
MULTI-INSTALLMENT DIVISIBLE LOADS SCHEDULING

Marcin Lawenda

Thesis under guidance of:

Ph.D., Dr. Habil., Maciej Drozdowski, PUT Associate Professor

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

POZNAŃ UNIVERSITY OF TECHNOLOGY

POZNAŃ, POLAND

JULY 2006

Table of Contents

Table of Contents ii

Abstract iv

1 Introduction 1

1.1 Motivation . 1

1.2 The goal and the scope of this work 3

1.3 Problem formulation . 5

1.4 Related work . 10

2 Single Load Single Distribution 16

2.1 Fixed processor activation sequence 16

2.2 Hard divisible load scheduling problems 19

2.3 Worst case examples . 31

2.4 Conclusions . 33

3 Single Load Multiple Distributions 34

3.1 Without memory limits . 35

3.1.1 Problem Formulation . 35

3.1.2 Branch&Bound Algorithm . 37

3.1.3 Genetic Algorithm . 39

3.1.4 Computational Experiments 41

3.2 With memory limits . 49

3.2.1 Problem Formulation . 50

3.2.2 Branch&Bound Algorithm . 54

ii

3.2.3 Genetic Algorithm . 54

3.2.4 Computational Experiments 55

3.3 Conclusions . 62

4 Multiple Loads Single Distribution 64

4.1 Complexity . 67

4.2 Polynomial cases . 78

4.2.1 Fixed activation order, no result returning 78

4.2.2 Fixed activation order, with result returning 84

4.2.3 Computation cost, processor availability, and memory limits . 86

4.2.4 Continuous computing . 88

4.2.5 m = 1 . 95

4.3 Approximability . 96

4.4 Identical processors, identical tasks 98

4.4.1 n > min{⌈k⌉, m} . 101

4.4.2 n ≤ min{⌈k⌉, m} . 105

4.5 Conclusions . 115

5 Summary 116

Streszczenie w języku polskim 118

Notation summary 120

Bibliography 123

iii

Abstract

Divisible Load Theory (DLT) studies a new model of distributed systems. It assumes

that granularity of the computations is small, and that there are no dependencies

between the grains of computations. Consequently, the computations, or the load,

can be divided into parts of arbitrary size, and these parts can be processed inde-

pendently in parallel. The sizes of the load parts should be adjusted to the speeds of

communication and computation such that processing finishes in the shortest possible

time. Divisible load model proved to be a versatile vehicle in modeling distributed

systems.

The purpose of this work is to examine the DLT problems taking into consider-

ations the three points of view: single load with single distribution, single load with

multiple distributions and multiple loads with single distribution.

In the single load single distribution approach we assume that one volume of the

load is given to process and it is distributed once to a particular processor. We are

focusing here on the combinatorial nature of this problem.

In the single load multiple distributions we analyze situation where a single load

(or divisible computation) can be distributed many times to a given processing unit.

We analyze two algorithms: exact branch&bound method and genetic heuristic.

In the multiple loads single distribution situation many loads (or many divisible

jobs) can be scattered in single messages to a given processing unit. It is shown that

this problem is computationally hard. Special cases solvable in polynomial time are

identified.

iv

Chapter 1

Introduction

1.1 Motivation

In the present days the progress in science is extensively supported by the computa-

tional methods. It is hard to find a discipline of science where computers are not used.

Many of the fields of science (e.g. biochemistry, physics, astronomy) need substantial

computational power to achieve desired results. The computations can be realized

using supercomputers, clusters, or more distributed environments like the grid. In

all cases a specialized software to manage the work is needed.

Looking at the newest Top500 [38] ranking we can note that the number of cluster

systems is rapidly growing, while the number of Symmetric Multiprocessing (SMP)

systems is decreasing. It confirms general direction of making high performance

systems more and more distributed.

The grid system is an example of the environment where providing distributed

1

2

computing power and its distributed consumption can be successfully linked. Never-

theless, we should remember that complexity of controlling these systems is incompa-

rably higher because of their heterogeneity. Considering the structure of such systems

(the number of processors, features of communications links, loads for processing, col-

lection of results) we can conclude that effective management is not simple. In order

to use these resources in an efficient way appropriate management services have to

be developed.

Divisible Load Theory (DLT) is a new branch in the scheduling theory which can

be applied to solve this kind of problems. DLT is used to represent communications

and computations in distributed computer systems, or transportation and produc-

tion systems. It is assumed in DLT, that the job (e.g. computation or production)

can be divided into parts of arbitrary sizes. These parts can be processed in parallel

by remote processing elements (computers, factories, etc.). The communication, or

transportation time must be taken into account. Divisible load theory emerged as

a new paradigm in parallel processing which links scheduling, communication opti-

mization, and distributed computers performance modeling.

Divisible load model finds applications, for example, in: distributed searching for

patterns in databases, text, audio, graphic files, in measurement processing, data re-

trieval systems, some linear algebra algorithms, and simulation [22, 30, 32, 41]. DLT

3

considerations can be expanded beyond computer systems. Other example applica-

tions include transportation systems and production systems.

In the Section 1.2 ”Goal and the scope of the work” the problems covered in this

thesis are presented more precisely. Section 1.3 provides mathematical formulation of

the problem. A short survey of the divisible load theory can be found in the Section

”Related work” 1.4.

1.2 The goal and the scope of this work

The main goal of this work is the analysis of different aspects of multi-installment

divisible loads scheduling. An introduction to the DLT will be presented. The consid-

ered problems will be formulated mathematically. Three aspects of the DLT problem

will be taken into consideration:

• Single load and single distribution.

It is assumed in this case that there is only one divisible load which is sent to a

processor in at most one message [18]. Thus, a processor may, or may not, take

part in the computations.

• Single load multiple distributions.

In this problem it is assumed that the load is sent to the processor in many short

massages instead of one big message. When load scattering messages are long,

also the time spent waiting for the load is longer. Thus, load distribution scheme

4

with multiple messages has an advantage in activating processors earlier. This

method of scattering load in many small chunks is also called multi-installment

processing of divisible load [6, 17, 20, 19, 24, 43]. Names multi-installment

processing and multiple distributions will be used interchangeably in this work.

• Multiple loads single distribution.

This problem applies to multiple divisible loads processed on the same com-

puting facility. The loads (or tasks) are scheduling entities independent of each

other. They represent different distributed computations which are isolated

from each other both in the communication and in the computation stage. Scat-

tering the load of a single task is performed in the same way as for single load

single distribution case. This means that a task sends at most one message to

each of the processors. The difficulty of this problem rests on the coordination

of computations and communications of many divisible loads (tasks).

