
Poznań University of Technology

On polynomial-time solvability
and fixed code size algorithms

M.Drozdowski

Research Report RA-06/16

2016

Institute of Computing Science, Piotrowo 2, 60-965 Poznań, Poland



On polynomial-time solvability and fixed
code size algorithms

M.Drozdowski
Institute of Computing Science, Poznań University of Technology,

Piotrowo 2, 60-965 Poznań, Poland

Abstract

In this paper it is argued that polynomial-time algorithms with
fixed size code and limited size of data that can be integrated in one
step have insufficient capability to solve hard combinatorial problems.
Consequently, each polynomial-time algorithm running on a realistic
model of computation has an instance which is not solved correctly or
not in polynomial time.

Keywords: computational complexity, combinatorial optimization.

1 Introduction

In this paper we intend to demonstrate that polynomial-time algorithms with
fixed size code running on a realistic model of a computer have insufficient
information capacity to solve hard combinatorial problems and each such
algorithm must have an instance on which it fails.

An idea that performance of algorithms is somehow related to the amount
of information is haunting combinatorial optimization. For example, in [2]
entropy of Markov chains representing behavior of simulated annealing algo-
rithms with different configuration spaces is analytically computed for given
instances of maximum satisfiability 3-SAT problem. A configuration space is
defined as a space of solutions with their objective function values and their
neighborhoods. A connection between entropy of the Markov chain and the
convergence of the expected objective function value has been demonstrated:
the higher the entropy, the better the objective values. In [6] histograms of
the objective function values attainable in limited number of calls to objective
function evaluations are examined. It is argued that there is a link between
the fraction of problem instances achieving certain histogram of values and
the entropy of the histogram. In evolutionary optimization populations of
solutions are maintained. It is widely accepted rule of thumb that popula-
tions with more individuals and more diversified ones have bigger chances

1



Table 1: Summary of notations.

cj jth clause of SAT instance, for j = 1, . . . ,m
F F = ∩mj=1cj conjunction of clauses cj
I instance of a problem
K upper bound on integer values in uniform computation cost model
L maximum number of bits used by any function computed in a step

of the algorithm
N(I) size of instance I
n number of variables in SAT problem
m number of clauses in SAT problem
SΠ(I) set of solutions for instance I of search problem Π
xi ith variable in SAT problem, for i = 1, . . . , n
XV vector of n binary values, alternatively n-bit unsigned integer
F (XV ) the value of function F for some given value of vector XV
xi negation of variable i in SAT problem, for i = 1, . . . , n
x̃i variable i with negation or without negation in SAT prob-

lem, for i = 1, . . . , n
x[i, j] the ith variable in clause cj in SAT problem
Z size of algorithm code in bits

of producing high quality solutions. Intuitively, such populations have more
information.

The argument presented here is the following: On the one hand, hard
combinatorial problems have number of unique possible solutions growing
exponentially with the sizes of instances. On the other hand, polynomial time
algorithms with fixed code size running on realistic models of computation
can visit at most polynomial number of states. An important element of a
realistic model of computation is that the size of data which can be integrated
in one step is limited. Further organization of the paper is as follows. In
Section 2 two examples provide evidence of the link between polynomial time
computability and information size of the algorithm code. In Section 3 model
of a realistic computer is introduced. In Section 4 all the earlier observations
are put together to build a kind of explanation. Definitions and notations
will be introduced in the text as needed. A summary of notations is collected
in Table 1.

2



2 Evidence

In this section two examples are provided to demonstrate that if information
source is given, then it is possible, at least in principle, to escape from some
limitations of the algorithms solving hard combinatorial problems.

Example 1.
Let us consider the classic vertex coloring problem. This problem can be
solved by a number of greedy coloring algorithms [4]. A greedy coloring
algorithm proceeds as follows: (i) determine sequence σ of the vertices ac-
cording to some rule, (ii) follow sequence σ and give each vertex the smallest
feasible color. The quality of such greedy methods can be assessed by sizes
of the graphs the algorithms fail to color optimally. More formally [4]:

Graph G is slightly hard-to-color for algorithm A if there exists at least
one implementation of A which colors G in the suboptimal way.

Graph G is hard-to-color for algorithm A if any implementation of A
colors G in the suboptimal way.

