Poznan University of Technology

Heuristics for Long Time Horizon
Berth Allocation Problem

Jakub Wawrzyniak, Maciej Drozdowski, Eric Sanlaville,
Xavier Schepler, Jakub Marszatkowski

Research Report RA-06/17

2017

Institute of Computing Science, Piotrowo 2, 60-965 Poznan, Poland

Heuristics for Long Time Horizon Berth
Allocation Problem

Jakub Wawrzyniak*, Maciej Drozdowski*, Eric Sanlavillef,
Xavier Scheplerf, Jakub Marszatkowski*

*Institute of Computing Science, Poznan University of Technology, Poland
TLITIS, Normandy University, UNIHAVRE, Le Havre, France
TLERIA, Université d’Angers, France

Abstract

In this paper berth allocation problem (BAP) for strategic deci-
sion making is considered. BAP consists in scheduling ships on a set
of berths subject to ready times, ship size constraints, and minimum
turnaround time. For the purposes of strategic port capacity planning
the BAP must be solved with long time horizons which are hardly ever
studied in the current literature. At the strategic level, large uncertain-
ties of ship arrivals and handling times must be dealt with. This calls
for use of simulation exploiting fast BAP solving algorithms. A set of
heuristics is proposed which can be used for solving big instances of
the BAP emerging when time horizons of months and years come into
consideration. Performance of the heuristics is analyzed with respect
to quality of solutions and runtime. Best methods subject to runtime
limitations are proposed.

Keywords: Scheduling; berth allocation problem; metaheuristics; eval-
uation of heuristics; logistics;

1 Introduction

Maritime container terminals have key importance in the global trade as
the transshipment points where the modes of transportation change. There
is strong competition between neighboring ports [17, 20]. Therefore, port
authorities must consider factors attracting maritime traffic such as vessel
turnaround time [18, 20]. Vessel turnaround time is determined by the allo-
cation and sequencing of the ships and the cranes at the berths, availability
of the intermediate container storage, throughput of the internal and hin-
terland connections. Hence, problems like Quay Crane Assignment Problem
(QCAP), Quay Crane Scheduling Problem (QCSP), Berth Allocation Prob-
lem (BAP) were considered in the literature [1, 2]. In this paper we consider

the Berth Allocation Problem. BAP is defined by a set of ships and berths.
Its solution is a schedule of the ships on the berths with the mooring and
departure dates. Mean weighted turnaround time is the most frequently
used optimality criterion. BAP is usually solved before the QCAP, QCSP,
or container storage allocation (yard management), because ships are the
most valuable and the least flexible element of the harbor logistics [1]. Con-
sequently, assigning vessels to berths in the port is one of the most critical
responsibilities of the port manager.

The BAP has been studied in many papers. On the one hand, most of the
papers focus on short term horizons typical of operational and tactical port
management. And though sometimes BAP can be solved to optimality, the
solutions are given for several days, and consider less than one hundred ves-
sels. On the other hand, in the strategic planning of the terminal evolution,
partitioning of quays into berths (dimensioning and layout), the number of
quay cranes, the capacities of the container storage and internal modes of
transport, can be optimized for maximum overall terminal throughput. Such
a strategic planning involves long term horizons of months and years. The
berthing space is a potential bottleneck which may limit throughput of a
port. Thus, large BAP instances with hundreds and even thousands of ships
have to be solved in strategic port capacity studies.

The global maritime traffic, and the share of this traffic for a given port,
may be estimated with some accuracy for a few forthcoming months. Yet,
with the perspective of years, there is unavoidable uncertainty in such data.
Considering the large versatility of possible vessel arrivals, the amounts of
shipment, simulation studies are inevitable in the strategic planning of the
terminal evolution. Since the number of possible traffic development scenar-
ios, and options for 'what if’ studies is large, also the number of simulation
runs will have to be large. Hence, there is a need for solving large BAP in-
stances in short runtime. Since the BAP is an NP-hard optimization prob-
lem, it can be solved to optimality only for small instances (and hence very
short time horizons) using MILP formulations (see e.g. [8, 15]). For larger
instances metaheuristics dominate as solution methods |2, 6, 12|. Since these
methods can run minutes and even hours, they cannot be applied in solving
a year-long BAP as multiple one week problems, or in the rolling horizon
setting. The work presented in this paper is an attempt to provide fast
methods capable of solving large BAPs emerging with the planning horizon
of months and even years.

Further organization of the paper is as follows. The next section presents
related literature on the Berth Allocation Problem. In Section 3 BAP is
formally defined. Section 4 is dedicated to greedy algorithms solving the
problem, while more advanced heuristics are introduced in Section 5. These
algorithms are evaluated in Section 6. The last section is dedicated to con-
clusions.

2 Related work

The number of papers devoted to the BAP exceeds one hundred. Hence, it
is not possible to report on all of them here. We will focus on introducing
basic concepts of the BAP and the difference between strategic, tactical and
operational BAP instead. For an extended survey see Bierwirth and Meisel
[1, 2]. Variants of the BAP are defined by a broad set of spatial, temporal,
performance attributes describing the quay layout, the vessel service process,
or the objective function [1, 2]. One of the main determinants of the BAP
is the quay partitioning model. It may be discrete, continuous, or hybrid.
The discrete model assumes that a quay is partitioned into fixed berths, and
one berth may accommodate one vessel at a time. The continuous model
assumes that vessels may be assigned to moor at arbitrary positions along
a quay. The hybrid model assumes a fixed quay partitioning, but small
vessels may share one berth, while large vessels may occupy more than one
berth. The berths occupied by one ship at the time will be called segments.
The optimality criteria try to capture the goals of the port and terminal
managers, or line shippers. Hence, they are quite numerous and sometimes
contradictory. The mean weighted turnaround time is used most often. The
turnaround time is the time a vessel spends waiting and mooring. Thus,
mean weighted turnaround time is equivalent to the mean weighted flow
time frequently referred to in the scheduling theory. The popularity of this
criterion mirrors the high competition between ports willing to attract and
keep the shipping lines. The second most frequently used criterion is the
weighted sum of vessel tardiness. Other criteria minimize, e.g., the cost of
container handling by the terminal.

2.1 Strategic BAP

In the strategic level of planning the choice of the liner services guides in-
vestments in new facilities extending capacity of the port. Hendriks et al.
[10] study assigning time windows and terminals to cyclically calling vessels
with the goal of minimizing quay crane workload over time and minimizing
inter-terminal container transport. Imai et al. [11]| define the strategic BAP
as selecting maritime shipping lines for the terminal and assigning them
cyclic berth templates (i.e. temporal and spatial positions) with the ob-
jective of minimizing port operation costs and observing constraints of the
shipping lines. They admit that ship data may be imprecise for this long-
term planning. The cranes will be scheduled and yard storage assigned at
the tactical level. If the strategic decision turns out to be infeasible at the
tactical level, then the terminal operator may either invest into expanding
crane and storage capacity or change the strategic decision. Let us observe
that the uncertainty of ship arrivals and capacity of handling resources is
so high, that the deterministic cyclic scheduling is just a model of reality.

Alternatively, extensive simulations based on fast BAP solving methods can
be applied. The algorithms considered in this paper are instrumental in this
process, allowing for early verifying feasibility of the decisions made in the
strategic stage. What is more, these algorithms can be applied at even earlier
stages when a container terminal is designed.

2.2 Tactical BAP

In the tactical BAP time horizons are studied, typically one or two weeks.
The input data are still highly uncertain. The studies on the maritime and
port traffic demonstrate that over 40% of vessels arrive one or more days
behind the schedule [19]. But still, since some decisions must be taken, de-
terministic version of the BAP is considered with the assumption that vessel
schedules will be adjusted at the operational level. Since the unloading and
loading times depend on the resource allocation, berth allocation decisions
are often coupled with quay crane or container storage allocation.