The above problems will be analyzed along the lines of the computational com-

plexity theory [9, 26], computationally hard problems will be identified. Exponential

optimization algorithms will be proposed for the hard problems. For the tractable

cases polynomial algorithms will be presented. The proposed algorithms will be used

to study typical features of the considered problems.

5

Utilitarian nature of this work consists in developing and testing DLT scheduling

algorithms which can have application in real distributed programs e.g.: database

and large data files exploration or in digital images and video files processing [22, 30,

32, 41].

1.3 Problem formulation

In this section we present notions and notations used in this work.

We assume a star interconnection (a.k.a. a single level tree) of set P of process-

ing elements. In the center of the star a computer P0 called originator (or master,

server) is located. Originator distributes the load to processing elements P1, . . . , Pm

(slaves, workers, clients). We will use word processor to denote a processing ele-

ment with CPU, memory, and communication link. Names processor, computer and

processing element will denote the same things. Initially the loads are held by an

originator processor P0. All communications involve the originator, and there are no

direct communications between processors P1, . . . , Pm. For simplicity of presentation

we assume that originator is communicating only. Were it otherwise, the computing

ability of the originator can be represented as an additional processor. To simplify

the mathematical models we assume in some cases that the results returning time is

negligible. This simplification is not limiting generality of our considerations because

results gathering can be included in the model (see e.g. applications [4, 12, 22, 43]).

6

The computations start only after receiving the whole message with load. We as-

sume that processors have independent communication hardware which allows for

simultaneous communication and computations on the previously received load.

Additional constraints maybe imposed on the processors. Due to the existence of

other more urgent computations, or maintenance periods, the availability of processor

Pi may be restricted to some interval [ri, di]. By such a restriction we mean that

computations may take place only in interval [ri, di]. A message with the load may

arrive, or start arriving before ri. We assume that computations start immediately

after the later of two events: ri, or the load arrival. The computation time must fit

between the latter of the above two events, and di.

We consider scheduling multiple divisible loads. Each load, which is a separate

parallel application, will be called a task. We will be using names tasks, and loads

interchangeably. The set of tasks is T = {T1, . . . , Tn}. Each task Tj is represented

by the volume of load Vj that must be processed.

Tasks in T may be reordered by the originator to achieve good performance of

the computations. Originator splits the loads of the tasks into parts and sends them

to processors P1, . . . , Pm for remote processing. Only some subset Pj ⊆ P of all

processors may be used to process task Tj. We will denote by αij the size of the

part of task Tj sent to processor Pi. αij are expressed in load units (e.g. in bytes).

αij = 0 implies that Pi 6∈ Pj . The sizes of load parts sum up to the task load, i.e.,

7

∑m
i=1 αij = Vj. Not only Pj is selected by the originator, but also the sequence of

activating the processors in Pj and the division of load Vj into chunks αij .

Depending on the heterogeneity of the computing environment, three forms of

the star system can be distinguished (we use scheduling theory naming convention

[13, 35]):

Unrelated processors – communication rates and startup times are specific for the

communication link and for the task. Similarly, processor computing rates depend

on the processor and task. We will denote by Cij communication rate, and by Sij

the startup time, of the link to processor Pi perceived by task Tj . Transferring αij

load units to Pi takes Sij + Cijαij time units. Aij will denote the processing rate

(reciprocal of computing speed) of processor Pi perceived by task Tj . Computing for

load αij lasts pij + αijAij , where pij denotes computation startup time which elapses

before computations start. Using processor Pi bears cost fij +αijlij . If memory size is

limited to Bij load units, then load chunk must not exceed it, i.e. αij ≤ Bij. The case

of unrelated processors is the most general one. Both the processors and the tasks

differ due to variations in the solved problems, the computer or network architecture.

Uniform processors – communication rates Ci, startup times Si, and computing

rates Ai are specific for the processors but are the same for all tasks. In other words

∀Tj
Aij = Ai, Cij = Ci, Sij = Si, for Pi ∈ P. The class of uniform processors is a special

case of the more general class of unrelated processors. Uniform processors represent

8

identical, or similar, parallel programs executed on heterogeneous system. In the case

of uniform processor Pj computation on αij units of load, and communication last

pi + αijAj, and Sj + αijCj, respectively. Using processor Pi bears cost fi + αijli.

If memory size is limited to Bi load units, then load chunk must not exceed it, i.e.

αij ≤ Bi.

Identical processors – communication rates, startup times, and computing rates are

the same for all processors and tasks. Thus, ∀Pi∈PAi = A, Ci = C, Si = S. Identical

processors are further specialization of the uniform processors. They represent, e.g.,

the same parallel program executed in homogeneous environment for different input

data sets. For identical processors computation time on αij units of load is equal to

p+αijA, and communication time is S +αijC. Using processor P bears cost f +αijl.

If memory size is limited to B load units, then load chunk must not exceed it, i.e.

αij ≤ B.

In the case of single load problems, i.e. in Chapter 2 and Chapter 3, the notation

will be simplified by dropping the subscript indices related to the tasks. Thus, Ai,

Ci, Si, Bi will denote parameters of processor Pi in a heterogenous system, and αi

will denote the size of the load chunk size sent to Pi.

The goal is to schedule divisible load computations such that schedule length

Cmax = maxPi∈P ′{ti} is minimum, where ti is the completion time of the computations

on Pi, and processing cost (in the case of unrelated processors) G =
∑n

j=1

∑

i∈Pj
(fij +

9

αijlij) is bounded. An alternative formulation of the problem could be to find a

schedule with minimum cost G, such that Cmax is limited. In most of the cases,

however, we will consider objective function Cmax.

Reference hard problems

In this work proofs of NP-hardness will be presented. We will provide polynomial

time transformations from the following NP-complete problems [26], to decision ver-

sions of our divisible load scheduling problems:

• Partition

Instance: A finite set E = {e1, . . . , eq} of positive integers.

Question: Is there a subset E ′ ⊂ E such that

∑

i∈E′

ei =
∑

i∈E−E′

ei =
1

2

q
∑

i=1

ei = F ? (1.3.1)

• Partition with equal cardinality

Instance: A finite set E = {e1, . . . , e2q} of positive integers.

Question: Is there a subset E ′ ⊂ E such that
∑

j∈E′ ej =
∑

j∈E−E′ ej =

1
2

∑2q
j=1 ej = F , and |E ′| = |E − E ′| = q?

• 3-Partition

Instance: A finite set E = {e1, . . . , e3q} of positive integers, such that
∑3q

j=1 ej =

Fq and F/4 < ej < F/2, for j = 1, . . . , 3q.

10

Question: Can E be partitioned into q disjoint subsets E1, . . . , Eq such that

∑

j∈Ei
ej = F for i = 1, . . . , q?