The differences in algorithm implementations may arise as a result of
ambiguity of the vertex sequencing rules. For example, if the vertices are se-
quenced according to the non-increasing order of vertex degrees (i.e. largest-
first (LF) rule), then there can be may vertices of the same degree, and such
vertices are alike for the LF rule. Any method of resolving the permutation
of the vertices with equal degrees results in a different implementation of the
greedy coloring algorithm with LF rule. In evaluating quality of different
greedy algorithms we search for the (slightly) hard-to-color graphs G with
the smallest number of vertices. In [4] a number of greedy algorithms de-
fined by various sequencing rules are analyzed and for all of them graphs
slightly hard-to-color and hard-to-color are provided. Except one. The ran-
dom sequential (RS) rule sequences the vertices randomly. For the RS rule
the slightly hard-to-color graph is a path of four vertices (P4). Surprisingly,
or maybe not, RS rule has no hard-to-color graph. Now this situation can be
fought of as if all greedy coloring algorithms, except RS, had fixed size code
in the sense of bits needed to encode them, while the size of RS expressed as
the number of code bits were unbounded because RS has access to a source
of unlimited amount of information by the use of perfectly random vertex
sequences. In a sense the code of RS is incompressible and its amount of
information is unlimited.

More formally, we will call algorithm A fixed size code (simply fixed code)

3



if the number of bits encoding the algorithm is constant.
Intuitively, it seems as if the fixed code greedy algorithms for vertex

coloring carried an amount of information sufficient to solve to optimality
only small instances. Conversely, RS cannot ultimately fail because it has
enough information to deal with instances of any size.

Example 2.
In the following we consider 3-SAT problem defined as follows [3]:

3-SAT decision version
input: sums cj, j = 1, . . . ,m, of triplets of binary variables chosen over a
set of n binary variables x1, . . . , xn or their negations.
question: Is there any assignment of values 0/1 to binary variables x1, . . . , xn
such that the conjunction of clauses F = ∩mj=1cj is 1?

3-SAT search version
input: The same as in the decision version.
request: Find the assignment of values 0/1 to binary variables x1, . . . , xn,
i.e. vector XV of n 0/1 values such that the conjunction of clauses F (XV ) =
∩mj=1cj is 1. If such a vector does not exist then signal ∅.

Let us observe that the solution to search 3-SAT, the n-bit vector XV ,
can be interpreted as n-bit unsigned integer. We will denote by F (XV ) the
value of function F for some given value of vector XV . The search 3-SAT
can be solved by the following two algorithms:

Algorithm 1.
1: cin >> I;
2: new(XV, n);
3: for(XV = 0;XV < 2n;XV + +)
{
3.1: if F (XV ) { cout << XV ; break;}
}
In Algorithm 1 the data is read in step 1 in N(I) time units. Then, n < N(I)
bits of memory are allocated in step 2 to hold vector XV . Values of vector
XV are enumerated in loop 3. If an assignment of bits to XV satisfying F
is found then the loop is terminated. Algorithm 1 enumerates all possible
vectors XV . One evaluation of F can be performed in time O(m log n)
which isO(N(I)) (log denotes base-2 logarithm). Algorithm 1 has complexity

4



O(2nm log n), or equivalently, at most O(2N(I)N(I)). Thus, computational
complexity makes Algorithm 1 practically infeasible.

Algorithm 2.
1: cin >> I;
2: XV = SolutionsTable[n][m][c1] . . . [cm];
3: cout << XV

Essentially, Algorithm 2 reads the solution vector XV (if the assignment
satisfying F (XV ) = 1 exists) or ∅ (if such XV does not exist) from table
SolutionsTable of precomputed solutions. SolutionsTable[n][m][c1] . . . [cm]
slightly extends the admissible syntax of the current programming languages
because it has variable number of table dimensions. But still, transforming it
to standard (e.g. C++) expressions is possible. For example, in the first step
a pointer to a solution table for [n][m] is selected from a 2D table of pointers
and in the second step XV (or ∅) is found using [c1] . . . [cm] to calculate the
offset. Clause ci is treated here as a 3 log n-bit index in a table. In uniform
computation cost model [1] each operation (like the address calculation) can
be done in constant time. The uniform model has practical sense if each
number has value bounded by a constant and consequently constant size
binary representation. If a uniform computation cost model [1] is assumed,
then Algorithm 2 can fetch the right solution in O(m) time. Assuming that
each variable in a clause is different, the size of SolutionsTable for search
3-SAT up to the required positions of n and m is at most

n∑
i=1

i
m∑
j=1

(2i+1 × 2i−1+1 × 2i−2+1)j ≤
n∑

i=1

n
m∑
j=1

(23n)m ≤ n2m23nm

Thus, for the uniform cost of computation, Algorithm 2 is polynomial al-
though it uses exponential size storage of size O(n2m23nm).

