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Abstract In this paper we study differences between
contiguous and non-contiguous parallel task schedules.
Parallel tasks can be executed on more than one proces-
sor simultaneously. In the contiguous schedules indices
of the processors assigned to a task must be a sequence
of consecutive numbers. In the non-contiguous sched-
ules processor indices may be arbitrary. Nonpreemptive
schedules are considered. Given a parallel task instance,
optimum contiguous and non-contiguous schedules can
be of different length. We analyze the smallest instances
where such a difference may arise, provide bounds on
the difference of the two schedules lengths and prove
that deciding whether the difference in schedule length
exists is NP-complete.

Keywords Parallel tasks, contiguous scheduling,
non-contiguous scheduling

1 Introduction

Parallel tasks may require more than one processor si-
multaneously. The processors are granted either con-
tiguously or non-contiguously. In the contiguous case
indices of the processors are a range of consecutive in-
tegers. In the opposite case the indices may be arbi-
trarily scattered in the processor pool. In this paper
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Fig. 1 Example of c/nc-difference. a) Instance data, b) op-
timum non-contiguous schedule, c) optimum contiguous sched-
ule.

we analyze the cases when for a parallel task instance,
the lengths of optimum nonpreemptive contiguous and
non-contiguous schedules are different. Non-contiguous
schedules may be shorter because a contiguous sched-
ule is also a feasible non-contiguous schedule, but not
vice-versa. We will call such a situation c/nc-difference.
An example of c/nc-difference is shown in Fig.1.

More formally our problem can be formulated as
follows: We are given set P = {P1, . . . , Pm} of m paral-
lel identical processors, and set T = {T1, . . . , Tn} of n
parallel tasks. Each task Tj ∈ T is defined by its pro-
cessing time pj , and the number of required processors
sizej , where sizej ∈ {1, . . . ,m}. For conciseness, we
will be calling pj task Tj length and sizej task Tj size.
Both processing times and task sizes are positive inte-
gers. We study two versions of the problem: either tasks
are scheduled contiguously, or non-contiguously. In the
former case the indices of the processors assigned to a
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task must be consecutive. In the latter case, processor
indices can be arbitrary in the range [1,m]. Schedul-
ing is nonpreemptive and migration is disallowed. It
means that task Tj started at time sj must be exe-
cuted continuously until time sj + pj on the same set
of processors. Schedule length (i.e. makespan) is the
optimality criterion. We will denote by Cc

max contigu-
ous, and by Cnc

max non-contiguous optimum schedules
lengths for the given instance. In this paper we study
the cases when Cc

max > Cnc
max. In the following dis-

cussion use ”up”/”down” directions to refer to shift-
ing tasks toward bigger/smaller processor indices. By
”renumbering” a pair of processors we mean swapping
the whole schedules on the two processors.

Since task widths sizej are given and cannot be
changed, we consider here a subclass of parallel task
scheduling model called rigid tasks (Feitelson et al. 1997).
According to the notation introduced in (Veltman et al.
1990; Drozdowski 2009), our scheduling problem may
be denoted P |sizej |Cmax. This problem is NP-hard,
which follows from the complexity of the classic prob-
lem P2||Cmax. The first publication on the rigid task
scheduling seems to be (Lloyd 1981). The problem of
scheduling various types of parallel task systems has
been tackled in hundreds of publications and report-
ing them here is beyond the size and scope of this pa-
per. Therefore, we direct an interested reader to surveys
in (Dutot et al. 2004; Drozdowski 2009). The differ-
ence between contiguous and non-contiguous schedules
has been first noticed in (Turek et al. 1992). Its ex-
istence has been acknowledged, e.g., in (Dutot et al.
2004; Baille et al. 2008). However, to the best of our
knowledge the consequences of applying contiguous and
non-contiguous schedules to the same instance have not
been studied before.