1.4 Related work

Divisible Load Model has been proposed to solve a problem of effective partition

of computations in a chain network of intelligent sensors [15]. On one hand it is

advantageous to distribute the computations, because it provides more computational

power. On the other hand distribution of the computations requires communication

which bears additional cost. A simple linear model has been proposed to divide the

computations optimally [15]. Later on this model has been extended to deal with

other networks such as trees [16] and buses [1]. Below we present this model in the

context of a star network studied in this work. Assume we have only one load (one

task), all processors take part in the computation, and are activated in the order of

their numbers. Results are not returned to the originator. It has been shown [7] that

in this case computations must stop on all processors at the same moment. This is

illustrated in Fig. 1.1.

11

Figure 1.1: Example of the load distribution pattern.

The optimum distribution of the load may be calculated from a system of linear

equations:

Aiαi = Si+1 + αi+1(Ci+1 + Ai+1) for i = 1, . . . , m − 1 (1.4.1)

m
∑

i=1

αi = V (1.4.2)

This simple linear system (1.4.1 – 1.4.2) may be solved in O(m) time due to its

diagonal form.

The simplicity of divisible load model attracted attention of scheduling, and par-

allel computing communities. Many research groups worldwide are interested in de-

veloping the DLT these days. One may even say that DLT attracts new researchers

every year. Surveys of the divisible load theory can be found in [7, 8, 11, 17, 36].

In the earlier literature, computational tractability of the divisible load model

was considered as its great advantage. Yet, some aspects of the combinatorial nature

of DLT have been studied before. In [5] it has been shown that the sequence of

processor activation in a star network affects schedule length. For a single load it was

proved in [5, 7], and independently in [10], that when there are no communication

12

startup times (∀Pi
Si = 0) the processors have to be activated according to the order

of decreasing bandwidth of communication links (i.e. accordingly to the increasing

Ci). The case with non-negligible startup times (∀Pi
Si > 0) was studied in [10, 45]. It

was determined in [10], and independently in [45], that if communication parameters

are identical (i.e. Ci = C, Si = S for i = 1, . . . , m) then for the shortest schedule the

order of decreasing processor speed should be the order of processor activation. This

result was obtained under condition that all processors in P receive non-zero load,

and thus, can participate in processing. In [10] it was determined that the problem of

divisible load scheduling on a system with startup times and multiple buses is NP-

hard. The problem of optimizing the cost of a schedule has been studied in [14, 40].

Heuristic rules have been proposed in [14, 40] to select the set of used processors, and

determine load assignment, efficiently in terms of the cost and the schedule length.

Scheduling multiple divisible loads has already been considered in DLT for com-

munications without startup times. In [7, 39] it was assumed that the task execu-

tion sequence was first-in first-out, processors were uniform, and task computations

finished simultaneously. Furthermore, all processors were used by each task. In a

multi-job scheme proposed in [7, 39] communications of some task Tj overlap with

computations of task Tj−1 preceding Tj in the execution sequence. This allows to

start computations for Tj on some processors P1, . . . , Pm′ immediately after the end

of task Tj−1. Processors Pm′+1, . . . , Pm are idle until receiving their load share of Tj .

13

Using the formulae provided in [7, 39] the distribution of the load for Tj can be found

in O(m) time, for a given m′. The actual value of m′ can be found iteratively in

at most m steps. Thus, for a sequence of n tasks the complexity of the algorithm

calculating distribution of the load is O(m2n).

In [42] the same assumptions on the task sequence, processor selection, simulta-

neous computation completion, and zero startup time were made. Under the above

assumptions a multi-installment load distribution strategy has been proposed to en-

sure that all processors work continuously on tasks T2, . . . , Tn. When the overlap

of computations on Tj−1 with the communications of Tj is too short to send the

whole load Vj to the processors, and thus avoid idle time (i.e. if m′ < m), then

the load is divided into multiple smaller installments. Since communications are

shorter, all processors may receive some load earlier, and may work continuously on

Tj . Unfortunately, it was observed in [42] that this strategy does not work for certain

combinations of task, and processor parameters. Four heuristics have been proposed

in [42]. It was demonstrated by a set of simulations that a multi-installment strategy

gives the shortest schedule in most of the cases.

In [29] a probabilistic analysis is given for multiple loads arriving at multiple

nodes of a fully-connected network of identical processors. In [33] a steady state

of multiple divisible loads executed in an arbitrary network is studied. Sequencing

of the communication and computation is ignored in the steady state. Instead of

14

minimizing schedule length, the total load executed in a unit of time is maximized.

Only the fraction of processor time or communication channel bandwidth dedicated

to an application has to be determined.

In the earlier publications on multi-installment processing certain assumptions

were usually made on the structure of the schedule. For example, messages of equal

size were sent to processors in a round-robin fashion [17, 24, 43]. It has been shown

[43] that this way of multi-installment processing reduces the length of the schedule

in a homogeneous system at most e−1
e
times. Unequal load chunk size partitioning

has been also proposed, but with a tacit assumption that the set of used processors,

and their activation sequence are given and fixed. Furthermore, it was assumed that

there are idle times neither in the communication nor in the computations [6, 7, 17].

However, to our best knowledge, the problem of multi-installment divisible load pro-

cessing with unequal chunk sizes adjusted to the communication and computation

speeds, with selection of the set of exploited processors, and selection of their ac-

tivation sequence has not been studied. This is the subject of Chapter 3 of this

thesis.

Memory limitations and single installment communications have been studied in

[23, 24, 25, 31, 44]. For a fixed sequence of communications a fast heuristic method

has been proposed in [31], and a solution on the basis of linear programming has

been given in [23]. A hierarchic memory system has been studied in [24], and a

15

multi-installment load distribution has been proposed to overcome out-of-core mem-

ory speed limitations. In [25] it has been shown that finding optimum divisible load

distribution in a system with limited memory sizes and affine communication delay

is NP-hard. In [44] multi-installment divisible load processing with limited memory

has been studied, but the computer system was homogeneous.

The following three chapters deal with different problems analyzed in this work.

The first of them (Chapter 2) concerns the problem where a single load is distributed

in at most one communication per processor. In Chapter 3, we analyze situation

where one load can be distributed many times to a given processing unit. Chapter

4 describes the case of many loads distributed in one message per processor and per

load. The work is summarized in Chapter 5. We summarize the main notation at the

end of the work.