In the logarithmic cost model the cost of every operation is proportional
to the number of involved bits. The number of different clauses ci on n binary
variables is at most 2n+12n−1+12n−2+1 = 23n. Since any subset of clauses can
be used, we have that

m ≤
23n∑
i=1

(
23n

i

)
≤ 223n

and Algorithm 2 requires address pointers of length at least log(223n) = 23n

bits. The storage size is O(n223n) bits for n alone. Thus, for a logarithmic

5



computation cost model Algorithm 2 is neither polynomial nor in polynomial
space.

Let us return to Algorithm 2 with uniform cost model. On the one hand,
Algorithm 2 with uniform cost model holds a promise of polynomial execu-
tion time. On the other hand, Algorithm 1 has clearly exponential runtime.
What makes Algorithm 2 (with uniform cost model) so capable compared to
Algorithm 1, is the amount of information carried in Algorithm 2 and embod-
ied in SolutionsTable of exponential size. Thus, the amount of information
comprised in the algorithm determines its capability in solving hard combi-
natorial problems in limited time. It can be speculated that if the amount of
information carried in the code of an algorithm is insufficient, then there will
always be instances of hard combinatorial problems which cannot be solved
in polynomial time and the algorithm fails. Note that algorithms solving
problems in complexity classes are defined for the positive cases in [3] and
we have to define what it means that an algorithm fails to solve an instance
of a problem.

Algorithm A running in limited time T , fails on instance I of decision
problem Π if I ∈ YΠ (i.e. the answer to I is positive) and A does not answer
”yes” in time T . It also implies that A fails if it stops after T . In automaton
representation of the algorithm, a failure means that the automaton does not
reach the accepting and terminating state by time T .

In search problems an algorithm solves problem Π by providing for each
instance I a solution q ∈ SΠ(I) where SΠ(I) is a non-empty set of solutions
admissible for I. If SΠ(I) = ∅ then the algorithm signals that SΠ(I) is empty,
e.g., by producing ∅. We will be saying that algorithm A running in limited
time T fails on instance I of search problem Π if: (i) if SΠ(I) 6= ∅ then A
does not provide solution q ∈ SΠ(I) by time T , (ii) if SΠ(I) = ∅ then A does
not signal ∅ by time T . It follows that if algorithm A provides by time T a
solution not in SΠ(I), or A runs longer than T , then A fails on I.

Informally, if algorithms for decision and search problems fail, then they
do not provide a correct answer or they do not stop in polynomial time. The
examples shown above inspire a thought that for any fixed code algorithm
solving hard combinatorial problem an instance always exists on which a
polynomial time algorithm fails.

Hypothesis 1 Every fixed code polynomial-time algorithm solving a hard

6



combinatorial problem has an instance1 on which the algorithm fails.

Let us comment on the above hypothesis. If P 6=NP then all fixed code
algorithms for computationally hard decision problems (i.e. NP-complete
problems) and consequently computationally hard search and optimization
problems must have such an instance (the nemesis). Otherwise (if there were
no nemesis instance for some algorithm solving an NP-complete problem),
then the algorithm would solve each instance in polynomial time implying
P=NP.

3 Computation Model

In this section a model of a computer is defined. We assume that the algo-
rithm operates in discrete steps in a single thread of execution. These steps
form a sequence in time and each step by convention takes a unit time. In
each step of the execution, some function uses some arguments (input) to
compute its outcome (output, result). The admissible functions must obey
the following restrictions:

• The functions are executed in one step of the algorithm.

• The functions have fixed-size input. Size of the input is measured by
the number of bits of the string encoding the function arguments. The
size of the input any such function can process in a step is limited to
L bits. This limit has practical motivation because only limited data
sizes can be transfered (e.g. to/from memory) and processed in finite
time.