The difference between contiguous and non-contiguous
schedules has practical consequences in parallel process-
ing. Parallel applications are composed of many threads
running simultaneously and communicating frequently.
It is advantageous to assign the threads of a single ap-
plication to processors within a short network distance
because communication delays are shorter and there are
fewer opportunities for network contention with other
communications (Bokhari and Nicol 1997; Bunde et al.
2004; Lo etal. 1997). In certain network topologies pro-
cessor numbering schemes have been proposed to aid
allocation of processors which are close to each other.
In such network topologies ranges of consecutive pro-
cessor indices correspond to locally connected proces-
sors. These can be various buddy processor allocation
systems for 1-, 2-dimensional meshes, hypercubes and
k-ary n-cube interconnection networks (Chen and Shin
1987; Li and Cheng 1991; Drozdowski 2009). Also other,

more sophisticated processor numbering schemes have
been proposed for this purpose (Leung et al. 2002). As
a result, contiguous schedules correspond to assigning
tasks to tightly connected processors. Thus, contigu-
ous schedules are favorable for the efficiency of parallel
processing. However, contiguous schedules are less de-
sirable for a set of parallel tasks because it is harder
to pack the tasks on the processors when they cannot
be split between several groups of available processors.
Hence, it is necessary to understand the difference be-
tween contiguous and non-contiguous schedules: When
such a difference may arise. How much may be gained
by going from a contiguous to a non-contiguous sched-
ule.

In the domain of harbor logistics, the berth assign-
ment problem (BAP) is one of the most studied prob-
lem in container terminal operations (Lim 1998; Bier-
wirth and Meisel 2010). In the discrete BAP, a quay
is partitioned into berths. In a common case one berth
may serve one ship at a time, and one ship requires
several contiguous berths. After relaxing some other
constraints, the BAP reduces to a contiguous schedul-
ing problem. A berth corresponds to a processor and
a ship corresponds to a job. Depending on its size, a
ship requires a given number of berths. A job process-
ing time is given by the corresponding ship handling
duration. This duration may be fixed or may depend
on the berths. Since vessels cannot be partitioned into
several pieces, non-contiguous schedules are not practi-
cally relevant. However, non-contiguous makespan val-
ues provide lower bounds on contiguous schedules and
thus lower bounds for the relaxed versions of BAP.

Further organization of this paper is the following:
In Section 2 the smallest instances for which a c/nc-
difference may exist are analyzed. Section 3 contains
a proof that deciding if a c/nc-difference appears is
NP-complete. In Section 4 it is shown that the ratio
of contiguous and non-contiguous schedule lengths is
bounded. In Section 5 we report on the simulations con-
ducted to verify whether c/nc-difference is a frequent
phenomenon on average. The last section is dedicated
to conclusions.

2 Smallest instances

Here we study conditions under which a c/nc-difference
can arise. We start with a couple of observations. Obvi-
ously, Cnc

max ≤ Cc
max because each contiguous schedule

is also a valid non-contiguous schedule, but not vice
versa.

Observation 1 For c/nc-difference to arise, there must
be more than two tasks with sizej > 1.
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If there were only one task Tj with sizej > 1, then
it would be possible to renumber processors in an op-
timum non-contiguous schedule such that Tj were exe-
cuted contiguously. If there are exactly two tasks Ti, Tj :

sizei, sizej > 1, then in the optimum non-contiguous
schedule Ti, Tj either share some processors or they
don’t. In the latter case it is again possible to renumber
processors such that Ti, Tj are scheduled contiguously.
If Ti, Tj share processors, then they are executed se-
quentially. Therefore, it is also possible to renumber
processors such that the processors used only by Ti are
assigned contiguously above the shared processors, the
shared processors are assigned contiguously while the
processors used only by Tj are assigned contiguously
below the shared processors. Thus, a contiguous sched-
ule of the same length would be obtained.

Observation 2 For c/nc-difference to arise, there must
be more than two tasks with pj > 1.

If ∀ Tj , pj = 1, then it is always possible to arrange
tasks in the optimum non-contiguous schedule into con-
tiguous allocations in each time unit of a schedule sep-
arately (by sorting task indices). The cases with one or
two tasks longer than a unit of time are analogous to
Observation 1 but moving tasks within the time units
of a schedule is necessary instead of processor renum-
bering.

Theorem 3 For c/nc-difference to arise, Cnc
max ≥ 4.

Proof. First we will show that all non-contiguous sched-
ules of length Cnc

max ≤ 3 can be rearranged to contigu-
ous schedules of the same length. Then, we show that
there is an instance which non-contiguous schedule has
Cnc

max = 4 and the contiguous schedule has Cc
max = 5.