Chapter 2

Single Load Single Distribution

In this chapter we analyze complexity of scheduling one divisible task, distributed in

a single installment. In Section 2.1 we demonstrate that the problem of divisible load

scheduling on a star network can be solved in polynomial time for G, and for Cmax

criteria, provided that the set of used processors and the sequence of their activation

are given. In Section 2.2 we show that various special cases of these problems are

NP-hard. Section 2.3 demonstrates that worst case solutions of the problem can be

arbitrary bad. Since this chapter studies single task, the notation is simplified by

dropping indices related to the multiplicity of the tasks.

2.1 Fixed processor activation sequence

The problem we consider is a bi-criterial optimization problem. The criteria are

schedule length Cmax, and processor usage cost G =
∑

i∈P ′(fi + αili), where P
′ is a

set of the exploited processors. This bi-criterial problem can be relaxed to two simpler

problems: (i) minimization of Cmax on condition that G ≤ G, (ii) minimization of

16

17

G on condition that Cmax ≤ Cmax, where G is a predetermined upper bound on

the schedule cost, and Cmax is a given upper bound on the schedule length. Both

problems can be solved in polynomial time by use of linear programming, provided

that the set P ′ of used processors and the sequence of their activation is known. Let us

consider problem (i) first. We assume that |P ′| = m′, and without loss of generality,

the sequence of processor activation is P1, P2, . . . , Pm′ . Then, the linear program for

(i) is as follows:

minimize Cmax

subject to:

i
∑

k=1

(Sk + αkCk) + pi + αiAi ≤ Cmax i = 1, . . . , m′ (2.1.1)

i
∑

k=1

(Sk + αkCk) + pi + αiAi ≤ di i = 1, . . . , m′ (2.1.2)

ri + pi + αiAi ≤ Cmax i = 1, . . . , m′ (2.1.3)

ri + pi + αiAi ≤ di i = 1, . . . , m′ (2.1.4)

m′

∑

j=1

(fj + αjlj) ≤ G (2.1.5)

0 ≤ αj ≤ Bj j = 1, . . . , m′ (2.1.6)

m′

∑

j=1

αj = V (2.1.7)

In the above formulation constraints (2.1.1)-(2.1.4) guarantee that computations

are performed in an admissible interval. The left side of inequalities (2.1.1), (2.1.2)

is the earliest possible completion time of the computations provided that they are

18

started immediately after the end of the load transfer. The left side of inequalities

(2.1.3), (2.1.4) is the earliest possible completion time of the computations provided

that they are started immediately after processor release time. By inequality (2.1.5)

total cost of the schedule does not exceed the limit G. Constraints (2.1.6) ensure that

memory buffer sizes are not exceeded, and by (2.1.7) all the load is processed. Let us

consider an example.

Example. m′ = 4, V = 20, parameters of the processor system are the following:

parameter \ processor P1 P2 P3 P4

Ai 2 0.5 1 2

Bi 10 10 10 20

Ci 1 0.1 2 2

Si 1 1 1 2

pi 0 1 1 0

di 10 20 30 200

ri 0 10 20 20

fi 1 5 3 2

li 0.5 1 0.3 1

The solution for this instance depends on the value of cost limit G. This is demon-

strated for some example values of G in the following table:

G α1 α2 α3 α4 Cmax

≥25.7669 3 10 5.3333 1.3333 26.333

24.25 3 5 7.5 4.5 41.5

24.1334 3 0.00285 7.6666 9.3306 60.656

<24.1334 infeasible

Observe that schedule length increases as the limit put on the costs decreases. ForG ≥

25.7669 inequality (2.1.5) is ineffective. For G < 24.1334 the problem is infeasible.

19

P1

P2

P3

P4

r ,d2 1r1 r ,r ,d3 4 2

S1 a1 1C
a2

2C

a1 1A

a2 2A

a3 3A

a4 4A

a3 3C a4 4CS2 S3 S4

p2

p3

0 2 4 6 8 10

unavailable

unavailable

unavailable

unavailableunavailable

12 14 16 18 20 22 24 26

P0

Figure 2.1: Schedule for the example with cost limit G ≥25.7669.

The schedule for G ≥25.7669 is presented in Fig.2.1. The vertical arrows indicate the

end of communication from the originator to a certain processor.

Problem (ii) can be also solved in polynomial time by modifying linear program

(2.1.1)-(2.1.7). Namely, the roles of the objective function and constraint (2.1.5) must

be exchanged. Thus, to solve problem (ii) the minimized objective function should be

∑m′

j=1(fj + αjlj), while inequality (2.1.5) should be replaced by Cmax ≤ Cmax. Both

problems can be solved provided that we know set P ′ of active processors and the

sequence of their activation. In the next section we will demonstrate that determining

them is computationally hard.

2.2 Hard divisible load scheduling problems

In this section we will demonstrate that even restricted cases of scheduling divisible

load computations in star networks are computationally hard. All the cases we study

20

are in class NP because it is enough to guess set P ′ of the used processors, and the

sequence of their activation. Then, the load sizes can be calculated in polynomial

time using the methods presented in Section 2.1. We will provide polynomial time

transformations from an NP-complete problem Partition defined in Section 1.3.

We will use DLS abbreviation for divisible load scheduling. Some parameters are not

binding for some of the studied cases of DLS. We do not repeat definitions of such

parameters, and unless specified otherwise, it is assumed that Bi = di = ∞, Ci =

fi = li = pi = ri = 0, for all Pi ∈ P. In the following w present NP-hard cases of

DLS problem.

DLS with processor release times (DLSPRT)

Instance: Heterogeneous star P, load size V , time interval T , non-zero processor

release times [r1, . . . , rm].

Question: Can load V be processed on P in at most T units of time?

Theorem 1. Problem DLSPRT is NP-hard.

Proof. The proof is based on the polynomial time transformation from the par-

tition problem. The instance of DLSPRT is constructed in time O(q) as follows:

m = q; Ai = 1
ei

, Ci = 0, Si = ei, ri = F for i = 1, . . . , q; T = F + 1, V = F .

Suppose Partition has a positive answer. Then the processors corresponding to

the elements in set E ′ receive the load in
∑

i∈E′ Si =
∑

i∈E′ ei = F = T − 1 units of

21

Figure 2.2: Illustration to the proof of Theorem 1

time. Their total speed is
∑

i∈E′

1
Ai

=
∑

i∈E′ ei = F . Thus, V = F units of load can

be processed in the last time unit of the schedule (cf. Fig.2.2).

