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Chapter 1
Introduction

The need for computing power caused that parallel and distributed computing gains
popularity over the recent years. Contemporary applications have very high com-
puting power requirements. One of the most resource demanding applications are
genotype sequencing, quantum chemistry and Earth simulation. In most of the cases
a single computer is not able to provide computing power satisfactory for needs.
Therefore parallel and distributed algorithms and application, which can run on hun-
dreds of processors in the sam time, are necessary. Some parallel applications are
run in dedicated supercomputing environment (e.g. NEC supercomputer house for
Earth Simulation project). In other projects application are run on existing clusters
of computers, or even on personal computers (PCs) made available by the volunteers
in Internet.

In the seventieth and eightieth processors used in supercomputers were very ex-
pensive and powerful in comparison to the popular processors used in home and office
computers. Over the years the technology of processors evolved and now most often
supercomputers are build from similar processors and components as PCs. Almost
all supercomputer vendors offer machines built from typical commodity-of-the-shelf
components. The main difference between PCs and supercomputers now is the num-
ber of processors.The fastest supercomputers can be build of hundreds and thousands

of processors. One eminent example is the ASCI initiative which resulted in creation
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of supercomputers that are in the top of the TOP 500 Supercomputers list [1]. Some
of them have several hundreds of processors. For example: .

Recently also grid technologies developed. The idea of the grid is to connect
existing computers into some kind of distributed supercomputer. In this way it is
easy to achieve very large computing power using standard equipment. In some
projects computing power comes from thousands of PC made available by volunteers.
Some example are SETI@home project [2], Mersenne Number Project [3]|, Entropia
|4], Distributed Net [5], Folding@home [6] and other.

It should be obvious now that it is necessary to use parallel and distributed al-
gorithms to speed up computations. Creating fast and effective parallel algorithms
requires appropriate models of computation. In order to precisely simulate a com-
plex parallel or distributed environment, many parameters and dependencies should
be taken into account. A detailed model can be precise but useless because of its
complexity. To many parameters result in clutter and obfuscation. Detailed models
may complicate understanding of the fundamental phenomena taking place. There-
fore, there is a need for specific models of parallel computations that can be a good
compromise of detail and correctness.

In this work we consider the divisible job processing model. Divisible jobs can
be divided into parts of arbitrary sizes and the parts can be independently processed
in parallel. This means that the granularity of the computations is fine, and can be
neglected as not restricting the load size selection. There are no order constraints
and all parts can be processed in parallel.

This model applies, for example, to processing large measurement data sets (e.g.
SETI@home |2]), data mining: searching databases, text, audio, and video files, also
to some applications of linear algebra, number theory (e.g. Mersenne project [3],
Distributed net [5]), simulation, combinatorial optimization |6, 28, 30, 37]. Divisible
load theory (DLT) can be also applied in the analysis of distributed storage systems
such as video on demand systems [15], storage area networks or network attached

storage systems. In this case the distribution of the information can be optimally
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geared to the speeds of the communication network, and transfer rate of the storage
devices. The divisible job processing model is a very effective tool for analyzing dif-
ferent topologies of distributed environments: linear arrays, stars, rings, trees, meshes
and hypercubes. Practical experiments proved that the divisible job processing model
complies with the results of running jobs in real environments.

The purpose of this work is to examine the impact of different memory systems on
the performance of divisible load processing in various distributed networks. Three
kind of memory systems are considered: hierarchical memory, single level memory
with limited buffer size, and systems with limited communication buffers.

Before going into further details let us outline the contents of the thesis. In Chap-
ter 3 systems with single memory level are considered. Chapter 4 is devoted to the
systems with hierarchical memory. In Chapter 5 systems with limited communication
buffers are presented. In Chapter 6 the impact of multi-installment divisible job pro-
cessing on the performance is examined. Real divisible jobs experiments are presented

in Chapter 7. The main notation and symbols used in this work are summarized in
Appendix A.



Chapter 2

Divisible Job Model Fundamentals

In this chapter we provide basic assumptions of the divisible load theory. The abstrac-

tion of computer systems is presented and the subject literature is shortly reviewed.

2.1 Formulation of the problem

Terms divisible job and divisible load will be used interchangeably in this work. We
will use word processor to denote a single processing unit with CPU, memory, disks,
and network interface. The words data and load in context of the size of the load
processed by processors will be used interchangeably.

We consider a system with a set of m + 1 uniform processors P = {Fy,..., Py}
with the additional coordinating processor called master or originator. It is assumed
that at the beginning of the computation the whole volume of load with size V'
is located in the memory of the master processor F,. Originator scatters the load
to m processors of the distributed computer network. In every transmission the
communication startup time elapses between the initiation of the communication and
sending the first byte through the link. Transferring = units (e.g. bytes) of the load
over link i lasts S; + 2C; units of time (e.g. in seconds). Thus, the communication
delay includes constant startup time .S; and linear component xC; depending on the

amount of the transferred data. Computing x units of the load takes xA; units of time
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on processor P;. Sizes of the data pieces sent to processors are denoted by ag, - - - , .
«; is the fraction of the volume V which is sent to processor P;. Sum of all «; pieces
is equal 1.

For a given computing environment (described by parameters C;, A;, S;, V, m) the
values of «y, - - - , a,, should be such that the length of the schedule, denoted as ),
is the shortest possible.

In the following sections we introduce scattering algorithms dedicated to three

message routing topologies: a star, an ordinary tree and a binomial tree.

2.2 System architecture

Here we make several assumptions on the nature of the computer system and the
application.

The originator F, can participate in computation or it can only distribute the load
to other processors. It does not change significantly the model because if the originator
computes, then it can be represented as an additional processor in a model with the
originator communicating only. And vice versa, if we assume that the originator is
computing, but in reality it is not, then its computation rate can be represented as
Ap = 00. Thus, the originator would receive no load and oy = 0.

It is possible to distinguish two kinds of processing elements depending on the
ability to communicate and compute in parallel. The processors with communication
front-end are equipped with the communication hardware, which allows for transmit-
ting and computing in parallel. Processors without front-end can either communicate
or compute.

It is accepted in the divisible load theory [19, 16, 35| that the time of returning
the results of the computations to the originator can be neglected. It does not mean,
however, that we exclude applications returning some results. The returning of the
results can be incorporated in the divisible load model (cf. applications in |9, 28, 30,

37]). This assumption is made for the sake of simplicity of mathematical modeling
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and conciseness of the presentation.
In the following sections we define various communication topologies and strate-

gies.

2.2.1 Routing topologies

In this section we present three archetypal routing topologies used in the load scatter-
ing. These topologies can be embedded in various parallel computer interconnection

topologies.

Star topology

In this topology the originator Py is located in the center of the structure (cf. Fig. 2.1).
All the messages are routed from the originator to the processors, or from the pro-
cessors to the originator. Only one message can be sent or received by the originator
at a time. This kind of communications is typical of the bus and can be considered
as equivalent to the star interconnection. Hence, the star topology can represent a
network of workstations, master-slave, or client-server computations [37|. This inter-
connection applies also to the networks in which the originator is able to address each
slave processor directly, and send load to it. If it is the case then the intermediate
communication nodes (if any) can be represented only as an additional communica-
tion delay. Therefore, star topology can be called direct communication topology, as
well. This is especially justified in communication networks with wormhole routing
or circuit switching, for which communication delay does not depend significantly on
the distance between the sender and the receiver.

In the star network originator sends chunk o;V of load to processor P;. Immedi-
ately after receiving its load P; starts computing, while the originator immediately
starts the communication with the next processor.

The process of communication and computation is presented in Fig. 2.3. Process-
ing rate of processor P; is denoted A;. Communication links are characterized by

startup time S; and communication rate C;. If the memory buffer of the processors
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is limited then its size will be denoted B; for buffer of processor P;, and D, for the
communication buffer of link 7.
Star topology is also called a single level tree network in the divisible load litera-

ture.

Ordinary tree

Ordinary tree (see Fig. 2.2) is a graph-theoretic structure used in many broadcasting
and scattering algorithms for various interconnection topologies [51]. The originator
is not able to communicate with all processors directly. Therefore, intermediate pro-
cessors are used to relay the load to other processors. We consider regular balanced
tree in which nodes have out-degree p. p is also the number of ports in each processor
that can be used simultaneously to activate other processors. If a processor receives
some load to relay, it divides it into p equal parts and retransmits them to the still
inactive processors. The set of processors in equal distance from the originator (mea-
sured in the number of hops), will be called a layer. Let h denote the height of the
tree. We assume that the communication medium, and processors are homogeneous.
Processing rate is denoted A, communication parameters are denoted S, C'. The sizes
of memory buffers, if limited, will be denoted B. Processors in the same layer per-

form the same actions, communicate and compute synchronously. Hence, processors

in a layer performs identically and we seek load fractions ay, ...,y assigned to each
. . . o ophtlg
of the processors in layers 0, ..., h respectively. The ordinary tree has m = S

processors, for p > 1.
Note that linear array of processors, a.k.a. a chain topology is just an ordinary

tree topology with degree p =1

Binomial tree

Binomial tree has been introduced in [57] as a broadcasting structure for a 2-dimensional
mesh, and as a scattering structure for 1-, 2-, and 3-dimensional meshes in |27, 35, 36].

Binomial tree (cf. Fig. 2.4) is a tree in which nodes have out-degree p. Each processor
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Figure 2.4: Binomial tree. Numbers indicate layers.

(node) in level 0, ...,7 — 1 activates p new processors on level i, for i = 1,... h. The
set of processors in the same level of the binomial tree will be called a layer. Binomial
tree takes advantage of the communication delay structure typical of circuit switch-
ing and wormhole routing. For these two commutation methods communication delay
does not depend significantly on the distance covered by the message. Therefore, it is
advantageous to send the load to processors in physically large distance from the orig-
inator first, and then to redistribute the load locally in a smaller sub-network. Note
that a processor in layer i receives load to be redistributed among its descendants in
layers i +1,..., h.

Chain, mesh, torus, hypercube or multistage interconnection can be modeled using
binary tree topology. Examples of embedding binomial trees in different interconnec-
tions are shown in Fig. 2.5.

We assume that the communication medium, and processors are homogeneous.
Therefore, processors in the same layer work synchronously, i.e. perform the same
actions simultaneously. As in the ordinary tree we assume that processors are able
to divide the received message into equal parts and simultaneously redistribute the

parts to its p ports. The number of processors in a binomial tree with layers 0, ..., A
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is m = (p+1)". There are p(p+1)"~! processors in layer 1 < i < h. Our goal is to find
distribution of the load ay, ..., @, among the processors in layers 0 to h respectively,

such that schedule length C,,,, is minimal.

2.2.2 Layer activation order

For binomial trees two different ways of activating the layers have been proposed: The
natural order of the layers called NEAREST LAYER FIRST (NLF) [27], and the order
of decreasing number of processors in the layer called LARGEST LAYER FIRST (LLF)
[45]. Fig. 2.6 shows diagrams of communication and computation for strategies NLF,
LLF, respectively. In NLF (cf.Fig. 2.6(a)) layers are activated in the order of the
growing distance from the originator layer and receive the load for themselves and for
their descendants. Immediately after receiving the load processors start processing
their share of the load, while the rest is sent to the following layers. Thus, processors
start computing in the order of the layer number. In LLF strategy (cf. Fig. 2.6(b))
the layers start computing in the order h,h — 1,... 1. To activate some layer ¢ the
intermediate layers 0,...,7 — 1 transfer the load to layer ¢, but do not compute. It
was demonstrated in [45] that LLF is optimal activation sequence for binomial trees
when there are no memory limitations in the computer system. It has also been
demonstrated in [38] that it is not optimal when processors have limited memory
buffers. We consider it also in Section 3.2.2. Both layer activation orders can be
applied to the ordinary tree topology, too. We write about it in more detail in
Section 5.2.2. Observe that the layer activation order does not apply to the star
interconnection because all processors are directly accessible from the originator.
The actual communication interconnections will be modeled using the three topolo-

gies described above.

2.2.3 Single-installment and Multi-installment processing

In most of the works regarding divisible jobs, single-installment, processing has been

assumed. This means that every processor receives its portion of the load only once.
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Figure 2.7: Gantt chart for multi-installment processing.

If processors receive data more than once, the processing is called multi-installment.
We consider the regular type of multi-installment divisible job processing in this
work. In this model data are sent to the processor many times and the processors
are repeatedly activated in the same order. The load is sent in n cycles, so that after
sending a piece to the last processor P, the next piece is sent to the first processor P;.
As a result every processor gets an equal number of data pieces to process. In a system
without communication front-end the originator F, starts computing its share of the
load after the communications with all processors P;,---, P,. An example Gantt
chart for regular multi-installment processing in heterogeneous system is shown in
Fig. 2.7.

In general processors can be activated different number of times and in any order.
This kind of irregular activation is not the subject of this work.

Also in multi-installment processing we assume a nonzero startup time. With the
zero startup time it is possible to prove that communications should be done in the

infinite number of steps, and therefore, it is unrealistic.
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2.3 Survey of the Earlier Results

In this section we give a short survey of the divisible load theory (DLT) literature.

Initially the divisible load processing model was used to analyze the trade-off be-
tween computation and communication in a distributed network of intelligent sensors.
Divisible load model has been introduced in [32], where a linear array of intelligent sen-
sors was considered. The problem was to find optimum balance between advantages
of distributed computations on the measurement data, and the costs of communica-
tion. The same problem for bus network of sensor driven processors was considered
in [11]. Later on, divisible load model has been generalized and extended in various
directions.

Divisible jobs scheduling can be applied to many interconnection topologies. It
was thoroughly studied for linear arrays [42, 44|, busses [10, 12, 62, 64], trees |9, 10, 17,
33, 31, 50|, 2D-meshes [24], 2D-toroidal meshes [27|, 3D-meshes |36, 46|, hypercubes
|23, 47] and partitionable networks [52].

The model of communication delay has been generalized by the inclusion of the
communication startup costs in [25]. The influence of startup costs on the time
performance was also analyzed in [21]. The problem of scheduling divisible load with
taking into account the processor release times at the time of load origination was
considered in [20, 35]. Both the load distribution and results collection overheads
were taken into account in [9, 25, 37].

Divisible load model was capable of incorporating sophisticated communication
methods: distributing data in multiple installments [18, 19, 38, 69]. In [18] closed-form
solutions were derived for homogeneous single-level tree networks. Subsequently the
multi-installment strategy was applied to linear networks and closed-form solutions
for processing time for homogeneous networks was presented in [19]. In [69] multi-
installment processing with startup costs has been studied and maximum possible gain
of regular multi-installment processing for bus networks has been derived. Multi-
installment processing as a result of limited memory buffers is considered in [38].

The most of the studies consider the situation that only one load (i.e. one job)
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is available for processing. This assumption was relaxed in [63] and a scheduling
algorithm employing single installment strategy with FIFO order of the tasks was
presented.

Memory limitations at the processor side have been considered in |22, 38, 53].
In [53], the issue of finite size buffers at the processors is addressed for the case of
single level tree networks. An off-line algorithm, referred to as Incremental Balancing
Strategy(IBS) was proposed. It generates load fractions in an incremental fashion. In
each increment distribution of the load is found for processors with available mem-
ory according to the standard divisible load theory methods [19], without taking the
memory constraints into account. Then, the distribution of the load is scaled propor-
tionately such that at least one buffer is filled completely. The remaining available
buffer capacities are the memory sizes in the next increment. It has been also demon-
strated that the rule for optimum processor activation sequence proposed in [19] does
not work in the case with limited memory. IBS algorithm is not optimal, which
will be shown in Chapter 3 using linear programming approach. In [22], approxi-
mation algorithms were proposed to generate and round the load fractions for single
installment as well as for a strategy in which the load is constrained to have at most
K partitions. Ultimate performance bounds were derived for these strategies with
integer approximation.

Despite its ability of analyzing intricate details of distributed computer systems,
divisible load model remained computationally tractable. In many cases it was even
possible to find analytical solutions of the considered models. In [32] a heterogeneous
linear network of processors was considered. Under the assumption that all processors
stop computation at the same time an algorithm was developed to find the optimal
load fractions. The proof that this assumption is a necessary and sufficient condition
for obtaining optimal processing time in linear networks appeared in [60]. An analytic
proof of this assumption in bus networks without the startup times is presented in
|62, 64]. In the case of single-level tree networks, a closed-form expression for the

processing time and an algorithm to obtain an optimal tree configuration appeared
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in [17, 50]. The optimal sequencing and optimal network arrangement were consid-
ered in |17, 23]. For homogeneous linear networks, a closed-form expression for the
processing time was presented in [43] and for tree, bus, and linear networks asymp-
totic solutions have been derived [13, 43]. A study on arbitrary tree networks [9]
presents an analytical treatment in deriving optimal sequences using the concepts of
equivalent processors. The existence of the closed form analytical solutions is an ad-
vantage of the divisible load model over other deterministic scheduling models which
are computationally intractable [40].

System parameters used by divisible load theory can be easily obtained in practice.
Not only, was the divisible load model successful in theoretically analyzing distributed
computer systems, but also its predictions have been confirmed in real computer sys-
tems [28, 30, 37, 41]. We write about it in Chapter 7. Furthermore, divisible load
model was a base for analyzing multimedia retrieval systems [15], image processing
[9], and cost optimization in the design of distributed systems [65]. In [41] a load
distribution strategy is designed and analyzed to carry out matrix-vector product
computations on a cluster of workstations. Also, this study shows the applicability
of divisible load theory to design strategies that are suitable for a network of work-
stations. The objective of minimizing the monetary costs involved in the process of
divisible load processing was analyzed in |65, 61|. The study of monetary costs min-
imization using DLT resulted in US patent no. 5889989 for a load sharing controller
for optimizing monetary costs [61].

It can be concluded that divisible load theory is a new versatile paradigm of
distributed computing. Surveys on divisible load processing can be found in [16, 19,
26, 35]. A short summary of the divisible job approach from the more than ten years

perspective can be found in [59].



Chapter 3
Systems with Single Memory Level

In this chapter we analyze computer systems with limited memory sizes. Each pro-
cessor can hold only an amount of load limited by the size of available memory. In
clusters of workstations it appeared [37] that the linear dependence of processing time
on the size of work is satisfied only if the computations are restricted to the core mem-
ory (RAM). Larger work chunks imply using virtual memory. When virtual memory
is used, the dependence of processing time on the amount of data becomes more
complex. Also the processing speed of the computers is lower. Hence, for efficiency
reasons it is preferable to avoid using virtual memory and restrict the load to limited
amount B; of core memory available at processor P;. Values of B; are determined by
the computing environment and are constant. To focus on direct impact of the buffer
sizes relative to the volume V' we introduce also variables B which denote buffer sizes
relative to the value of V, i.e. B} = £

We assume that the critical restriction on the size of memory is put during the
computation phase. It can be the case of problems where small data sets are unpacked
or big data structures arise in computation from small amount of the input data.
Therefore, the size of communicated message is not limited otherwise than by the
memory capacity of the receiver.

In the following sections we study the computational complexity of the problem.

Than we analyze the problem of optimum load distribution under the assumptions of

19
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a fixed and arbitrarily chosen processor activation sequence.

3.1 Complexity of divisible job scheduling with lim-

ited memory buffers

In this section we will prove that scheduling divisible load in systems with limited

memory is NP-hard.

Theorem 3.1. Scheduling a divisible job in a star network with limited memory
buffers 1.s NP-hard.

Proof. We show that our problem is NP-hard by Turing reduction of the PAR-

TITION problem:

PARTITION

Given set £ = {ay,...,a,} of integers decide if there exists set E' C E, such that
diem U = D ien O = %Z?Zl a; = L. Without loss of generality we assume that
all a; are even (which can be achieved e.g. by multiplying all a;’s by 2).

The reduction consists in the construction of the divisible job instance on the basis
of the PARTITION instance. The first instance can be answered positively if and only
if for the second one the answer is positive. Construction of the scheduling instance
is as follows: m = ¢+ 1,V =L+ L, C,...C,, =0, S; = a;, A; = a%,BZ- = q
fori=1,...,¢, S,, = L,C,,, =0, A,, = %,Bm = LS. The originator P, does not
compute, i.e. Ag = oco. We ask if it is possible to process volume V of load on the
above network in time at most 2L + 1.

Suppose the answer to the PARTITION is positive and E’ is a set for which
> jem @ = L. Now, we are able to construct a feasible schedule for the schedul-
ing problem: First, the processors with indices corresponding to the elements of E’
are sent load o;V = a;, for i € E’, in time L. This part of the work is completed not
later than at 2L. Then, P, receives load L®, and completes at 2L + 1 (cf. Fig. 3.1).

Now suppose the answer to the scheduling problem is positive. This means that
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communications
| oA, V=L |

processing on P, | |

processing on P, o, A}V

» time

Figure 3.1: Hlustration to the proof of Theorem 3.1.

L® + L units of load can be processed in 2L + 1 units of time. Consequently P,, must
be used because only P, has sufficient memory size. Communication with P, takes
L units of time and L+ 1 units of time remain available for communication with other
processors in some set F. Since all S; are even (because a; are even) only L units
of time can be used for communications. Communications to processors in F' last
Y icrSi = D e @i < L. On the other hand the processors in set F' must compute at
least V —a,, V' > L units of work. Hence, wehave ), ra; =>, nB; > > ..po; > L.

Together we have ), .. a; = L, and the answer in PARTITION is also positive. O

3.2 Fixed processor activation sequence in systems

with limited memory

In this section we propose a new method of finding solutions with guaranteed opti-
mality for the problem of scheduling divisible loads in networks of processors with
limited memory and communication startup times. The method introduces mathe-
matical programming to the realm of divisible load theory. We analyze two network
types: star and binomial tree. The implications of memory limitations for the per-

formance are studied.
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3.2.1 Star

We assume that the originator both communicates and computes, and that simulta-
neous computation and communication is possible. We assume that the sequence of
sending the load to the processors is Pi,..., P,, and is fixed. Our problem can be
formulated as a linear program LP SSML (for LP Star Single Memory Level):

LP SSML

minimize C), 4.

subject to:
CYZVAZ -+ Z(S] -+ OéjVCj) SC'max for ¢ = 0, oo, (31)
j=1
oV <B; fori=0,...,m (3.2)
> a; =1 (3.3)
i=0
a; >0 fori=0,...,m (3.4)

Let us explain the above formulae. We are to minimize schedule length C), ..
by finding values of variables «;, Cp,q, such that: by equations (3.1) each processor
completes not later than at C,,.,, by equations (3.2) no processor is assigned more
load than the size of its memory, according to equation (3.3) all the load fractions add
up to the total load. In the equation (3.1) for i« = 0 we have Z?ZI(SJ- +o,;VC;) =0,
because no communication is needed.