For Cnc
max = 1 rearrangement into a contiguous sched-

ule is always possible by Observation 2. If Cnc
max = 2,

then tasks must have lengths pj ∈ {1, 2}. The tasks
with pj = 2 can be reassigned contiguously on the low-
est processor numbers, and the remaining tasks with
pj = 1 are handled as in Observation 2. For Cnc

max = 3

processing times are pj ∈ {1, 2, 3}. The tasks with pj =

3 can be moved down to the lowest processor numbers
(cf. Fig 2a and b). The tasks with pj = 2 can be shifted
down or up by swapping whole intervals of the schedule
on the processors. The tasks executed in time units 1,2
are moved down (just above any tasks with pj = 3),
and the tasks executed in time units 2,3 are shifted up
to the biggest processor numbers (Fig.2c). After these
transformations we obtained a schedule in which tasks
that run in the same interval are stacked one on an-
other without being interleaved by the tasks from other
intervals. Consequently, it is possible to rearrange the
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Fig. 2 Example of converting non-contiguous schedule of
length Cnc

max = 3 to a contiguous schedule. a) Initial schedule.
b) Shifting tasks with pj = 3. c) Shifting tasks with pj = 2. d)
Rearranging tasks into contiguous allocations.
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Fig. 3 C/nc-difference with the shortest possible Cnc
max. a) op-

timum non-contiguous schedule, b) optimum contiguous sched-
ule.

tasks in their time intervals to be executed contiguously
(Fig. 2d). Hence, we have Cc

max = Cnc
max = 3.

In Fig.3 a schedule of length Cnc
max = 4 is shown.

It can be verified, that there is no contiguous schedule
shorter than Cnc

max = 5 as, e.g., presented in Fig.3b. 2

A practical consequence of Theorem 3 is that if it is
possible to build schedules in pieces of short length (at
most 3 units of time), then rearrangement into a con-
tiguous schedule of the same length is always possible.

Theorem 4 For c/nc-difference to arise, m ≥ 4.
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Fig. 4 Transforming a non-contiguous schedule on m = 3 to
a contiguous schedule.

Proof. For m = 2 processors no task can be scheduled
non-contiguously. For m = 3 a non-contiguous sched-
ule can be converted to a contiguous schedule of the
same length. The converting procedure scans a non-
contiguous schedule from the beginning to the end for
tasks scheduled on P1, P3, and then reschedules them
such that they are executed on P1, P2 or P2, P3. Sup-
pose Tj is the first task executed on P1, P3 (cf. Fig.4).
We search for the latest task Ti preceding Tj and ex-
ecuted on two processors (or for the beginning of the
schedule if such a task does not exist). Task Ti is sched-
uled contiguously (because Tj is the first task scheduled
non-contiguously). We search for the earliest task Tk

succeeding Tj and executed on the same processors as
Ti (or for the end of the schedule if such a task does not
exist). Then, we swap on the processors the intervals
between Ti, Tk (Fig.4b). Consequently, all tasks until
Tj are scheduled contiguously. The procedure proceeds
until the last task executed on P1, P3.

In Fig.1 an instance with c/nc-difference on m = 4

processors is given. 2

We finish this section with a conjecture motivated
by the instance in Fig.1 with c/nc-difference with as few
tasks as n = 7. No smaller instance have been found in
our simulations (cf. Section 5).

Conjecture 1 For c/nc-difference to arise, n ≥ 7 tasks
are required.

3 Complexity of c/nc-difference

In this section we demonstrate that determining if a
c/nc-difference exists is NP-complete. Informally speak-
ing, given an instance of our scheduling problem check-
ing if loosening or tightening processor-assignment rule
results in a shorter/longer schedule, is computationally
hard. More formally the c/nc-difference problem may
be defined as follows:

c/nc-difference
Instance: Processor set P, set T of parallel tasks.
Question: Does Cc

max = Cnc
max?
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Fig. 5 Schedule for the proof of Theorem 5.

Theorem 5 C/nc-difference is NP-complete.

Proof. C/nc-difference is in NP because NDTM may
guess the contiguous and non-contiguous schedules and
compare their lengths. However, the sizes of the strings
encoding the schedules must be polynomial in the size
of the input string. In the optimum schedules each task
starts either at time zero, or at the end of some other
task. For a contiguous schedule it is enough to deter-
mine a permutation of the tasks and the lowest pro-
cessor index used by each task. The string encoding
a contiguous schedule has length O(n logm). In a non-
contiguous schedule a task may be assigned to arbitrary
processors available at its start time. Hence, a string of
length O(n) encoding a task permutation is sufficient to
determine a non-contiguous schedule. Thus, contiguous
and non-contiguous schedules can be encoded in strings
of polynomial size in the size of the input. We will use
polynomial transformation from the partition problem
defined as follows:
Partition
Instance: Set A = {a1, . . . , ak} of integers, such that∑k

j=1 aj = 2B.
Question: Is it possible to partition A into disjointed
subsets A1, A2 such that

∑
i∈A1

ai =
∑

i∈A2
ai = B?