On the other hand, when the answer to DLSPRT is positive then some set P ′ of

processors is activated in at most T = F + 1 units of time, to process at least F

units of the load. Note that all processors become available at ri = T − 1. Since

∀Pi∈PSi ≥ 1, any processor activated in the last time unit of the schedule does not

process any load. Thus, the duration of all communications to the processors in P ′

does not exceed T − 1:
∑

Pi∈P ′ Si =
∑

Pi∈P ′ ei ≤ T − 1 = F . The whole load V is

processed in the last time unit of the schedule because processors become available

at ri = T − 1. Hence, V =
∑

Pi∈P ′

1
Ai

=
∑

Pi∈P ′ ei ≥ F . As 1
Ai

= Si = ei, for

i = 1, . . . , m, the answer to partition is also positive. 2

Before proceeding to the next special case of DLS let us study the amount of

load that can be distributed, and processed on a star network with Ci = 0, and

processors available until finite time di, for i = 1, . . . , m. Let us assume that the

22

sequence of processor activation is fixed, but the set of processors to be activated is

yet to be decided. Without loss of generality, let the sequence be P1, . . . , Pm. Let

binary variable xi = 1 denote that processor Pi has been activated in the sequence

P1, . . . , Pm, and xi = 0 that processor Pi is not activated, for i = 1, . . . , m. The

amount of load V that can be distributed, and processed in time T is:

V =

m
∑

i=1

xidi

Ai
−

m
∑

1≤i≤j≤m

xixj
Si

Aj
(2.2.1)

In the above equation term
∑m

i=1
xidi

Ai
is the amount of load that would be processed

by the selected processors provided that they were activated simultaneously at the

beginning of the schedule (i.e. communication is timeless). Still, the communication

is not timeless. Startup time Si of the selected processor Pi delays the activation

of all processors Pj for j ≥ i. Therefore, Si decreases the total load that could be

processed by xi

∑m
j=i xj

Si

Aj
. Term

∑m
1≤i≤j≤m xixj

Si

Aj
in (2.2.1) is the amount of lost

load that could not be processed due to the communication delays. Equation (2.2.1)

has a graphical interpretation shown in Fig.2.3. The shaded area is the amount of

lost load
∑m

1≤i≤j≤m xixj
Si

Aj
.

DLS with processor deadlines (DLSPD)

Instance: Heterogeneous star P, load size V , finite processor deadlines [d1, . . . , dm].

Question: Can load V be processes on P before the deadlines [d1, . . . , dm]?

23

S1

d1

Si Sm

di

dm

1_
Ai

1_
Am

1_
A1

time

speed

. . .

. . .

.

. . .

.
.
.

.
.
.

Figure 2.3: Illustration to the proof to Theorem 2

Theorem 2. Problem DLSPD isNP-hard even if the sequence of processor activation

is known.

Proof. We assume that the sequence of processor activation is given. Without loss

of generality it is P1, . . . , Pm. We will prove NP-hardness of DLSPD by a polynomial

time transformation of Partition problem. The transformation is as follows: Si =

2ei, Ai = 1
2ei

, di = 2F + ei, for i = 1, . . . , m. V = 2F 2. By substituting these values

in equation (2.2.1) we obtain:

V =

4F
m

∑

i=1

xiei + 2
m

∑

i=1

xie
2
i − 4

m
∑

1≤i≤j≤m

xixjeiej =

4F
m

∑

i=1

xiei + 2
m

∑

i=1

x2
i e

2
i − 4

m
∑

i=1

x2
i e

2
i − 4

m
∑

1≤i<j≤m

xixjeiej =

4F
m

∑

i=1

xiei − 2
m

∑

i=1

x2
i e

2
i − 4

m
∑

1≤i<j≤m

xixjeiej =

2F 2 − 2(
m

∑

i=1

xiei − F)2 (2.2.2)

24

In the second line of the above equation we used the fact that xi = x2
i for xi ∈

{0, 1}.

By activating the processors corresponding to the elements in set E ′ in partition

problem we have xi = 1 for i ∈ E ′, and xi = 0 otherwise, in formula (2.2.2). If there

is a positive answer to partition, then
∑m

i=1 xiei =
∑

i∈E′ xiei = F . Therefore,

V = 2F 2 units of load are distributed and processed before processor deadlines, as

demonstrated in equation (2.2.2). And vice versa, when a feasible schedule exists in

which V = 2F 2 units of the load is processed, then by inequality (2.2.2), it is possible

only if
∑m

i=1 xiei = F , and the answer to partition is positive. 2

DLS with processor startup times (DLSPST)

Instance: Heterogeneous star P, load size V , time interval T , non-zero processor

computation startup times [p1, . . . , pm].

Question: Can load V be processed on P in time at most T ?

Theorem 3. Problem DLSPST is NP-hard.

Proof. This theorem can be proved by a modification of the proof of Theorem

2. In Theorem 2 the maximum computation time available on Pi, provided that

communication is timeless, is di. In the case of problem DLSPST this amount of

time is equal to T − pi. By setting T = 3F , and pi = F − ei > 0 we obtain that

T − pi = 2F + ei > 0. Note that T − pi here is equal to di in the proof of Theorem 2.

25

If we set other parameters of P ′ as in the proof of Theorem 2, then the rest of this

proof is analogous to the proof of Theorem 2. 2

DLS with fixed processor charges (DLSFPC)

Instance: Heterogeneous star P, load size V , time interval T , non-zero charges

[f1, . . . , fm] for using the processors, total cost G.

Question: Can load V be processed on P in time at most T and cost at most G?

Theorem 4. Problem DLSFPC is NP-hard.

Proof. The problem is based on the polynomial transformation of the partition:

m = q, T = 1, G = F, V = F, Ai = 1
ei

, Ci = Si = 0, fi = ei, for i = 1, . . . , m. Note that

communications are timeless, and processors have one time unit for computations.

Thus, the load processed is V =
∑

Pi∈P ′

1
Ai

=
∑

Pi∈P ′ ei, where Pi ∈ P ′ is the set

of activated processors. The cost of activating these processors is G =
∑

Pi∈P ′ fi =

∑

Pi∈P ′ ei. Thus, if the cost is G ≤ F , and the size of processed load V ≥ F ,

then a positive answer to partition must exist. And vice versa, positive answer to

partition implies a positive answer to DLSFPC. 2

Maximum Speed Problem (MS)

Instance: Heterogeneous star P, time interval T , speed R.

Question: Is there a subset P ′ of P with total speed at least R that can be activated

in time at most T ?

26

Theorem 5. MS problem is NP-hard.

Proof. MS problem is in NP because NDTM must guess set P ′, of processors. Then

it is enough to check if
∑

i∈P ′ Si < T , and
∑

i∈P ′

1
Ai

> R.

An instance of the MS Problem can be constructed on the basis of Partition

instance in the following way: m = q; Ai = 1
ei

, Ci = 0, Si = ei for i = 1, . . . , q.

R = F, T = F . The instance can be constructed in polynomial time O(q).