Most papers assuming the tactical level planning consider the discrete
BAP. In Giallombardo et al. [7], the BAP and the quay crane allocation
(QCAP) are solved simultaneously, thus leading to a bicriterion optimiza-
tion. Hendriks et al. [9] consider the BAP and the storage allocation prob-
lem, the objective is minimization of the distance to the storage area. Zhen
et al. [22] analyze also the storage allocation problem. Again, this is a bi-
criterion optimization: minimizing the cost of container handling and the
deviation from the schedule of the shipping companies. Zhen [21] studies a
cyclic model, minimizing the deviation from the initial schedule of the ship-
ping companies, while the processing times follow some random distribution.
However, the random variables affect only the objective function. Legato et
al. [13] model the processing times by § distributions, according to data
from a real terminal. They validate the obtained solutions by simulation.
Moorthy et al. [14] consider a cyclic model and minimize several conflicting
criteria like mean waiting time and container flow costs. Their goal is the
schedule robustness which is achieved by adding time buffers to processing
times to cope with uncertainties.

2.3 Operational BAP

In the operational BAP it is assumed that all data, such as arrival dates
and processing times of the vessels, are known and fixed. This BAP setting
is relevant to short time planning (maximum a few days). The decisions
taken at the tactical level may be taken into account. Then, the goal of the
operational planning is to stay as close as possible to the initial tactical level
schedule. This is aided by applying some schedule stability criteria.

Even though most variants of BAP are NP-hard, they can often be solved
exactly or nearly exactly for small instance sizes. The best exact approach

so far for the discrete variant is based on the generalized set partitioning
model from Buhrkal et al. [4]. It solves the classical instances from the
literature of 12 days, up to 60 vessels, and 13 berths in just a few seconds.
In [8] instances with up to 10 berths and 50 ships were solved in one hour
time limit. Metaheuristics were also used with good success, as the solutions
obtained by the tabu method of Cordeau et al. [6] were usually within 1%
of the optimum. Lalla-Ruiz et al. [12] use tabu search with path relinking
for the operational BAP. They provided near optimal solutions in less than
a few seconds to instances with up to 60 vessels, 13 berths. The continuous
variant is considered more difficult and metaheuristics are mostly used.

There are fewer works on the hybrid variant, most of them with meta-
heuristics, and often with specific additional features. In the Schepler thesis
[15] (see also [16]), a port planning problem is considered with the BAP
as a sub-problem. Instances with up to 7 days of planning, 48 vessels, on
several terminals are solved. The model considers also trains, trucks, and
inter-terminal transport.

Let us comment on the utility of some simple port throughput models
based on quantities of shipped containers. These models are bound to lim-
ited accuracy only if the shipped commodity (containers) is treated as a
medium continuously divisible in processing time and space. The existing
results in the deterministic scheduling theory [3, 5| provide indications that
such models may significantly diverge from feasible schedules, because ships
are discrete objects. For example, in [5] it has been shown that the ratio of
preemptive and nonpreemptive schedule lengths on parallel identical proces-
sors is at most 4/3. In terms of the BAP this means that if re-berthing of
the ships and suspension of their processing are disallowed (which is usually
the case), then the best schedule can be by ~ 33% longer than an optimistic
approximation perceiving work as a divisible medium. In [3] contiguous and
non-contiguous parallel task scheduling has been considered. In the BAP
setting the problem studied in [3] assumes a hybrid quay partitioning. The
non-contiguous assignment of ships to quays has no practical sense here
because ships are not divisible along their lengths. However, such an as-
sumption is equivalent to allowing for approximation by the container flows.
It has been shown in [3] that already with 4 segments, or with 7 ships, or
in schedules 4 time units long such estimations may diverge from feasible
schedules. Furthermore, the bound on the difference between such schedule
lengths (i.e. the non-contiguous approximation and the contiguous feasible
schedule) obtained analytically is 100% of the schedule length, while simula-
tion studies demonstrated that differences greater than 15% are hardly ever
found. Hence, to obtain credible results on port capacity, simulation studies
based on the actual schedules are necessary and solving the BAP cannot be
substituted by simple container flow models.

OO0 0000

berth,

berth3

time
Figure 1: Solution representation

3 Problem formulation

In this paper it is assumed that a set of m berths is given. A berth is
defined by its length A;, for ¢ = 1,...,m. There are n vessels defined by:
arrival times r;, lengths L;, processing (i.e. unloading and loading) times
pj, and importance wj, for j = 1,...,n. Vessel j can be moored at berth 7
only if L; < A;. Ship lengths are limited to a small set of the typical ship
sizes following from the sizes of locks, channels and ports. In particular, we
will consider the popular classes of container ships like Suezmax and (New)
Panamax. Importance w; of ship j represents the value of the ship for a port
authority. This can be understood as, e.g., the cost of mooring, or the cost
of the cargo.

We assume hybrid quay organization. The quay is divided into discrete
berths. Each berth can accommodate at most two ships at the same time.
This guarantees that if the total length of two ships does not exceed the
berth length, then they are always feasibly schedulable at the berth without
a need for re-berthing (moving) the ships. We will represent a solution of
the BAP as a set of chains, where each chain is a sequence of ships mooring
at certain berth (see Fig. 1). Each berth has two chains, called the left and
the right chains. The pair of chains represent the sequence of ships moored
at the ends of the berth (the left, and the right, respectively).

The objective function to be minimized is the mean weighted flow time
MWFT = 370 (¢j — rj)w;j/ 37— wj, where ¢; is completion time of han-
dling ship j. According to the notation introduced in [1, 2], our problem can
be denoted hybr|dyn|fiz| > w(wait + hand). In the two following sections
algorithms to solve the above problem are proposed.

4 Greedy algorithms

In this section we introduce greedy algorithms for the BAP. They are defined
by two elements: the control structure and the sorting rule. The control
structure determines when the greedy algorithm comes into action and the
range of considered ships. The sorting rule is sequencing the ships according
to some criterion. There are 5 variants of the control structures and 12
priority rules. Overall, we take into account 60 greedy algorithms.

4.1 Sorting rules

First-Come, First-Served (FCFS) orders the ships by their arrival times:
r1<rp<...< 17y

Longest Ship First (LSF) and Shortest Ship First (SSF), are based on the
lengths of the vessels sequenced according to the descending Ly > Lo > ... >
L, or the ascending order L1 < Lo < ... < L, of lengths, respectively.
Longest Processing Time (LPT) and Shortest Processing Time (SPT), rely
on the processing time orders, p1 > p2 > ... > p, and p; < p2 < ... < py,
respectively.

Largest Area First (LAF) and Smallest Area First (SAF), take into account
the area of the ships in timexlength space: p1Ly > peLs > ... > ppL, and
p1Ll1 < polo < ... <p,L,, respectively.

Weighted Shortest Processing Time (WSPT) is based on the vessel processing
times divided by their importances p1/w; < po/wa < ... < pp/wy.

Random (RND) builds a random sequence of ships and is used as a reference
algorithm to check whether other algorithms return useful solutions.

Greatest Importance (GI) relies on the vessel importance: wy > wg > ... >
W,

Greatest Importance - Shortest Processing Time (GISPT) builds the order
in two steps: First, it sorts the ships by importance, like the GI rule, and

then ships of the same importance are ordered as in the SPT rule.

Shortest Processing Time - Greatest Importance (SPTGI) sorts the vessels
by SPT rule first, while ships of the same processing time are ordered by the
GI rule.

In all the above rules ties are resolved arbitrarily.