The transformation from partition to c/nc-difference
is defined as follows: m = 2B + 1, n = 7+ k. The tasks
are defined in Table 1.

If the answer to the partition problem is positive,
then a contiguous schedule of length Cc

max = 15 as
shown in Fig.5 can be constructed. Note that tasks
T8, . . . , Tn can be scheduled contiguously in interval
[13,15] either on processors P1, . . . , PB or PB+1, . . . , P2B+1

because the answer to partition problem is positive. It is
also a feasible non-contiguous schedule. The schedules
are optimum because they have no idle time. Hence,
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Table 1 Task set for the proof of Theorem 5

task T1 T2 T3 T4 T5 T6 T7 T7+j , j = 1, . . . , k
sizej 2 2B − 1 B − 1 B B − 2 1 B aj
pj 12 4 4 9 4 7 1 2

Cc
max = Cnc

max and the answer to c/nc-difference is also
positive.

Suppose now that the answer to c/nc-difference is
positive, i.e. Cnc

max = Cc
max. We will show that the an-

swer to partition problem must be also positive. An
optimum non-contiguous schedule of length Cnc

max = 15

is shown in Fig.5. The position of task T6 in the sched-
ule is crucial for the proof because T6 divides the range
of available processors into two equal parts. We will as-
certain that the pattern depicted in Fig.5 is necessary
for Cc

max = 15. Let us make some observations.
• T1 cannot be scheduled sequentially (i.e. one after
another) with any of tasks T2, . . . , T6, otherwise Cc

max >

15 = Cnc
max. Hence, T1 and T2, . . . , T6 must be executed

at least partially in parallel.
• T2 must be executed sequentially with T3, T4, T5, T7,
otherwise more than m processors would run in parallel.
Since T1 and T2 must run in parallel and T6 can’t be
run sequentially with T1 then also T6 with T2 must be
executed sequentially.
• Considering sequential execution of T2, T4, task T4

can’t be scheduled sequentially with any of tasks T3, T5, T6

(otherwise Cc
max > 15 = Cnc

max). Hence, T4 must be ex-
ecuted at least partially in parallel with each of tasks
T3, T5, T6.
• Since T1 must run in parallel with T3, . . . , T6 and T4

in parallel with T3, T5, T6, then T3 and pair T5, T6 must
be executed sequentially (otherwise more than m pro-
cessors would run in parallel).
• Consequently, T2, T3, T6 are executed sequentially and
T2 cannot be the second in the sequence because T4

would have to be preempted or Cc
max > 15 = Cnc

max.
• Since the non-contiguous schedule has no idle time,
then also the contiguous schedule of length Cc

max =

Cnc
max has no idle time.
• T1 must be scheduled sequentially with T7 because
p1 = 12, Cc

max = 15, and all pj except p4, p6, p7 are
even (otherwise there is an idle time on the processors
running T1, moreover T1, T4, T6 must run in parallel).
• Since T1, T7 are scheduled sequentially, task T6 cannot
be the second in the sequence of T2, T3, T6, otherwise
more than m processors would be used in parallel with
T7.
• Thus, only two sequences are feasible: either (T2, T3, T6),
or (T6, T3, T2).
• Assuming sequence (T2, T3, T6), task T7 must be ex-
ecuted after T1. Consequently, T7 runs in parallel with

T6. As T6 runs in parallel also with T4, task T6 must
be executed on processor PB+1, otherwise some tasks
would be scheduled non-contiguously.
• This creates a box of 11 time units and B processor
wide for T4 after T2. There must be some subset of tasks
from T8, . . . , Tn in this box (otherwise there is an idle
time on the processors running T4).
• Since the schedule is nonpreemptive, contiguous, with-
out migration and idle time, the tasks selected from
T8, . . . , Tn, executed in the box require simultaneously
exactly B processors. Thus, the answer to partition
problem must be also positive.
• Sequence (T6, T3, T2) results in a mirror symmetry of
the schedule and can be handled analogously. 2

It follows from the above theorem that it is hard
to decide whether Cc

max/C
nc
max < 1 + 1/15 (Garey and

Johnson 1979).