Suppose the answer to the Partition problem is positive. Then, there is set

E ′ satisfying equation (1.3.1). If we activate the processors corresponding to the

elements in set E ′, then their total speed is
∑

i∈E′

1
Ai

=
∑

i∈E′ ei = F = R. The time

needed to activate these processors is
∑

i∈E′ Si =
∑

i∈E′ ei = F = T . Thus, the set of

processors satisfying the conditions of MS exists.

On the other hand, let us assume that the answer to MS problem is positive.

Hence, there is some set P ′ such that
∑

i∈P ′

1
Ai

=
∑

i∈P ′ ei ≥ R = F , and
∑

i∈P ′ Si =

∑

i∈P ′ ei ≤ T = F . Consequently,
∑

i∈P ′ ei = F and the answer to the Partition

problem is also positive. 2

DLS with communication startup times (DLSCST)

Instance: Heterogeneous star P, load size V , time interval T , processing rates Ai,

startup times Si, are positive for all processors.

Question: Can load V be processes on P in time at most T ?

Conjecture 6. Problem DLSCST is NP-hard.

27

We conjecture that problem DLSCST is NP-hard due to its similarity to MS

problem: on one hand the activated processors must have sufficient speed to process

given volume of load V , on the other hand their work time T is limited.

Now we will analyze two dual versions of DLS with communication startup times:

I) Given V find the shortest schedule of length T ∗. II) Given schedule length T find

the maximum load V ∗ which can be processed in this time limit. Below we will

present a pseudopolynomial algorithm for a special case of divisible load scheduling

problem with communication startup times. We will demonstrate that both problems

can be solved in pseudopolynomial time if ∀Pi
Ci = 0. The basic pseudopolynomial

algorithm is solving problem II, i.e., instead of minimizing schedule length for a given

amount of load V , we will maximize the amount of load processed in some time T .

In a dual problem, i.e. for a given V the optimum schedule length can be found by

use of a binary search over values of T . First let us establish several facts.

Proposition 7. For a given time limit T , and set P ′ ⊆ {P1, . . . , Pm} of processors

taking part in the computation the maximum load is processed if processors are ordered

according to nondecreasing values of SiAi, for Pi ∈ P ′.

Proof. The proof is based on an interchange argument. Consider two processors Pi

and Pj consecutively activated. Let the communication to the pair start at time x ≤

T −Si−Sj . The communications with Pi, Pj are performed in interval [x, x+Si +Sj].

A change in the sequence of Ti, Tj does not influence the schedule for the other

28

processors. Suppose that the processor sequence is (Pi, Pj). The amount of load

processed by the two processors is:

V1 =
T − x − Si

Ai

+
T − x − Si − Sj

Aj

. (2.2.3)

If Pj precedes Pi then the load processed by the two processors is:

V2 =
T − x − Sj

Aj

+
T − x − Sj − Si

Ai

. (2.2.4)

From which we get:

V1 − V2 =
Sj

Ai
−

Si

Aj
. (2.2.5)

Thus, the load is greater for the sequence (Pi, Pj) if SiAi < SjAj . 2

Proposition 8. The maximum load V ∗ which can be processed in time T can be

found in O(m min{T,
∑m

i=1 Si}) time if Ci = 0 for i = 1, . . . , m.

Proof. Let us assume that some sequence of processor activation is fixed, and without

loss of generality it is P1, . . . , Pm. We only have to choose subset of processors to

use. The amount of load which can be processed by Pi in time T provided that it

finishes communications at time τ ≥ Si and Ci = 0, is Vi = max{0, T−τ−pi

Ai
}. V ∗

can be calculated as function V (i, τ) which is maximum load processed by processors

selected from set {P1, . . . , Pi} finishing communications at time τ , for i = 1, . . . , m and

τ = 1, . . . , min{T,
∑m

i=1 Si}. V (i, τ) can be calculated in O(mT) using the following

29

recursive equations:

V (i, τ) =















V (i − 1, τ) for τ < Si

max

{

V (i − 1, τ),

V (i − 1, τ − Si) + max{0, T−τ−pi

Ai
}

for τ ≥ Si

(2.2.6)

for i = 1, . . . , m, τ = 1, . . . , min{T,
∑m

i=1 Si}. V (j, 0) = 0 for j = 0, . . . , m. V (0, τ) =

0, for τ = 1, . . . , min{T,
∑m

i=1 Si}. The maximum load can be found as V ∗ =

max1≤τ≤min{T,
∑m

i=1 Si} V (m, τ). Let τ ∗ satisfy V ∗ = V (m, τ ∗). The set of proces-

sors taking part in the computation can be found by backtracking from V (m, τ ∗) and

selecting those processors Pi for which V (i, τ) = V (i−1, τ −Si)+max{0, T−τ−pi

Ai
}. 2

Theorem 9. The minimum schedule length T ∗ for a given load V can be found in

O((log V +log m+log Amax+log Smax)m min{Smax+AmaxV,
∑m

i=1 Si}) time if Ci = 0

for i = 1, . . . , m.

Proof. Let Amin = minm
i=1{Ai}, Amax = maxm

i=1{Ai}, Smax = maxm
i=1{Si}. In the

optimum sequence processors are activated according to the nondecreasing order of

SiAi by Proposition 7. For a given schedule length T the maximum problem size

V ∗ can be found in O(m min{T,
∑m

i=1 Si}) time according to Proposition 8. The

minimum schedule length can be found by a binary search over the values of T . It

remains to show that the number of the calls to the pseudopolynomial time algorithm

is limited.

30

Let xi = 1 if Pi takes part in the computation, and xi = 0 otherwise. The size of

the problem which can be processed in time T is (compare (2.2.1)):

V =
m

∑

i=1

Txi

Ai

−
m

∑

i=1

m
∑

j=i

xixjSi

Aj

. (2.2.7)

Vector x = [x1, . . . , x2] represents a subset of {P1, . . . , Pm} for which the maximum

load is processed in time limit T . Thus, from equation (2.2.7) we conclude that V ∗

is a piecewise-linear nondecreasing function of T .

Since V ∗ is a piecewise-linear nondecreasing function of T , the optimum T ∗ for

a given V is a point on one segment or on an intersection of two segments of this

piecewise-linear function. Let x, and x′ represent two different subsets of processors

for which V is maximum at two different schedule lengths. The two linear functions

of problem sizes which can be processed in time T by processors corresponding to x,

and x′ intersect at:

T (x, x′) =

∑m
i=1

∑m
j=i(xixj − x′

ix
′
j)

Si

Aj

∑m
i=1

xi−x′

i

Ai

(2.2.8)

Thus, the minimum distance between two different intersections is λ = 1
Amax

∑m
i=1

1
Ai

≥

Amin

mAmax
≥ 1

mAmax
. If the difference between two values of T, T ′ visited in the binary

search is smaller than λ, then either the same subset of processors gives maximum

load for T and T ′ or two different subsets of processors are selected for T, T ′. In

the first case T ∗ can be found using linear interpolation. In the second case there is

one more intersection T ′′ between T, T ′, which can be found using (2.2.8), and then

31

T ∗ can be found using linear interpolation either to the left or to the right of T ′′.