4.2 Control structures

Priority heuristics (Prio)

Priority heuristics build solutions by assigning ships to berths according to
increasing dates. Scheduling decisions proceed through ship ready times and

ship service completion times. At each such moment, the first ready ship is
chosen from the list defined by the sorting rule. Then, the ship is assigned
to the shortest available berth. This means that while there are available
ships we will try to assign them to the shortest available berths. If we find
a ship that does not fit any available berth, or there are no more free berths
at this moment, then we go to the next decision moment. The procedure is
repeated until there are no ships to schedule.

List heuristics (List)

This control structure relies strictly on the given sorting rule and the list
of ships this rule constructs. While the list is not empty, the first ship is
chosen and assigned to the earliest shortest feasible berth. This means that
berths available at the earliest time are searched for first, and if there are
more than one then the shortest feasible one is chosen. The procedure is
repeated until all the ships are assigned to the berths. If the chosen ship j is
not ready, then the algorithm waits until its ready time r;. Thus, contrary
to the previous control structure, the list structure allows that a berth is not
used by a ready ship, as the berth waits until the arrival of a ship of the
higher priority.

k-Look-ahead heuristics (La k)

The k-look-ahead structure acts like the priority structure, but at the deci-
sion points it takes into account also k future ship arrivals and include the &
future ships into the set from which the next ship to serve is chosen accord-
ing to the sorting rule. We assume that k£ € {2,5,10} so there are 3 variants
of this control structure. Let us observe that k-look-ahead structure is a
generalization of both the priority structure (k = 0), and the list structure
(k decreases from n to 1).

4.3 Greedy heuristic short-hand notation

Since the number of possible greedy algorithms is quite large, we will be using
a short form notation to refer to them. A short name will consist of two parts:
an abbreviation of a sorting rule name, followed by the abbreviation of the
control structure name. For example, SPTGI-Prio is a method combining
sorting rule SPTGI with priority control structure, and FCFS-La2 is 2-look-
ahead with FCFS sorting heuristic.

Moreover, performance of a combination of all greedy algorithms will be
reported under name Super Greedy (SG). This means, that SG algorithm
provides the best solution constructed by any greedy algorithm and has the
runtime equal to the sum of the runtimes of all greedy methods.

O-OO-O-O-0-0

O—O—O—O—O—O} window

berth, A; berth, A,

T shipj
berth, A, berth, A,

berth; As : : : : : berth; A3

—
time window width

a) b)

A <A2<A3 A1 <A2<A3

Figure 2: Solution neighborhood in HC. a) Visualization of the constraints,
b) feasible moves

5 Local search algorithms

In this section we introduce algorithms based on the local search. These
methods start from some initial solution and then attempt to iteratively im-
prove the current solution by modifying it. For all the local search algorithms
1 hour time limit has been imposed.

5.1 Hill-Climber (HC)

The Hill-Climber starts from the best solution S constructed by any of the
greedy algorithms described in Section 4. In the first variant, called HC,
solution neighborhood is defined in the following way. For each vessel, HC
tries to move it from the current position in the sequence to a different
position (cf. Fig. 2). In principle all feasible positions in all berth chains
can be examined. Obviously, it is not allowed to move a ship to a berth that
is too short (Fig. 2b). To ensure sufficient time to generate new solutions
even for large instances (e.g. for n > 5000), two constraints on the size
of a neighborhood have been introduced: time window of width WL and
limit SL on the number of relocated ships. Let st; denote the start time
of handling the ship at position j. A move from the current position j to
a different position k is possible only if st; — WL < st < st; + WL (ct.
Fig. 2a). The time window condition is tested first. The move is executed
if the number of the ships considered for relocation so far has not exceed
limit SL. All the new solutions are evaluated according to the objective
function and the best improving solution S’ is chosen. Then, the algorithm
is restarted from S’. HC works until there is no improving move or time
limit is exceeded. Control parameters have been tuned on a set of randomly
generated instances with n = 1000 (for the process of test instance generation
see Section 6). All pairs of (WL,SL) € {1,10,100,1000} x {1, 10,100} have
been tested. Two measures of algorithm performance have been considered:

= M O-OO@O-O-O-

i«——— time moment

berth; A,

T Eshipj

berths Ao W berth, A,
time window width A1<A2<A3 A1 <A2<A3
a) b)

Figure 3: Solution neighborhood in HC-A. a) Visualization of the constraints,
b) feasible moves

MW FT improvement from (WL,SL) = (1,1), and runtime until providing
the best solution the algorithm was able to construct. The values of WL = 10
and SL = 10 have been chosen as giving on average the greatest objective
function improvement per unit of time until finding the best solution.

In the second variant, referred to as HC-A, a time moment is randomly
generated in the existing schedule. All vessels which interval of process-
ing intersects with the chosen time moment are tried for redistribution (cf.
Fig. 3a). Similarly to the previous variant, to ensure sufficient time to
generate neighbor solutions, two constraints have been introduced: num-
ber of attempts NA and time window width WL. The number of attempts
NA is checked first to limit the number of times a new time moment is
generated. The time window constraint has the same purpose as in the
previous variant of the algorithm (cf. Fig. 3b). Control parameters have
been tuned on the same set of instances as HC. All pairs of (NA,WL) €
{10, 100, 1000} x {1, 10,100,1000} have been tested. Algorithm performance
measures were: MW FT improvement from (NA,WL) = (10,1), and run-
time until providing the best solution the algorithm was able to construct.
Values NA = 10 and WL = 10 have been chosen, because they provided the
best results on average.

In the third variant, called HC-C, different parts of the existing solution
are analyzed separately. Firstly, a time window of a fixed width WL on
a random berth, starting at a random time position is selected. Secondly,
all vessels in the time window are checked for relocation (cf. Fig 4a). Tar-
get time positions sti for the considered ship have to satisfy the condition
stj — WL < st < stj + WL (cf. Fig. 4b), where st; is the time of starting
processing the ship in the old schedule. Besides W L, the second control pa-
rameter for HC-C'is the number of attempts N A, i.e. the number of times a
new time window can be generated. All control parameters have been tuned
using the above mentioned set of instances. The following pairs of (NA, W L)
were considered: (NA,WL) e {10,100,1000} x {1,10,100,1000}. Taking

10

O-OO-O-O-0-0

berth, A; berth, A,

O-0@ 0600 ... |berth,

berth, A, A

berth; As berth; A;

A <A2<A3 A1 <A2<A3

time window width

a) b)

Figure 4: Solution neighborhood in HC-C. a) Visualization of the constraints,
b) feasible moves

into account the MW FT improvement from (NA,WL) = (10,1) and run-
time until providing the best solution, values NA = 10 and WL = 10 have
been chosen.

5.2 Greedy Randomized Adaptive Search Procedure (GRASP)

Greedy Randomized Adaptive Search Procedure (GRASP) is divided into
two parts. In the first part it builds an initial solution. Until all ships
are scheduled, the following procedure is repeated: A set of k vessels is
chosen from the top of a list constructed according to a given sorting rule.
The k ships constitute the so-called restricted candidate list (RCL). Then,
one vessel is randomly drawn from the RCL and appended on the earliest
shortest feasible berth, i.e. berths are verified in the order of increasing
availability times (firstly) and lengths (secondly). When all n ships are
scheduled GRASP is restarted. The best solution is always retained. This
first part of the algorithm is repeated until the first time limit tl; elapses.
In the second part HC (Section 5.1) is applied for post-optimization. HC
is run until the second time limit tls expires. The selection rules have been
limited to GI, GISPT, SPTGI because these sorting rules provided the best
solutions in the initial tests against changing instance sizes n, m (cf. Section
6.2, Tab.1). Rules LSF, LAF have been added to diversify the set of GRASP
methods and to check if GRASP infrastructure can help weaker sorting rules
deliver good solutions.