4 The ratio of c/nc schedule lengths

In this section we study bounds on the worst case ratio
of the non-contiguous and contiguous schedules for a
given instance.

Theorem 6 5/4 ≤ max{Cc
max/C

nc
max} ≤ 2.

Proof. The instance shown in Fig.3 demonstrates that
the ratio of c/nc-different schedules is Cc

max/C
nc
max ≥

5/4. In the following we show that it is also bounded
from above. The proof is constructive in nature. An
algorithm converting any non-contiguous schedule S of
length Cnc

max into a contiguous schedule of length at
most 2Cnc

max will be presented. The main idea is to shift
parts of the non-contiguous schedule aside so that the
tasks in any part can be rearranged on the processors
into a contiguous allocation. Further discussion will be
illustrated with figures in which the parallel tasks are
represented in a simplified form as just segments in time
(cf. Fig.6c).

In any non-contiguous schedule S it is possible to
identify intervals when the set of executed tasks is con-
stant. Let there be l such intervals. We will denote by
Ai for i = 1, . . . , l the set of tasks executed in parallel
in interval i. For example, in Fig.6a: A1 = {T3, T4, T5},
A2 = {T1, T3, T4, T6, T8}, A3 = {T1, T2, T4, T7, T8}. The
tasks in Ai, if put out of schedule S, can be rearranged
into contiguous allocation because in interval i they
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Fig. 6 Proof of Theorem 6. a) Original non-contiguous schedule. b) Partitioning into sets for contiguous rearrangement. c)
Segment representation of the original schedule.

are executed in parallel and are using at most m pro-
cessors. These are the tasks from interval i − 1, and
i + 1 which may prevent rearranging the tasks in Ai

into a contiguous allocation. Thus, if the tasks in Ai

were moved such that they were executed neither in
the same time moment as the tasks in Ai−1, nor in the
same time moment as the tasks in Ai+1 then Ai could be
rearranged into a contiguous processor allocation. Such
move should be done so that the relative positions in
time of the tasks in set Ai remain fixed, i.e. the same
as in the original non-contiguous schedule. Shifting the
task sets aside increases schedule length. We have to
show that the increase is not greater than Cnc

max. Note
that some task Tj may be present in more than one
time interval. If we include Tj in set Ai, then we re-
move Tj from all the earlier (. . . , Ai−2, Ai−1) and all the
later (Ai+1, Ai+2, . . .) sets (cf. Fig.6b). Consequently, it
must be allowed to divide sets Ai, and shift aside sub-
sets of Ais. Let us denote by B1, . . . , Bk the sets of tasks
into which sets A1, . . . , Al are repartitioned such that
contiguous schedule is possible. The algorithm convert-
ing a noncontiguous schedule to a contiguous one must
decide how to move tasks from sets A1, . . . , Al (where
a task may appear several times), to sets B1, . . . , Bk

(where each task appears once). For instance, in Fig.6b:
B1 = {T5}, B2 = {T3, T4, T6, T8}, B3 = {T1, T2, T7},
B4 = {T9}. Note that there exists an order of sets
A1 ≺ . . . ≺ Al imposed by their sequence in the orig-
inal non-contiguous schedule. Analogously, a sequence
of sets B1 ≺ . . . ≺ Bk also exists. This sequence follows
from the order of the original non-contiguous sched-
ule, and the decision made by the algorithm separating
tasks for the contiguous rearrangement.

Assume some partition into sets and their sequence
(B1, . . . , Bk) are given. Let us now consider the exten-

sion of the original schedule (see Fig.7a). To separate
sets Bj from Bj+1, such that further non-contiguous
rearrangement is possible, all the tasks in Bj+1 must
be delayed such that the first task in Bj+1 starts after
the last task in Bj . The cost of such an operation may
be represented as an interval with two arrows shown
in Fig.7a. This interval starts at the beginning of the
first task in Bj+1, and ends with the last task in Bj .
For simplicity of exposition, we will call such time shift
intervals necessary to separate sets Bj , Bj+1, arrow in-
tervals. The sum of the lengths of all arrow intervals
is equal to the extension of the original non-contiguous
schedule. Note that if no pair of arrow intervals over-
laps, then the time cost of separating the tasks in sets
B1, . . . , Bk for contiguous rearrangement does not ex-
ceed the length of the non-contiguous schedule Cnc

max.
Thus, we can prove an arithmetic hypothesis (that a
schedule after the transformation is not longer than
2Cnc

max) by a geometric argument (that arrow intervals
do not overlap).

