification to apply the above
algorithm for tasks with weights wj and

∑
wjcj criterion with the same per-

formance guarantees.

References
[1] M.Caramia, M.Drozdowski, Scheduling malleable tasks for mean flow

time criterion, X International Workshop on Project Management and
Scheduling PMS2006, April 26-28, 2006, Poznań, 106-109.

[2] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein., Scheduling to mini-
mize average completion time: Off-line and on-line approximation algo-
rithms, Mathematics of Operations Research 22, (1997) 513.

16