LP SSML has m + 2 variables and 3m + 4 constraints. The solution of LP SSML
is a point in m + 2-dimensional space. Constraints (3.1), ..., (3.4) restrict the area of
admissible solutions to a convex polyhedron. It is known that the optimum solution is
located in one of the polyhedron corners. Unfortunately, the location of the optimum
depends on the problem instance and no closed-form expression of «; seems possible.
The linear programs can be solved in polynomial time, e.g. in O(m®°L) time [48, 54|
using the interior point methods, where L is the length of the string encoding all the

parameters (A;, C;, S;, B;, V) of LP SSML. Linear programs can be solved by many
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public domain and licensed codes. All linear programming formulations in this work
were solved by 1p_solve ver. 2.0 [14], a public domain linear programming code.
Our method is more time-consuming but it is also more robust than the IBS heuristic
proposed in [53]. Consider Example 3 from [53].

Example. m = 4 (i.e. we have originator and 4 additional processors). Processing
rates are: Ay = 1,A; = 5, Ay = 4, A3 = 3, A, = 2. Available memory sizes are:
By =10, B; = 20, B, = 45, B3 = 15, By = 30. Communication rates are ¢} =4,(C5 =
3,C3 =2,Cy = 1. All startup times are S; =0, for v =1,...,4. V=100. By solving
SSML LP we obtain:

processor | B; | o;V | communication completion | computation completion
Py 10| 10 0 10
P 20| 15 60 135
Py 45| 30 150 270
Pj 15 ] 15 180 225
Py 30| 30 210 270

This schedule has C),,,, = 270, and is shorter than the one found by IBS algorithm in
[53] by 5 units of time. This is so because the optimality of LP SSML formulation is
guaranteed, whereas IBS is a fast heuristic. The length of the schedule is determined
by the completion of computations on processors P, and P;. P;, P, memories are
not fully utilized. Note that in the interval [10,210] P, is not computing but only

communicating. O

Performance modeling

Now, we will discuss the influence of memory size on the performance of star networks.

We modeled a system of initiator and 9 identical processors with A; = A=1E-
6, connected by identical communication links with startup S; = S = 0.001, C; =
C=1E-6. The sizes of available memory were equal B on all processors and the
originator. A feasible solution of LP may not exist when the sum of buffer capacities

is smaller than V. When a feasible solution existed we recorded the best solution for
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one of the number of processors from the range 1,...,10 (including the originator).
The results of modeling are collected in Fig. 3.2. On the horizontal axis we have size of
the problem V', on the vertical axis we have schedule length C),,.. Plots for memory
sizes from B = 10 to B =1E9 are presented. Fig. 3.2(a) presents schedule length
for buffers sizes expressed in the absolute terms (eg. in bytes). As it can be verified
with B = 10 we can solve problems with size up to V' = 100 on ten processors. Two
more reference lines denoted "sat" and "inf" are depicted in Fig. 3.2(a). Line "sat"

represents a system with total memory sizes exactly equal to V. This means that

B = mLH and memory buffers are saturated. Schedule length in a saturated system
is Cpon = D021 (S + mLHC’) + mLHA. Line "inf" represents schedule length C/ in

a system with unlimited memory. In this case memory size is big enough to hold
any loads and we can calculate the distribution of the load according to the classical
divisible load theory methods [19, 35]. The plots of processing times for particular
memory sizes are located between lines "inf" and "sat". As it can be seen line "sat"
approaches line "inf" at V' ~1E4. For bigger volumes the two lines form a kind of
tunnel in which schedule length for the particular memory size must fit. The width
of this tunnel shows influence of memory limitation on the schedule length because
its upper line represents the system which has just as much memory as needed to
hold the load, while the lower line represents a system which has unlimited available
memory. Fig. 3.2(b)presents schedule length for buffers sizes expressed in relative
terms as the ration of V. By thre small relative difference between lines "inf" and
"sat" we can conclude that for large problem sizes V the impact on memory sizes is
limited. The position of processing time within the tunnel described above depends
on the problem size but only on the buffer sizes relative to the problem size. From
the results presented in Fig. 3.2 it can be concluded that for small problems (when
V' is less than 1E4), memory limitations are very important, because load imbalance
may be incurred by insufficient memory sizes.

In order to demonstrate the influence of memory size constraints on C,,,, we

collected in Fig. 3.3 values for the "inf" and "sat" cases for various processing rates



CHAPTER 3. SYSTEMS WITH SINGLE MEMORY LEVEL 25

= IEl -0 IE2 -¥ IE3 % IE5
& |E7 > E9 - - sat - inf -
100 4
///
1+
Q
E P
(111) R —————
B4
IE6 = = = =
1 100 1E4 1E6 1E8 1E10
Vv
(a) Absolute buffer sizes B.
1,E+04
—-—0,1 —e—0,2
—A—0,5 —8—|nf
100 -
o 17
g
0,01
1,E-04
1,E-06 . . . .
1 100 1,E+04 1,E+06 1,E+08 1,E+10
"4
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Figure 3.2: Schedule length for a star network depending on problem size and memory
buffer size.
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Figure 3.3: Schedule length for a star network with unlimited and saturated memory

A. A system with A =1E-9 has the fastest, while the system with A = 1 has the
slowest processors. The plots for A = 1 are so close that they are drawn one on
another. Also the lines for the saturated systems with A =1E-9 and A =1E-6 are
so close that they are indistinguishable. For small A schedule length in saturated
system is dominated by communications which last » 7", (S + ~YCo). Therefore, the
lines for A =1E-9 and A =1E-6 in saturated system are very close. The increase of
A results in lines "inf" going up in the Fig. 3.3. The "sat" lines must be located
above "inf" lines. As A increases the difference between "inf" and "sat" decreases
such that eventually for A = 1 they are indistinguishable. It can be observed that
for computationally intensive applications which have big A, and big volumes V' the
difference between "sat" and "inf" cases is small and schedule length is dominated by
communication and processing speeds.

Now we will calculate width of the tunnel, i.e. the ratio of schedule lengths in the

saturated and unlimited memory cases, on a set of identical processors for big problem
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sizes V and computationally intensive applications. An application is computationally

intensive if the total computation time AV dominates the communication time C'V.

In the following we denote by p = %, and o = %.
. . . inf
Lemma 3.2. In the star interconnection limy_. ,—.o % =

Proof. In the saturated case Ci, = > (S + X&) + A5 = mS + V(Z(J’EA).

It was proved [19] that when results are not returned, and memory is unlimited, all

processors must stop computing in the same moment of time. From this observation
we infer that time A;o;V of computing on processor P; activated earlier is equal
to time S;11 + a; 11V (A1 + Cip1) of sending the load to processor P,y activated
later and computing on P;,;. As we consider identical processors we have: Aa;V =
S+ a1 V(A+ C). oV can be expressed as a linear function of a,,,V: ay,—;V =
anV(1+p) +2((1+p) —1) fori=1,...,m. All a;s must add up to 1. Therefore,
V=" oV= ay, VAL Z((1+ p)™*t —1— p—mp). From which «,,V,

p
and C" = AayV can be calculated:

max

o _ AV =50 +p)" T =1—=p—mp)p(1+p)" N %((1 L1 (35)

i G+ =1
Finally, we have the desired ratio for big V:

iy Cmie __ (m+Dplp+1)"
Voo Oty (mp+1)((p+ 1)+ — 1)
For computation intensive applications A > C and p — 0. After applying de

(3.6)

I’Hopital rule we obtain:
lim Omaz — lim (m + 1)p(,0 + 1)
V —o00,0—0 Cfrfgr p—0 (mp —+ ]_)((p + 1)m+1 _ 1)
2 Jim (m+D[(p+ 1™ +mp(p+ 1)" "] —1
P m((p+ 1" — 1) + (mp+ )(m + 1)(p + D"

(3.7)

We conclude that in the case of big problem sizes V' and computationally intensive

applications executed on a set of identical processors, memory limitations are not as
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restrictive, for the schedule length, as computation and communication speeds. This
observation is confirmed by Fig. 3.2, and Fig. 3.3. On the other hand it should
not be forgotten that this result applies to homogeneous computing systems. In
heterogeneous systems, the difference between C/ and C5% can be arbitrarily big.
For example, when a fast processor has small memory buffer and a slow processor
has a large buffer then the equivalent speed of the system is dominated by the slow
processor in the "sat" case. Furthermore, in practice parameters A, C, S may depend
on change with the amount of the assigned load [37]. We discuss it in Chapter 4 and
Chapter 7.

From equation (3.6) a width of the tunnel for fixed p, and m tending to infinity

can be derived:

Lemma 3.3. In the star interconnection

inf 6%
lim maxr __

Vosom—oo Ot (ex — 1)(k+1)

__A
where k = m
Proof. Let us assume that & = p = T D +1) Then from (3.6) we have
Chid (m+Dp(p+1)"

1 =
v Gty (mp+ D((p+ D" = 1)

max

l( (ml+1) + 1)m (3'8)
(k(m+1) + V(g (m+1) +1)mH —1)
After observing that lim, ..o (1 + =) = lim, o0 (1 + (x+1)) = ¢t we have:
Cinf 1.4 +
lim  —mar _ £ < (3.9)

Vosemoee Ol — (B4 1)k = 1) (F+1)(eF — 1)
(Il
Let us note that k£ has a practical meaning. If £ < 1 then the processing rate for
all processors Am is less than transmission rate and parallel processing has no sense

for such a system. Therefore, k can be treated as a global characteristic of a system.
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We finish this section with an observation on the way of activating the processors
in the solutions of the linear problem LP SSML. Activation of the processors is ruled
by two effects: memory limitations and schedule length minimization. When memory
size on one processor is small then more processors must be used, though it is not as
efficient as it would be in unlimited memory case. On the other hand, when compu-
tation times are short in relation to communication times then it is advantageous to
use few processors. Hence, in our performance simulations for A =1E-6 less machines

were used for some given volume V' than for A =1E-3.

3.2.2 Binomial trees

In this section we consider communications in binomial trees under two activation

strategies: Nearest Layer First (NLF) and Largest Layer First (LLF).

Nearest Layer First

The problem of determining optimal distribution of load V' in a binomial tree of
degree p under NLF strategy can be formulated as the following linear program:

LP NLF:

minimize C),4.

subject to:

i h
aVA+Y (S+CauV+CpV > (p+ 1) 7 ') <Cpaw i=0,...,h  (3.10)
j=1 k=j+1
h

a+pY (1+p) e =1 (3.11)

i=1

B> oV >0 i=0,....,h (3.12)

In LP NLF «;, for (i = 0,...,h), are variables denoting the amount of load
assigned to each processor in layer i. In inequalities (3.10) term Z;ZI(S + Ca;V +

CpV ZZ:jH(p + 1)*77=1ay) is the communication time spent until activating layer
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1. Note that layers 1,...,7 receive load not only for themselves but also the load to
be redistributed to layers i + 1,..., h. Constraints (3.10) ensure that all layers stop
computing before the end of the schedule C,,,,. By equation (3.11) all the load is
processed, and by (3.12) assignments of the load can be accommodated in the memory
buffers of the processors. LP NLF is formulated with the assumption that all h layers
are working. However, it may happen that fewer layers will process all the load. In
such a case some layers are not assigned any load, but still communication startup
time appears in inequalities (3.10). This case is easy to recognize: some layers receive
0 load, and decreasing h reduces C),,,. Hence, less layers should be used. By binary
search over the admissible numbers of layers the appropriate value of h can be found.

Now, we will study performance of NLF algorithm in a binomial tree of degree
P =4, and with h = 7 layers (m = 78125 processors). This tree can be embedded
into a 2-dimensional toroidal mesh as described in [27] (see Fig 2.5(d)). We modeled
a system with A = C' =1E-6, S =1E-3, and memory sizes from B = 10 to B=1E9.
The schedule lengths C),,, vs. size of the problem is depicted in Fig. 3.4. Line "inf"
represents a system with unlimited memory. Line "sat" represents a system with total
memory size equal V. Thus, in saturated case each processor has memory buffer of

size B = ( v Schedule lengths for "sat" and "inf" cases are very close to each

+1)h -
other in thz c;se of big volumes V. As it was in the case of star topology, the two
lines form a tunnel in which plots for particular memory sizes are located. In Fig. 3.5
only "sat" and "inf" cases are depicted for various processing rates A. The behavior
is similar to the star topology: For big load volumes V' the two lines are parallel. As
A increases (e.g. because the application is computationally intensive) the "inf" line
moves up until it overlaps with line "sat". Now we are going to calculate the relative

width of the tunnel for big V' and %.

. . . . inf
Lemma 3.4. Under NLF strategy in binomial tree limy_. ,—o Cmaz —

sat
max

Proof. We will give a formula for the ratio of schedule length C** "in the sat-

max

urated case and C"/ in the unlimited memory case. In the saturated case all pro-

cessors are assigned the same load equal to the buffers size B = o,V = ﬁ, for
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i =0,...,h. C5% is determined by the duration of all communications plus pro-

cessing on layer h. Thus, C5% = hS + Cm—v 2?21(1 + pZZ:jJrl(p + 1)k=i-1) 4 A_ni/’

max

where m = (p + 1)" is total number of processors. This formula can be reduced to

Cs® = hS + VFA + %}i)h_l). The formula expressing C/ has been derived in

i +p+1)"h4 o(hp—1
[45]: Cinf, = A(V + S )petetd e g o=l Hence,
; _o_\pptptl)"+p | o(hp-1)
C;?Jx _ A(V ™ p+p) p+p + p+p (3 13)
T .
Ciet, pS + LA 1 YOGroD
Since m = (p1)" it can be verified that
cinf p(p-&-p-&i)*h-%p plp+1) "
3 mazr — |3 pPtp — P —
llmVHoo,pHO Csat = hmpﬂo %+p((p+ﬂ1;h_l> — m =1. 0

Thus, in binomial trees spanned in homogeneous computer networks, under NLF
strategy, when size V' of the problem is big, and the problem is computationally

intensive (p — 0), the influence of the limited memory is insignificant.

Largest Layer First

In this section we consider a different strategy of activating the layers. According
to LLF strategy h is the first layer, and 1 is the last layer activated. We will give
a linear program solving the problem of distributing the load optimally in binomial
tree under LLF. Then, we compare the results of modeling performance of systems
with LLF and NLF scattering methods.

Before formulating a linear program for LLF strategy let us analyze the duration
of the communication from the originator to layer «. There are p(p+1)""! processors
in layer . First, the originator sends over each of its p communication links p(p +
1)"2a;V load units to layer 1. The remaining load p(p+1)*"2a;V will be sent to layer
i via direct successors of the originator in layers 2,. .., (cf. Fig. 5.6). Each processor
in layer j < i — 1 sends p(p + 1)""972q;V units of data to layer j + 1. The remaining
p(p+1)7772q;V units of the load are sent from layer j to layer ¢ via j’s direct binomial
tree successors in layers j 4+ 1,...,4. Finally, layers 0,...,7 — 1 send «;V load units

to layer i. Note that all layers communicate synchronously, and the same amounts
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of load are sent from active layers to the next activated layer. Total communication

time is equal to Si + Ca;V (1 + ij;%(p + 1)772) = Si+ CoyV(p+ 1), The

problem can be solved by a linear program:

LP LLF:
minimize C),4.
subject to:
h
aVA+D (Sj+Clp+1)"qV) <Chaa i=0,...,h (3.14)
j=i
h
ap —i—pZ(l +p) oy =1 (3.15)

=1

B> a,V >0 i=0,....h (3.16)

In LP LLF inequalities (3.14) guarantee that all processors finish computing be-
fore the end of the schedule. By equation (3.15) all the load is processed, and by
constraints (3.16) all processors are able to accommodate the assigned load. It may
happen that the assumed number of layers A is too big and a reduction of h results
in shorter schedule. Yet, the problem becomes more involved because we send to
the larger layer first. A solution of LP LLF may activate layers non-continuously.
Some layers may receive load for processing, while the remaining layers would still
contribute startup time S in inequalities (3.14), though they receive nothing. We
observed that in the solutions of LP LLF layers with higher index (i.e. with more
processors) are assigned some load first in consecutive manner (without gaps). Thus,
for the given h it is possible to check LP LLF only with the last layers h,...,h — J.
The best number of utilized layers can be found by binary search over the range of h.
In the worst case this procedure must be repeated for various values of h. Hence, the
total number of calls to LP LLF needed to find optimum distribution of the load is
O(hlogh), where h = log,,,; m, and m is the number of available processors. In the
following we prove that this strategy leads to optimal solutions because it is always

profitable to activate layer i + 1 (with more processors) before layer i.
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Lemma 3.5. Let C! . denote schedule length for some volume V assigned to layer

i but not to layer i + 1, and C*HL when V is assigned to i + 1, but not to i. Then,
ct o> Ol

max max*

Proof. Let us calculate length of the schedule when layer ¢ is used to process V,

but layer ¢ + 1 is not exploited Layer i has p(p + 1)*"! processors. Thus, C¢ =

max

S+ C(p + )Z (p+1)z T+ (p+1)z r = S5+ Q + (pf{/)'ifl' Analogously, Oﬁ;:zlz =
S + C—V + (p+1) Hence, C% . > CFL for i > O O

By the above lemma it is profitable to activate the layers consecutively from the
layer with more processors to the layer with less processors (without gaps in between).

We studied the performance of a computer network with embedded binomial tree
under LLF strategy. In order to find the shortest processing time over various orders
of activating layers we used the result of Lemma 3.5, and increased the number of
active layers from the last one to the first. The solution with the smallest schedule
length was selected. In general, the behavior of C,,,, under changing V, B, A is very
similar to the case of NLF behavior. Schedule lengths in the saturated system and
in the system with unlimited memory is presented in Fig. 3.5. Also here a tunnel
between "inf" and "sat" cases can be observed. In the following lemma we will show
that for big volumes and computation-intensive applications the relative difference

between the "inf" and "sat" cases is very small.

Lemma 3.6. Under LLF strategy in binomial tree limy_. ,—o Cj;l@x =

Proof. Schedule length in the saturated case is C5% = Z?ZI(S i+ L+

1)771) 4+ 4L = S(h+1)h/2+ K(Cm—_]L + A), where m = (p+ 1)" is the total number

of processors. The formula for C**/ has been given in [45]:

AV A . !
Cind, =7 "pzc” O (h—i+ 1P,

=1

where: M =1+ 2(1 — g2), cagyy = 1+ p(p +1)"7, a0 = 1, and PF = [ cao).
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Figure 3.6: Schedule length in a binomial tree under LLF strategy with unlimited
and saturated memory

Thus in LLF strategy,

AO’ Cr(j -1 j - T
C;r’gx =37 Z; 1 (J%)ﬁ ( g:l(h —i+1)P,) (3.17)
sat Vinm=1 ’
Csat S(h+1)h/2+ m (C1= 4 A)
When the volume of load is big and the application is computationally intensive, we
have:
VA
inf H%(l*%)
I R
—00,0—0 Ulnas —00,p—0 W(pT + 1)
lim o lim ———— ]
1 1 = hm iy
0 (12 sL—p=))(pm= + 1) 01+ B(1 = 57)
since limpﬁo P =1, we applied de I'Hopital rule and obtained:
(1- ) h—1 i
R e e e
h

A similar conclusion can be drawn as in the star interconnection and as for a bino-
mial tree under NLF strategy. In binomial trees spanned in homogeneous computer

networks, under LLF strategy, when size V' of the problem is big, and the problem is
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computationally intensive (p — 0), then the relative influence of the limited memory
on the processing time is negligible.

In our modeling of LLF strategy we observed several interesting facts:

e It was shown in [45] that LLF strategy is optimal in a system with unlimited
memory. In the saturated system it is not, because LLF has greater number of
communication startups than NLF. This communication overhead is not com-

pensated for by a better distribution of the load and shorter computation time.

e In the earlier publications on divisible load theory [27, 45| systems with unlim-
ited memory were considered (i.e. case ’inf’). Linear Programming formulations
had more restricted form and e.g. inequality (3.14) had form of equation. As
a result in LLF strategy, when volume V' is small and the available memory is
not restricted, only few layers can be activated (even if we have many processor
layers) to satisfy the classical version of LP LLF. Thus, small increase of V' may
be satisfactory to activate more layers and in this way reduce schedule length.
This is demonstrated in the example presented below. Consequently, with V'
increasing C/ may decrease. This is evident in Fig. 3.5 where lines for ’inf’

max

case and A = 1E-3, and A = 1 are not smooth for small V.
e The above irregular behavior was not observed in the LP NLF model.

e We observed that for A ~ C' only the last layer was populated. When A > C

the layers closer to the originator were more often populated.

e None of NLF, LLF strategies dominates the other in all cases. However, for big

volumes and LLF shorter schedules were obtained.

Example. Consider a system with h = 2,p = 4, A = 1E-3, C = 1E-6, S =1E-3,
V' = 20. In the system with unlimited memory [45] equations describing distribution
of the load have positive solution only for one layer (5 processors altogether). Schedule

length in this case is C3% = 0.0048. However, when V = 24 all 25 processors can
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be activated, and C** = 0.003. Using LP LLF, and only the last layer we obtain

max

Crnaz =~ 0.0029 in the first, and C,,,. ~ 0.0031, in the second case. O

3.2.3 Conclusions

In this section we analyzed divisible load distribution in systems with a single level
of limited memory. Interconnection topologies of a star, and binomial tree under
two different distribution strategies were studied. It appeared that in homogeneous
systems and big computationally intensive applications mainly the processor and
communication speeds limit performance of the systems. This conclusion is satisfied
as long as the load fits into the available memory buffers and processing rates are
constant for all assigned sizes of the load. For practical reasons these assumptions
should be released. Such a relaxation is considered in chapter 4.

In our discussion we assumed that only the size of the receiver memory is restrict-
ing distribution of the load. The communication system is not limiting the size of
the message. This may not be the case in practice. Therefore, a system with limited
communication system capacity will be a subject of the further analysis in chapter 5.

In the next section we study the case of and arbitrary processor activation order.