The split of the overall 1 hour runtime limit into ¢l1, tlo has been tuned on
a set of instances with n = 1000. The test values for tl; were {600, 1200, 1800,
2400, 3000} seconds. The second time limit ¢ly covered the time remaining
to the overall 1 hour runtime. On the one hand, it turned out that on
average the longer the first part runs, the better solutions are obtained. On
the other hand, HC running in the post-optimization stage needs time to
search neighborhood of the current solutions at least a few times. This is

11

o O-O-O-O-O-0-ON\

—_ destroy!

berth,

berth3

Figure 5: Operation of the ILS-A variant of the Iterated Local Search algo-
rithm

especially severe for n > 5000. The value of k and selection of HC variant
for post-optimization, have been also tuned. The test values for k£ were
{2,5,10,20}. In the second part of GRASPs, HC (WL = 10,SL = 10),
HC-A (NA = 10, WL = 10), and HC-C (NA = 10, WL = 10) have been
applied. Tests for all the above mentioned sorting rules have been performed.
Two measures of performance have been considered: MW F'T' improvement
from (k,tl1) = (2,600s), and runtime until providing the best solution the
algorithm was able to construct. As a result, 6 implementations of GRASP
will be considered. In order to distinguish them name GRASP followed by
the sorting rule abbreviation will be used. For example, GRASP-LSF applied
Longest Ship First sorting rule. The 6 GRASP variants will be: GRASP-
LSF (k = 20,tl; = 600s, HC-A), GRASP-LAF (k = 20,tl; = 600s, HC-A),
GRASP-GI (k = 10,tl; = 600s, HC-A), GRASP-GISPT (k = 20, tl; = 600s,
HC-A), and GRASP-SPTGI (k = 10, tl; = 600s,HC-A). Moreover, a version
without HC, referred to as GRASP-3600, will be also examined. In this
version GISPT sorting rule has been applied with t/; = 3600s and k = 10.

5.3 Iterated Local Search (ILS)

ILS starts from the best solution S returned by any greedy algorithm. Then,
ILS iteratively tries to find an improved solution by first destroying and then
reconstructing part of S. ILS has two implementations. Both of them stop
when time limit is reached.

In the first variant, called ILS-A, whole chains in the current solution
can be dismantled (Fig. 5). Let € € [0, 1] be the fraction of the number of
chains which should be destroyed. For example, for € = 0.2, ILS-A removes
all vessels from 20% of the existing chains. The precise chains to operate
upon are chosen randomly with equal probability. A constraint has been

12

imposed that in each iteration ILS-A has to dismantle at least two chains
from at least two different berths. The ships from the dismantled chains
are sequenced by a greedy algorithm and appended in this sequence to the
chains being reconstructed. Suppose two chains exist on some berth: a new
one that is being reconstructed, and an old one which is an unmodified chain
remaining from the initial solution S. For some ship j a berth i of length
Ai > L; available at the earliest time greater than or equal to r; is searched
for first. If more than one berth meets the above conditions, then the shortest
is chosen. The calculation of berth ¢ availability time bat; takes into account
two cases. Let 7 be the time when the service of the last ship on the new
chain is finished. If no ship is scheduled in the old chain at time 7, then
bat; = 7. Otherwise, bat; is the time when the service of this ship in the old
chain finishes. In other words, if some ship in the old chain overlaps 7, then
its completion time is used as bat;. If both chains are new, then maximum of
their completion times is used as bat;. Assigning ship j to a berth may cause
conflict with the schedule of the old chain. Namely, the newly inserted ship j
and some ship k scheduled in the old chain in the interval [bat;, bat; +p;| may
have lengths such that L; + L, > A;. If it is the case, then the ships in the
left chain have priority, i.e. the ship at the left end of the berth is scheduled
first, while the ship in the right chain is scheduled as the second. The ships
remaining in the tail of the old (unmodified) chain are delayed accordingly.
All known greedy algorithms are applied to reconstruct the solution and the
best solution S’ is selected.

In the second variant, referred to as ILS-C, ships are removed from the
current solution to create ,holes” in the existing schedule (see Fig. 6). It is
assumed, that holes are created in the chains representing the schedules on
the berths, and there can be at most one hole in a chain. Let ¢ € [0, 1] be the
fraction of the solution size that must be destroyed, i.e. ne ships are removed
from the current solution. The ship removal process progresses in three
stages. Firstly, chains are selected with equal probability until collecting
chains comprising at least ne ships. Secondly, the ne ships to remove are
split randomly between the selected chains with uniform probability. Let
z; be the number of ships to be removed from chain ¢. Finally, z; ships
are removed from the selected chain ¢ starting at a position chosen with
uniform probability along the chain length. In the reconstruction process
the ships are ordered by some greedy algorithm and reinserted into holes in
the schedule. When some ship j is chosen to be scheduled by some greedy
algorithm, then it is assigned to a hole in the earliest shortest feasible berth.
This means that the earliest available insertion position in a hole not earlier
than r; is searched for on the berths 7 such that \; > L;. If there are more
than one such position, then the shortest berth is chosen. The availability
time of a position in a hole is determined in the following way. Suppose k is
the index of the last ship in the chain before a hole. Indices k+1,...,k+a

13

berth,

berth3

Figure 6: Operation of the ILS-C variant of the Iterated Local Search algo-
rithm

represent ships already inserted in the hole, where a = 0 initially. Availability
time of the positions in the hole are times ¢y, cg11, . . -, Ck1+q When the service
of ship k,k + 1,...,k + a ends. If some position k' in a hole of chain i is
selected, then the ships in the positions later than &’ are delayed to allow
inserting the considered vessel j. If there is a conflict with the ships on the
other chain of the berth, then also they are delayed. Of the two conflicting
chains, the left one is always given preference. All greedy algorithms are
applied in sequencing the ships to be reinserted into the schedule and the
best obtained solution S’ is selected. The value of ¢ parameter has been
tuned on a set of randomly generated instances with n = 1000. Taking into
account performance measured by MW FT improvement and runtime, two
versions of ILS will be considered: ILS-A (¢ = 0.3) and ILS-C (¢ = 0.1).

6 Evaluation of the algorithms

In this section we report on the results of evaluating the algorithms intro-
duced in the preceding sections. We explain the method of test instance
generation. Then, the impact of the instance parameter values on the qual-
ity of solutions is studied, also the influence of the dispersion of instance
parameters on the solutions quality is examined. The algorithms trade the
runtime for the solution quality. The efficiency of the algorithms in this
trade-off is tested. Finally, we give recommendations on the choice of the
best algorithms given runtime limits. The methods of evaluating the heuris-
tics and electing the usable ones can be applied also in other combinatorial
optimization problems.

Performance of the algorithms is measured by their runtime and solution
quality. The latter will be measured by three indicators: the number of wins,

14

the number of unique wins, and central tendencies of MW FT (e.g., average,
median). The number of wins in a population of instances is the number of
instances for which the algorithm returned the best solution. The number
of unique wins is the number of instances for which the algorithm returned
the best solution exclusively. These two criteria serve as indicators of the
algorithm ability to cover a set of instances with the best solutions. The
algorithms were implemented in C++, compiled with GNU g++ ver. 4.8.2.
The code was executed on a PC-cluster Eagle at Poznan Supercomputing
and Networking Center, which has 1233 nodes comprising Intel CPU Eb5-
2697 CPUs with 32984 cores running at 2.6 GHz, 64/128/256 GB RAM
per node. The operating system was Scientific Linux CERN 6.7 (Carbon).
Fach algorithm solved 5900 instances overall. Due to space limitations, only
selected results are presented.