The situation that two arrow intervals overlap, for a
given (B1, . . . , Bk), will be called a conflict. We will pro-
pose a method of removing conflicts from (B1, . . . , Bk)

by redistributing the tasks. If a conflict arises, then it
means that some original set Ai has been partitioned
into more than two subsets (see Fig.7a). In more de-
tail there are sets of tasks Bj , . . . , Bj+h, where h ≥ 2,
which must be separated and each of them comprises
tasks from some set Ai, i.e. from the same interval of the
original schedule. For simplicity of presentation let us
assume that h = 2, and exactly three sets Bj , . . . , Bj+2

are in conflict. If h > 2 then the conflicts can be re-
moved by considering groups of three consecutive sets
as explained further on. When Bj , . . . , Bj+2 are in con-
flict (Fig.7a), then there are two arrow intervals over-
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Bj BjBj+1 Bj+1Bj+2 Bj+2

arrowinterval1 conflict
arrowinterval2

T1

T1

T2

T2

a) b)

Fig. 7 Proof of Theorem 6. a) Arrow intervals for separating
sets Bj , Bj+1, Bj+2. b) Resolving the conflict.

lapping: arrow interval 1 representing overlapping of
the tasks from Bj and Bj+1, and arrow interval 2 rep-
resenting overlapping of the tasks in Bj+1 and Bj+2.
Arrow interval 1 finishes with the end of the last task
in Bj which is necessarily executed in parallel with the
first task form Bj+2. The conflict can be removed by
shifting all conflicting tasks from Bj to Bj+1. It means
that tasks in Bj which are executed in parallel with the
tasks in Bj+2 are moved to Bj+1. This is feasible be-
cause we have conflict, so the tasks that cause it in Bj ,
are executed in parallel with some tasks in Bj+1 and
rearranging them together into a contiguous schedule
is possible. Again, arrow interval 1 represents the de-
lay of Bj+1 necessary to allow rearrangement of Bj+1

into a contiguous layout without interfering with Bj .
Arrow interval 1 stretches from the earliest beginning
of a task in Bj+1 till the end of the last task in Bj . As
after the moving of the tasks from Bj to Bj+1, no task
remaining in Bj is executed in parallel with the tasks
in Bj+2, the end of arrow interval 1 is moved earlier in
time, and there is no more conflict with arrow interval
2 (see Fig.7b). Thus, the conflict of overlapping arrow
interval 1 and arrow interval 2 is resolved.

However, after the tasks redistributing set Bj+1 com-
prises more tasks, and the earliest beginning of a task in
Bj+1 may have moved earlier in time. Hence, the begin-
ning of arrow interval 1 moved back in time, and a new
conflict may have arisen between sets Bj−1, Bj , Bj+1.
Such a conflict may be removed in an analogous way
by moving tasks from set Bj−1 to set Bj . This pro-
cedure should be continued until either removing the
conflict or reaching the beginning of the initial non-
contiguous schedule and sets B1, B2, B3. The conflict
cannot move any earlier in time because we already
reached the beginning of the schedule. Thus, the con-
flict which originated in Bj , . . . , Bj+2 is removed from
(B1, . . . , Bj+1). By proceeding forward with increasing
j, the sets of tasks can be repartitioned such that ar-

row intervals do not overlap. As they do not overlap, the
total extension of the initial non-contiguous schedule is
not greater than Cnc

max. Consequently, the contiguous
schedule is not longer than 2Cnc

max.
Overall, the algorithm converting a non-contiguous

schedule into a contiguous one can be summarized as
follows.
1. Scan the initial non-contiguous schedule from the
beginning toward the end, and build sets Bj greedily
by appending new tasks to the current set Bj as long
as no task in Bj has finished. If some task in Bj has
finished, close Bj and start building Bj+1. Thus, sets
B1, . . . , Bk are constructed.
2. Scan the sets from B1 to Bk and verify if any conflict
has arisen. If conflicts appeared, then resolve them one
by one from the earliest to the latest by redistributing
tasks between sets B1, . . . , Bk as described above.
3. Shift sets B1, . . . , Bk aside such that pairs of sets
Bj , Bj+1 are not executed in parallel.
4. Rearrange tasks in sets B1, . . . , Bk into a contiguous
assignment. 2