3.3 Arbitrary activation sequence in star

In this section we address the problem of finding the optimal sequence of activating
processors in a star network when memory buffers have limited sizes and communi-
cation delays include startup times. In the preceding discussion it was assumed that
the sequence of activating processors is fixed. Here we relax this restriction and allow
for selecting the best sequence of activating processors. This problem was raised in

[53].
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3.3.1 Linear programming approach

In this section we formulate the problem of selecting the optimum processor activation
order as a mathematical programming problem.

Let us denote by a binary variable z;;, for 7, j = 1,...,m, the order of activating
the processors. z;; = 1 denotes that P; is activated on i-th position in the sequence.
Otherwise z;; = 0. The problem of optimal activation of the processors and distribu-
tion of the load can be formulated as a mixed nonlinear programming problem:
MNP:
minimize C),4.

subject to:

OéQAQV § Cmax (318)

Zxkj(ajVCj + Sj) + ZZE@'O{]’VAJ' Z Cmam for i = ]_, o, (319)

k=1 j=1 j=1
» <1 forj=1,....,m (3.20)
i=1
» ay<1 fori=1,...,m (3.21)
j=1

z;; € {0,1}  fori,j=1,...,m (3.22)
ag + Z injaj =1 (323)
Jj=1 =1

B; > oV >0 for j=0,...,m (3.24)

The above MNP formulation is a mixed problem because we have both binary
variables x;;, and continuous variables o;, Cpq,. MNP is nonlinear because in con-
straints (3.19), (3.23) we have multiplication of the variables. Equations (3.18) and
(3.19) demand that all processors finish computing before C,,,,.. In inequalities (3.19)
term >, > iy Trj(a;VCj+S;) is the time of sending the load to the processor acti-

vated as i-th in the sequence, and ) 7" | x;;4;a;V is the computation time of the i-th
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processor in the sequence. Constraints (3.20)-(3.22) guarantee that the sequence of
activating the processors is correct: each PE is activated at most once by (3.20), each
position in the activation sequence is occupied by at most one processor by (3.21).
Due to weak form of the inequalities some processors may remain idle. Equation
(3.23) guarantees processing of the whole load. Observe that some machines may be
missing in the activation sequence, and x;; = 0 for 7,5 = 1,...,m is a valid solution
for constraints (3.20)-(3.22). Yet, it would not be a valid solution to our problem
because appropriate communication time would not appear in equations (3.19). In
order to prevent such a situation term ) ., z;;&; in equation (3.23) guarantees that
only the chunks sent to the processors (i.e. with z;; = 1) are counted as really pro-
cessed. Equations (3.24), guarantee that the load can be feasibly assigned to the

processors. Let us apply the above formulation to solve Example 3 from [53].

Example. We have the same data as in the previous example: m = 4,V = 100,
Ao=1,A1 =54y =4 A3 =3, A4 =2, By =10,B; = 20,By = 45,B; = 15, B4 =
30, Cy =4,05,=3,05=2,C,=1,5,=0,fort=1,...,4.

MS Excel ver.7.0 managed to obtain the following solution to MNP:

processor | B; ; communication | computation
order completion completion
P 10 10 0 10
Py 45 | 35.2941 105.8824 247.0588
Py 30 30 135.8824 195.8824
P 20 | 12.3529 185.2941 247.0588
P; 15 | 12.3529 210 247.0588

The sequence of activating the processors, according to the solver we used, is P, Py, Py, Ps.
Schedule length is C,,,, = 247.0588, and it is better than the one found in [53]. The
reasons for this were given earlier: IBS strategy proposed in [53| is a heuristic, not an
optimization algorithm. For the same instance with V' = 50 (also considered in [53])

the following solution was obtained for MNP:
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processor | B; o communication | computation
order completion completion
Py 10 10 0 10
Py 30 | 24.277 24.277 72.832
Py 15| 9.711 43.699 72.832
Py 45 | 4.162 56.185 72.832
P 20 | 1.850 63.584 72.832

Thus, the sequence found is Py, P, P>, Py, and C),, = 72.832. O

The computational complexity of the general purpose mixed nonlinear solvers ap-
plied to MNP is high. These codes are capable of solving hard computational prob-
lems such as traveling salesman problem, quadratic assignment problem, and even
more involved ones. It has been shown in Section 3.1 that the problem of scheduling
divisible loads in a star network with limited processor memory buffers and commu-
nication startup times is NP-hard. According to the current state of knowledge [40]
only algorithms with computational complexity growing exponentially with the size
of the problem are known for this kind of problems. Thus, the codes finding optimal
solutions of MNP have the worst-case execution time growing exponentially, e.g. with
the number of binary variables z;;. As exponential functions increase explosively with
the value of the argument, exponential-time algorithms are in practice restricted to
small instances of the solved problem. This leaves space for heuristic methods which

find good solution fast, and this is the advantage of IBS strategy proposed in [53].

3.3.2 Branch and Bound algorithm

Let us note that for fixed sequence of processors activation MNP problem reduces to
LP problem defined in section 3.2.1. Therefore it can be deduced that the difficulty
of our problem consists in determining the set of processors to be activated and the
sequence of the activation. An exact optimization algorithm can be based on an

enumeration of all such sets and sequences.
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The method of dividing the set of all processor activation sequences into subsets
that are exhaustively searched and/or eliminated constitutes the branching scheme
of a branch-and-bound (B&B) algorithm. A branch-and-bound algorithm implicitly
builds a tree with all possible solutions. In our B&B algorithm no decision is taken in
the root of the tree, and the set of processors to be activated is empty. The first level
of the tree consists of solutions with only one processor: (P;),(P),...,(Py). Each
partial solution (F;) is a root of the subtree comprising solutions starting with the ac-
tivation of P;, for © = 1,..., m. The subsets of the solutions represented by the nodes
of the first level are divided (branched) at level two, to represent solutions consisting
of two processors. Hence, (P, P;) for j € {1,...,m} — {i} are successors of (F;) for
i=1,...,m. At the third level (P;, P;, P;) for k € {1,...,m} — {4, j} are successors
of (P, P;). Thus, a level r solution (P, ..., Py) has successors (P, ..., Py, ) at level
r + 1 obtained by a concatenation of (P, ..., P;) with processor P, which has not
been activated in sequence (P;, ..., P;). The depth of the tree is at most m because
no more than m processors can be activated. Note, that both the leaves of the tree
and the internal nodes are potential solutions. The tree is searched in the depth-first
order.

The second important component of B&B algorithm is bounding which allows for
pruning search tree nodes representing subsets of solutions certainly not better than
some known solution. For each node a = (P, ..., Py) of the search tree a lower bound
LB(a) on the schedule length of all the a’s successors is calculated. This lower bound
is compared with the length C of the best known solution. If C' < LB(a), then there
is no hope that any successor of node (solution) a improves the best known solution.
Therefore, successors of a are not considered any more. Value C'is updated each time
a better solution is found. Initially, the lower bound for node a was calculated as
the optimum C,,4, in the linear program (3.1)-(3.4) assuming a processor activation
sequence (P, ..., Py, PJdZ'(Z)), where Z = P—{P,,..., P} is the set of the processors
not included in a, and symbol Pi‘dZ ‘(Z ) stands for a sequence of |Z| copies of an ideal

processor Pyy(Z). Pu(Z) has all the best parameters of the processors in the set
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Z. Hence, P,4(Z) has processing ratio A;; = minpez{A4;}, communication link with
communication rate Cj; = minpcz{C;}, and startup time S;y = minpez {5}, memory
buffer size is B;y = maxpecz{Bi}.

Unfortunately, the lower bound calculated in this way has two disadvantages.
Firstly, when communication delay is big it may happen that the whole volume V'
of the load can be processed on only a few processors in shorter time than the time
needed to activate all m processors, and our lower bound is not correct. Consider an
example: V =10, m =20, A, = 1,C; =0,5; =1,B;, = 10, for i = 1,...,m. The

load may be processed by using only four processors in C}, ..

= 5 using distribution
a; =4, a0 = 3,a3 = 2,4 = 1. The time needed to activate all m = 20 processors

is 20 > C*

max*

Note that if all m processors were used then some of them would
receive no load (in the example oy = 0, for [ = 5,...,m). Thus, the solutions of the
linear program (3.1)-(3.2) for sequence (P, ...,Pk,Pildzl(Z)) with oy = 0, for some
[, indicate that the sequence is too long, and the lower bound is inaccurate. In
other words, some processor P, introduces a communication delay contributing to
the schedule length, but does not compute. Therefore, P, can be eliminated from
the activation sequence without increasing the schedule length. We cannot remove,
however, the real processors from sequence a. The second disadvantage of the above
method appears when the ideal processor is superior to the real processors in the
sequence a. Then, the real processors may, again, receive no load. Both situations,
can be dealt with by decreasing the number of ideal processors until all processors in
the sequence receive some load. For the above reasons the procedure of calculating the
lower bound has been extended by iterative decreasing the number of ideal processors

until all processors receive some load.

3.3.3 Heuristic algorithms

The problem of optimal scheduling divisible load in a heterogeneous star with commu-
nication startup times and limited memory sizes is computationally hard. The exact

optimization algorithm presented in the previous section has exponential execution
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time int the worst case. Therefore, it is reasonable to consider heuristic algorithms
as alternative methods of finding solutions to our problem. Heuristics, are low-order
polynomial time algorithms providing feasible solutions. However, the solutions de-
rived by them are not guaranteed to be optimal.

The heuristic methods we studied try to find the best sequence of processor ac-
tivation, and the set of working processors. The first set of heuristics activates all
available processors according to a single processor parameter. Then the distribution
of the load (i.e. «;’s) is found using formulation (3.1)-(3.4). Thus, we studied heuristic
A which ordered processors according to the nondecreasing value of processing rates
(i.e. A;’s). Analogously, heuristics C, and S were analyzed. Heuristic, B ordered pro-
cessors according to nonincreasing value of buffer sizes B. The second set of heuristics
intends to combine two parameters of processors. Heuristic C/A orders processors
from the processor with the least value of % to the processor with the biggest one.
Heuristic S/A, is formulated similarly. Heuristic SC orders processors according to
the increasing value of S;C;. Analogously, method B/A orders processors according
to the decreasing values of %. The above group of heuristics will be called primary
heuristics.

Not always are we allowed to take all the processors available in a computer
system. More often only a subset is admissible. Activating too many processors may
introduce costly communication delays. Consequently, a second group of heuristics
has been devised. Processors are ordered as in one of the previous methods, but
only a minimum admissible number of the processors sufficient to hold the whole
load V' in the memory are selected from the beginning of the list. The distribution
of the load is calculated using a linear program analogous to formulation (3.1)-(3.4).
Heuristics of this type are conservative in using processors because only few of them
are selected from potentially large processor set. This group of heuristics will be
called m-heuristics. Therefore, heuristics called mA, mB, mC, mS, mC/A, mS/A,
mB/A, mCS were studied.

Two additional heuristics have been used as a reference. Algorithm Rnd activates
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all processors in random order. Method mRnd orders processors randomly, and uses

a minimum number of the processors heading the list which suffice to hold the whole
load.

3.3.4 Computational experiments

In this section we examine performance of the heuristics, and B&B algorithm. All
computational experiments were performed on a PC, with 950MHz Pentium III, and
Windows 2000. The algorithms were implemented in Borland C++ version 5.5.1. The
data sets for the tests were generated using uniform distribution of the parameters
from interval [0,x], where z was given. Two sets of experiments were conducted.
The first one was intended to resemble parameters of a real computer system, where
computations are slow and time-consuming, while communication is relatively fast.
Thus, processor parameters were drawn from the following intervals: A; € [0, 1E-2],
B; € [0,1E6|, C; € [0,1E-6], S; € [0,1E-2]. The instances generated in this way
will be called dataset 1. In the second set of experiments parameters A;, C;, S; were
drawn from interval [0,1], and B from interval [0,1E6]. This dataset will be called
dataset 2. The parameters of the processors were generated independently of the
other processors’ parameters. Thus, the computing and communication environments
are heterogeneous. Unless otherwise specified m = 8,V = 1E6. The influence of
processor parameters (A;, B;, C;,S;) on the performance of the algorithm has also
been examined. In these experiments all the processors had the same fixed value of
the examined parameter. For example, when the influence of processing rate was the
subject of the study, then the value of processing rate for all processors has been
set on the same value A. The other parameters B;, C;, S;,m,V were generated as
previously specified. Each point in the following charts is an average of at least ten
instances. The execution time of the algorithms is analyzed first, the quality of the

heuristic solutions is considered later.
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Time performance of the algorithms

In Fig. 3.7 execution time of the B&B, and heuristic algorithms as a function of
processor number m is presented. In order not to confuse the reader by excessive
number of details only four lines are shown in Fig. 3.7. The first two lines from the
top represent average execution time of B&B algorithm for datasets 1, and 2. The
third line from the top shows an average execution time of all primary heuristics.
The primary heuristics obey the same rule: sorting the processors according to some
parameter(s), calculating distribution of the load for all m processors using linear
programming. Hence, there is no big variation of the execution time among the
primary heuristics, and it is sufficient to represent them by an average execution time.
The fourth line is an average execution time of m-heuristics. Also m-heuristics have
the same fixed structure, and can be represented by a single line without losing much
of information. As it can be clearly seen B&B algorithm has an exponential running
time. The execution time of B&B algorithm depends on the data set. The instances
with fast communication tend to be computationally harder. The execution times of
the primary heuristics are polynomial functions of m. For m-heuristics the execution
time is almost constant because the cost of linear programming is dominating their
running time. The sizes of the linear programmes of m-heuristics are very similar
because volume V' of the load is constant, and memory buffers sizes are drawn in the
way not depending on m.

In Fig. 3.8 dependencies of the B&B execution time on processing rate (denoted
A), buffer size (B), transfer rate (C'), and load size (V') for the dataset 1 are depicted.
As it was explained, dependence on each of the parameters A, B, C' was tested after
fixing the same value of the given parameter on all processors. The dependence of the
B&B execution time on communication startup time S in range [1E-6,1E0| has also
been tested, but no relation between S and the execution time has been observed.

It can be seen in Fig. 3.8(a) that the instances with very small A, or with very big
A are easy to solve. In the first case processors are very fast and there is no incentive

to use many processors except for the need for sufficient memory size to hold the load.
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Figure 3.7: Execution times of the B&B algorithm and heuristics vs. m.

The communication costs can be minimized by using only few processors. Hence, the
optimum solution is usually found in the upper levels of the search tree, and the leaves
of the search tree are hardly ever reached. On the other hand, when all processors are
very slow (A is big), the computation time dominates the schedule length. The influ-
ence of the communication delays is minor. Due to the rounding error the procedure
calculating the lower bound becomes "myopic" and does not recognize the differences
in communication cost resulting from various processor activation sequences. The
procedure returns values equal to the length of the schedule when all processors are
working without communication delays. A solution with all m processors is found in
the first leaf of the search tree. After this all existing branches are pruned because
the lower bound is the same as the schedule length for the solution found in the first
leaf.

In Fig. 3.8(b) dependence of B&B execution time on the size of memory buffer
is presented. When B; = V/m all processors must be used, and their buffers must
be fully utilized. Therefore, all leaves of the search tree represent the only feasible

solutions. Nevertheless, B&B algorithm verifies all internal nodes of the search tree
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just to find that they are infeasible. Identifying an infeasible linear programme is
faster on average than solving the same size feasible linear programme. Therefore,
the execution time of the algorithm initially grows with growing memory size. When
memory sizes of the processors become sufficiently big, they no longer determine
selection of the best solution, and the dependence of the B&B execution time on B
levels off.

In Fig. 3.8(c) dependence on the transfer rate is shown. The instances with small
C are the hardest ones. When (' is small, all the communication links have high
bandwidth, and it is possible to activate all processors at relatively low cost. The
dependence of the processing time on the processor sequence is not very significant
because all processors work, and computation time dominates. Hence, the lower
bounds are close to the value of the optimum solution, and it is not possible to prune
the search tree at the very initial stages. When C' is very big communication delays
are very big compared to the computation time. As it was in the case of big A, also
for big C' the lower bound becomes "myopic", and does not recognize differences in
the schedule length resulting from different activation sequences. The schedule length
of the first feasible solution is equal to the lower bound calculated in all other nodes
of the tree, and the tree is pruned.

In Fig. 3.8(d) dependence of the B&B execution time on the size V' of the load
is shown. For small V' computation time is short because small problem sizes do
not justify communication costs induced by the startup times. Hence, the optimum
solution is found in one of the initial stages of the search tree. With growing V' the
number of activated processors is growing, and the size of the searched tree is growing
too.

From the above considerations we infer not only on the computational tractability
of particular instances, or patterns of the optimum solutions, but also on the correct-
ness of the results derived by the B&B algorithm. These depend on the value of the
parameters because the representation of the floating point numbers has a limited

accuracy which may result in a premature search termination.



CHAPTER 3. SYSTEMS WITH SINGLE MEMORY LEVEL 49

Figure 3.9: Average quality of the primary Figure 3.10: Average quality of the pri-
heuristics vs the number of processors m, mary heuristics vs the number of proces-
dataset 1, m < 11. sors m, dataset 2, m < 11.

Quality of the solutions

In this chapter we examine quality of the solutions obtained by the heuristic methods.
In all the figures the average relative distance from the optimum solution C7, . or a
lower bounds on the schedule length [b is shown on the vertical axis. The closer a line
is to value 1 the better performance is. First we study the influence of the processor
number m, then of the other instance parameters.

In Fig.3.9 the dependence of the average quality of the primary heuristics solutions
on the number of processors m is depicted, for the dataset 1. Though C' is small in
dataset 1, heuristics C', and C'//A give good solutions. On the other hand heuristic S/A
in many cases performs even worse than the solution selected randomly by heuristic
Rnd. In Fig.3.10 the same dependence is shown, but for dataset 2. As it can be
seen the variance of the quality is much bigger than in dataset 1. Still, heuristics
C,C/A,CS based on transfer rate C' give the best solutions. Heuristics A, B/A give
the worst solutions.

Fig.3.11 shows average quality of the primary heuristic solutions for m € [5,95].

In these experiments the optimum schedule length was unknown for computational
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Figure 3.11: Average quality of the primary heuristics vs the number of processors
m, for big m.

complexity reasons. The quality of the solution was expressed as an average distance
from a lower bound on the schedule length. The lower bound was calculated as

Ib = min} {S;} + (ZniziCi 1)va —. In the above lower bound Y7 =+ is total

min{ll{Ai} =1 A—Z i=1 Ai

speed of the processors, —--— is the computation time under assumptions that all
i=1 A4,

processors work in parallel, —

1 v . .
WL A ST, is the smallest possible assignment of the

load to a processor assuming that all processors work in parallel. Thus, min}*,{S;} +

m.inﬁn,%l{cf} v is a lower bound on the communication delay. Only the extreme
miniZ, {As} YO A;

results of all heuristics achieved by heuristics A, C, and the reference heuristic Rnd

are shown in Fig.3.11. As it can be seen there is no significant difference in the
performance of all the primary heuristics. Heuristic C' weakly dominates in dataset
2. The dataset 2 is harder for primary heuristic and big m than dataset 1.

In Fig.3.12, and Fig.3.13 dependence of the average quality of the m-heuristics

solutions for datasets 1, and dataset 2, respectively, are depicted. For dataset 1
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Figure 3.12: Average quality of the m- Figure 3.13: Average quality of the m-
heuristics vs the number of processors m, heuristics vs the number of processors m,
dataset 1, m < 11. dataset 2, m < 11.

heuristics A,mB/A are better (cf.Fig.3.12), and for dataset 2 heuristic C' is domi-
nating (cf.Fig.3.13). Intuitively this is a reasonable situation because in dataset 1
communication is fast (C' is small) and secondary parameters such as A;, B; come
into play.

For big numbers of processors performance of m-heuristics is shown in Fig.3.14
for dataset 1, and in Fig.3.15 for dataset 2. Again an average distance from the lower
bound [b is the value shown on the vertical axis. For dataset 1 (Fig.3.14) heuristics
based on processing rate and memory size, mA, mB/A, are the best. On contrary for
dataset 2 (Fig.3.15) heuristics based on communication rate mC, mC'S, mC'/A are the
best. The reason for this behavior is that dataset 1 has small communication rates,
and startup times. Hence, other parameters come into play in dataset 1: computing
rates A;, and memory sizes B;. The heuristics based on these parameters are able to
give good solutions. For more general instances, as in dataset 2, the communication
transfer rate is the dominating parameter.

Now we will examine the quality of the solutions obtained by the heuristics, as a
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function of the processing rate, the communication rate, the startup time, the mem-
ory buffer size, and the volume of the load. All results are obtained for dataset 1. As
it can be seen in Fig.3.16 there is no big difference in the performance of the heuris-
tics when A is changing. Only for small A can any difference be observed. For big A
computation time dominates in the schedule length. Changes in the communication
cost resulting from reordering the processors are minor compared to the computa-
tion time. Hence, the sequence of processor activation is almost immaterial. Albeit
only one processor is able to compute all the load, all m processors are used in the
optimum solutions when A is big. Since m-heuristics tend to use as few processors
as possible the average quality of their solutions is m times worse than the optimum
(cf.Fig.3.16(b)).

Dependence of the average quality of the solutions on transfer rate can be seen
in Fig.3.17. If C' is big then communication delay dominates in the schedule length,
and the sequence of processor activation has minor influence on the schedule length.

For this reason the bigger C is the better quality of the heuristic solutions is. No
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Figure 3.16: Average quality of the solutions vs A for a) primary heuristics, b) for
m-heuristics.

primary heuristic clearly outperforms the other primary heuristic (Fig.3.17(a)). For
m-heuristics (Fig.3.17(b)), methods mA, mB/A are the best. This is a result of
two facts: in dataset 1 communication delays are not big, and only minimum set of
processors should be used. Thus, fast processors and processors with big memory
buffers are preferred.

The dependence on buffer size B, startup time S, and load size V are similar.
Therefore we only outline the results for these dependencies. For S €[1E-6,1E(|, and
B €[1.25E5,1E8], the average distance of the primary heuristic solutions from the
optimum is less than 4%. For V' €[1E0,1E6| the distance from the optimum decreases
with V' increasing in a way resembling dependence on A (cf. Fig.3.16(a)). The
performance difference between the primary heuristics is minor. Methods mA, mD/A
dominated among the m-heuristics when S, B,V were varying in the aforementioned
intervals. The reason for this behavior is that dataset 1 has small communication
costs. No dependence of the quality on .S,V has been observed for m-heuristics. The
quality of solutions derived by m-heuristic deteriorates when the buffer size increases

because less processors are used.
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Figure 3.17: Average quality of the solutions vs C for a) primary heuristics, b) for
m-heuristics.