6.1 Instance generator

Reliable evaluation of the algorithms for long-time horizon BAP requires
an extensive number of tests on large problem instances. Using instances
from the earlier publications is problematic because the sizes of the in-
stances are small, the data happens to be fragmentary. The instances rep-
resenting real ports may limit generality of the study because due to the
existing correlations in the data some combinations of instance parameter
values may be omitted and then the tests may be insufficiently stressful.
Therefore, we implemented a generator of test instances. Unless stated
to be otherwise parameters values are drawn as follows: n ~ U[1,1000],
m ~ U[1,100], r; ~ U[0,1000], p; ~ U[1,24], w; ~ U[1,1000], Lj, \; ~
U{200, 215,290, 305,400}. By ~ Ula,b] we denote that certain parameter
is generated from discrete uniform distribution with integer values in range
[a,b]. The notation ~ U{z,...,y} means that the parameter values are cho-
sen with discrete uniform distribution from the set {z,...,y}. The set of
ship lengths L; represents popular container ship classes like Suezmax and
(New) Panamax. Unless stated to be otherwise, each configuration of the
tests represents a population of 100 instances. This means that each point
in the following figures represents results collected over 100 instances.

In the following the impact of some selected parameter on the algorithm’s
performance is tested. In such tests the examined parameter has been fixed
in all the instances, a range of the tested parameter has been swept, while the
remaining parameters have been randomized. For example, in the tests of
the impact of the number of ships n, the range of n values has been swept by
visiting values n € {2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000} one
by one. This means that 100 instances have been generated with n = 2 while
the remaining parameters have been randomly generated as described above.
The set of 100 instances with n = 2 have been solved by the algorithms to
evaluate their performance. Next, values n = 5,10,... have been examined

15

in the similar manner. In the examination of the impact of other parameters,
the method of instance generation was similar. More details will be provided
when discussing a particular test setting.

6.2 Impact of instance parameters on the solution quality

In this section we discuss changes of solution quality with some parameter
of the instances when the algorithms are allowed to run until one hour time
limit. Thus, the time dimension of algorithm performance is taken out of
consideration here. Our quality measure will be the number of wins achieved
by the algorithms on a set of instances.

The dependence of the solution quality on the number of ships has been
tested by sweeping the following set of ship numbers: n€ {2, 5, 10, 20, 50, 100,
200, 500, 1000, 2000, 5000, 10000}, while the remaining instance parameters
were randomized as described in Section 6.1. Analogously, the dependence
of the solution quality on the number of berths has been tested by sweep-
ing the berth numbers: m € {1,2,5,10,20,50,100} and randomizing the
other parameters. These two series of experiments reveal sensitivity of the
algorithms to growing instance sizes.

Let us start with a comparison of the algorithm performance by juxta-
posing the numbers of instances on which the algorithms win in the tests
against changing n and m. These results are collected in Tab.1. In the left
panel of Tab.1 results from the experiments with changing n (1200 instances
in total) are collected, and in the right panel results from the experiments
with changing m (700 instances in total) are provided. Heuristics are listed
in the order of decreasing number of wins. Only the first 50 positions, out of
70, are shown. Each entry in Tab.1 is a triple: ranking position, name of the
heuristic, the number of wins. For example, ILS-A is in the first place in the
experiments against changing n and against m, with 880 and 525 wins, re-
spectively. Already the simple comparison of heuristic performance in Tab.1
provides vital insight into algorithm performance. It can be seen in Tab.1
that starting with position 29 the number of wins dramatically collapses and
from position 32 the ability to provide the best solutions is 9 times worse
(and even more) than in the best method. These bad positions are occupied
by the greedy algorithms with list and look-ahead control structures. The list
control structure is inefficient because it requires to wait for specific vessels
chosen by some sorting rule while ignoring the ready ones. The look-ahead
control structure suffers similar deficiency: when a future ship arrivals are
considered, then they can delay scheduling the currently ready ships giving
preference to the future ships elected by the sorting rule order. The best
greedy heuristics with list or look-ahead control structure use FCFS sorting
order, thus breaking the spell of waiting for the future ships because FCFS
order is the order of the ships arrivals itself. Since list or look-ahead con-
trol structures performed so poorly in this comparison, we will not report on

16

Table 1: Number of wins in the experiments with changing n and m.

tests vs n, wins in 1200 instances || tests vs m, wins in 700 instances
1 ILS-A 880 1 ILS-A 525
2 ILS-C 733 2 ILS-C 440
3 HC-C 545 3 HC-C 270
4 HC-A 496 4 HC 268
5 HC 493 5 HC-A 264
6 GRASP-3600 482 6 SG 262
7 SG 481 7 GISPT-Prio 261
8 GRASP-GISPT 475 8 GI-Prio 261
9 GRASP-GI 472 9 SSF-Prio 260
10 GRASP-LSF 471 10 GRASP-SPTGI 259
11 GRASP-LAF 471 11 GRASP-GISPT 259
12 GRASP-SPTGI 471 12 GRASP-LSF 259
13 SAF-Prio 469 13 GRASP-LAF 259
14 SPT-Prio 468 14 GRASP-GI 259
15 GI-Prio 468 15 GRASP-3600 259
16 GISPT-Prio 468 16 RND-Prio 258
17 SPTGI-Prio 468 17 SAF-Prio 257
18 LPT-Prio 463 18 LAF-Prio 256
19 RND-Prio 463 19 SPT-Prio 256
20 SSF-Prio 461 20 LPT-Prio 256
21 LAF-Prio 461 21 WSPT-Prio 256
22 LSF-Prio 459 22 SPTGI-Prio 256
23 WSPT-Prio 459 23 FCFS-Prio 256
24 FCFS-Prio 458 24 FCFS-La2 256
25 FCFS-La2 458 25 FCFS-Lab 256
26 FCFS-Lab 458 26 FCFS-Lal0 256
27 FCFS-Lal0 458 27 FCFS-List 256
28 FCFS-List 458 28 LSF-Prio 254
29 WSPT-La2 370 29 WSPT-La2 93
30 WSPT-Lab 260 30 WSPT-La5 54
31 WSPT-Lal0 165 31 WSPT-Lal0 36
32 LSF-La2 99 32 LSF-La2 8
33 SSF-La2 93 33 RND-La2 7
34 SPT-La2 92 34 LAF-List 6
35 SPTGI-La2 88 35 LAF-Lal0 6
36 LPT-La2 87 36 SSF-Lab 6
37 GI-La2 86 37 SSF-La2 6
38 GISPT-La2 86 38 LAF-Lab 6
39 SAF-La2 82 39 RND-List 6
40 LAF-La2 81 40 LSF-Lab 6
41 RND-La2 75 41 LAF-La2 6
42 WSPT-List 60 42 GI-Lab 5
43 GI-Lab 59 43 GISPT-List 5
44 GI-Lal0 59 44 GISPT-Lal0 5
45 GI-List 59 45 WSPT-List 5
46 GISPT-Lab 59 46 GISPT-Lab 5
47 GISPT-Lal0 59 47 GISPT-La2 5
48 GISPT-List 59 48 GI-La2 5
49 SSF-Lab 56 49 SPTGI-Lab 5
50 LPT-List 55 50 LPT-List 5

17

them in the further discussion. Though the GISPT and GI sorting rules head
the list of greedy heuristics, the difference in the number of wins between the
heuristic with priority control structure is not big. In both experiment series
it is roughly 2% in the number of wins. Thus, on average the priority-based
greedy heuristics perform similarly here. The same conclusion can be drawn
for the GRASP methods. The best GRASP method is GRASP-3600 with
741 wins in both experiment series. The Super Greedy method (SG) has
similar performance as the GRASP methods, and it is only marginally bet-
ter than the best greedy methods. Metaheuristics ILS-C, ILS-A dominate in
this evaluation by providing 1405, 1173 best solutions, respectively, in both
experiment series. In other experiment series the relationships in the number
of won instances were similar (not shown here).