• The function output is binary and of limited size (bounded by a con-
stant). The binary representation is necessary to allow processing out-
put of the function in the following steps.

• The functions computed in each step are deterministic in this sense
that for a single input value only a single output value is obtained.

• It must be possible to encode the functions in bounded number of bits.

1Let’s call it nemesis.

7



Informally, the arguments, the function and the outcome can be of any na-
ture existing in practical models of computers. It means that we abstract
away what the functions executed in one step actually calculate. For ex-
ample, for function f : x → y the values of (x, y) are beyond the scope of
our consideration. Functions defined above have a practical representation
as CPU instructions. We assume RAM model of the computation and uni-
form cost of the computation [1] (though we make some references to the
logarithmic computation cost model). In the RAM model it is assumed that
memory is an array of addressable registers available to store intermediate
results of the computation. The size of the memory is sufficiently big and
is not limiting the algorithm. As a consequence of the above limits on the
nature of the functions computed in one step (in particular limited input size
L and limited output size), the maximum number of memory registers acces-
sible in one step is limited. For instance, in indirect addressing the argument
and/or result absolute addresses are calculated using content of the regis-
ters (base, offset, index). The address translation operation is part of the
function executed in one step and the registers used for address calculation
are considered part of the function input. An algorithm is represented as a
sequence of functions. A practical equivalent is program code comprising a
sequence of instructions. We assume existence of a program counter pointing
to the next function (instruction) to be executed. By convention we consider
program counter to be one of the registers, consequently an element of RAM.

The limit L on the number of bits which can be processed in a step
means that the set of different values which can be presented as numbers in
the registers has bounded cardinality. This limitation is practical because
the size of registers which can be manipulated by existing computers in one
step are limited (e.g. at most a few 64-bit registers in one clock tick).

Let us observe that Oracle Turing Machine (OTM) [3] which can be
called to compute arbitrary functions in one step does not satisfy the above
requirements because OTM can read arbitrary (i.e. unlimited) input size in
one step. Here only a limited size input can be tackled in each computation
step. Though it is possible to read arbitrary length input string by a fixed
code algorithm (such as in a loop), but then it takes many read steps, not
one. We exclude recursive functions from the set of functions computed in a
step.

8



4 Kind of an explanation?

Theorem 2 There exist instances of 3-SAT search problem of size N(I)
with Ω(2d1N(I)) unique solutions for uniform computation cost criterion and
Ω(2N(I)/(d2 lnN(I))) for logarithmic computation cost criterion, where d1, d2 >
0 are constants.

Proof. Assume there are n variables and m = 4n clauses in 3-SAT.
Let there be 4 clauses ci1 = xa + xb + x̃i, ci2 = xa + xb + x̃i, ci3 = xa +
xb + x̃i, ci4 = xa + xb + x̃i for each i = 1, . . . , n. It can be verified that
no valuing of xa, xb makes the four clauses simultaneously equal 1. The four
clauses may simultaneously become equal 1 only if x̃i = 1. Satisfying formula
F = c11c12c13c14 . . . cn4 depends on valuing of variables x̃i for i = 1, . . . , n.
Depending on whether xi is negated or not there can be 2n different ways
of constructing formula F , thus leading to 2n = 2m/4 different solutions.
Variables xa, xb can be chosen arbitrarily. For example, a, b can be drawn
randomly from 1, . . . , n such that a 6= b and a, b 6= i. Since there are (n −
1)(n − 2) possible pairs a, b for each i, it is possible to generate pairs a, b
satisfying the above conditions for n ≥ 3.

Suppose the uniform cost is assumed, then each number has value limited
from above by constant K. The length of the encoding of the instance data is
N(I) = 3m logK+logK = 12n logK+logK because it is necessary to record
the indices of variables in logK bits, each binary variable induces 4 clauses
of length 3 logK. Consequently, the number of possible unique solutions is
2n = 2(N(I)−logK)/(12 logK) = 2N(I)/(12 logK)2−1/12, which is Ω(2d1N(I)), where
d1 = 1/(12 logK) > 0 is constant.