We conclude from the above results that m-heuristics give worse solutions than
the primary heuristics. On the other hand m-heuristics are much faster. Heuristics
C,mC'S based on transfer rate are the best when communication delays are not neg-
ligible. When communication delays are small (as in dataset 1), and only a small set
of processors can be used (as in m-heuristics), then selecting fastest processors with
the biggest memory sizes is advantageous, which is not surprising. Thus, the perfor-
mance of the heuristics depend very much on the communication and computation

environment.

3.3.5 Conclusions

In this chapter we analyzed a problem of optimal distributing of the divisible computa-
tions in a star-network of heterogeneous processors with single level of limited memory
and non-zero communication startup times. The problem has been shown to be com-
putationally hard. Therefore, exponential optimization algorithm and polynomial-
time heuristics have been presented. The execution times of the proposed methods

have been measured and analyzed. As a result it has been observed that the usability
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of the optimization algorithm is limited not only by its running time, but also by
the limited accuracy of the floating point numbers representation. The quality of the
solutions generated by heuristics has been also examined. It appears that heuristics
based on communication transfer rate are superior. However, in certain situations,

also other parameters, such as computing rate and memory buffers may come into

play.



Chapter 4
Systems with Hierarchical Memory

In the earlier DLT literature processing time dependence on the size of the load was
linear. This is justified in flat (non-hierarchical) memory systems. Though core mem-
ory sizes grew rapidly over the years, the memory size limitations are an important
factor in high-performance computing. In the earlier papers [53, 38| considering lim-
ited memory in DLT it was assumed that memory limits are restrictive, i.e. assigning
load beyond memory limit is forbidden, and results in an infeasible solution. Yet, in
most of contemporary computer systems memory is hierarchical. The higher certain
level of memory hierarchy is, the faster transmission can be achieved. But also the
higher certain level of memory hierarchy is, the smaller the memory size is. The low-
est memory levels are implemented either as virtual memory storing memory pages
on disks or as files directly accessed by the application. Huge sizes of disk storage can
be achieved at relatively low costs using off-the-shelf components. Thus, instead of
strictly forbidding a load assignment exceeding certain memory level size, it is more
practicable to use the next memory level with longer access time, and hence, smaller
computing rate. We will call the applications using external memory (i.e. disks) the
out-of-core computations. In Fig. 4.1 we demonstrate that using out-of-core memory
makes a big difference in the computation speed. A dependence of the processing time
of a simple search for a pattern in a linear array vs. array size for various computing

platforms is shown in Fig. 4.1. Even for this simple application, with a predictable
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Figure 4.1: Processing time of a simple search for a pattern in a linear array vs. array
size. In the legend Wz denotes Windows version x, Lk2.4 denotes Linux with kernel

version 2.4, SGIPC - SGI Power Challenge, SGIPCXL - SGI Power Challenge XL,
My denotes core memory size y MB.

memory access pattern using more memory than available in the core results in an
increase of the execution time by at least an order of magnitude.

There is a broad class of the out-of-core parallel applications. These include data-
intensive algorithms [66] for processing information from large scientific experiments,
data mining, visualization |8, 34|, simulation, often with the need for solving large
linear algebra problems [67]. Gaussian [7] is an example of a commercial package
using out-of-core memory. In [29] an environment for out-of-core parallel applications
has been proposed. Computational fluid dynamics and large linear algebra problems
have been used as benchmarks. The access to the major data arrays was achieved
by using indirect addressing that has been known at the runtime only. It turned out
that by using locality in the algorithm and dividing the arrays into small sections that
fit in the core memory a fourfold reduction of the execution time has been obtained

compared to the use of virtual memory.
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Thus, an alternative to the out-of-core processing is to divide the load into many
small chunks that fit into the available core memory. The chunks are sent to proces-
sors in an iterative manner. In this way it is possible to perform fast computations at
the cost of additional communications. We will call this way of computing a multi-
installment divisible load processing. Multi-installment processing has been consid-
ered, e.g., in [18, 69] and is also subject of Chapter 6. In this chapter we compare

efficiency of the out-of-core with the efficiency of multi-installment computations.

4.1 Mathematical Models

In this section we formulate mathematical models for divisible load computations in
a system with hierarchical memory, and for multi-installment computations.

Let us start with the description of the system architecture. We assume a star
interconnection network. The load is sent to the processors in a single communica-
tion. P receives the load first, P, as the second processor, etc. P, receives its load as
the last one. The originator does not compute, but communicates only. As already
mentioned in Section 2.2 this assumption does not limit the generality of our consid-
erations, because computations on the originator can be represented as an additional
processor.

The computations are performed by processors connected to the hierarchical mem-
ory systems. The highest level is constituted by processor registers. The lowest level
is disk storage. The memory sizes increase, and transfer rates decrease with the
decreasing hierarchy level. Hence, the processing time depends on the amount of
allocated memory. Processing time t; on processor P; is a piece-wise linear function
of the assigned load x: t; = max{A;;; + xA;j»} (cf. Fig. 4.2), where A;;;, A;jo are
the coefficients of the linear function describing processing time on processor F;, at
jth hierarchy level. Note that A;;; is the cost of starting computations on processor
P;. For practical reasons only two levels of memory hierarchy: core memory, and

virtual memory (or other form of disk storage), are considered in this chapter. The
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Figure 4.2: Memory hierarchy diagram, and a piece-wise linear dependence of pro-
cessing time on the size of the load.

reason for this simplification is that divisible load computations are well suited for
data parallel applications processing large volumes of data. Therefore, high levels
of memory hierarchy, such as processor registers and caches, are not able to hold a
substantial part of the assigned load. Due to the uniform and regular structure of
divisible load applications memory access patterns are very predictable and cache
management algorithms make this memory level transparent. The processor cache
level of memory hierarchy could be visible for the application if the memory access
pattern were random. However, to our best knowledge, no divisible load processing
problem has been presented with random memory access patterns. The simplifica-
tion of the model to only two memory levels can be easily relaxed as we explain
in the further part of this section. We denote processing time on processor P; as

t; = max{AL + xAl, Al + 2 AL} where Al AL, are the coefficients of the linear
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function describing computing time in the core memory, and A%, A% are the anal-
ogous coefficient for computing out-of-core using disk storage. The size of the load
swp; beyond which operating system starts using the disk, and for which the above
two functions are equal, i.e. Al +swp; AL, = AY + swp; AL will be called a swap point
of processor P;.

Let us observe that the above piece-wise linear dependence of the processing time
on the load size may have also a different nature. Not only can the memory hierarchy
be modeled in this way but also referencing memory on remote hosts or nonlinear
dependence of the processing time on the problem size can be dealt in this way.
Hence, after approximating a nonlinear convex function of the processing time by a
piece-wise linear convex function of the load size our method can be used to represent
more complex DLT applications.

We will formulate the problem of constructing optimum distribution of the divis-
ible load computations as a linear program. Linear programming, is a special case
of mathematical programming. It is used for modeling problems in science and engi-
neering [56]. Let us denote by «; the amount of load assigned to processor P;, and by

Cinaz the completion time of processing. Our problem can be formulated as a linear

program:
LP SHM
minimize C),qz
subject to:
i(sj + ;CV) + 1 < Crpgw i=1,...,m (4.1)
j=1
AL 4 ALV <t i=1,...,m (4.2)
Al + ALV <t i=1,....m (4.3)

i o; =1 (4.4)

CYZEO izl,...,m

The above formulation has 2m+1 variables, and 4m+1 constraints. On the left-hand
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side of inequalities (4.1) communication time Z;Zl(Sj + a;C;V) until activating P
is added to processing time ¢; on P;,. Hence, inequalities (4.1) guarantee that all
processors stop computing before the end of the schedule. Inequalities (4.2), (4.3)
together model a piece-wise linear processing time function of the assigned load.
Observe that (4.2), (4.3) restrict processing time t; from below, but do not bind it
from above. Sufficiency of these two constraints is guaranteed by the features of linear
programming [56]. As the linear program constraints formulate a 2m + 1-dimensional
convex polyhedron, and the objective function is a linear function of the program
variables (Cjnaz), the optimum solution is a point in a 2m + 1-dimensional space
located in an extreme corner of the polyhedron. The constraints intersecting in the
optimum corner of the polyhedron are limiting the optimum value of the objective
function, and are called active. If one of the constraints (4.2), (4.3) is active for some
7 then it is satisfied with equality, and ¢; is exactly equal to the piece-wise function
expressing the processing time. If none of the constraints (4.2), (4.3) is active for
some 7, and both are satisfied with inequality, then it means that processor P; is idle
for some time after completing computation phase. By inequality (4.4) all the load
is processed.

Note that formulation (4.1)-(4.4) can be augmented by adding a constraint of the
form o;V < B;, to limit the total memory usage on some processor P;. Constraints
analogous to (4.2), (4.3) can be added to represent additional memory hierarchy levels.
For the feasibility of this method it is necessary, that the dependence of processing
time on the volume of load be a piece-wise linear convex function. The shape of the
convex polyhedron and the location of the optimum extreme corner depend on the
numerical values of the coefficients in constraints (4.1)-(4.4). Therefore, no closed-
form expression of «; seems possible. Consequently, general analytical solutions are
hard to be expected.

Let us use an example to compare the above model with the earlier DLT ap-
proach. Consider a homogeneous system with two processors, and computing time

function described by the parameters: Al, = AL, = 1, A}, = AL, = 1, A} =
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Figure 4.3: Schedules for load distributions calculated assuming a) hierarchical model
of the memory, b) computing in the core memory only, ¢) computing out-of-core only.

10

Ay = =9, Al = A}, = 10. Hence, the swap points are at load size <, and

core memory is approximately ten times faster than the external storage because
A12 A22

S = 1. The load volume is V' = 2. By solving formulation (4.1)-(4.4) we obtain a
solution oy V' = 1.25, anV = 0.75, C)0 = 5.75 and the schedule shown in Fig. 4.3a.

= 10. The communication transfer rate is C' = 1, and startup time is

If a standard DLT methodology were used we would have to assume that processing
time is a strictly linear function of the load. Thus, computing = units of the load
would take either zAl, (if we assume optimistically that only core memory is used)
or x A", (if computing takes place out-of-core only). In the first case standard DLT
theory [16, 19, 35| gives solution oV = g,ag\/ = %,C’m,w ~ 4.333. But the real
schedule length for this load distribution would be approximately 10.333, due to the
hierarchical structure of the memory (see Fig. 4.3b). In the second case the standard
DLT solution is oy V = 1.095, asV = 0.905, C,,0. =~ 13.048. Yet, the real schedule
length for this load distribution is approximately 5.905 (see Fig. 4.3c). As it can be
seen in Fig. 4.3 neglecting memory hierarchy results in the significant load imbalance.
The decisions made on the basis of the average processing rates can be even worse

in heterogeneous systems. Let us consider a two processor system with processor
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P, core memory size V', and processor P, core size 0. The computing speed on the
second memory level is equal for both processors. A decision made on the basis of
the speed at the second memory level splits the load equally between the processors.
The optimum, however, is to give majority of the load to P;. Depending on the speed
of P, for the in-core computations the ratio of the optimum schedule length and the
length of the schedule based on average speed can be very big.

Now we will formulate a simple algorithm for multi-installment divisible load
processing, and a method for adjusting its parameters. Multi-installment processing
is considered in more detail in Chapter 5 and Chapter 6. By the use of installments
we want to exploit fast computing within the limits of the available core memory,
while keeping communication costs low. Let us assume that the multi-installment
algorithm divides the whole volume V' into equal chunks of size §. The processors
are assigned load repetitively in rounds, i.e. in the manner Py, P, ..., P, P, Py, . ...
The selection of the optimum chunk size § is a non-trivial problem. Therefore, we give
bounds on reasonable ¢ sizes and propose a heuristic method indicating a potentially
good value.

Chunk size 0 cannot exceed the swap point of any of the processors, i.e. § <
swp; for i = 1,... ,m. Secondly, it cannot be too small because too many messages
will be used, and communication costs will dominate the processing time. Let us
calculate the minimum chunk size for which multi-installment processing is still better
than the computations out-of-core. When the second memory level is used, the load
must be at least as big as m x swp. Thus, we may assume that processing time
is dominated by computation time. A rough estimate of out-of-core processing rate

Crnaz

. s _ 1 mo 1
for big volumes is limy _, =pes = ST where > 7", A
=5 Al

2
the processors. An estimate of processing time for multi-installment processing with

is the total speed of all

small load chunks and dominating communication time is 2= (37" S;+6 >, C;) +

Al + 6AL,, where = is the number of communication rounds, Y7 S; + 63", C;

is the communication time per round, and A}, + 6A), is the computation time for

the last chunk. Hence an estimate of processing rate is limy % = %(Z;’; S; +
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6>, C;). The multi-installment mode is faster when its processing rate is smaller

than the one for the out-of-core mode: —=(3"7" | S+ > | C;) < 27”71’ from which
i=1 »sh

12

we get 6 > ngjgm & - Thus, chunk size § should be selected from the range
m 1 i=1 "1
i=1 Ah
ZZ”_lgm o »max;; {swp;}). For uniform computing systems this expression can
PO} ak

be 31mp11ﬁed to (N;j—ic, swp), where swp is the swap point.

When ¢ increases the load imbalance may arise and some processors may have to
wait idle for the completion of the computations on other processors. Furthermore, the
bigger ¢ is the longer the processors must wait before starting the computations. On
the other hand, if § decreases then the number of messages grows and communication
overhead increases. Hence, it can be expected that for some instances of the system
parameters an optimum value of § exists for which processing time is minimum. We
propose a heuristics to select §. The value of § should be such that a processor is
computing during the whole communication round when originator is sending the

load to the processors. This results in a requirement Al + JAL, > > (S +6Cy),

for processor P;. Taking into account all processors: § = max]" 1{#‘%} For
uniform computing system the above formula expressing § can be simplified to:
mS — Al
§=-—7—7L (4.5)

where A}, AL are parameters of the linear function of processing time in the core
memory, C, S are communication time parameters. Note that § can be calculated in
this way only if the numerator and the denominator are of the same sign. In equation
(4.5) the numerator is positive when mS > Al which means that a processor is able to
start computation within the duration of activating communication to all processors.
If the numerator is negative then messages arrive faster than the processors are able to
process them, and the load will accumulate in communication buffers. Consequently,
the numerator and the denominator must be positive. The denominator A, — m(C' is
positive when %é > (' which means that computing rate of all processors together is

greater than communication rate, or in other words, communication speed is greater
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Figure 4.4: Changes in the load partition for m = 2 and various § = %’212,
21

and swpo.
than the total computing speed of all processors. If the denominator is negative then
the total computing speed of processors is greater than the communication speed and
some idle times will arise on some processors. The negative denominator or the fact
that equation (4.5) expresses a value outside of the admissible interval introduced in
the preceding paragraph do not limit applicability of the multi-installment strategy.
It means that chunk size § must be selected in a different way. In practice, by selection

of § applications can be experimentally tuned to obtain good performance.

4.2 Performance Modeling

In this section we present results of modeling dependence of a computing system
performance on the model parameters. Over 2400 instances of the linear programs
were solved by 1p_solve, a free linear programming code [14].

Let us analyze optimum distribution of the load under various swap point values
and speeds of the processors. This dependence for two processors (m = 2) and load

size V' = 2ES8 is presented in Fig. 4.4. We assumed that parameters of P, are fixed to
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Al =0, AL, =1E-3, A, = —9E5, A", =1E-2 (hence swp; = 1E8). The parameters
of speed and swap point of P, were variable, except for AL, = 0. In Fig. 4.4 the
load as V' assigned to processor P, is presented on the vertical axis, on the horizontal

; o A _ Aby _
axis the ratio A =t =
processor P, swap points

[ of the processor speeds is shown, various values of the
swpy
%
right along the horizontal axis, the speed of processor P, decreases, and its load also

are represented by different curves. As we move to the

decreases. The curve for %

only (disk), while *3#2 = 1 represents P, able to hold all load V' in the first level of

= 0 represents P, using the second level of memory

memory (core). As the swap point swpsy increases also the load size aV increases.

Curves for 3% < 1 do not cross the curve = 1 because at the point of such an

%
intersection the load assigned to processor P, is small enough to be held in the core,
i.e. asV < swpo, and the real location of the swap point of P, is meaningless. Three
intervals of processing rate ratio 3 can be distinguished in Fig. 4.4. When g <1E-1
then P, has the second memory level faster than the first memory level of P;. In the
interval [1E-1,1EQ| P, is faster than P; but only when core memory is used on P,. In
the third interval of 3 > 1, P, is slower than P, independently of the memory level
used. In these three intervals asV changes with different speeds under ( changes.
This can be seen especially for swap points swp = 0, and swp = 1 for which the
curves are not smooth. When the two processors are identical (*#* = 0.5, 3 = 1) the
distribution of the load is not exactly equal because processor P; receives the load
first and computes longer. It can be concluded that even though the mathematical
model is linear, the optimum distribution of the load changes nonlinearly with growing
difference of the processors.

In the following part of this section we consider homogeneous computing systems
only. Therefore we will use a simplified notation in which A}, Al are parameters of the
linear function of processing time for the core memory, and A?, A% for the out-of-core
memory. C,S are communication time parameters. Unless otherwise specified we

A2~ 10

—2:
7A12

considered a system with m = 10 processors, A} =0, A, = 1E-3, swp =1ES8

and communication parameters C' = 1E-6, S = 1E-3.
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Figure 4.5: Processing time vs. V for various A%/A} and swp.

Fig. 4.5 demonstrates dependence of processing time C,,,, on the problem size
h

V', for various values of the ratio of processing rates in core and out-of-core —’:%, and
2
h
swap points swp = 1E8, or swp = 1E11. As it can be predicted the A—% has some

A2
influence on processing time, when the second memory level is used, which is the case

for V> m x swp, i.e. load size exceeding the total core memory size.

In Fig. 4.6 dependence of the processing time on size of the problem V for various
computing speeds is shown. The curves represent systems with different speeds. A
dotted reference line shows communication time equal to mS + V C' which is a lower
bound on the processing time. In all cases the ratio i—g of the processing rates in core
and out-of-core and swap points swp were fixed. It can be observed that increasing
speed beyond certain level is not profitable because communication becomes a bottle-
neck. Note that for A, =1E-3, A, =1E-5, and A}, = 1E-7 some points are missing
in Fig. 4.6. It is the case when some of the processors receive no load. This means
that not all m processors can be effectively used because computing on less than m

processors is shorter than activating all the processors.
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Figure 4.8: Speedup vs m for various V.

Dependence of the processing time on size of the problem V for various communi-
cation speeds is shown in Fig. 4.7. It can be observed that processing time decreases
with C' decreasing only up to a certain limit beyond which computing speed is the
limiting factor. Also here not in all cases m = 10 processors can be used. When
communication speed is small C' = 1E-2 all processors can be used for load sizes
V' >1E9. As the communication speed increases (i.e. C'is decreasing) the size of the
problem for which all processors can be used also decreases.

In Fig. 4.8 speedup for various processor numbers m and problem sizes V' is shown.
The size of V' =1 (e.g. byte), certainly, is not practical but it shows behavior of the
model. As it can be seen for problem sizes V = 1 speedup decreases all the time.
It is the case because the load is too small and one processor is able to perform all
the computations within the time of activating additional processors. The additional
processors receive no load and only unnecessary communication cost is induced. The
case of load size V = 1E2 is similar when the number of processors m exceeds 14. For

m < 14 speedup is growing which indicates some profit from parallelism. For other
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Figure 4.9: Speedup vs V for various m.

problem sizes V' speedup is growing. Both when load size is smaller than the core
memory V' < swp, and when the problem size by very much exceeds the total core
memory size V' > m X swp, the speedup is similar and close to linear. Therefore, lines
for V = 1E4, V = 1E8, V = 1E14 overlap. When V = m x swp =1E9 superlinear
speedup can be observed, because using m processors allows for holding most of the
load in the core memory, while computing on one processor requires using slower
external memory. Fig. 4.8 shows speedup obtained under assumption that exactly m
processors are activated by an appropriate message even if some of them receive no
load to process. It has been observed that the number of processors for which speedup
achieved its maximum, also corresponds to the maximum number of processors for
which all processors receive some load. More insight into the behavior of the speedup
is given by Fig. 4.9 presenting speedup vs V for various m. It can be seen that
superlinear speedup is achieved for the problem sizes V' in the range approximately
(swp, m x swp|. When the number of processors is too big, speedup decreases with

decreasing load V.
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4.3 Out-of-core and multi-installment load process-
ing

In this section we compare two modes of processing divisible loads: out-of-core com-
putations which use external memory against multi-installment processing of small
pieces of the load on the first level of memory hierarchy, but at the cost of additional
communications.

We considered a homogeneous system with m = 10 processors, communication
rate C' = 9.99E-5, communication startup time S = 1E-3, and computing time func-
tion coefficients A} = 0, A, = 1E-3, A} = —9.9E6, A% =1E-1 (hence swp = 1ES).
We used equation (4.5) to calculate the load chunk size § = 1E4. The dependence
of processing time (C,q,) on the problem size V is shown in Fig. 4.10. Note that
both axes are logarithmic, and a small constant difference in this figure can be a big
difference in the absolute terms. The three lines in Fig. 4.10 depict processing time in
the out-of-core mode, multi-installment using 6 = 1E4, and multi-installment using

0 = 5. For V < 1E4 multi-installment with § = 1E4 is the worst because only one
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chunk of the load is sent and only one processor works, while the other processors
remain idle. For V' € [1E4, m X swp| processing time increases slowly, in the case of
multi-installments with § = 1E4, because more than one load chunk must be sent and
additional processors are activated. For load chunk 6 = 5 multi-installment process-
ing time is shorter than with 6 = 1E4 for loads V smaller than approximately 1E5.
It is also better than the out-of-core computation when the second level of memory
comes into use. Multi-installment with § = 5 is worse than distributing the load ac-
cording to the linear program (4.1)-(4.4) when the core memory is used. It is because
the latter distribution has only one communication per processor, and a perfect load
balance resulting in simultaneous completion of computations on all processors. As it
can be seen in Fig. 4.10 multi-installment mode of processing outperforms the out-of-
core computations even for the chunk sizes § smaller than the one selected according
to equation (4.5).