In Fig.7a algorithm quality measured by the number of wins is shown
against increasing number of ships n. In Fig.7b this relationship is shown
for the unique wins. Greedy algorithms have been omitted in Fig.7b because
at 1 hour time limit they are dominated by metaheuristics starting from the
best greedy solutions, and hence, the greedy methods cannot win uniquely.
For each number of ships n, 100 test instances were generated and solved. It
can be seen (Fig.7a) that all algorithms find best solutions for almost all small
instances (n = 2,5,10). Thus, small instances are easy to solve, especially
considering the number of berths m ~ 50 on average. Consequently, it
is hard to win uniquely (Fig.7b). RND and FCFS sorting rules can be
applied as reference performance indicators, because the first one is oblivious
to the relationships existing in the data, while the second just follows the
stream of ship arrivals. It can be observed (Fig.7a) that the performance of
greedy algorithms is similar to these two reference rules and the Super Greedy
algorithm is not an exception here. With increasing n, greedy algorithms lose
their ability to provide the best solutions and it ceases at n ~ 500, which
represents roughly 10 ships per berth. The local search methods ILS, HC,
with their variants, start showing their advantage with growing number of
the ships. Unfortunately, their disadvantage is computational complexity:
Given the fixed runtime limit their ability to exploit the space of possible
solutions diminishes with increasing n. Since the ILS-type methods are the
most complicated, they lose against a simpler HC-type and the GRASP-
type methods for the biggest considered n (Fig.7b). The performance of the
GRASP methods, though better than of the greedy algorithms, is rather
weak. GRASP-LAF/-LSF/-SPTGI returned no unique best solution. On
the other hand, GRASP-3600 method happened to provide 1 best solutions
for big instances, which are too hard to deal with for the more complex local
search methods (ILS-A/C, HC).

In Fig.8a the performance of the algorithms measured by the number of
wins in 100 instances is shown for changing number of berths m. In Fig.8b
the number of unique wins is depicted. Methods which returned no unique
best solutions, e.g. GRASP-type, are omitted in Fig.8b. It can be observed

18

100 . T T T T -

P . GRASP-3600 o |
‘GRASP-GISPT o
o GRASP-LSF =
GRASP-LAF o
GRASP-GI o
GRASP-SPTGI — o
'SG

80 -

60 - FCFS-Prig —+—
RND-Prio &
Gl-Prio —
GISPT-Prio
SPTGI-Prio —s—
LAF-Prio —<—
LPT-Prio —¢— -
& LSF-Prio —&8—
SAF-Prio
SPT-Prio
SSF-Prio
WSPT-Prig

no. of wins

40

20 -

90 T T T T T T T T T

ILS-A —e—
ILS-C —+—
? HC-A —o—
80 |- a HC-C —e—]|

HC
GRASP-LSF —=—
70 | GRASP-LAF o
GRASP-Gl o
GRASP-GISPT —o—
60 . GRASP-SPTGI —=—
r GRASP-3600 —=—

40 9

no. of unique wins

30 1

20

10

——

2 5 10 20 50 100 200 500 1000 2000 5000 10000

Figure 7: Performance of the algorithms vs n. a) Number of wins, b) number
of unique wins.

19

100

90 -

70 -

60 -

50 -

no. of wins

40

30 -

20 -

GH/ASP-LSF

ASP-LAF

GRASP-GI
GF/ASP-GISPT
ASP-SPTGI

GRASP-3600

FCFS-Prio

RND-Prio

Gl-Prio

GISPT-Prio

SPTGI-Prio

LAF-Prio

LPT-Prio

LSF-Prio

SAF-Prio

SPT-Prio

7 SSF-Prio
7 WSPT-Prio
SG

100

10 20 50

100

80 -

60 -

40

no. of unique wins
a
o
T

20 -

10 -

T
ILS-A
ILS-C
HC-A
HC-C

Figure 8: Performance of the algorithms vs m. a) Number of wins, b)

of unique wins.

20

10 20 50

100

number

that with growing number of berths the problem becomes easier to solve and
for m > 50 almost all algorithms provided the best solutions (Fig.8a). This
corresponds with roughly 10 ships per berth. On the other end of m range the
problem is much harder and most of the greedy methods provide only around
5 best solutions (in 100). ILS-A algorithm does not rebuild the schedules if
there is only one berth. Therefore, for m = 1 this algorithm performs on par
with the greedy algorithms which provide the starting solutions of ILS-A.
However, with increasing m ILS-A outperforms other methods. Conversely,
ILS-C which is complex and behaves poorly for big m is the best method
for m = 1,2. The above phenomena are mirrored in the number of unique
wins (Fig.8b). ILS-A is the best method for medium m, while ILS-C is the
best algorithm for small m, i.e. when the port is under the biggest load.
However, due to its complexity ILS-C loses against simpler methods with
increasing m.

Fig.9 depicts performance of the algorithms against increasing value of
pj. In this series of tests we intended to examine algorithm sensitivity to the
growing port load. The swept range of processing times p; was [1,24]. It
follows that each instance had the same processing time for all ships. It can
be seen in Fig.9 that for the smallest processing times all methods provide
the best solutions because there is hardly any conflict between the ships in
a very lightly loaded port. With the growing port load all greedy methods
gradually provide worse solutions and there is no much difference between
them. ILS-A algorithm is the best here and its advantage grows with the
load of the port. This can be attributed to the ability of ILS-A to search the
solution space, and its relatively low complexity.

6.3 Quality of the algorithms versus dispersion of instance
parameters

The goal of the study on the impact of instance parameter dispersion is to
analyze the algorithm susceptibility to the diversity of ship types. Again the
algorithms are given 1 hour runtime limit.

In the tests of the impact of ship importance dispersion, w;s were gener-
ated from w; ~ U[500—A,,, 500+A,,], where A, € {1, 2,5, 10, 20, 50, 100, 200,
300, 400,500}. For a comparison let us observe that in the previous tests
w; ~ U[1,1000]. Thus, the earlier tests correspond with the greatest A,.
The standard deviation of U[1,1000] is approximately 289 and A,, smaller
than 289 means restricting w; to a narrower range than was typical in the
earlier tests. The results collected in Fig.10 show the importance of this
threshold: When values of w; are very restricted, no dependency on A,
can be observed because other parameters have bigger influence on the con-
structed solutions. All methods have rather similar performance with some
small advantage of ILS-A. Conversely, for larger diversity of ship importance
greedy algorithms lose their capability of recreating the best solutions. Con-

21

T Ty

IL\%-C —e
HC-A —e—
! HC-C —e—
HC —o— |
GRASP-LSF =
GRASP-LAF —2—
. GRASP-GI —<—
SRASPGISPT
GRASPJSPTGI 4
1%}
£
=
5 i
<]
i=
a) .
|| SSF-Prio]
w SPT-Prio —=—
50 v
{
40 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Pj
50 T
ILS-A —=2—
14 ILS-C —=—
45 | i HC-A —e—
' HC-C —e— |
I HC el
40 |- I | A
35 [N
[Q [\ |
g | A 4
5 30 ° B
[} \
g
g 25t _
2 ® ‘ |
b) g 20 ::‘ Q@ / -
= S AN U A T A N R T A o
| L N J
15 | \]
wro, : \ ;
\\ L) é
? |
5F ” ® o
~
) . . . RN
\ . e o . N \ .
0 — e U O, o VA U G U Gl G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Pj

Figure 9: Performance of the algorithms vs p;. a) Number of wins, b) number
of unique wins.