Assume logarithmic cost, then the number of bits necessary to record n
is blog nc + 1. Length of the encoding string is N(I) = 12n(blog nc + 1) +
blog nc + 1 ≤ 15n log n = dn lnn, for n > 212 and d = 15/ ln 2 ≈ 21.6404.
An inverse function of (cx lnx), for some constant c, is x

c
/W (x

c
), where W

is Lambert W -function [5]. Lambert W function for big x can be approxi-
mated by W (x) = lnx − ln lnx + O(1). Given instance size N(I), we have

n ≥ N(I)
d
/W (N(I)

d
) ≈ N(I)

d
/(ln N(I)

d
− ln ln N(I)

d
+ O(1)) ≥ N(I)

d
/(2 ln N(I)

d
) ≥

N(I)
d
/(2 lnN(I)− 2 ln d) ≥ N(I)/(2d lnN(I)), for sufficiently big N(I). Note

that N(I), dn lnn, x
c
/W (x

c
) are increasing in n, x. Thus, by approximating

N(I) from above we get a lower bound of n after calculating an inverse
of the upper bound of N(I). The number of possible unique solutions is
2n ≥ 2N(I)/(d2 lnN(I)) where d2 = 2d. Observe that 2N(I)/(d2 lnN(I)) exceeds

9



any polynomial function of N(I) for sufficiently big N(I). It is because for
a polynomial function O(N(I)k), ln(N(I)k) < N(I)/(d2 lnN(I)) with N(I)
tending to infinity.

2

Let us observe that although the number of unique solutions in Theorem 2
is exponential, an adversary knowing the construction of ci1, . . . , ci4, F would
easily figure out values of x̃i. However, this task may be made much more
difficult if literals in cij and clauses cij in F are permuted truly randomly. In
the following we show that an algorithm with a fixed code is able to compute
in each step of its execution a fixed number of outcomes, i.e. make at most
a fixed number of calculations with unique final values.

Theorem 3 Any fixed code algorithm computes in one computation step at
most a fixed number of outcomes.

Proof. Let us remind that the algorithm operates in a single thread of
execution. Fixed algorithm code, and fixed size of the input in each step
imply that: i) the number of unique (i.e. different) functions computable in
a step is fixed, ii) the number of unique outcomes is fixed. In the following
we explain it in more detail.

Let Z denote size of the algorithm code in bits. The functions computed
by the algorithm in each computation step are encoded in the Z bits. Thus,
some subset of i bits from Z is used to encode each of the possible functions
the algorithm may execute in any step. We abstract away here from how
the function is constructed or what object such a function computes. We are
only interested in counting the number of possible such functions. Suppose
the set of i bits encoding such functions is given. A function which is not
encoded (i = 0 bits) cannot be called. Even a default function, or nop

(no operation) function, have to be distinguished from the other functions.
Hence, the number of bits encoding a function must be i > 0. The number
of functions which can be distinguished by referring to these i bits is at most
2i. The set of i bits from Z bits can be selected in

(
Z
i

)
ways. Thus, the

number of different functions encoded on i bits which can be distinguished
from each other is at most 2i

(
Z
i

)
. For the whole code of size Z, the number

of different functions which can be discerned is at most:

Z∑
i=1

2i
(
Z

i

)
≤

Z∑
i=1

2Z
(
Z

i

)
≤ 2Z

Z∑
i=1

(
Z

i

)
≤ 2Z2Z = 22Z .

10



Now we proceed to explaining that the number of outcomes a fixed code
algorithm can produce in one step is limited. Each function fetches some
number of argument values from RAM. The size of arguments used by any
function executed in a step is limited to at most L bits. Hence, the number
of possible input values is at most 2L.

The limited number of functions which can be called in a step (a result
of limited algorithm code size Z) implies a limit on the number of ways of
choosing the addresses in RAM which can be referred to and used to fetch
inputs to a function executed in a step of the algorithm. In other words,
each function called in a step of the algorithm has its specific way of fetching
its arguments. The number of ways of choosing arguments from memory
cannot be greater than the number of functions that can be called in a step
for otherwise the ways of choosing arguments should be also stored in the
algorithm code. Thus, either the ways of choosing function arguments are
encoded in the algorithm code and these are some of the functions we have
already enumerated, or we get a contradiction because more code than Z bits
are needed to additionally encode the ways of fetching function arguments.
Let us remind that the functions computed in each step by the algorithm are
deterministic in this sense that for a single input value only a single output
value can be obtained. Thus, the number of possible outcomes in one step is
at most:

2L22Z .