Example. We finish this section with an example
showing operation of the algorithm given in the proof
of Theorem 6 on the example shown in Fig.6a. The pro-
cess of repartitioning the tasks is shown in Fig.8. The
initial greedy partitioning is:
B1 = {T3, T4, T5}, B2 = {T1, T6, T8}, B3 = {T2, T7},
B4 = {T9}.
The first two arrow intervals in Fig.8a overlap which in-
dicate that sets B1, B2, B3 are in conflict because tasks
T4 ∈ B1, T1 ∈ B2, T7 ∈ B3 are executed in parallel. It
means that set A3 = {T1, T2, T4, T7, T8} of tasks exe-
cuted in the third time unit has been partitioned into
more than two sets. According to the algorithm given
in Theorem 6, task T4 is shifted to B2. Hence, we have
B1 = {T3, T5}, B2 = {T1, T4, T6, T8}, B3 = {T2, T7},
B4 = {T9}.
In Fig.8b the second and third arrow intervals overlap
because T1 ∈ B2, T2 ∈ B3, T9 ∈ B4 are executed in par-
allel. Therefore, T1 is moved to B3, and we have:
B1 = {T3, T5}, B2 = {T4, T6, T8}, B3 = {T1, T2, T7},
B4 = {T9}.
Again (Fig.8c) a conflict between B1, B2, B3 arises be-
cause T3 ∈ B1, T4 ∈ B2, T1 ∈ B3 are executed in paral-
lel. We move T3 to B2 and obtain partitioning:
B1 = {T5}, B2 = {T3, T4, T6, T8}, B3 = {T1, T2, T7},
B4 = {T9}
for which arrow intervals do not overlap (cf. Fig.8d).
The parts of the schedule shifted aside are shown in
Fig.6b. It can be verified that the schedule in Fig.6b
is of length 2Cnc

max = 8 and tasks can be rearranged
into contiguous processor assignment, which is neces-
sary only in set B3 = {T1, T2, T7}.
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T1 T1 T1 T1

T2 T2 T2 T2

T3 T3 T3 T3

T4 T4 T4 T4

0 0 0 01 1 1 12 2 2 23 3 3 34 4 4 4

T7 T7 T7 T7

T8 T8 T8 T8

T9 T9 T9 T9

T6 T6 T6 T6

T5 T5 T5 T5

time time time time
a) b) c) d)

Fig. 8 Example of redistributing tasks as indicated in Theorem 6

Theorem 6 has practical consequences. If one con-
structs a schedule while disregarding possible non-con-
tiguity of the assignments, then to be sure that a con-
version to a contiguous schedule is always feasible a
margin in time of [25%,100%] of non-contiguous sched-
ule length should be included. However, in the simula-
tions described in the next section no difference exceed-
ing 25% of non-contiguous schedule length was found.
Hence, we finish this section with a conjecture:

Conjecture 2 max{Cc
max/C

nc
max} = 5/4.

5 Simulations

In this section we study by simulation whether c/nc-
difference is a frequent phenomenon and how big is the
difference between contiguous/non-contiguous schedule
lengths.

Two branch and bound (B&B) algorithms were con-
structed to solve contiguous and non-contiguous ver-
sions of the problem. Branching schemes of both algo-
rithms assume that a schedule consists of two parts:
a part that is already constructed, and a part still re-
maining to be built. The branching schemes enumerate
all possible completions of the existing partial sched-
ule with the yet unscheduled tasks. Consider a partial
non-contiguous schedule. The set of optimum schedules
comprises active schedules, i.e. the schedules in which a
task starts at time zero or at the end of some other task.
To schedule task Tj feasibly sizej arbitrary processors
must be available. Hence, given some partial schedule
it is enough to know the earliest moment sj when sizej
processors are available to determine starting time of
Tj . If scheduling of Tj creates an idle interval before sj
on some processor(s) which could have been exploited
by some other task Ti, then a schedule in which Ti

is using this interval is constructed by considering Ti

before Tj . Thus, in order to define a non-contiguous

schedule it is enough to determine a permutation of
the tasks. The branching scheme of the algorithm for
contiguous schedules must determine not only the se-
quence of the tasks but also the processors executing a
task, e.g. by defining the smallest index of a processor
used by the task. However, enumeration of all processor
assignments for a task is not necessary by the following
observation:

Observation 7 There are optimum contiguous sched-
ules, such that each task is in corner-contact with the
envelope of the preceding tasks.