22

ILS-AI —o—
X ILS-C =
90 ¢ HC —o—
GRASP-LSF —=—
GRASP-LAF —o ~
80 - GRASP-GI — & 4
GRASP-GISPT ~o—
GRASP-SPTGK —o—
70 k- GRASP-3600 —&— |
SG —e—
¢RND-Prio
60 FCFS-Prio —+— |
1) GlI-Prio
£ GISPT-Prio
- 50 | SPTGI-Prio —— |
° LAF-Prio ——
e LPT-Prio —*—
40 | LSF-Prio —&— |
SAF-Prio
a) SPT-Prio
30 | SSF-Prio —2— |
WSPT-Prio
20
10
0 1 1 1 1 1 1 1 2
1 2 5 10 20 50 100 200 300 400 500
dispersion of w;
100 T T T T T T T T
ILS-A —o—
ILS-C® o
90 + ¢ HC-A —e— -
HC-C —e—
HC —e—
80 9
70 9
g 60
=
[}
z
Z 50 - -
=]
b) 3
<] 40 9
= 2
30 T
=Y
@]
20 y . N b
10 - e ° 7
PB4 “e -
06— —3—F%— 3 ° o & Y P —
1 2 5 10 20 50 100 200 300 400 500

dispersion of w;

Figure 10: Performance of the algorithms vs dispersion of w;. a) Number of
wins, b) number of unique wins.

23

Table 2: Heuristic performance for different time limits.

Top 3 heuristics with the highest number of wins
time limit |1st 2nd 3rd
100ms |GISPT-Prio: 631|GI-Prio: 597|SAF-Prio: 552
1s HC-C: 625|HC: 623 | HC-A: 585
10s HC-C: 690 |SPTGI-Prio: 656 /HC: 616
100s |HC-C: 720|ILS-A: 613|SPTGI-Prio: 594
1000s |ILS-A: 730|HC-C: 697 | HC-A: 601
Top 3 heuristics with the highest number of unique wins
time limit |1st 2nd 3rd
100ms |GISPT-Prio: 74 |SAF-Prio: 49 |GI-Prio: 40
1s SPTGI-Prio: 79 |GISPT-Prio: 69 |[HC-C: 46
10s SPTGI-Prio: 181 |HC-C: 129/ HC: 50
100s |HC-C: 176 |SPTGI-Prio: 109|ILS-A: 82
1000s |ILS-A: 193|HC-C: 163|ILS-C: 77

sequently, ILS-A/C methods are capable of constructing the best solutions
uniquely.

We examined also the impact of ship length dispersions and processing
times dispersion (not shown here). In the tests against ship length dispersion,
greedy methods were able to win only if the space of possible solutions was
very restricted (one, two ship lengths). No significant correlation between
the number of wins and dispersion of p;s has been observed. The other
results were similar to the ones already shown: Algorithm ILS-A provided
the greatest number of best solutions, also exclusively. ILS-C, HC, GRASP
methods provided 1-4 unique best solutions (in 100 instances).

6.4 Quality of the solution versus runtime

In the previous experiment series the time cost of constructing solutions
has not been considered. However, it is well known that greedy algorithms
can return their solutions earlier than more sophisticated heuristics. Con-
versely, metaheuristics can provide quality results at the cost of longer run-
time. Thus, algorithms trade their runtime for solution quality differently.
In this section we investigate this dimension of algorithm performance.

Let us first elaborate on the ability of the algorithms to cover a set of
instances with the best solutions which is measured by the number of wing
and unique wins on the given set of instances. The results of this test are
shown in Tab.2. The data were collected in the series of experiments with
changing number of ships n (the same as the dataset for Fig.7). For other
experiment series the conclusions were similar, so we do not report them
here. Algorithms are ranked according to the decreasing number of (unique)
wins under runtime limit grades of 0.1s, 1s, 10s, 100s, 1000s. Different time

24

Table 3: Nondominated heuristics in the MW FT' vs runtime comparison
(medians).

n = 100 n = 1000 n = 10000
name time quality lname time quality|name time quality
FCFS-Prio: 9.018ms, 1.055 |SPT-Prio: 94.96ms, 1.647 |SPT-Prio: 5.417s 1.217

SPTGI-Prio: 9.237ms, 1.040 |SPTGI-Prio: 99.51ms, 1.602 |SPTGI-Prio: 5.682s 1.192
RND-Prio: 9.338ms, 1.029 |GISPT-Prio: 145.9ms, 1.555 |GRASP-SPTGI: 549.9s 1.083

SSF-Prio: 10.28ms, 1.026 |GI-Prio: 146.2ms, 1.551 |HC-A: 753.3s 1.033
SG: 435.1ms, 1.0209 |SG: 7.051s, 1.463 |HC: 1158s 1.011
HC-A: 435.1ms, 1.0209 |HC-A: 7.162s, 1.354 |HC-C: 1403s 1.007
HC-C: 467.5ms, 1.0207 |HC: 8.232s, 1.298 |ILS-A 3351s 1.0002
HC: 475.4ms, 1.0195 |HC-C: 8.355s, 1.289

ILS-C: 2058s, 1 ILS-A: 1731s, 1

grades represent various levels of acceptable runtime in solving long-time
horizon BAP. Let us observe that imposing runtime limits may eliminate
some methods from the ranking, because some algorithms may be unable to
obtain any solution on certain instances within the time limit. For example,
methods starting from the best greedy solution (HC-type, ILS-type) may not
to even start their search if problem sizes are big or time limits are tight. In
Tab.2 best three algorithms in the sense of (unique) wins are provided with
their number of (unique) wins in 1200 instances. It can be seen that for low
time limits the greedy algorithms dominate. With the increasing runtime
limit, metaheuristics come forward and HC dominates because it is faster
than the more sophisticated local search method (ILS-A/C). Super Greedy
and GRASP methods do not appear at the top of the ranking because for low
runtime limits they are too slow, while their starting solutions are derived
by the greedy algorithms, and for longer runtimes local search methods (HC,
ILS-A/C) return better solutions.

The criteria applied earlier, namely the number of (unique) wins, rep-
resent algorithm ability to cover diverse sets of instances. But still, the
instances are not equal and these two criteria do not reveal the distance
from the best solution in terms of the MW FT goal function. Therefore,
MW FT has been applied as the quality indicator in another examination of
the time-quality trade-off offered by the algorithms. The outcome of the eval-
uation is collected in Fig.11 and in Tab.3. In Fig.11 quality of the solutions
vs runtime is shown. The time until delivering the best solution constructed
is depicted in Fig.11 (not the total runtime which is 1 hour in the case of
metaheuristics). The data were obtained on a set of 1200 instances in the
tests against changing n. For each heuristic a median and whiskers extend-
ing from the first quartile to the third quartile in quality (vertically) and in
time (horizontally) are shown. The ranges are normalized to 1 hour in time
and to the best solution obtained by any algorithm in quality. This means
that value 1 on the vertical axis represents the best solution found. Let us

25

MWFT

MWFT

&

4 B 1P
0
2 -
LSt
+HE
1F HS-A
M| | M| 1 1
1e-005 0.0001 0.001 0.01 0.1
time
T T T T T
4 -
LSE-Prio
2r FCHdiprios GRASP-USE i
RNB:Prio—
SAHPrio—
i
1 -
1 1 1 1 1
1e-005 0.0001 0.001 0.01 0.1 1
time

Figure 11: Quality (MW FT) vs runtime. a) n = 1000, b) n = 10000.