Since no schedule is longer than Smax + V Amax and the resolution is λ, the binary

search for T ∗ over T values can be terminated in O(log(V A2
maxm + mAmaxSmax))

which is O(log V + log m + log Amax + log Smax) steps. The complexity of the whole

algorithm is not greater than O((log V + log m + log Amax + log Smax)m min{Smax +

V Amax,
∑m

i=1 Si}). 2

We conclude that DLS with communication startup times is at most NP-hard in

the ordinary sense if ∀i Ci = ri = 0, di = ∞.

2.3 Worst case examples

In this section we consider the worst cases that may appear if scheduling decisions

ignore certain information. Suppose that we ignore the heterogeneity of the system,

and send load parts of equal size to the processors. For instance (compare Fig.2.4a),

consider two processors P1 with parameters S1 = 0, C1 = 0, A1 = B, and P2 with

parameters S2 = 0, C2 = 0, A2 = 1. We divide the load into two equal chunks

of size V
2
. Resulting schedule has length BV

2
but processor P2 is idle in interval

[V
2
, BV

2
]. If we use sizes α1 = V

B+1
, α2 = BV

B+1
, then both processors stop computing

simultaneously, and schedule length is BV
B+1
. The ratio of the two schedule lengths is

B+1
2
which can be arbitrarily big. Hence, in the worst case solutions based on load

equal partitioning can be arbitrarily bad in heterogeneous systems. Suppose that we

32

adjust chunk sizes to the parameters Ai, Ci, but all processors are always used. Let us

present another example (see Fig.2.4b). There are two processors with parameters:

S1 = B, A1 = 1, C1 = 1, S2 = 0, A2 = 1, C2 = 1. If V < B
2
then there is no point

in using processor P1 because load of this size may be processed in a shorter time

than the communication activating P1. If we use P1 then the schedule has length

at least B. If we don’t, then schedule has length V (A2 + C2) = 2V . The ratio

of the two lengths is at least B
2V
which can be arbitrarily big. Thus, if the set of

processors is always the same, the resulting schedule can be arbitrarily bad. Suppose

that we adjust chunk sizes, and select the processors wisely, but we always use the

same sequence (P1, . . . , Pm) of processor activation. Let us analyze one more instance

(cf. Fig.2.4c). m = 2, V = 2, S1 = 0, C1 = B, A1 = 1, S2 = 0, C2 = A2 = 0.5. If

we use sequence (P1, P2) of processor activation, then the optimum load distribution

is α1 = α2 = 1, and schedule length is B + 1. For sequence (P2, P1) the optimum

distribution is α1 = 1
B+1.5

, α2 = 2B+2
B+1.5
, and schedule length is 2B+2

B+1.5
. The ratio of the

two lengths is B+1
2− 1

B+1.5

which can be arbitrarily big. Thus, schedule can be arbitrary

bad if heterogeneity of the system is ignored.

33

Figure 2.4: The worst case examples. a) ignoring heterogeneity, b) ignoring processor
set selection, c) ignoring sequencing of the processor activation.

2.4 Conclusions

In this section we studied the problem of scheduling single divisible load on a star

network for the schedule length and the schedule cost criteria. It has been demon-

strated that the optimum load distribution can be found in polynomial time by using

linear programming, on condition that the set of used processors and the sequence

of their activation are known. However, in many cases determining this set is com-

putationally hard. A pseudopolynomial algorithm has been proposed for the case of

∀iCi = ri = 0, di = ∞ and schedule length criterion.

Chapter 3

Single Load Multiple Distributions

In this section we analyze the problem where one load is distributed to the processors

in many installments. Communication delays constitute an important part of the

processing time in all distributed algorithms. To reduce the initial waiting for the

data, and for initialization of the computations, load is sent in multiple small chunks

rather than in a single long message.

The goals of this chapter are twofold: to propose algorithms for the multi-install-

ment divisible load processing including selection of the set and the sequence of

processors, and to study influence of the system parameters on the quality of the

scheduling problem solutions. For the mathematical simplicity of the considerations

we do not include processor Pi startup times pi, availability constraints [ri, di], and

computation cost limit G. Since only one divisible task is analyzed, we also drop the

extended notation related to the multiple tasks.

The rest of this chapter is organized as follows. In Section 3.1.1 we formulate

the multi-installment divisible load scheduling problem for heterogeneous systems.

34

35

In next Sections 3.1.2 and 3.1.3, respectively, two algorithms are proposed: an op-

timization branch&bound algorithm, and a heuristic genetic algorithm. The results

of computational experiments are presented and discussed in Section 3.1.4. In Sec-

tion 3.2 we extend our considerations to system with limited memory sizes. Thus,

in Section 3.2.1 we formulate the problem, in Sections 3.2.2 and 3.2.3 algorithms are

proposed, and in Section 3.2.4 results of the experiments are discussed.

3.1 Without memory limits

3.1.1 Problem Formulation

The problem consists in finding the set of used processors, the sequence of their

activation, and the sizes of the load chunks αj such that the processing time Cmax,

including communication and computations, is the shortest possible. For the sake

of conciseness we will mean both selecting the set of processors and their activation

sequence while saying processor activation sequence. It is not difficult to realize that

in a heterogeneous system the optimum processor activation sequence is not arbitrary.

For example, there is no point in sending load to a processor which is very slow, while

there are faster ones.

Let z denote the number of load chunks (or messages). If the sequence of proces-

sors receiving the load chunks is known then our problem can be reduced to a linear

program. Let αi denote size of chunk i. Let di ∈ {1, . . . , m} be the number of the

36

Figure 3.1: Example of load distribution pattern.

processor receiving chunk i. We will denote by Hi ⊆ {i, . . . , z} the set of chunks

sent to processor di, starting from chunk i. Cmax denotes schedule length. Fig.3.1

depicts an example schedule with multiple installments. The linear program can be

formulated as follows:

minimize Cmax

subject to:

i
∑

j=1

(Sdj
+ αjCdj

) + Adi

∑

j∈Hi

αj ≤ Cmax i = 1, . . . , z (3.1.1)

n
∑

i=1

αi = V (3.1.2)

In constraint (3.1.1) sum
∑i

j=1(Sdj
+ αjCdj

) expresses communication time for

chunks 1, . . . , i. Adi

∑

j∈Hi
αj is computation time on processor di starting from chunk

i. Thus, (3.1.1) guarantees that all processors stop computations before the end of the

schedule. All work is done by equation (3.1.2). Thus, it is possible to find optimum

distribution of the load using formulation (3.1.1)-(3.1.2) if we know the sequence of

the processor activation (i.e. values di for i = 1, . . . , z).