The above number is a product of the number of possible input values (2L)
and different ways of processing them, i.e. the number of different functions
which can be encoded in Z bits (22Z). 2

Let us comment on the above theorem. Note that the calculation of
the number of possible positions

(
Z
i

)
where particular set of i bits encoding

some i-bit function resides, is capable enough to represent sequences of in-
structions existing in practical computer codes. For example, if some code
has instruction add at addresses x, y, z, . . . then this is accounted for in our
enumeration. Hence, complex directed graphs representing flows of control
in real codes are represented in the above calculation. Again, let us observe
that the functions considered above may fetch and store their results in RAM
locations dynamically, i.e. they can be determined in the course of the com-
putation. For instance, in indirect addressing the argument and/or result
addresses are calculated using content of the registers (base, offset, index).
In such a case the location(s) of the argument/result registers is translated

11



to an absolute register address(es). The address translation operation is part
of some of the functions considered in the above theorem. Consequently, the
data bits necessary to calculate the absolute address of the dynamic storage
location are part of the L-bit input of the function. Note that program code
may carry not only code but also data, as in Algorithm 2. The data from
the code can be copied to the memory operated upon by the algorithm and
even modified. Still, this does not change the upper bound on the number
of outcomes in a step of the algorithm with a fixed code.

Let us remind (cf. Section 3) that the algorithm operates in discrete
steps executing some functions. The functions read and modify the registers.
A state of the algorithm is a unique set of the register values. A log of an
algorithm execution is a sequence of states it visits.

Theorem 4 Any fixed code algorithm running in polynomial time visits at
most a polynomial number of states.

Proof. A current state of the algorithm is defined by the values of ma-
chine registers (the memory). The next state of the algorithm is determined
by the code on the basis of the current state, including program counter.
Assume that the algorithm code is given, fixed and encoded in Z bits. Only
one transition is possible for a deterministic algorithm from the current state
to the next one. Then, there is only one log possible, determined by the given
input. In each step one function is executed. By Theorem 3 the number of
possible functions and their input values is 2L22Z and each log has to cross
in each step one of these (input value)×function pairs. Consequently, the
number of new states is also at most 2L22Z .

Consider two consecutive steps of the algorithm. The number of unique
symbols which can be written in two steps is at most 2×2L22Z . It is feasible
because two different datasets of length at most L can be used each invoking
a different function which can be expressed in the code. (In practice this
number should be a bit smaller because we need some bits to distinguish
sources of data and the functions called and these steering bits must be
visible in the current state, but ignoring these bits does not reduce the upper
limit on the number of symbols that can be written in each stage). It is also
an upper limit because in order to write more than 2× 2L22Z symbols in two
steps the algorithm would have to (i) write the extra symbols in any of the
two steps, or (ii) the first step alters the second step behavior such that it
can write more than 2L22Z symbols. (We exclude (iii) that the second step

12



modifies the first step by the unidirectional progress of time). Case (i) means
that the algorithm would exceed its processing capability by processing more
than L bits or executing a function which is not encoded in the Z bits of the
algorithm code, violating Theorem 3. Case (ii) has analogous consequences,
because it would violate the limit on the number of outcomes accessible in
one state established in Theorem 3.

This reasoning can be extended to more than a pair of consecutive steps in
a log. Suppose the algorithm runs in time p(N(I)), where p is a polynomial.
The number of visited states is at most p(N(I))2L22Z . 2

Let us comment on the above theorem and proof. The computational
capability of a single step is limited to just 2L22Z different output values.
This seemingly limits capability of any algorithm to obtaining at most 2L22Z

different outputs. This limitation can be circumvented by extending algo-
rithmically size of the data structures operated upon by the algorithm, while
still obeying the limit of L bits for a function input size. However, even if
in each step we apply a different dataset, then no more than p(N(I)) unique
datasets can be applied and hence at most p(N(I))2L22Z unique datasets can
be visited. For example, if a L =64-bit register overflows in a 64-bit CPU as
a result of the increment then the resolution of numbers can be extended by
using more registers and updating them using carry flags and program code
to choose update function for the extended set of registers. Then, in e.g. 2
steps of the algorithm operating on two registers at most 2 × 264 different
values can be obtained in these registers, not (264)2. This does not preclude
visiting (264)2 unique values of the register pair, but not in two consecutive
steps because the two registers have to be updated separately.