26

observe that the lower-left corner in Fig.11 is the direction of the desired al-
gorithm optimization in this bicriterion setting. For clarity of presentation,
the set of nondominated algorithms is shown also in Tab.3. Fig.1la presents
results for n = 1000, and Fig.11b for n = 10000, which gives insight into
the evolution of the quality-vs-time trade-off with changes of the instance
sizes. With growing n the times of returning the best constructed solutions
grow in all methods. It can be observed (Fig.11) that many greedy algo-
rithms are dominated, even by the greedy algorithm with the RND sorting
rule. Their randomized versions: GRASP-LSF/-LAF/-3600 are not much
better in solution quality, but still they take more time to run. These algo-
rithms are impractical. Moreover, the relationship in performance between
weak and good sorting rules in the greedy algorithms is not changed by em-
bedding the rules in the GRASP methods. Only the algorithms based on
SPT, SPTGI, GI, GISPT rules can be found in the set of nondominated
algorithms. Taking into account the dispersion of time and quality indica-
tors, the overall performance of these four greedy algorithms can be regarded
similar. Other greedy algorithms are competitive only for n = 100 (Tab.3,
FCFS, SSF), which is hard to consider a long time horizon instance size. A
more profitable approach is bundling the greedy algorithms in Super Greedy
(SG) algorithm. But still, SG appears non-dominated only for medium run-
time budgets and small-medium problem sizes. The GRASP-type methods
are almost always dominated, with the exception of GRASP-SPTGI coming
forward to quality-time Pareto front at n = 10000 (see Tab.3). ILS-A is
competitive for medium-large size instances and long runtime (Fig.11a, b).

Tab.2 and Tab.3 are a good summary of this series of experiments and a
recommendation for selection of the algorithms solving big BAPs: For really
big BAP instances or short runtime budget priority greedy algorithms based
on SPT, SPTGI, GISPT, GI sorting rules are the best choice. If the runtime
limits are more lenient, local search algorithms can be applied: HC-C, ILS-A
(in the order of increasing runtime and improving solution quality).

7 Conclusions

In this work we considered the algorithms solving large size BAP problems
with tight runtime budget limitations. It has been discovered that greedy
algorithms with list, look-ahead control structures are impractical because
they give preference to the order of some sorting rule while ignoring the ships
ready to be served. Choosing the best solution built by a set of greedy algo-
rithms (Super Greedy, SG) or applying their randomized versions (GRASP)
is rarely practical. However, SG can be improved by restricting the set
of component greedy algorithms, thus creating a faster algorithm without
sacrificing much of solution quality. Metaheuristics, such as the local search-
based, are capable of constructing good solutions only if given enough time.

27

The hill climber-type is the fastest among them and has the widest appli-
cability under runtime restrictions. If the runtime limit is getting tight or
problem size is large, one has to recourse to simple methods like hill climber,
and finally greedy heuristics. Inevitably, this results in constructing inferior
quality solutions. Still, it can be considered acceptable if the data about
future streams of ships are uncertain while many alternative scenarios must
be quickly verified.

We believe that the study presented in this paper may be interesting also
from the methodological point of view because a non-standard approach to
the evaluation of heuristics has been proposed. Different quality criteria have
been applied (MW FT, number of wins). The performance of the heuristics
has been evaluated in the time-vs-quality trade-off. We depart from the idea
of "one best" algorithm to solve any instance of the problem, but rely instead
on a toolbox of alternative algorithms applicable in different settings. An
extension of this work may progress in at least two directions. On the one
hand, the selected algorithms can be exploited in long-term port simulation
and estimation of the port throughput. On the other hand, the process
of selecting the set of usable heuristics should be automated such that the
human expert is taken out of the decision process.

Acknowledgements

All computational experiments have been conducted in Poznan Supercom-
puting and Networking Center. This research has been partially supported
by a grant of French National Research Ministry and PHC Polonium project
for years 2017-2018.

References

[1] Christian Bierwirth and Frank Meisel. A survey of berth allocation
and quay crane scheduling problems in container terminals. Furopean
Journal of Operational Research, 202(3):615 — 627, 2010.

[2] Christian Bierwirth and Frank Meisel. A follow-up survey of berth
allocation and quay crane scheduling problems in container terminals.
European Journal of Operational Research, 244(3):675 — 689, 2015.

[3] Iwo Btadek, Maciej Drozdowski, Frédéric Guinand, and Xavier Schepler.
On contiguous and non-contiguous parallel task scheduling. Journal of
Scheduling, 18(5):487-495, 2015.

[4] Katja Buhrkal, Sara Zuglian, Stefan Ropke, Jesper Larsen, and Richard
Lusby. Models for the discrete berth allocation problem: A compu-

28

5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

tational comparison. Transportation Research Part E: Logistics and
Transportation Review, 47(4):461 — 473, 2011.

Edward Coffman and Michael Garey. Proof of the 4/3 conjecture for
preemptive vs. nonpreemptive two-processor scheduling. In STOC ’91
Proceedings of the 23rd annual ACM symposium on Theory of comput-
ing, pages 241-248, 1991.

Jean-Francois Cordeau, Gilbert Laporte, Pasquale Legato, and Luigi
Moccia. Models and tabu search heuristics for the berth-allocation prob-
lem. Transportation Science, 39(4):526-538, 2005.

Giovanni Giallombardo, Luigi Moccia, Matteo Salani, and Ilaria Vacca.
Modeling and solving the tactical berth allocation problem. Transporta-
tion Research Part B: Methodological, 44(2):232 — 245, 2010.

Pierre Hansen and Ceyda Oguz. A note on formulations of the static
and dynamic berth allocation problems. Technical Report G-2003-30,
GERAD, 2003.

Maarten Hendriks, Marco Laumanns, Erjen Lefeber, and JanTijmen
Udding. Robust cyclic berth planning of container vessels. OR Spectrum,
32(3):501-517, 2010.

M.P.M. Hendriks, D. Armbruster, M. Laumanns, E. Lefeber, and J.T.
Udding. Strategic allocation of cyclically calling vessels for multi-
terminal container operators. Flexible Services and Manufacturing Jour-
nal, 24(3):248-273, 2012.

Akio Imai, Yukiko Yamakawa, and Kuancheng Huang. The strategic
berth template problem. Transportation Research Part E: Logistics and
Transportation Review, 72:77 — 100, 2014.

Eduardo Lalla-Ruiz, Belen Meliari-Batista, and J.Marcos Moreno-Vega.
Artificial intelligence hybrid heuristic based on tabu search for the dy-

namic berth allocation problem. Engineering Applications of Artificial
Intelligence, 25(6):1132-1141, 2012.

Pasquale Legato, Rina Mary Mazza, and Daniel Gulli. Integrat-
ing tactical and operational berth allocation decisions via simulation-
optimization. Computers & Industrial Engineering, 78:84 — 94, 2014.

Rajeeva Moorthy and Chung-Piaw Teo. Berth management in container
terminal: the template design problem. OR Spectrum, 28(4):495-518,
2006.

Xavier Schepler. Solutions globales d’optimisation robuste pour la ges-
tion dynamique de terminaux G conteneurs. PhD thesis, Université du
Havre, 2015.

29

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Xavier Schepler, Stefan Balev, Sophie Michel, and Eric Sanlaville.
Global planning in a multi-terminal and multi-modal maritime con-
tainer port. Transportation Research Part E, under revision, 2016.

Pierre Thorez and Oliver Joly. Port competition in the northern range
from le havre to hamburg. PROMET-Trafficéd Transportation, 18(2):
77-82, 2012.

Jose Tongzon and Wu Heng. Port privatization, efficiency and com-
petitiveness: Some empirical evidence from container ports (terminals).
Transportation Research Part A: Policy and Practice, 39(5):405 — 424,
2005.

Bert Vernimmen, Wout Dullaert, and Steve Engelen. Schedule unre-
liability in liner shipping: origins and consequences for the hinterland
supply chain. Maritime Economics € Logistics, 9(3):193-213, 2007.

Bart W. Wiegmans, Anthony Van Der Hoest, and Theo E. Notteboom.
Port and terminal selection by deep-sea container operators. Maritime
Policy €& Management, 35(6):517-534, 2008.

Lu Zhen. Tactical berth allocation under uncertainty. European Journal
of Operational Research, 247(3):928 — 944, 2015.

Lu Zhen, Ek Peng Chew, and Loo Hay Lee. An integrated model
for berth template and yard template planning in transshipment hubs.
Transportation Science, 45(4):483-504, 2011.

30