The predictions of our model are confirmed by the computational experiments
conducted on a cluster of m = 3 Pentium III computers with 1Gbyte of the core
memory. The operating system was Red Hat Linux 6.2. The test application was
searching for a pattern in a binary file. Communications were done on the basis of a
socket library. Fig. 4.11 shows processing time vs. V/m, for out-of-core computations
using virtual memory, and multi-installment processing with chunk sizes 1E3, 1E4,
1E6, 1E8. A dotted line representing the linear part C'V of the communication time
has been added as a reference line. The dashed reference line at the bottom is the
computation time on a single processor working off-line. In the out-of-core processing
the use of virtual memory is evident when the load assigned to a processor exceeds
core memory size. In multi-installment mode processing time is even worse than
the out-of-core processing for d=1E3 because communication overhead dominates.
Increasing the chunk size ¢ reduces the total processing time but only to the limit of
communication time required to scatter the load. Therefore, the lines for 6 = 1E6,

and 6 = 1E8 overlap.
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Figure 4.11: Processing time vs. % for multi-installment and out-of-core computa-
tions on a cluster of Linux PC computers.

4.4 Conclusions

In this chapter we proposed a new mathematical model for distributed processing
divisible loads. The model based on linear programming is capable of representing
piece-wise linear convex processing time functions of the assigned load. In particular,
systems with memory hierarchy can be represented in this way. The influence of the
model parameters on the performance of the computing system has been studied.
Efficiency of distributed processing divisible loads in installments and out-of-core
modes were compared. Multi-installment processing appears to be advantageous for

reasonably selected load chunks sizes.



Chapter 5

Systems with Limited

Communication Buffers

5.1 Introduction

In this chapter we examine the impact of communication buffer size D on the perfor-
mance of divisible load processing in various distributed networks. If the communica-
tion buffer size is limited then no message may be bigger than D units of load. To our
best knowledge, it is the first attempt of this kind in the divisible load theory. The
ideal goal of this study is to propose a method of adjusting the size of communication
buffer size to the parameters of the system, and the application. We also extend the
applicability of divisible load theory, and propose a general methodology of studying
the interaction between the communication and computing subsystems under limited
communication buffer sizes.

As the communication buffer has size D, loads with size greater than D cannot
be sent to the processors in one message. Therefore, communication buffers are filled
and messages are sent to their destinations several times. Hence, load is distributed
in n stages. Ny, will denote minimum possible number of stages. We assume that
there are no memory buffer limitations at the processors and arbitrary load may ac-

cumulate over the course of processing. We assume that each load scattering stage

74
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is a repetition of the same communication pattern. Instead of studying scattering
algorithms for multiple possible interconnection topologies such as meshes, hyper-
cubes, trees, multistage interconnections we consider three fundamental structures of
the scattering and broadcasting algorithms introduced in Section 2.2. Sometime it
is convenient to express buffer size as a fraction of whole data volume V. Therefore
we will denote by D’ = % the fraction of whole load constituted by communication
buffer size D.

In the ordinary tree topology we distinguish two additional cases depending on
the ability (or inability) of the nodes of dealing with more than one message simulta-
neously. If the node can handle only one message at a time, then the message must be
fully received first, and then relayed in full (if needed). We will call this 1-buffer case.
When the node is capable of simultaneously dealing with more than one message then
it is possible to overlap sending one message with receiving another message. This
situation will be called 2-buffer case. In both cases we assume that processors are
able to divide the received message and simultaneously redistribute it via p ports.

In Binomial trees overlapping in time distribution of the loads to different layers
and/or stages is not possible for two reasons. In binomial trees nodes from layers
0,...,l work synchronously to activate layer [ + 1 for [ = 0,...,h — 1. Therefore,
there is no room in the communication algorithm for simultaneous distribution of the
load for some other layer of the same stage or the load of the next stage. Furthermore,
in some networks the same communication link is used in the opposite directions in
different steps of the scattering algorithm, to activate nodes of the consecutive layers.
In such cases it is impossible to simultaneously scatter load dedicated to different
layers. Consequently, we do not consider 1- and 2- buffer cases in binomial trees.

Note, that using LLF instead of NLF order, 2-buffers instead of 1-buffer, binomial
trees instead of ordinary trees are examples of optimizations that can be implemented
in the communication algorithms. It will be demonstrated that their impact is limited
when it comes to the interactions with the computations.

For the simplicity of the presentation we assume in this chapter that originator



CHAPTER 5. SYSTEMS WITH LIMITED COMMUNICATION BUFFERS 76

i h Il ) I )
R S1+0CLV [S5+051CV e o ofS,404,,C VIS 1404,C1 V [S5+00,CoV [ses| S, 401, 5C,, V| ees communication
b \%N e | o e |
Py | computation x 0, AV i | 5 -& 0LAV |
By computation 0, A,V : | Xj o, A,V |

time

Figure 5.1: Communications and computations in a star interconnection

Py does not compute but communicates only.

5.2 Mathematical models

In this section we formulate the problems of finding optimum distribution of the load,

taking into account the limited size of the communication buffer.

5.2.1 Star

The minimum number of stages needed to transfer volume V' of load to m processors
using communication buffer size D is n,,;, = (%W A Gantt chart depicting commu-
nications and computations in a star network is presented in Fig. 5.1. In this section
the following extension of the standard notation is used:

oy - the fraction of volume V' sent to processor P; in stage k,

tir - the start time of the communication to processor P; in stage k.

The problem of determining optimum distribution of the load in the star topology

for a given number of stages n > n,,;, can be formulated as a linear program:

LP LoadDirect

minimize C), 4.
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subject to:

tlk—i-CCkaV—i-SSt(H_l)k 1= 1,,m—1,k: 1,...,n, (51)
tmk+0amkv—|—5§t1(k+1) k=1,....n—1 (5.2)
tic + S+ CauV + AV Y i < Cras i=1,....mk=1,...,n (5.3)

I=k
oV < D; i1=1,....mk=1,...,n (5.4)

h n
Y =1 (5.5)

i=1 k=1
tir > 0,05, >0 1=1,...,hk=1,...,n (5.6)

In linear program LoadDirect inequalities (5.1) ensure that communications of
the same stage do not overlap. By (5.2) the succeeding stages do not overlap. In-
equalities (5.3) guarantee that all computations can be completed in time C,z, by
(5.4) the communication buffers do not overflow. Equation (5.5) guarantees that all

the load is processed.

5.2.2 Ordinary tree

We assume that processors in the layers work synchronously, and we do not have to

analyze separately processors of the layers. We use additional notation:

a1 - The fraction of volume V sent to each processor of layer i in stage k,

tir - the start time of sending load to processors in destination layer ¢ from the

intermediate node(s) in layer [ in stage k, i =1,...,hk=1,...,n,01=0,...,i — 1.
Let us analyze the number of stages. Note that the load for the deeper layers is

transferred from the originator to a processor in layer 1, via a communication buffer

of size D. Thus, successors of this processor receive at most D units of load altogether

in a single instalment. Hence, the number of stages is n > n,,;, = (DLP}J.
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1-buffer. The communication and computation Gantt chart for this case is pre-

sented in Fig. 5.2. Linear program for the problem is:

LP TreeNLF-1

minimize C), 4.

subject to:

tiw + Cp " oV + S < i
tim + Cp ™oV + 5 < Lirk(-1)
thi + CP" " gV 4+ S < tigayi-n

tiko + Cagpv + 5 < taro

tik(ifl) + COZZkV + S + AV Z (677} S Cmax

=k

P lagV <D

h n
Z Zpi%‘k =1

i=1 k=1

a;, > 0

tirw > 0

1=1,.
[=0,..
1=1,.
l=1,.
1=1,.
k=1,

k=1,

1=1,.
1=1,.
1=0,.
1=1,.
[=0,.

7h'7k_]~7
,1— 2
=1,k =1,
s —1

h—1,
,n—1
,n
7h7k:]"
yhok =1,
7h7k:]‘7
7h7k:17
;i —1

(5.7)

(5.8)

(5.9)
(5.10)

(5.11)
(5.12)
(5.13)

(5.14)

(5.15)

In the linear program TreeNLF-1 inequalities (5.7) guarantee that a new commu-

nication can only start if the message is fully received first. By (5.8) the next com-

munication to the succeeding layer may not start unless the relaying of the previous

message is finished and the buffer at the next layer is ready to be reused. Inequalities
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Figure 5.2: Communication and computation in an ordinary tree, NLF 1-buffer.

(5.9) ensure that the communications of the consecutive stages do not overlap. As
we use NLF strategy the second communication at the tree top level can start im-
mediately after the first communication to layer 1, which is closest to the originator.
Hence we have constraints (5.10). Inequalities (5.11) ensure that all the load received
by the processors is processed before the end of the schedule at C,... By (5.12)

messages fit into the communication buffers, and by (5.13) all the load is processed.

2-buffers. We assume here that the number of buffers is sufficient to receive and
send messages at the same time, and thus, two consecutive communications can be
performed simultaneously. However, the buffers are reused in the third following
communication. If the load received in the previous message has not been relayed,
then the next communication wishing to use this buffer must wait. This restriction
is introduced to prevent accumulation of the load in the intermediate layers. The
communication and computation Gantt chart for this case is presented in Fig. 5.3.
In the following linear program we skip part of the constraints which are the same as

(5.11)-(5.15). This is done for the clarity of the presentation

LP TreeNLF-2

minimize C,qz
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Figure 5.3: Communication and computation in an ordinary tree, NLF 2-buffer.

subject to:
i) >t + Cp gV + S i=1,.. hk=1,..n,
1=0,..,i—2 (5.16)
tirnr =t + Cp " ragV + S i=1,..,h—1,k=1,..,n,
l=1,...,i—1 (5.17)
tiroka—1) > tim + Cp' " lagV + S i=14+1,..h—2k=1,...n
l=1,..,h—2 (5.18)
tikeno > thew + CP" 2agV + S k=1,..,n—1 (5.19)
togkino = tarn + Cp" oV + S k=1,..n—1 (5.20)
tagken) > thae + Op" oV + S k=1,.,n—1 (5.21)
tiger1)i—1) = thia—1) + CP" iV + S i=1,..,hk=1...,n—-1 (522

In the above LP TreeNLF-2 inequalities (5.16) guarantee that retransmission of the
load to the deeper layers may start only after fully receiving the message. By (5.17)
the communications on the same link do not overlap. Inequalities (5.18)-(5.21) ensure
that sending a new portion of the load does not start before the buffer at the receiver
is released. By (5.22) communications of the succeeding stages do not coincide. The

remaining constraints are the same as constraints (5.11)-(5.15) in LP TreeNLF-1.
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Figure 5.4: Communication and computation in an ordinary tree, LLF 1 buffer.

LLF activation order

In this section the layers are activated in the order of decreasing number of processors.

1-buffer It is assumed here that only one buffer of size D is available at each
communicating node. The communication and computation Gantt chart for LLF
communication strategy and one buffer in an ordinary tree is presented in Fig. 5.4.
In the linear program for this problem constraints identical with (5.11)-(5.15) are

omitted for the clarity of the presentation.

LP TreeLLF-1

minimize C), 4.

subject to:

tiwarn) >t +Op " lagV+ S di=1,.,hk=1,.,n,

ti—1ka-1) = ti + Cp oy, V+ S i=2,..,hk=1,..n,

th(k—i—l)i Z t(i—i—l)ki -+ COJ(Z'_H)kV -+ S 1= O, vy h — 1, k= 1, e, — 1 (525)
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Figure 5.5: Communication and computation in an ordinary tree, LLF 2-buffer case.

In the above formulation inequalities (5.23) guarantee that before the relaying the
message is fully received first. By inequalities (5.24) a buffer at the communication
switch is not used by two messages simultaneously. Messages from the consecutive

stages do not overlap by inequalities (5.25).

2-buffers The communication and computation Gantt chart for LLF communica-
tion strategy and two buffers in an ordinary tree is presented in Fig. 5.5.
Linear program for the problem is as follows (constraints (5.11)-(5.15) are omitted

for the clarity of the presentation):

LP TreeLLF-2

minimize C,q0

subject to:

tiwgen) >t +Cp oV + S di=1,.,hk=1,.,n
1=0,...i—2 (5.26)
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Lii—1)ki >t + Cpi_l_lozikv + S 1=2,...,hk=1,..n,

1=0,..,i—1 (5.27)

timok-n) > tim +Cp" oV + S i=1+2,. hk=1,.,n
l=1,...,h—2 (5.28)
thik+1)0 = torr + Cpag,V + S k=1,...,n-1 (5.29)

th(k—l—l)i Z t(H_l)kz‘i‘COé(H_l)kV—FS 1= 1,...,]1— 1,]{72 1,...,?1— 1 (530)

In the above linear program TreeLLF-2 inequalities (5.26) guarantee that the same
load is first completely received, only than can it be further relayed. By inequalities
(5.27) messages sent by the same layer over the same links do not overlap. By
(5.28), and (5.29) no more than two buffers are used in each communication switch.

Inequalities (5.30) ensure that messages from the consecutive stages do not overlap.

5.2.3 Binomial tree

Let us analyze the duration of the communication from the originator to layer 7 in
some stage k. In binomial trees nodes receive load once and then redistribute it to
the deeper layers of a tree. Therefore, each communication must comprise load not
only for the node, but also the load for the successors in a binomial tree. There are
p(p + 1)1 processors in layer i > 1. The originator sends load to layer i in i steps.
First, the originator sends over each of its p communication links p(p+1)" "2V load
units to layer 1. The remaining load p(p + 1)" 2V will be sent to layer ¢ via direct
successors of the originator in layers 2,...,7. Analogously, each processor in layer
j <i— 1 sends load to layer i in i — j steps. First, p(p + 1)"72a;;,V units of data is
sent to layer j+1 over each of p ports. The remaining p(p+1)"72;,V load units are
sent from layer j to layer ¢ via j’s direct binomial tree successors in layers j+2, ..., 1.
Finally, in the last communication step, all layers 0,...,7 — 1 simultaneously send
o,V load units to layer i. Note that all layers communicate synchronously, and the
same amounts of load are sent from active layers to the next activated layer. Total

communication time is equal to Si+Cay,V (1+p Zé;%(p%— 1)7972) = Si+CayV(p+
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1)1, We will use this closed-form summation result in the following formulations.

As it was noted the layers work synchronously. It means that ¢;50+Si+CaV (p+
D7 =t tin + S — 1)+ CagV(p+ 1) = tirg, . . . tini—2) + CaaxV + S = tini)
(cf. Fig. 5.6, Fig. 5.7). For this reason it is not needed to introduce to the linear
programs constraints expressing the fact that the message must be fully received first
and only then can it be relayed. Hence, only variable t;,o is needed in the linear
program formulations. The remaining variables t;,; for [ = 1,...,7 — 1 will not be
used.

Let us consider the number of the communication stages. The originator may
send at most D units of load to each of its p neighbors in layer 1. As it was said the
originator in the first step sends p(p + 1) 2a;V < D load units to its descendants
in layer 1. Hence a;V < W.
p(p + 1)1, Therefore, total load that can be transferred to layer i > 1 in a single

Dp(p+1)*"
p(p+1)i=2

1. For layer 1 the load is at most pD. As we have layers 1, ..., h which compute, the

The total number of processors in layer ¢ is

stage is at most = (p+ 1)D. Note that this quantity does not depend on

total load that can be distributed in one stage is (h(p+ 1) — 1)D. Thus, the number

\%

of necessary communication stages is n > ISR

NLF activation order

In this section we study Nearest Layer First layer activation strategy, i.e., layers
are activated in the order of their distance from the originator. The communication
and computation diagram for this case is presented in Fig. 5.6. Linear program

formulation is as follows:

LP BinomialTreeNLF

minimize C),4.

subject to:
tikO + C(p+ 1)2'7104%‘/ + St < t(i—l—l)kO 1= 1, ceey h — ]., k= 1, N

(5.31)
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Figure 5.6: Communication and computation in a binomial tree under NLF strategy.

thko—l—C(p—i—l) ath+Sh>t1 (k+1)0 k=1,...n—1
(5.32)

tikO + C(p+ 1)i_1aikV—|— S + szail S Cmax 1= 1, ...,h,k = 1, S n

=k

(5.33)

ayV <D k=1,..,n
(5.34)

p(p+1)"2ayV <D i=2,.., hk=1,...n
(5.35)

h n

OélkZO ’iIO,...,h,kzl,...,n
(5.37)

tlkon iZO,...,h,kzl,...,n
(5.38)

Inequalities (5.31) ensure that the consecutive messages sent by the same layer are
not overlapping. By (5.32) the messages from the consecutive stages do not overlap.

The remaining constraints are analogous to the ordinary tree case.
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LLF activation order

In this section we study the layer activation order Largest Layer First (LLF), coin-
ciding with decreasing number of processors in the layer. The communication and
computation diagram for this case is presented in Fig. 5.7. The linear program in this
case is as follows (constraints (5.33)-(5.38) are not repeated for the sake of concise-
ness):

LP BinomialTreeLLF

minimize C),.x
subject to:
tivo + C(p+ 1)V 4+ Si < ti_o i=2,...,hk=1...n (5.39)
t1k0 + COélkV + S S th(k+1)0 k= 1, e — 1 (540)

By (5.39) messages sent from a certain layer to other layers do not overlap. Inequal-

ities (5.40) ensure that the succeeding stages do not overlap.

5.3 Performance modeling

Before presenting the results of modeling, let us observe that the space of possible
parameter values is enormous, and there is no way to analyze all their possible com-

binations. Therefore, we restrict the search to the combinations that seem reasonable
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for practical applications.

Let us note, that LP formulations in the previous section assumed that all stages
and processors will be really needed and activated. It is not always true. When
some number of processors or stages is sufficient to process the whole load, then some
processors receive no load. Excessive processors introduce additional startup times
even though nothing is computed on them. In such situations, the LP formulations
should be adjusted by eliminating unnecessary equations related to the superfluous
stages and processors.

In the following paragraphs we present results obtained by means of 1p_solve.
Over 2600 instances of LP problems were solved. Though it is a free code 1p_solve
is robust. The description of the largest successfully solved instance exceeded 130
Mbytes. This formulation had over 50000 variables and 156000 constraints. The
solution time reached 28 hours on a 1GHz Athlon PC. Unfortunately, as any code,
lp_solve has its limitations, and we did not manage to solve, e.g., bigger instances.

The main reason for failures were numerical instabilities.

5.3.1 Star

In our simulations we modeled a homogeneous system with m = 10 processors, C' =
1E-6, A = 1E-3, and S =1E-3 (these values can be for example: bandwidth 1Mbyte/s,
processing rate 1kbyte/s, startup time 1ms). Parameters V', D, were variable.

Let us start this section with considering the observed distribution patterns. In
most of the cases the sizes of load chunks sent to the processors grow slowly both with
the processor number and the stage number. It is because processors are activated
early when the initial chunks are small. In the last stage the chunk sizes decrease in
order to achieve simultaneous completion of the computations on all processors. This
facilitates perfect load balance. The changes of the data chunks are demonstrated in
Fig. 5.8. Processor numbers are aligned along the horizontal axis, sizes of the chunks
are presented on the vertical axis. Observe that processor Py received its last load

chunk in the penultimate stage, and no load is sent to Py in stage n = 3.
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Figure 5.8: Example load chunks sizes in different stages (A = 1E—-3,D =1E4,
V=5E3) for star.

We show the influence of communication buffer size D on the processing time C),q.
in a Fig. 5.9. The number of stages h was selected such that C,,,, was minimum.
Only D =1EQ distinguishes itself from the plots for the other communication buffers.
This is a result of excessive fragmentation of communication caused by too small
communication buffer. The other D values were sufficiently big to avoid it.

In order to better depict influence of the limited communication buffer size we
analyzed the case of the minimum possible number of scattering stages, i.e. N, =
[5=1. The results are shown in Fig. 5.10. For D = co minimum number of stages
is n = 1, and the minimum number of processors is m = 1. The lower bound (LB),
representing ideal circumstances of processing the load, is added to show existing
potential for the reduction of the processing time. In the ideal case at least one
communication startup time must elapse before any processor starts computing. The

computing phase may not last shorter than %A which is the case of ideal load balance.
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Figure 5.9: C,,4, vs V for various D in a star, A=1E-3 for the best observed n

Thus, S + %A is a lower bound we used. In Fig. 5.10 lines for D = oo and D = 1E0
overlap by the selection of values A, C,S. The lines for other communication buffer
sizes follow the line of infinite buffer when V' < D, and the lower bound when V' >
mD. The changes in processing time for V' € [D,mD] are minor. It is the case
because for V' < D, only one processor is activated, as for D = oco. When V' exceeds
D more than one message must be sent, and it is profitable to activate additional
processors. Additional processing power compensates for the growing V., and C,q.
does not increase significantly. If V' > Dm all processors are activated, therefore
processing time is similar to the lower bound.

Fig. 5.10 shows that relative difference between the processing times for various
communication buffer sizes is minor. Yet, the difference in absolute terms can be
arbitrarily big. This is demonstrated in Fig. 5.11 showing the difference between the
processing time for D—=1E2, and other buffer sizes, for n,,;,. There is no difference
for V' < 1E2. Due to the selection of A, C', S and m values the lines of D = oo
and D=1E0 overlap. The difference of C,,,, for various D grows with V until D,
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Figure 5.10: C)qp vs V for various D and n,,;, in a star.

and levels off for V' > mD. For V. > mD, D=1E4 and D=1EG6 the lines are parallel
because the duration of the computing part is the same, and only the communication
time in the first stage is different. This is a result of different communication buffers
sizes and different message lengths.

In Fig. 5.12 standard deviation of the processor completion times o for n,,;, is
depicted. The value o is a measure of the processor load imbalance. Observe that
the imbalance is the biggest for n,,;,, because n > n,,;, allows for sending messages
of differing sizes, hence better load balance is possible. Consequently, Fig. 5.12 shows
the worst case of the load imbalance. For small buffers imbalance is smaller. For
D = oo the imbalance can be arbitrarily big because only one processor needs to be
activated out of m > 1.

On the basis of the above charts one may think that the communication buffer
should be small, yet, big enough to avoid excessive message fragmentation. Still,

there is one more way in which communication buffer may influence processing time.