The argument that an algorithm can write at most 2× 2L22Z symbols in
two steps in the proof of Theorem 4 has information-theoretic interpretation.
Namely, the information does not arise from nothing, i.e. it can be called an
information conservation rule.

Corollary 5 For 3-SAT search problem there are instance sizes for which a
fixed size code algorithm cannot find a solution in polynomial time.

Proof. The number of unique solutions for 3-SAT grows exponentially
with instance size by Theorem 2 while the number of unique solutions which
can be constructed by a polynomial-time algorithm is polynomially bounded
by Theorem 4. Hence, there exist sufficiently big problem sizes N(I) for
which the number of unique solutions exceeds the number of solutions a

13



fixed code size algorithm is capable to construct. Thus, the algorithm fails
by missing the polynomial run time limit, or fails by providing a wrong
solution. 2

The above corollary may be expressed in information-theoretic way. A
hard combinatorial problem Π is a source of information. Π emits messages
in the form of instances. Instances implicitly encode the solutions. The algo-
rithm solving Π is a communication channel which decodes solutions from the
instances. Input alphabet is the set of all symbols that the information source
can emit. This input alphabet is equivalent to the set of all instances. The
size of the input alphabet for the communication channel (the algorithm) is
Ω(n2n), or Ω(d1N(I)2d1N(I)) or Ω(N(I)/(d2 lnN(I))2N(I)/(d2 lnN(I))) in units
of instance size, by Theorem 2. Contrarily, the size of communication chan-
nel output alphabet is O(p(N(I))2L22Z), where p is a polynomial. Hence, it
can be said that the communication channel (the algorithm) has insufficient
capacity to transmit a hard combinatorial problem.

In Corollary 5 we considered search version of 3-SAT. In the following we
will show that 3-SAT is NP-equivalent [3] to demonstrate that the conse-
quences of the earlier discussion extend to the decision version of the 3-SAT
and consequently to all NP-complete problems.

Observation 6 3-SAT search problem is NP-equivalent.

Proof. 3-SAT search problem is NP-hard because its decision version
is NP-complete. 3-SAT search problem is NP-easy because it is possible
to solve in O(n) time the 3-SAT search problem by using an oracle solving
the decision version with one of the variables xi, i = 1, . . . , n, set to test
values 0 or 1. If one of the answers is positive, then component XV [i] of the
solution is set with the positive test value. Otherwise, the algorithm throws
∅ to signal that vector XV does not exist. 2

5 Conclusions

In this paper we examined the number of solutions in hard combinatorial
problems and the number of states that can be reached by a polynomial-time
algorithm with fixed code on a realistic model of a computer. It appears that
the first may have size growing exponentially with the size of the input and
the second – size growing only proportionally with the time of computation.

14



Hence, for polynomial-time algorithms with fixed code running on realistic
computer models, instances exist on which such algorithms fail.

References

[1] A.V.Aho, J.E.Hopcroft, J.D.Ullman, The design and analysis of com-
puter algorithms, Addison-Wesley Publishing company, 1974 (I used
Polish translation: Projektowanie i analiza algorytmow komputerowych,
PWN, Warszawa, 1983).

[2] M.Fleischer, S.H.Jacobson, Information Theory and the Finite-Time Be-
havior of the Simulated Annealing Algorithm: Experimental Results,
INFORMS Journal on Computing 11(1), Winter 1999.

[3] M.R.Garey, D.S.Johnson, Computers and Intractability: A guide to the
theory of NP-completeness, Freeman, San Francisco, 1979.

[4] M.Kubale (ed.), Graph Colorings, American Mathematical Society,
Providence, Rhode Island, 2004. (I used Polish version: Optymalizacja
dyskretna. Modele i metody kolorowania grafow, WNT, Warszawa, 2002.
See also K.Manuszewski, Grafy algorytmicznie trudne do kolorowania,
Ph.D. Thesis, Gdansk University of Technology, 1997).

[5] Eric W. Weisstein, Lambert W-Function, MathWorld–A Wolfram Web
Resource. [accessed in September 2015]. http://mathworld.wolfram.
com/LambertW-Function.html

[6] D.H.Wolpert, W.G. Macready, No Free Lunch Theorems for Optimiza-
tion, IEEE Trans. on Evolutionary Computation 1(1), April 1997.

15