Consider some task Tj in a given schedule S. If sizej
contiguous processors are free before Tj starting time
sj , then it is possible to shift Tj to the earliest time mo-
ment when sizej processors are free contiguously with-
out increasing schedule length. Let us call such a move
an l-shift. Suppose that more than sizej processors are
free contiguously at time sj . Then it is possible to shift
Tj to the set of processors with the smallest, or the
biggest numbers. We will call such a transformation a
v-shift. Consider, the area in time×processor space that
can be reached by the lower-left corner of Tj by per-
forming l- and v-shifts. The border of this area will be
called envelope of the tasks preceding Tj . The length
of schedule S does not change if we schedule Tj in a
corner of the envelope. We will call such an assignment
a corner-contact assignment of a task.

The test instances were generated in the following
way. Task numbers n were increasing from n = 5 to n =

11. The processor numbers were m ∈ {10, 20, 50, 100,
200, 500}. For each n,m pair at least 1E4 instances
were generated. Processing times of the tasks were cho-
sen with discrete uniform distribution in range [1,100].
Widths of the tasks were chosen with discrete uniform
distribution from range [1,m−1]. The experiments were
conducted on a cluster of 15 PCs with with Intel Core
2 Quad CPU Q9650 running at 3.00GHz, with 8 GB
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Fig. 9 Frequency in % of c/nc-differences in simulation. a) vs
n b) vs m.

RAM memory, and OpenSuSE Linux. The algorithms
were implemented in Gnu C++.

The relative frequency of the c/nc-difference in the
instance population is shown in Fig.9a vs task num-
ber n, and in Fig.9b vs processor number m. In Fig.9b,
results for instances with n ≥ 7 are shown for better
readability. It can be verified in Fig.9 that on average
the emergence of c/nc-difference is not very frequent sit-
uation. Fewer than 0.8% instances had c/nc-difference
in our simulations. Our results support Conjecture 1
because no c/nc-differences were observed for n ≤ 6.
The frequency is increasing with n and decreasing with
m.

The magnitude of c/nc-differences, measured as the
ratio of contiguous to non-contiguous schedule lengths,
is shown vs n in Fig.10a and vs m in Fig.10b. Only
instances with n ≥ 7 are depicted in Fig.10b. It can be
seen that the biggest difference in the random instances
is ≈1.15 which is far below 1.25 observed in Fig.3. Thus,
the results support Conjecture 2. On average the differ-
ence between contiguous and non-contiguous schedule
lengths decreases with the number of tasks n. No ap-
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Fig. 10 Dispersion of c/nc-different schedule lengths. a) vs n,
b) vs m.

parent tendency can be observed in the ratios of the
c/nc-different schedule lengths vs m.

Intuitively, the tendencies in Fig.9,10 can be justi-
fied in the following way: On the one hand, the number
of opportunities for creating c/nc-difference is growing
with the number of the tasks. Hence, the frequency of
c/nc-differences is growing. On the other hand, also the
flexibility of constructing contiguous schedules is grow-
ing with the number of the tasks. Therefore, the dif-
ference in contiguous/non-contiguous schedule lengths
is decreasing with n. With growing number of proces-
sors m, the relative differences between task sizes (e.g.
sizej/m−sizei/m, for tasks Ti, Tj) has more and more
possible realizations in the stochastic process defining
the instances. This gives more flexibility and makes en-
forcing c/nc-difference more difficult with growing m.
Consequently, with growing m fewer c/nc-different in-
stances were generated.
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6 Conclusions

In this paper we analyzed differences between optimum
nonpreemptive contiguous and non-contiguous sched-
ules for parallel tasks. The requirements on the smallest
instances allowing the c/nc-difference were pointed out.
Determining whether a c/nc-difference emerges is com-
putationally hard. However, all non-contiguous sched-
ules can be converted to a valid contiguous schedule
twice as long as the original schedule. We leave two
open questions: What is the minimum number of tasks
necessary for c/nc-difference to arise (Conjecture 1)? Is
it always possible to build a contiguous schedule not
longer than 25% of the non-contiguous schedule for the
same instance (Conjecture 2)?
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