Consider an example in Fig. 5.13: m =3, A=C=1,5=0,V =3. When D =1,



CHAPTER 5. SYSTEMS WITH LIMITED COMMUNICATION BUFFERS 91

1E10

1Bgt ¢ D=infinity W= D=1E6  |oooveviiiiiiii
-%X- D=1E4 -l D=1E0

1E6]

1E47

1001

=

difference of Cmax

Q0T - e

1E-4 : : : : . : :
100 1000  1E4 IES v 1E6 1E7 1E8 1E9 1E10
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Figure 5.12: Standard variance of processor completion times in a star.



CHAPTER 5. SYSTEMS WITH LIMITED COMMUNICATION BUFFERS 92

R S04,V [ Sy+0p, GV S3+05,C5V R | S+o GV Sy +0Uo[CW Sy+03/CaV
1 1
P l oAV E computation P computation\ OdllAl‘)\ E E
Py l oAV computation P Computationx 0y :ZV
P computation x 043V P computation x o3 AV
time time
0 1 2 3 4 0 1 2 3 35
(a) D=1 (by D=15

Figure 5.13: Big buffers may prevent imbalance of the completion time.

only one stage is needed (n = 1). The processors receive a;1V = anV = a51V =D =
1 of data volume. The communication phase lasts 3 units of time, the computations
on the last activated processor complete 4 units of time after the communication start
(cf. Fig. 5.13(a). On the other hand, when D > 1.5 a different load distribution is
possible: ay; = 1.5, a1V = 1, a3y = 0.5, all processors simultaneously stop computing
3.5 units of time after the beginning of the process (cf. Fig. 5.13(b)). Thus, too small
communication buffer may cause imbalance of the computing completion times also.
The load imbalance can be improved by using shorter messages, but this incurs greater
number of startup times. Thus the relation between the load balance, message size,
buffer size and the number of messages is complex and not straightforward.

In Fig. 5.14 dependence of processing time on D, and n for fixed V is shown. D is
expressed as a fraction of V. Initially C),,, decreases with growing n. The rate of the
decrease is fast for small n, but later the returns from increasing n are diminishing.
After exceeding a certain limit, C,,,, grows with n. This is an effect of startup time
S appearing with each communication. S is added even if the size of the load chunk
is 0. This nearly linear growth of C),,, with n can be considered as an inaccuracy of
the model because it means that we still send the assumed number nm of messages
even though some of them contain no load.

From the above figures we draw a conclusion that there is some optimal commu-

nication buffer size D*, and number of stages n which on one hand, prevent excessive
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Figure 5.14: Dependence of C,,,. on D, n.

message fragmentation, and the other hand, balances the load well. We discuss this

in Section 5.4.

5.3.2 Ordinary and binomial trees

In this section we present results of modeling ordinary and binomial trees. We present
relations specific for the trees only because dependence of C,,,, on D, n are similar to
the ones for the star. Unless specified differently, we assumed p = 2, h = 10, A = 1E-3,
C = 1E-6, S=1E-3 in all the following simulations.

First let us analyze the sizes of the load chunks assigned to the processors of
the consecutive layers. Let us note that the loads sent to the deeper layers of both
ordinary, and binomial trees are split into chunks each time the load is relayed (cf.

inequalities (5.12), (5.35)). The message sent from the originator to the first layer

has its size limited to D. Thus, the sizes of messages sent to layer ¢ are at most pﬂ :
in the ordinary trees, and W in the binomial trees. The exponential reduction

of the load chunks restricts usability of the deep scattering trees, especially when
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the load grains come into play. The optimum distribution of the load among the
layers does not expose a fixed regularity. However, some common patterns have been
observed. The initial layers with few processors often received no load. It appears to
be advantageous to activate deeper layers which have more processors while omitting
the initial layers. The size of the chunks sent to the deep layers is restricted by the
communication buffer size D used for the communication between the originator and
the first layer. Therefore, to exploit the processors of the deep layers to the full
the binomial trees. The selection of the layers to be used, and the order of activating

extent, the maximum load was sent, i.e. z% in the ordinary trees, and

them remain open problems which have combinatorial nature. Processing in trees
resemble a heterogeneous star: the layers are heterogeneous processors connected
to the originator via heterogeneous communication links. In the heterogeneous star
the optimum selection of the processors to be used and the activation order have
combinatorial nature, and is and NP-hard problem as demonstrated in Section 3.1.
The complex nature of the optimum layer activation order is exposed in one more
way. A bigger load may be processed in a shorter time than a smaller load when
NLF activation order is applied, and A,n are minimum possible. This is illustrated
in Fig. 5.15 showing dependence of the processing time on the size of the problem for
binomial tree with NLF activation order and D = 1E2. Three lines depict processing
times for the minimum number of the stages and layers, for the best observed case,
and for an alternative communication strategy (LB). It can be seen in Fig. 5.15 that
processing time may decrease with increasing V' for n,,;,. The explanation for this
counterintuitive behavior is that for the given V' only a certain number of layers can be
activated within the limited span of communication time. Adding more layers is not
productive because there is no work for them. On the other hand, adding a little more
load allows for activating a new layer which has at least the same number of processors
as all the preceding layers (because of NLF activation order). This allows for shifting
most of the load to the deep layer, and thus reduces the processing time. The medium

line of the best observed case illustrates the possible benefit of increasing the number
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of stages. However, there is a technical difficulty in finding optimum distributions
for big n caused by the instability of LP solver. The third line (LB) shows potential
gains from using a different communication strategy which bases on selecting one
deep layer for computations while using the other layers for communications only.
The alternative communication strategy was constructed on the following basis. At
least one layer must be activated. Suppose only layer 7 is activated, and the load is

sent in equal chunks in all stages. The number of processors in layer i is p(p + 1)1
Clp+ 1)) + Ay

np(p+1)i—17
AV
p(p+1)i=1n2"

The processing time is Cpaz(n) = n x (1S + W

which is a function of n. The first derivative of C,,,, over n is iS —

Chnaz has minimum for n* = W' The lower bound can be selected as
minimum C}, . (n*) over layers i = 1,...,h. The lower bound found in this way

assumes that the communication cycle lasts longer than computing the load received

in one stage. Otherwise a different formula expresses the processing time: C2 =

(1S+ X*i)"‘# where the number of iterations is arbitrarily set to n*. The line LB
in Fig. 5.15 shows the maximum of the processing time for these two situations. This
strategy is effective as far as processing time is considered, but average utilization of
the processing resources may be unsatisfactory. It can be concluded that processing
time depends on the selection of the activated layers, and the activation order. To
avoid arbitrary decisions in selecting the set of layers to activate we considered the
minimum number of layers in the following discussion.

The dependence of C,,,, on V for various D, LLF activation order is shown
in Fig. 5.16. These dependencies for binomial tree with NLF activation order and
ordinary trees are very similar. In the case of D = oo only one message is needed to
send all the load. Hence, only p processors in layer 1 are activated. Processing time
for D = 1FE0 is bigger than for D = oo. This means that communication buffer is too
small, message fragmentation is excessive, communication time dominates and is even
longer than processing the whole load on one layer. For D €[1E2,1E6| the changes of
the processing time are similar to the case of the star topology (cf. Fig. 5.10). When

V' < pD only one layer of processors is activated. When V' € [pD, (h(p + 1) — 1)D]
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Figure 5.15: Processing time in a binomial tree for small loads (NLF, D = 1E2,
A=1E-3, C=1E-6, S=1E-3).

the growing V is compensated for by activating additional layers. Note the little
bumps in this interval resulting from the changes of the number of layers that can
be activated within the communication time. When V' > (h(p + 1) — 1) D processing
times approach the same line. This results from the fact that processing time in the
first layer sets the time span of a single stage. In other words communications to
the deeper layers and computing in the deeper layers is shorter than computing in

the first layer. The computing time in the first layer is DA, when maximum size

14
D(h(p+1)-1)"

these two formulae we get processing time nDA ~ ﬁ which is the asymptote

approached by the lines for D €[1E2,1E6|. This situation could have been avoided

of the buffer is utilized. The number of stages is n > Thus, combining

provided that the first layer were not computing, but only relaying the load. The
lowest line (LB) represents an alternative communication strategy described in the
preceding paragraph. Big difference between the LB and other lines demonstrates
that processing time can be reduced by using a completely different communication

method.
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Figure 5.16: Processing time in a binomial tree vs V for various D (LLF n,,;,).

In the following discussion we compare, in the sense of processing times, NLF
with LLF layer activation orders, 1-buffer with 2-buffer case. Let us observe that
comparing the binomial trees with the ordinary trees is not easy because different
numbers of processors are activated in these structures. Therefore, we compared a
binomial tree with A = 5 which has m = 243 processors with an ordinary tree which
has h = 7 and m = 255 processors. Hence, the difference in processing power is
less than 5%. In Fig. 5.17(a) the dependencies of C),,, on V for the binomial trees
and the 1-buffer ordinary trees with NLF and LLF activation orders for D = 1E4
are shown. This relation for communication buffer sizes D > 1E0 and 2-buffers in
the ordinary tree are very similar in the nature. The differences between all the
cases appear only in the range [pD, D(h(p+ 1) — 1)]. The explanation is as follows:
for V' < pD only one layer is activated in all cases. For V' > D(h(p +1) — 1)
the whole processing time is dominated by computations on the first layer because
the deeper layers receive inadequate load, as mentioned in the preceding paragraph.

As it can be seen there are problem sizes where the ordinary tree dominates, and
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Figure 5.17: Processing time in binomial trees and 1-buffer ordinary trees vs V.

problem sizes where the binomial tree dominates. Though the binomial tree has
smaller total number of processors, it is hard to claim it is better than the ordinary
tree because in neither case has the computational capacity been fully exploited. In
Fig. 5.17(b) the same relationship for D = 1E0 and ordinary trees with two buffers
is shown. For V' > D(h(p + 1) — 1), i.e. when n > 1, processing time for ordinary
tree is approximately 50% of the time for binomial tree. This situation is caused
by different times that elapse between the stages. Though communication times are
shorter in binomial trees, the interstage time is longer because communications of
the consecutive stages may not overlap (see Fig. 5.6, Fig. 5.7). On the contrary,
the communications of the consecutive stages can overlap in the ordinary trees (cf.
Fig. 5.2 , Fig. 5.5)

The difference between processing in LLF and NLF layer activation modes for the
binomial trees are shown in Fig. 5.18. The NLF activation order is faster than LLF

with the exception of several cases for D = 1. The LLF is almost always slower due




CHAPTER 5. SYSTEMS WITH LIMITED COMMUNICATION BUFFERS 99

IE2
-8 D=1E6
—— D=1E4
15/ PP —— D=1R2
2 —%— D=1E0
3
S
Ij 1. ....................................................................................
><_|
g
S
1E-11
B2
B3
1E4. . . . .
1 B2 B4y, 16 1E8 IEI0

Figure 5.18: Difference of processing time in binomial trees for NLF and LLF activa-
tion orders

to the coincidence of the following phenomena: As deeper layers are underutilized,
processing time is dominated by computing in the first layer. Thus, the time of
activating the first layer is greatly influencing the total processing time. In LLF
the first layer is activated as the last one. Therefore, NLF dominates. Note, that
this situation completely reverses the domination of the LLF activation order for
networks with the unlimited communication buffers shown in [45]. For ordinary trees
the difference between the processing time for NLF and LLF activation orders is very
similar.

The difference in processing time between 1-buffer and 2-buffer ordinary trees with
LLF activation sequence is presented in Fig. 5.19. As it can be seen for D > 1 the
difference stabilizes. The explanation is the same as for the difference between the
NLF and LLF activation orders. Processing time is dominated by the computations
on the first layer. 2-buffer tree allows for faster activation of the first layer. For
D =1 the difference steadily grows with V' because messages are short and the load

of a certain layer is computed within the interval of communications with the other
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Figure 5.19: Difference of processing time in ordinary trees for 1-buffer and 2-buffer
communications, LLF.

layers. Thus, mainly communication time matters in the whole processing time.
Communication with 2 buffers are faster than 1-buffer communications. Hence 2-
buffer case domination grows with growing V. In NLF activation case situation is
similar for D = 1. Yet, for D > 1 no difference between 1- and 2-buffer cases has
been observed. Since computations on layer 1 determine total processing time, and
layer 1 is activated first in NLF, advantages of shorter communication to other layers

in 2-buffer case have no influence on the processing time.

5.4 Discussion and conclusions

The influence of the limited communication buffer size manifests in several ways.
When the communication buffer is too small messages are too short, excessively frag-
mented and processing time is dominated by communication time. Insufficient com-

munication buffer may cause load imbalance. On the other hand, also big buffers
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may cause imbalance when minimum possible number of stages is used. Thus, even
for big buffers it is worthy to implement limited sizes of the messages to activate
computations quickly, or to balance the load. There is a direct relation between the
communication buffer size and the number of stages. It is generally advantageous
to have many scattering phases because all processors are activated, and the load is
balanced better.

In binomial and ordinary trees we observed that communication buffer size signifi-
cantly restricted the amounts of load which could be transferred to the deeper layers.
The bandwidth of the initial layers was to small to feed deeper layers with load.
Consequently, deeper layers completed computations before receiving a new chunk
of load, and the processing time was dictated by the first layer. This phenomenon
is a great loss of efficiency. Optimized communication methods using, e.g., binomial
trees, LLF strategy, or 2-buffer communication nodes, do not outperform their less
advanced counterparts, e.g., based on ordinary trees, NLF strategy, 1-buffer nodes.
Several remedies can be suggested to alleviate this drawback. It is possible to increase
the communication buffer size such that processors receive enough load to keep com-
puting during the whole communication phase of one stage. Still, this solution does
not scale well because communication buffers would have to grow exponentially with
the number of layers. A better solution is to change the communication algorithm
and, e.g., send several messages to the deep layers per each message sent to layer 1.
It is possible to use the initial layers for communication only, and the deep layers
for computations. Results of using such an alternative strategy are shown as LB in
Fig. 5.16.

Let us now address the main goal of this chapter: the optimum size of communica-
tion buffer. The size of the buffer cannot be considered separately from the number of
stages n. Let us observe that due to the many degrees of freedom in the construction of
communication algorithms, and divisible nature of the load, finding a generally opti-
mum solutions may be difficult. It seems difficult to propose an idea on which a proof

of the optimality could be based. Nevertheless, some practical and good solutions
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are needed. As far as the communication buffer size is considered it is a reasonable
idea to have the communication buffer size D* such that processors keep computing
until the next communication phase. In a star it means AD* > m(S + D*C), and

D* > A:”ﬂic. Note that D* > 0 only when A > mC". Thus, idle times arise inevitably

when m is too big or A to small. Now we estimate analogous buffer size for binomial
and ordinary trees. Let us omit the initial changes of message sizes, and let us assume
that all messages sent from the originator are of size D*. Then, in binomial trees the

processors in layer ¢ receive load o = — in some stage k. The communica-

__Dr
p(p+1)
tion time from the originator to layer i is Si + C'(p + 1)" layp. After substituting

o and summing over layers ¢ = 1,...,h we get total communication time in one
(h+1)h | CD*(p+1)
7 T :

stage S Since layer h receives the least load its computing time

#fh,z is the shortest in a tree. The requirement that computing time is at least

p(
equal to the communication time can be formulated as p(pi?)*h—z > S(h;rl) by CD*I(JP H),

i(g_l)ch(i (ff)i)f;;. Note that also here D* exists only when

A > C(p+1)"1, ie. using too many layers h may result in inevitable idle times. In 2-

from which we obtain D* >

buffer ordinary tree communications from the originator to layer 1 can be overlapped
with the communications from layer 1 to the deeper layers. Thus communications in

one stage last h(S + C'D*). Computations in layer h which receives the least load

hS
A/ph—T—Ch"

case communication from the originator to layer 1 may not be overlapped with the

last %. Hence, we get the requirement D* > In 1-buffer ordinary tree

communication from layer 1 to the deeper layers. The two messages can be sent in

time 25 + D*C' + C'D*/p. Thus, the communication time in one stage lasts approxi-

mately hS + hD*C(1 + ]l]) The computing time on the last layer is %. From this

hS
p;ﬁl —hC(1+1)"
D* link the structure of the tree (in values of h,p), communication parameters S, C'

we get a requirement D* > Note that the above formulae expressing

and computing rate A. Not for all combinations of these parameters can the relation
be satisfied.
As far as the number of stages is considered, it should be observed that process-

ing time initially decreases fast with n, but then it stabilizes or even increases (see
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Fig. 5.14). Thus, the number of stages should not be significantly bigger than n,,,.
It can be, e.g., n = Ny + k, where £ < 10.

Let us summarize what was achieved in this chapter. We proposed a formal
methodology of analyzing divisible load computations in a distributed system with
limited communication buffers. This method is deterministic and computationally
tractable. Modeling performance of various scattering algorithms allowed for study-
ing the influence of communication buffer size on the efficiency of distributed compu-
tations. Interactions of several scattering algorithms with computations under lim-
ited communication buffer size have been analyzed. We observed severe performance
limitations incurred by the tree structures. The results regarding communication
optimization reach beyond just selecting a good communication buffer size. The re-
sults also show versatility of divisible load theory which establishes a link between

scheduling and communication optimization.



Chapter 6

Multi-installment Divisible Job

Processing

In this chapter we study regular multi-installment divisible load processing. The prob-
lem considered here is similar in many ways to the problem considered in Chapter 5.
Yet, the problem of the optimum divisible load processing with multiple installments
is approached from a different point of view. Here we assume that the number of in-
stallments n and the installment sizes «; are the decision variables. From n, problem
size V' and system parameters memory requirements will be derived. Furthermore,
unlike as in the algorithm from Chapter 4 we allow for changing the sizes of install-
ments in nearly unlimited range. In Chapter 5 we allowed for accumulation of the
load as a result of communication faster than the computations. It is not the case in

this chapter.

6.1 Introduction to multi-installment processing

In regular multi-installment processing the load is sent from the originator to the
processor many times but the processors are repeatedly activated in the same order.
We also assume a nonzero startup time. With the zero startup time it is possible

to prove that communications should be done in the infinite number of steps, and

104
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therefore it is unrealistic. In this chapter we also analyze the optimal number of
communication steps n* required to achieve the shortest schedule length.

If the originator communicates with other processors only once, it has been proved
that all processors should stop computing at the same time in order to achieve the
optimal schedule length. The proof can be found in [19]. The same way of reasoning
can be applied to the multi-installment processing. Let us note that two kinds of idle
time can appear. The first kind is inactivity in transmission. It appears when the
originator has to wait after sending a portion of data, because the next processor is
still processing the previous part of the load and is not ready to receive a transmission.
The second kind of idle time takes place when the processor has to wait for the next
piece of data after completing processing of the previous one, because the originator
is busy communicating with other processors.

In this chapter we distinguish two kinds of processing elements depending on the
ability to communicate and compute in parallel. The processors with front-end and
processors without front-end. We assume homogeneous system, but similar reasoning
can be applied to a heterogeneous system.

In this chapter sizes of the load pieces are denoted by aq, ..., @,. The pieces are
numbered in the reverse order of sending them. Thus, a; denotes the last piece sent

to the processor P,, and «,,, denotes the first piece sent to the processor P;.

Lemma 6.1. In the optimal multi-installment divisible job processing without memory
ltmat, the processors should have no idle times in computing i.e. between completing

the processing of the previous piece of the load and starting the next one.

Proof. Let us assume that in optimal schedule there is only one break in transmission
and one processor P;, after completing computation of previous part of the load must
wait for time [ before it start receiving the next load. We give a constructive proof
that this interval can be closed by shifting some load from the end of the schedule.
This load transfer results in the reduction of the schedule length.

Let us calculate the amount of load ~; which can be subtracted from the end of

the schedule so that computations on all processors finish x units of time earlier (cf.
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Figure 6.1: Multi-installment processing with computation idle time.

Fig 6.1. Let ~4,..., v, be the pieces of the load collected on processors P—1,..., P,
respectively. Decreasing the load on P; shortens the schedule by z = V(A+V). For
P(l=2,...,m) the computations finish by x = v V(A+V)+VC Zi: 7; time units

earlier. Where VC Zﬁ;i v; is the result of starting the communication to P, earlier,

because processors P, ..., P_; receive less load. Comparing the formulae expressing
the decrease of the schedule length X on P—1 and P, ..., P, we get v; = ’Yl(ﬁ)i_l.

Note that the load vy removed from originator F, is equal to the load removed from

processor P,,. In the last stage the load on F,, Py, ..., P, decreased by

m m A - A »
Z%‘ =N 23(7)Z +nl—=)" =
i=0 i=1 A+C A+ (6.1)
A+C A A 1
— (= ym T \m
n—e -G tnlg o)
The load removed on processors Fy, P, ..., P, must compensate for the load
B = m shifted to processor P; earlier in the schedule to remove the idle interval

in the computations of length I. Thus we have "

beta;, and

Bi

Y1 = —.
W= (o)™ + ()™

(6.2)
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The schedule length decreased by
BiV(A+C)
r=mV(A+C) = . (6.3)
0= (GEe)m) + (e

On the other hand, adding load earlier in the schedule increased the lengths of the

communications to P; and delayed all the later communications and computations by
B;VC. Thus, the total reduction of the schedule length is

BiV(A+C)
A= (7)™ + (z1e)

(A+C—(A+O) 1= (75)") + (z50)" ) _

L=

m—1 /BJVC -

TTTEC (2™ + ()
AT O) ) - Ol (64
I (A (e

I(A-O) e

(L= ()™ + i)
Let us note, that A > C' because otherwise parallel processing makes no sense and
a single processor would compute any load before it arrives at any remote processors.
Hence, L > 0. We demonstrated that the optimum schedule with and idle interval in
the computations on some processor can be shortened, and thus it was not optimal
schedule. Thus, we have a contradiction. We conclude that an optimal schedule

should have no idle time in the computations. O

Lemma 6.2. In the optimal multi-installment divisible job processing on a star with
unlimited memory sizes there should be no idle times between the transmissions of

consecutive parts of the load to the processors.

Proof. We will prove constructively that any schedule with an idle time in the
communications before the last stage can be shortened by the removal of such an idle
interval. The communication gap can be closed by borrowing some load from the
preceding stage to fill the communication gap in the considered stage. This method
cannot be applied in the first stage. However the communication gap in the first stage

can be closed by shifting some load to the end of the schedule.
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Figure 6.2: Multi-installment processing with communication idle time.

Suppose that in some stage k there is a gap between the communication to Pj_;
and P; for j > m (cf. Fig 6.2. If there is an idle interval in computations on P;
immediately before the stage & communications which is sending the load to P;,
then one can shift both the communication and the computations on P; in stage
k to the left, such that there is no idle time either in the computations or in the
communications. If an idle intervals remains in the computations then by Lemma 6.1
we know that such an interval can be removed with the benefit of decreasing the
schedule length. Therefore we can consider only a gap remaining in communications.

The gap in the communications to P; can be closed by shifting some load from
processor P; in the preceding stage. This will create a gap in the communications to
Pj ;1 in stage k, but also this gap, and the following ones, can be recursively closed
by borrowing load from the same processor in the preceding installment. In this way
the gaps in the communications can be closed for all the stages except for the first
one.

Suppose there is an interval of length J in the first stage when the originator

waits before sending the load to processor 1 < j < m. This gap can be removed

by decreasing the load sent to P; by 5;VC. Suppose we shift to the right (i.e.
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delay) the communication to P; and processing the load. Thus, the beginning of the
communication to P; is delayed by 3;V(C' + A). This would result in an idle interval
between the message sent to P;_; and P;. Thus, also the amount of load sent to P;_;
must be decreased by ;_;, such that 5, VA = ,V(C + A). Analogously we have
BiVA=B1V(C+ A)fori=1,...,j— 1. From this we obtain 8; = 8;(1 + £)7 7.
Summing up the load removed in order to close the communication gap we have

. g i 1-(1+€)9 . .
LBi=08Y0+9) = V—JA 17(1!‘%) = %((1 + £)7 —1). Assume we shift

all the communication and computations of the current stage to the right. The

communications to Py,..., P; can be started L1 = VC (B + o+ -+ ;) + J =
J(1+ %)j units of time later. Thus the schedule is made shorter by the same amount
of time. On the other hand, 25:1 0; units of load must be processed by extending
the last stage od the schedule by some time x on each processor. Suppose 7v;, ..., Vm
is the increase of the load on Pj,..., P, at the end of the schedule. Using equation

(6.1) we obtain

u A+ C A A
. (6.5)
J

Ci <
:ﬁ((“rz) —1)—;@;-
Thus,

J(1+£) —1)

V(A + C)(l - (Aﬁc)m + (aizf;n)

(6.6)

M=

The increase of the schedule length in the last stage is x = V(A + C) (cf. proof
of Lemma 6.1). Hence, schedule got shorter by

Cyy_ I+ -y 0 Gl ¢ o)
~ (e + (A+ce)m —(g5e)" + Aro)m

Let us note, that L, — x is positive and schedule length can be shortened. Hence,

the optimum schedule with and idle interval in the computations on some processor
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can be shortened, and thus it was not optimal schedule. Thus, we have a con-
tradiction. We conclude that an optimal schedule should have no idle time in the
communications. O

From the above Lemmas we can conclude, that there should be idle times neither
in the computation nor in the transmissions. This observation allows to formulate a
set of recursive equations to find the sizes of the load distributed to processors in the

optimal schedule.

6.2 The maximum gain from multi-installment pro-

cessing

In this section the maximum possible reduction of the schedule length obtained by
multi-installment processing is calculated. Let us note that when the load is sent
only once to each processor, the processors do not start computing at the time ¢t = 0,
but remain idle waiting for transmission. Particularly, the last processor is busy only
during a short time at the end of the processing. If the load is divided into many small
pieces, the processors would receive the first portion of data sooner and therefore their
idle time would be shorter. It is possible to assess what the maximum possible gain
is if dividing the load into many pieces. The following reasoning concerns processors
without front-ends. A similar reasoning for the processors with front-ends can be
applied. In the case of infinite number of pieces, processor P starts processing at the
time t;, = kS (where k is the sequential number of the processor). If each processor
= CV+mS+ AayV (cf. Fig2.7).

We can calculate «; values from the set of recursive equations:

receives data only once, the schedule length is C}, .

C S

a1 = Qo (69)
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i=1

We are interested in calculating the maximum possible gain from multi-installment
processing. Therefore, we assume an ideal case S = 0,n = oo in which startups are
eliminated and pieces are as small as desired. From equations (6.8)-(6.10) we can

calculate the value of ;.

m C C m—1 1 ‘
1= E ai:a0+a1+(Z+1)a1+(z+1)2a1+...:a1(2+E <E+1)l) (6.11)
=0 i=1
1 A
_ , here A’ = = 6.12
T ey s = e (6.12)

Now let us return to the multi-installment processing. The smaller the pieces are,
the sooner all processors start processing. But if the number of communication grows
the time spent in communications startups also grows. If the load is transmitted in
many pieces the processing time cannot be less than C'V. Two cases should be taken

into account:

1. AV < (m —1)CV. In this case the processing time is equal to CV. It results
from the fact, that in every moment during the interval of length C'V, one of
the processors is busy with transmission and the remaining m — 1 processors
can compute. Because AV < (m — 1)CV it is possible to process all data in
time C'V + Aa;. The last pieces a; and ay must be computed after the whole

transmission is done, but their size is almost 0.

2. AV > (m — 1)CV. In this case, after the transmission of the last part of

the load, all processors still have some load to process. The size of the load

m—1) m—1)CV
A A

processed in the time C'V is ( Y The remaining V' — ( units of the

load can be processed in parallel by m processors. Therefore, the time needed

for this is W.
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Let G = % be the ratio of the schedule length C° for n = oo and C! _ for

max max
max

n = 1. The value of GG shows possible gain from using multi-installment processing.
Smaller values of G' denote better gain, which means that the time needed for pro-
cessing the load is shorter. From the above discussion we have the following formulae

expressing G:

oy
N OV+A()(1V N 1 —f-A/Oél
OV+ AV —(m—-1)CV 1+ A'—(m—1)

— = m for A >m—1 .14
G CV + Aqu 1 + A/O./l or =m (6 )

G

for A" <m—1 (6.13)

After inserting equation (6.12) into equations (6.13)-(6.14) we obtain:

oo A/(%)m—/y—l—l
A+ 1
(A" — A DA+ 1)
m(A/ (45 +1)

forA<m—1 (6.15)

G= for A>m—1 (6.16)

Let us note that the best gain can be achieved if the value of G is the minimum
possible. The function defined by equation (6.15) is monotonicly decreasing when A’
takes values from interval 0 to m—1. For A’ > m—1 the function defined by equation
(6.16) is monotonicly increasing. Thus we can conclude that the G is minimum when
A" =m — 1. Hence we have:

g moDan)" —m 2 (6.17)
(m— 1)) + 1
The greater m the better gain GG can be achieved. To find the best gain that can

be achieved we calculate the limit of G when the m tends to infinity. Let us note that

1Moo (225)™ 1 = limyy oo (1 + —17)™ ! = €. Hence:
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(6.18)

This means that multi-installment processing can shorten the time needed for

processing data to 63.2% of the time used for single-installment processing.

Corollary 6.3. The minimum schedule length obtained by using multi-installment

divisible load processing is C2° = %C’l

max max -’

6.3 Processors without front-end

In this section we analyze processing elements without communication front-end us-
ing the results of Lemma 6.1 and Lemma 6.2. It is possible to formulate recursive

equations determining the values of «; variables (cf. Fig 2.7).

Aa;V = (C+ A)oy 1V + S fori=2,...,m (6.19)
m—1
Aoz,;V:CVZozi,k+(m—1)S fori=m+1,...,mn (6.20)
k=1

d =1 (6.21)
=1
Qg = (1 (622)

Let us note that equation (6.20) indirectly prevents the accumulation of the load
on processors. Equation (6.22) shows that the size of the piece processed by the

originator is equal to the size of the last piece sent to processor P,,. All processors
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stop processing at the same time. Therefore, we can derive the following equation for
the schedule length as the total communication and computing time of the originator:

Ch e = C(1 —ap)V +mnS + AagV (6.23)

max

From the recursive equations (6.19) and (6.20) we can find values «; as the func-
tions of ay. After expressing values «; as linear functions of a; or oy we can find

a; and g from the equation (6.21), and use it to calculate time C7’

" . TOom equation

(6.23). There are six parameters A, C,S,V,m,n in the above equations. It is hard
to analyze the performance of a computer system described by so many parameters.

Hence, we reduce the number of independent parameters by dividing equations (6.19),

(6.20) and (6.23) by C'V. Thus, we replace A by A’ = %, S by S = % and C7 by
cn = % The new form of the equations follows:
Ao =14+ A1+ 5 fori=2,...,m (6.24)
m—1
Aa; = Zai_k%—(m—l)sl fori=m-+1,...,mn (6.25)
k=1

Y =1 (6.26)
=1
cn = (1—ag) +mnS' + Alag (6.27)

In the following paragraphs we present the results of the simulations determining
the relationship between parameters A’, S’, m, n and the system performance.

An interesting phenomenon has been observed in the systems without the front-
ends. If A/C ~m — 1 the sizes of the consecutive pieces were almost the same. For
A/C > m — 1 every next piece was larger then the previous one (Fig. 6.3(a)) and for
A/C < m — 1 sizes of the pieces decrease (Fig. 6.3(b)). In Fig. 6.3 the pieces of the
line below the dotted lines represent the computing periods and the pieces above the
dotted lines are the communications.

Fig. 6.4 presents the optimal number of stages n* for the given values of A" and
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Figure 6.3: Gantt chart for multi-installment processing without front-ends.
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Figure 6.4: Optimal number of installments for m = 5 processors.

S’ for m = 5 processors. For the optimal number n* of stages the schedule length
is the shortest possible. There is a simple iterative method of determining n*. For
the number of pieces less than optimal, the schedule length is greater, and for the
number of pieces greater than optimal the set of equations (6.24)-(6.27) is infeasible
because some of the load fractions «; are negative. The dependencies of n* on S’
for other numbers of processors m are very similar. We can observe in Fig. 6.4 that
multi-installment divisible job processing is particularly effective for small values of
S’ and big values of A’.

The ratio of the processing time C

" . for n installments to the processing time

Cl . for a single installment is shown in the Fig. 6.5. Fig. 6.5(a) depict the results
for m = 6 processors with A" = 4. Fig. 6.5(b) shows the results for processing data
with A" = 6 and S’ = 1E — 4. Fig. 6.5(c) presents the results for processing on 8
processors with parameter S’ = 1E — 4. We can notice that the best values can be
achieved when A" = m — 2. This empirical rule applies not only to specific values
A’ = 6 and m = 8, but to all tested values of A" and m. This means that for the

systems with the given A’ value we should use m = A’ + 2 processors to optimize the
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Figure 6.5: Gain in processing time from sending data in n pieces.

() m=8,8"=1E—4
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utilization of the resources. We can also observe that for small S” and large n results
are better. It seems reasonable because with smaller S’ less time is used for setting
up a communication. On the other hand, we cannot choose very large n, because
when n is too big, it is impossible to solve the equations (6.24)-(6.27). Fig. 6.6 shows
the benefit of multi-installment scheduling with the maximum possible value of n.
Fig. 6.6(a) shows the gain for different values of A" and n. Fig. 6.6(b) shows the gain
for maximum admissible value of n as a function of A’. In both figures the value of
m was equal to A’ + 2. It can be seen that it is hard to get the processing time ratio

less than approximately 0.64. This confirms the results from Section 6.2.

6.4 Processors with front-end

In this section we analyze processing elements with communication front-end. Simi-
larly to the classical DLT also here all processors stop processing at the same time.
It is possible to formulate recursive equations determining the sizes of «; of the load

sent to the processors.

AoV = (C+ A)a; 1V + S fori=2,...,m (6.28)
AaiV:C’VZai_k—i-mS fori=m+1,...,mn (6.29)
k=1

Z ;=1 (6.30)
i=0
AagV = CV (1 — o) + mnS + AV (6.31)

Considering activities of the originator, we can derive the following equation for

the schedule length:

cn = AagV =CV (1 —ag) + mnS + AoV (6.32)

maxr

Similarly to the procedure applied in the previous section we can divide equations
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Figure 6.6: Benefit from multi-installment processing with the maximum admissible
value of n.
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(6.28), (6.29), (6.31) by CV, in order to reduce the number of independent variables
and to simplify the further analysis.

Aaj=1+ A+ 5 fori=2,....m (6.33)
A’ai:Zai_k—}—mS’ fori=m+1,...,mn (6.34)
k=1
Zai —1 (6.35)
=0
or=(1—ag)+mnS + Aoy (6.36)

We examined the dependence of the system performance on the parameters A’,
S’, n. Fig. 6.7 presents the optimal number n* of stages for the given values of A’, S’
and m = 6 processors. The number of installment n* is optimal in the sense of the
shortest schedule. Also for the processors with the front-ends there is a simple method
of determining n*. Schedule length decreases with n up to n*. For the number of
stages greater than n* the set of equations (6.33)-(6.36) is infeasible, because some
processor would have a; < 0. We can observe that the multi-installment processing
is particularly justified for small values of S’ and big values of A’. Let us note, that
Fig.6.7 is similar to Fig.6.4. It means that using a different communication equipment
has little influence on efficiency here. The dependance of n* on A’, ad S’ is very similar
also for other number of processors.

Fig. 6.8 shows the ratio C" /C'!
processors with A" = 4. Fig. 6.8(b) presents the results for processing data with

w- Fig.6.8(a) shows the results for m = 6
parameter A" = 6 and S’ = 1F — 4. Fig. 6.8(c) depicts the results for processing data
using m = 8 processors with parameter 8" = 1E —4. Comparing Fig. 6.5 and Fig. 6.8
we can conclude that using processors with front-ends we can gain only a few percent
in the reduction of the schedule length over the processors without front-ends.

It can be observed in Fig 6.8 that the best values are achieved when A" =m — 1.
This empirical rule applies not only to the specific values A’ = 6 and m = 8, but to

all values of A" and m tested. It means that for a system with given A" we should use
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Figure 6.7: Optimal number of installments for 6 processors with front-end

m = A’ + 1 processors to optimize the gain from multi-installment processing. Let us
observe that for small S” and large n the results are better. It is intuitively natural
because with smaller S’ less time is used for setting up a communication. Yet, we
cannot choose very large n, because when n is too large, the solution of the equations
(6.33)-(6.36) is infeasible. It is the case when some of «; are negative. In Fig. 6.9
benefits from multi-installment scheduling with the maximum admissible value of n
are presented for different values of A" and n. The value of m is equal to A’ + 1 in
Fig. 6.9. The reduction of processing time is not more that approximately 0.64 C!

max*

Thus predictions from Section 6.2 are confirmed.

6.5 Model Comparison

The results of the simulations for processors with and without front-ends are very
similar. On both types of processors it is possible to obtain similar performance. The
significant difference is the optimal number of processors one should use to achieve
the best gain from the multi-installment processing. For processors with a front-end
we can save one processor compared to the processors without a front-end. It is
the case because the originator is processing data during communication and can be

treated as an additional processor. Another difference is that for processors without
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Figure 6.10: Optimal number of pieces for different processor type.s

front-end it is possible to use more pieces n for the same value of S’. The results in
Fig. 6.4 and Fig. 6.7 are compared in Fig. 6.10. We can see that the lines are shifted
horizontally. Thus, on the system without front-ends it is optimal to use the same
number of pieces as on the system with front-ends at S’ that is 1.5-2 times larger. For
similar values of S’ it is optimal to use less stages on the system without front-ends
than on the system with front-ends for the same parameters A’, m.

On the other hand, it should not be forgotten that by using more processors it is
possible to shorten the schedule length, but the gain of multi-installment processing
is smaller. Consequently, the processor utilization is also smaller. In other words,
it is more efficient to process two jobs, each requiring m processors in parallel, than
process the same jobs sequentially using 2m processors. Fig. 6.11 shows the schedule
length for different values of A" and m. Let us note that more processors can be

activates in slow systems, i.e. for big A’.
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Figure 6.11: Schedule length for different values of A’ and m

6.6 Memory utilization in multi-installment process-
ing

In this section we consider memory requirements in multi-installment processing.
In the processing type presented in the previous section all data chunks could have
different sizes. The size of the largest part of the load determined the minimal memory
buffer for the processors. On the other hand it is also possible to divide the volume
of data into parts of equal sizes. In this type of processing the idle times in the
transmission or in the processing can appear. Therefore, the schedule length will be
greater. Since all chunks have the same size the memory requirements can be smaller
than in the previous case. This method of processing is also simpler to implement
than the former one. We can formulate the equation describing this model: Let
T, denote the time between transmissions of consecutive data chunks to the same

processor, and ¢ denote sizes of the load sent to the processors Py, ..., P,

Ty = max{S +0(C+ A),m(S+ Cd)} (6.37)
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Craz = (n — 1) x Ty +m(S + C0) + A (6.38)

If T, = S+ 0(C + A) processing step is computation bound and an idle time in the
communication appears. If Ty, = m(S + C¢) processing step is communication bound
and an idle time in the computation appears. In both cases, after transmitting all

data, the originator can process the load of size 9. Hence:
a=0=V/(mn+1)<B fori=0,...,m (6.39)

On the other hand if the size B of the memory buffers is given it is possible to find the
minimal number of installments required, so that the load chunks fit into the memory
buffers.

n=[(V = B)/(Bm)] (6.40)

The minimal memory buffer sizes for processing with variable sizes of the load (as
discussed in the preceding sections) are shown in Fig 6.12 and the minimal memory
buffer required sizes for processing with fixed sizes of the load chunks are shown in
Fig 6.13. In both cases the buffer sizes are expressed as parts of the total volume size.

We can notice that also for multi-installment processing with different sizes of
data pieces the best values can be achieved when A’ = m — 2 (cf. Fig. 6.12). This
means that for the systems with given A’ value we should use m = A’ + 2 processors
in order to minimize memory requirements. For multi-installment processing with
equal sizes of data chunks we can observe that the schedule length depends only on
the number of processors and processing steps (cf. Fig. 6.13). It is the obvious
result of equation (6.39). For this kind of processing memory buffers can be smaller
than for the processing with different piece sizes. But because of equal pieces we can
expect that processing time will be longer than in the first method. Schedule length
reduction for multi-installment processing with equal sizes of the load is presented in
Fig. 6.14. The analysis was done for A’ = 10 and S’ = 1E — 5. We can observe that
for some values of the parameters the schedule length is even longer then for single-
installment processing. It is because the computation time dominates the schedule

length and severe load imbalance appears..
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Figure 6.12: Decrease of memory requirements for multi-installment processing with

variable sizes of the load
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Figure 6.14: Reduction in schedule length for multi-installment processing with equal
chunks.

The comparison of the processing time gain of the two considered processing types
is presented in Fig. 6.15. On the vertical axis the absolute time is shown here instead
of the time gain as in the previous figures. The multi-installment processing with
equal sizes of the pieces is always worse than the other method. We can observe
that for larger number of pieces the difference between both methods decreases. The
difference is about 15% for small number of pieces and about 5% for larger number
of pieces.

The comparison of the memory requirements of both processing types is presented
in Fig. 6.16. The memory requirement for the processing with equal sizes of the load
is much smaller. The smallest difference (20 — 40%) can be observed for A" =m — 2.
This is because while processing with variable sizes of pieces the sizes of pieces are
roughly similar (cf. Fig. 6.3. But for other values of A" and m processing with equal
sizes of pieces requires even several times less memory buffers and this difference

increases with the increasing number of pieces.
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6.7 Conclusions

The above results show that it is advantageous to use multi-installment divisible job
processing, but the gain on the schedule length C,,,, is limited. It was demonstrated
that the processing time can be reduced approximately by one third. The number
of optimal processing stages n*, depends on the values A" and S’. If S’ is large then
the optimal processing requires fewer stages. The results show that the value of
A’ determines the number of processors we should use to have minimum Gmaz and

max

better memory utilization. On the other hand the minimum % is not equivalent

max

to minimum C” Multi-installment processing allows also to use processors with

maz
smaller memory buffers. If the memory buffers are important it is recommended to
divide data into equal pieces, but in such a case there is no gain on processing time for
certain values of parameters. From Fig. 6.6 and Fig. 6.9 we can conclude that using a
large number of stages can reduce the schedule length only slightly. It is reasonable to
divide the load only to a few installment (for example no more than 10) because for a
larger number of pieces the benefit is small. Moreover, in the real computing systems,

there can be problems with synchronization between the processors communications,

a small temporary variation of parameters can cause a significant delay in schedule.



Chapter 7
Practice of Divisible Job Processing

In this chapter we present result of practical verification of the divisible load theory

predictions.

7.1 Method of experimenting

In this chapter we presents a series of experiment in parallel processing conducted
on various cluster of workstation platforms. During the experiments real application
were run. Because the results were collected two different modes of returning results
can be distinguished. Amount of the returned results is expressed as a function of
the size of received data 3 = f(«). Processors can return results in the same order
they received data (FIFO case) or in the reverse order (LIFO case). The Gantt charts
for both types of communication are presented in Fig. 7.1. All experiments employed
single-installment processing.

The goal is to distribute computations, i.e. find «;, such that the duration of all
communications and computations is minimal. Let us observe (cf. Fig. 7.1(a)) that in
the LIFO case processing on the processor activated earlier lasts as long as sending to
the next processor, computing on it and returning the results. Using this observation
we can formulate a set of linear equations from which distribution of the load can be

found:
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Figure 7.1: Communications and computations in star.

a;A; = 2Si11 + Cipr (i + Blaigr)) + A 1=0,....,m—1 (7.1)
V=> a (7.2)

Py denotes the originator. In the FIFO case (cf. Fig. 7.1(b)) the time of processing
on P; and returning results the from processor P; is equal to the time of sending to
P, and processing on P;,;. Hence, distribution of the work can be calculated from

equations:

OéiAZ' + Sz + B(az)CZ = Si+1 + ozi+1(0i+1 + Ai—‘rl) 1= 1, e, — 1 (73)

m

apAy = Z(Sz + ,Ci) + Ay + S+ Cr () (7.4)
i=1
V=> q (7.5)
i=0

Due to the specific structure the above two equation systems can be solved in O(m)
time. However, they may have no feasible solution (because some «; < 0) when vol-
ume V is too small and not all m processors are able to take part in the computation.

In this case less processors should be used.



CHAPTER 7. PRACTICE OF DIVISIBLE JOB PROCESSING 134

7.2 Test applications

Search for a pattern

The problem consists in verifying whether some given sequence X of characters con-
tains substring x. If it is the case the position of the first character in X matching
x must be returned as a result. Having calculated quantity «; of data the origina-
tor sends to processor P; amount of o;V 4 strlen(z) — 1 bytes from the sequence
X starting at position Z;;ll a; + 1. The chunks overlap in order to avoid cutting
substring x placed across the border of two different chunks. As the files for the tests
were known the amount of returned results was also known. f(x) ~ 0.005z which is
typical of search in databases holding e.g. surnames and personal data. This applica-
tion was run also with different numbers of patterns. The idea was to check accuracy

of divisible job processing for different A/C' ratios.

Compression

In this application originator sends parts of a file to the processors. The part sent to
processor P; has size «;. Each of the processors compresses the obtained data using
LZW |68, 70| compression algorithm. The resulting compressed strings are returned
to the originator and appended to one output file. The original file can be obtained
by decompressing each part in turn. The achieved compression ratio determines the
amount of the returned results. It was measured that 5(z) = 0.552. The compression
ratio and speed depend on the contents and size of the input. In order to eliminate
(or at least minimize) this dependence only parts of at least 10kB were sent to the

processors for remote compression.

Join

Join is a fundamental operation in relational databases. Suppose there are two
databases: X e.g. with a list of supplier identifiers, names, addresses etc., and Y

with a list of products with names, prices, etc. and supplier identifier. The result of
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join operation on X and Y should be one file with a list of suppliers (names, addresses,
etc.) and the products the respective supplier provides. The join algorithm can be
understood as calculation of cartesian product X x Y of the two initial databases.
X XY can be viewed as a 2-dimensional array in which one row corresponds to one
record z; from file X and one column corresponds to one record y; from database
Y. On the intersection of row z; and column y;, pair (z;,yx) is created. (z;,yx) is
transferred to the output file only if the fields of the supplier identifier match. In our
implementation of distributed join, one of the databases (say X) was transmitted to
all processors first. Then, the second database (Y) was cut into parts Y; according
to the calculated volumes «;, and sent to processors P; (i = 1,...,m). Each of the
processors calculated join on X and Y; and the results were returned to the originator.
Databases X and Y were artificially and randomly generated, therefore the amount
of results was known. 3 expressed the ratio of the amount of results and database Y

size.

Graph coloring and genetic search

Consider graph G(V, E), where V' is a set of vertices, and E = {{v;,v;} : v;,v; € V'}
is a set of edges. Node coloring problem consists in assigning colors to the nodes such
that no two adjacent nodes v;, v; have the same color. More precisely, node coloring is
a mapping f: V — {1,...,k}, where {v;,v;} € E = f(v;) # f(v;). Find minimum
k, i.e. chromatic number yg.

Determining graph chromatic number is a hard combinatorial problem, therefore
heuristic algorithms are suitable for solving it approximately. Genetic search [55] is
one of the metaheuristics applicable with this respect. In our implementation of the
genetic search each solution is a gene represented by a string of colors assigned to
the consecutive nodes. Good solutions from the initial population are combined using
genetic operators to obtain a new population. The measure of solution quality is called
fitness function which in our case was the number of the colors used plus the number of

infeasibly colored nodes. Two genetic operators were used to obtain new ’individuals’:
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crossover and mutation. Crossover is a binary operator exchanging tails of the strings
in two genes starting at a randomly selected place. The effect of the crossover and
selecting good solutions to produce offsprings is that certain properties of the initial
solutions can be implicitly identified and combined. Mutation operator makes random
changes in the individuals and diversifies the population. Solutions were selected to
produce offsprings with probability increasing proportionally to decreasing of the
fitness function (note that we have minimization). Originator generated the initial
population of 1000 random solutions (genes). This population was distributed among
the processors according to the calculated values of a;’s. Each processor created
a fixed number of new generations and returned final population to the originator.
Thus, B(x) = x. The gene with feasible coloring and the smallest number of colors

used was selected as a final solution.

7.3 The results

In this section we outline results obtained in the experiments (cf. also [39, 49, 58]).
We experimented on several different hardware and software platforms. Due to time
and workforce limitations not all applications were performed on every considered
platform. In Table 7.1 we summarize which application was tested on which platform.
Abbreviation ded. stands for dedicated network segment interconnection, and pub.
for public network available for other traffic in the experiments time.

The main goal of the experiments was to apply divisible task model in practice and
to verify correctness of its predictions. The verification was done by comparing the
real and the predicted execution times of some application when data is distributed
in chunks of sizes (q;’s) calculated from equations (7.1)-(7.5). To formulate any of the
above equations we needed data, i.e. parameters A;,C;,S; for j = 1,...,m. There-
fore, we had to measure these parameters first. The communication parameters were
measured by a ping-pong test. Originator sent to a processor some amount of data.

The processor immediately returned these data. A symmetry of the communication
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Table 7.1: Platforms vs applications
application— | search for | com- | join coloring
platform a pattern | pression
A: heterogeneous Sun workstations: yes
PVM, ded. Eth
B: heterogeneous PCs: Linux, PVM, yes yes
pub. Eth.
C: nodes of IBM SP2, PVM, ded. HPS yes
D: homogeneous PCs: WinNT, MPI, yes yes yes
ded. Eth.
E: heterogeneous PCs: Win98, Java, yes
pub. Eth.
F: homogeneous PCs: Linux, Java, yes
ded. Eth.
G: heterogeneous supercomputers yes
(Cray, SGI): PVM, pub. FDDI

links was assumed and half of the total bidirectional communication time was taken
as the unidirectional communication time. The time of the communication and the
amount of data were stored. After collecting a number of such pairs (for various sizes
of the message), parameters S;, C; were calculated using linear regression. Processing
rate A; was measured as an average of the ratios of the computation time and the
quantity of data processed. The method of obtaining 3(x) has been explained in the
previous section. The measured communication parameters are presented in Table
7.2. Standard deviations are reported after the 4 sign.

Table 7.2 requires some comment and explanation. Firstly, these numbers may
differ from system to system and from implementation to implementation. Thus,
they should be understood rather as indicators than the ultimate truth about com-
munication performance. The values of parameters can significantly depend on the
implemented method of communication. Therefore they cannot be taken from hard-
ware specification but should be found using the same method of communication as
implemented in the application. The measurements were taken on unloaded com-

puters (no other user applications were running). The values represent one pair of
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Table 7.2: Typical values of communication parameters

platform Cjlus/B] S;lps]

A: various Sun workstations | 70.740.3 | 6360004+86000
B: various PCs 1 7031413 2861+9312
various PCs 2 185420 3484206
C: IBM SP2 68.6+0.1 205144
D: homogeneous PCs 1.04+0.13 | 62007200
E: various PCs 111+4 116000410000
F: homogeneous PCs 64240 8770+£240
G: various supercomputers

Cray SV1 36843 4761+£1066
Cray T3E 900 233+12 1088044105
Origin 3000 1283+12 1360044175

138

communicating computers.

In Table 7.3 examples of typical processing rates (A;) are given. Note, that these
values not only depend on the raw speed of the hardware or the operating system, but
also on the application, its implementation, and run-time environment. All results
refer to a single computer. Though values A; are often greater than C; it does not
mean that parallel processing is less efficient than sequential execution because in
most of such cases a single computer is not able to hold equivalent quantity of data
as distributed computers and process it with the same speed as for small amounts of
data (we discussed it in Section 4).

The contents of the following diagrams is organized as follows. Difference between
the expected execution time and the measurement divided by the expected execution
time (i.e. relative error) is presented on the vertical axis. The horizontal axis shows
the size of the problem. In Fig. 7.2 results of the "search for a pattern" application on
platform D are shown. In all cases real running time was longer than the expectation.
For platform A the results were similar. The difference is stable and around 35% in
LIFO case. In the FIFO case the difference has bigger variation, and grows slightly
with V' from approx. 25% to 30%. In Fig. 7.3 results of the "compression" application

on platform C are shown. Real running time was longer than the expectation. The
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Table 7.3: Examples of processing rates (A;)
platform application | A;[us/B]
A: Sun SLC, PVM search for
a pattern 6.994+0.03

B1: various PC

Linux, PVM compression 1500420
B2: various PC
Linux, PVM compression 5231466

C: IBM SP2, PVM compression 650160
D: homogeneous PCs | search for

WinNT, MPI a pattern | 0.838+0.007
D: homogeneous PCs

WinNT, MPI join 1176+6
E: various PCs

Win95, Java coloring 25+76
F: homogeneous PCs

Linux, Java coloring 2612
G: supercomputers search for

Cray SV1 a pattern 1114412
Cray T3E 900 13944
Origin 3000 143+2

LIFO/FIFO orders of returning results have similar behavior as in the previous ap-
plication. LIFO case is more stable and real execution times oscillates around 10.5%.
In FIFO case difference is growing with the size of the problem from approx. 6% to
approx. 13%. For the same application on platform D relative error was decreasing
from approx. 55% to approx. 7% with V increasing.

In Fig. 7.4 relative error for "join" application on platform D are displayed. In
both LIFO and FIFO cases the difference decreases from approx. 40% to less than
0.5%. Intuitively, it seems reasonable that there should be a good coincidence between
the expectation and the measurement for big values of V', because processing and
communication times are long and transient (or "noisy") effects are compensated
for. In Fig. 7.5 relative difference between the model and experiment for "coloring"

application on platform F is shown. As it can be seen with growing volume V' the
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Figure 7.2: Difference between model and Figure 7.3: Difference between model and
measurement on platform D in "search for measurement on platform C in "compres-
a pattern" application. sion" application.

relative error decreases from approx. 30% to less than 5% and then increases to
approx. 30%. Real execution time was longer up to 30kB, and from 40kB on it was
shorter than the expectation. As these results differ from the previous ones further
critical verification is needed.

In Fig. 7.6 and Fig. 7.6 relative errors for search for pattern application are pre-
sented. In these experiments not only the size of the load was changing but also the
number of patterns was changing which resulted in different A/C' ratio. In Fig. 7.6
results for platform G are shown. Relative errors grow up to 13% with growing
volume V' and with the increasing number of patterns. This experiments were run
on "live" supercomputer system with dynamically changing load so predicted com-
putation time could not be accurate. Therefore when the computation dominates
over communication (for larger number of patterns) the relative error grows but also
stabilizes. Negative errors for smaller data sizes are results of rounding error in mea-
surement of very short amounts of time. In Fig. 7.7 results for the same application
for platform B2 are shown. This time computers and the network were dedicated to

the experiment. We can notice than the size of the data volume have no influence
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Figure 7.4: Difference between model and Figure 7.5: Difference between model and
measurement on platform D in "join" ap- measurement on platform F in "coloring"
plication. application LIFO case.

on the relative error which is less than 15%. For small A/C ratio (few patterns) the
processing times were very short so rounding errors could have important influence on
the relative error. Negative error for 35 and 40 patterns are more difficult to explain.
Probably it is a result of not accurate measurement of processing ratio A for this
cases. Even in dedicated environment some CPU time can be used in unpredictable
way by the operating system to run some maintenance processes, daemons etc.
Results for another kind of experiments are shown in Fig. 7.8 and Fig. 7.8. During
these experiments different communication methods were used to test the influence of
communication middleware on processing time and relative error. The tested appli-
cation was searching for patterns and communication middleware were MPI, PVM,
shmem library and vendor specific socket implementation. Tests were conducted in
Poznan Supercomputing and Networking Center using SGI Origin 3000 and IBM
SP2. In all tests 7 processes were used. Fig. 7.8 presents relative errors for Origin
3000 supercomputer. Relative errors are different for different communication meth-

ods and best results (1.8-3.6%) were achieved for MPIL. For shmem library relatives
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Figure 7.6: Difference between model and Figure 7.7: Difference between model and
measurement on platform G in search for measurement on platform B2 in search for
pattern application. pattern application.

error were 19-36% but it resulted from imprecision of communication speed mea-
surement. Origin 3000 is a shared memory machine therefore communication over
shmem library is very fast and takes about an order of magnitude less than in other
methods. Because communication between processes take only few milliseconds it is
not possible to measure it precisely. Fig. 7.9 presents relative errors for IBM SP2
supercomputer. The shmem library is not available for this platform because IBM
SP platform is based on the idea of a cluster of workstation. Also for this machine
the best results were achieved for MPI. Accuracy for this method is outstanding and
the error is less than 1%. Socket and PVM implementation were also quite precise

and relative errors were in range from 3 to 8%.

7.4 Discussion and conclusions

Let us observe that in most of the cases relative difference between the model and the
measurement is &~ 30% and less. We believe that the coincidence of the model and
experimental results can be improved if more effort is devoted to better understanding
the computing environment, and more carefully setting up the experiments (e.g. if
we have more control on the computer software suite). On the other hand differences

below 10% (cf. Fig. 7.3, Fig. 7.4, Fig. 7.8, Fig. 7.9) indicate that there are applications
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Figure 7.8: Difference between model and Figure 7.9: Difference between model and
measurement on Origin 3000. measurement on IBM SP2.

and platforms where the divisible task model is accurate.

It can be observed that the more uniform system we used and the more the system
was dedicated to our experiments, the better the coincidence with the model was.
Basing on the experience we gained it can be observed that calling operating system
and runtime environment services is one of error sources in our results. For example,
references to disk files or memory allocation procedures introduces great amount of
uncertainty and dependence on the behavior of other software using the computer.
This was also the case for long messages for which the efficiency of communication
decreased as soon as the message size exceeded free core memory size. Virtual memory
was used by the operating system to hold big data volumes to be communicated. In
such situations the assumption about the linear dependence of the communication
time on the volume of data was not fulfilled, and communication speed decreased
with data size. This observation applies also to the dependence of processing time
on the volume of data: in wide ranges of data sizes the assumption on linearity of
this function may be violated. Distribution of the results can be another reason
for disagreement of the real running time and the expectation. This applies e.g. to
"search for a pattern" and "join" applications. In the model distribution of the results
is uniform and any fraction of the total volume of data induces some results. This
may not be the case in reality because records or text patterns may be abundant in

data for one processor, and may be absent from the data for another processor. Our
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experiments were performed on Ethernet network. The access time to this kind of
network is not deterministic. Also the software running in parallel with our programs
(e.g. interrupt drivers, operating system in general) causes that processing speed is
not stable. As a result both communication and computing parameters include some
amount of uncertainty, which can be estimated by the value of these parameters
standard deviation. The standard deviation of C; and A; parameters on most of the
platforms was less than approx. 0.01 of the parameter value. Deviation of startup
time parameters (.5;) is much bigger, even as much as 3.3 in case of platform B1.

In this chapter we presented results of experiments on applying divisible task
theory in practice. It has been demonstrated that the model is capable of accurately
describing the reality. There are also cases when the predictions of the model are not
satisfactory yet and these cases should need further analysis. The collected experience
gives rise to a better understanding of distributed processing environments and may
help improve the theoretical models. Another conclusion from the experiments is that
the parameters A, C' and S depend on the specific implementation of application and
on chosen communication platform. Therefore these parameters cannot be taken from
hardware or application specification but should be measured with the benchmarks

implemented in the same way as the applications.



Chapter 8
Summary

In this work we examined various aspects of divisible job processing. We focused on
the impact of memory limits on the schedule length. Linear programming methods
were used to model various computing systems with different kinds of memory lim-
its. The results of simulations were presented and discussed. Divisible Load Theory
(DLT) was used to find the shortest possible schedule length and to minimize the
resource requirements. The results also show versatility of DLT which establishes a
link between scheduling and communication optimization.

In Chapter 3 we considered systems with single level of limited memory. It was
shown that scheduling divisible load in systems with limited memory is NP-hard.
Interconnection topologies of a star, and binomial tree under two different distribu-
tion strategies were studied. It was shown that in homogeneous systems and big
computationally intensive applications performance of the systems is limited mainly
by the processor and communication speeds limit. For such a systems the memory
limitations does not have significant influence on the schedule length. The optimum
processor activation order for a star-network of heterogeneous processors was also
considered. Exponential optimization algorithm and polynomial-time heuristics have
been presented and compared. It appeared that the shortest schedule length could be
achieved with heuristics based on communication transfer rate. However, in certain

situations, also other parameters, such as computing rate and memory buffers may be
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important. It was also shown that IBS algorithm proposed in [53] is only a heuristic.
It was possible to shorten the schedule length by using linear programming approach.

In Chapter 4 we studied systems with hierarchical memory. We demonstrated
the origin of superlinear speedup arising from memory hierarchy in distributed sys-
tems. The influence of the model parameters on the performance of the computing
system has been studied. Efficiency of distributed processing divisible loads in multi-
installment and out-of-core modes were compared. Multi-installment processing ap-
pears to be advantageous for reasonably selected load chunks sizes.

Chapter 5 was devoted to the systems with limited communication buffers. The
impact of communication buffer size D on the performance of divisible load process-
ing in various distributed networks was examined. Interactions of several scattering
algorithms with computations under limited communication buffer size have been an-
alyzed. We observed severe performance limitations incurred by the tree structures.
It was shown that influence of the limited communication buffer size manifests in
several ways. It was concluded, that even for big memory buffers it is recommended
to implement the limited size of the messages.

In Chapter 6 the regular multi-installment divisible job processing was considered.
We studied the influence of the number of installments on the schedule length. Two
kinds of processors were considered, processors with front-end and without front-end.
It was shown that multi-installment processing can shorten the schedule length up to
% compared to the schedule length achieved in single-installment processing. The
influence of the number of installments on memory requirements was also shown. Two
methods of the load distribution were presented, with variable and fixed size of the
load pieces. It was shown that there is a trade-off between the schedule length and
memory requirements.

Finally in Chapter 7 in a sequence of experiments we demonstrated the viability

and practicability of the divisible load model.



Streszczenie w jezyku polskim

Wrzrastajace zapotrzebowanie na moc obliczeniowa zaowocowato wzrostem poplarnosci
rownolegtych i rozproszonych modeli przetwarzania. Obecnie praktycznie zaden po-
jedynczy komputer nie jest w stanie zapewni¢ mocy obliczeniowej portrzebnej do
przetwarzania wspotczesnych problemoéw obliczeniowych. Dlatego potrzebne sa algo-
rytmy i aplikacje, ktore potrafia wykorzystaé¢ jednocze$nie wiele procesoréw. Opra-
cowanie szybkich algorytmoéow rownolegtych wymaga jednak odpowiedniego modelu
przetwarzania. Szczegdétowe modele, mimo ich doktadnosci, sa nieprzydatne ze wzgledu
na ich ztozono$¢ i trudno$é¢ analizy. Dlatego istenieje potrzeba opracowania dla
wybranych zastosowan prostych modeli, ktére beda poprawne i tatwe do analizy.

W tej pracy rozwazamy model przetwarzania zadan jednorodnych. Dla zadan
jednorodnych dane moga zosta¢ podzielone na dowolng liczbe fragmentow i kazdy
fragment moze by¢ przetwarzany niezaleznie. Model zadania jednorodnego znajduje
wiele zastosowan w przetwarzaniu duzych zbioréw danych pomiarowych, przeszuki-
waniu baz danych, w wybranych problemach algebry liniowej, symulacjach, czy w
przetwarzaniu obrazéw. Model zadania jednorodnego mozna zastosowaé¢ do mode-
lowania r6znych topologii potaczenn w systemach réwnolegtych takich jak taricuch
procesorow, gwiazda, pierscien, drzewa, kraty czy hiperkostki.

Celem pracy jest zbadanie wplywu roéznego rodzaju ograniczenn pamieciowych
na wydajno$é¢ przetwarzania zadan jednorodnych. Pod uwage wzieto trzy rodzaje
ograniczen pamieciowych: pamieé¢ hierarchiczna, jednopoziomowa pamieé¢ o ograni-
czonym rozmiarze oraz system z ograniczonym rozmiarem buforéw komnikacyjnych.

Przedstawione zostaly sformutowania programowania liniowego dla r6znych systemow
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obliczeniowych. Ich rozwiagzaniem jest taki przydzial czesci obliczen do poszczegol-
nych procesoréw, aby czas przetwarzania zadania byt jak najmniejszy. Przedstawione
i omowione zostaly symulacje wptywu wielu r6znych parametrow systemow na jakosé
rozwiagzan .

Przedstawiono rowniez wyniki rzeczywistych eksperymentow, ktore pokazuja, ze
model zadania jednorodnego dobrze nadaje si¢ do modelowania pewnej klasy aplikacji,

a przewidywania modelu sg zgodne z rzeczywistym czasem obliczen.
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Appendix A
Notation Summary

«; - part of volume V sent to processor for computation,

A - processing rate in a homogeneous system,

A = g - defined only for homogeneous systems,

A; - processing rate of processor P; in heterogeneous system,

ALj1, ALy - coefficients of the linear function describing processing time for the core
memory

AH;i, AH;5 - coefficients of the linear function describing processing time for virtual
memory using the disk storage.

B - size of memory buffer in a homogeneous system,

B; - size of memory buffer of processor P; in heterogeneous system,

B’ - size of memory buffer in a homogeneous system, relative to the size of the volume
v,

C' - transfer rate in a homogeneous system,

C; - transfer rate of link j in heterogeneous system,

Cinaz - schedule length,

cinf

max

schedule length in a system with unlimited memory,

Cs% _ schedule length in a system with total memory size equal to V,

C} . - schedule length for single-installment processing,

Cr .. - schedule length for multi-installment processing with n steps ,
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! C’V?:VL‘HZZ
C’n?a:c - cv
Cre . - schedule length for multi-installment processing with n = oo steps ,

D - size of communication buffer in homogeneous system,

D’ - size of communication buffer in a homogeneous system, relative to the size of the
volume V/,

D; - size of communication buffer of processor P; in heterogeneous system,

0 - size of a chunk in simple multi-installment algorithm,

G - gain from multi-installment processing,

h - number of layers in a binomial tree,

m - number of processors,

n - number of steps in multi-installment processing,

Nymin - Minimum admissible number of steps in multi-installment processing,

n* - optimal number of steps in multi-installment processing to achieve the minimum
schedule length,

p - degree of a node in a binomial tree,

Py - originator,

P; - processor number i,

P - the set of processors

p= % - defined only for homogeneous systems,

o= % - defined only for homogeneous systems,

S - communication startup time in a homogeneous system,

S = C—*";/ - defined only for homogeneous systems,

S; - communication startup time for link j in heterogeneous system,

swp - swap point in a homogeneous system,

swp; - swap point of processor F;,

T, - the time between transmissions of consecutive data chunks to the same processor
in multi-installment processing,

V' - total size of the load.