The subset of processors P1, . . . , Pm exploited in the computations and the targets

37

of the communications are unknown, and must be determined. This task has com-

binatorial nature. In Sections 3.1.2 and 3.1.3 we propose algorithms that determine

destinations for the load chunks. If one ignores proper selection of the chunk des-

tinations, the problem becomes computationally easier because only linear program

(3.1.1)-(3.1.2) has to be solved for some assumed chunk destinations d1, d2, . . . , dz.

Then, the resulting schedules can be arbitrarily bad in the worst case, as demon-

strated in the Section 2.3. How bad the solutions can be on average, if we skip the

combinatorial part of the problem, is unknown. We attempt answering this question

in Section 3.1.4.

3.1.2 Branch&Bound Algorithm

Branch&bound (B&B) algorithm is an enumerative method that generates and searches

the space of possible solutions, while eliminating these subsets of solutions which are

infeasible or worse than some already known solution.

Two elements constitute a branch&bound algorithm. The first is a branching

procedure which divides the solution space into disjoint subsets. Partition of the

solution space can be represented as a tree. Each node is a representative of a set of

solutions. Dividing such a set is equivalent to generating successors of a node. In our

problem we have to select the sequence of the targets for z load chunks. In the root of

the tree the sequence is empty. The first chunk may be sent to one of processors Pi,

38

for i = 1, . . . , m. Therefore, the root has m successors each representing sequences

starting with a message sent to processor Pi. The second level of the tree includes

two-processor sequences (Ti, Tj). Branching a partial sequence d(i) = (d1, . . . , di), for

i < z, is done by adding all possible destinations di+1 ∈ {1, . . . , m}. The branching

procedure is continued until constructing a sequence of the assumed length z.

The maximum number of the search tree leaves is mz. As this number grows

exponentially with z, it is necessary to prune the search tree by eliminating nodes

representing solutions certainly not better than some solution already known. This

procedure is the bounding element of the algorithm. To determine if a node should

be eliminated its lower bound of the schedule length is calculated. Suppose the node

represents a sequence of l chunks. Thus, values d(l) are already determined. The

remaining z − l chunks still need to be selected. We assume that these z − l chunks

are sent to z − l ideal target processors. The ideal target processor has parameters

Aid = minm
i=1{Ai}, C

id = minm
i=1{Ci}, S

id = minm
i=1{Si}, and processes only one load

chunk. For such a sequence of l real processors, and z− l ideal ones, a linear program

(3.1.1)-(3.1.2) is solved for Cmax which is the lower bound. The best known solution

used in comparisons with the lower bound is found by the algorithm itself. It is

the best solution found in any leaf of the search tree. The tree is searched in the

depth-first least lower bound order.

39

3.1.3 Genetic Algorithm

Genetic algorithm (GA) is a randomized search method which implicitly discovers

the near-optimum solution by randomly combining pieces of good solutions. The

discussion and presentation of genetic algorithm can be found, e.g., in [27, 34]. Here

we present basics of our implementation of GA only.

Genetic algorithms imitate evolution of genome. Solutions are encoded as strings

of symbols analogously to the encoding of genes in the chromosomes. Some initial

population of solutions is generated randomly. Genetic operators transform popu-

lations in a direction improving quality of the solutions. Selection, crossover, and

mutation are typical genetic operators. Selection elects better solutions for the next

population. Crossover operation generates offspring solutions by randomly combining

pieces of the parent strings. Though the offspring is constructed in a random manner,

the fragments of a string encoding an optimum solution are indirectly discovered and

combined due to the selection and crossover. This happens because better strings

usually have higher probability of being elected in the selection, and therefore, have

bigger chances of being passed to the offspring in the crossover process. Mutation

changes randomly some solutions to diversify the search, and to escape local optima.

We direct interested readers to monographs [27, 34] for detailed presentation of the

genetic search method.

40

A set of D solutions is a population. Solutions are encoded as strings d =

(d1, . . . , dz) of chunk destinations. The measure of a chromosome fitness is the value

of schedule length Cmax obtained from the linear program (3.1.1)-(3.1.2) formulated

for the sequence of chunk targets given in the chromosome.

Solutions of the population are subject of genetic operators. We used three opera-

tors: crossover, mutation, and selection. In the crossover operation two chromosomes

are randomly selected, and combined using one point crossover. For example, let

(a1, a2, . . . , az), (b1, b2, . . . , bz) be two parent solutions, and let k denote a randomly

selected crossover point. The two offspring solutions are (b1, . . . , bk−1, ak, . . . , az)

and (a1, . . . , ak−1, bk, . . . , bz). The total number of new chromosomes constructed in

crossover is DpC , where D is the size of the population, and pC is a tunable algorithm

parameter which will be called crossover probability.

Mutation changesDzpM random genes (i.e. dis) to different values. Dz is the total

number of genes, pM is a tunable algorithm parameter which we will call mutation

probability.

The selection of the chromosomes for the new population is done by a combination

of an elitist and a roulette wheel methods. The best half of the old population

is always preserved. A string is passed to the second half of the new population

with probability: 1
Cmax(dj)

/
∑D

j=1
1

Cmax(dj)
, where Cmax(dj) is the schedule length for

chromosome j.

41

The populations are modified iteratively. The number of iterations is limited in

two ways: there are an upper limit on the total number of iterations, and an upper

limit on the number of iterations without quality improvement.

3.1.4 Computational Experiments

Experiment Setting

All the experiments were performed on a PC computer with Pentium IV 1.8GHz,

512MB RAM memory, and Microsoft Windows XP. The executable code was gen-

erated by Borland C++ Builder 6.0. All LP formulations were solved by a code

derived from lp solve [3]. Unless stated otherwise, the test instances of the schedul-

ing problem were generated in the following way: Processor parameters Ai, Ci, Si,

were generated with uniform distribution from the range [0,1]. Problem size was

V = 1E6. The processor number was m = 4, and the number of chunks was z = 8.

Each point on the following charts is an average of at least 10 instances.

Tuning the genetic algorithm

In the genetic algorithm, genes of the initial population were generated with uniform

distribution from set {1, . . . , m}. To tune the genetic algorithm, i.e. to select param-

eters G, pC , pM , and the stopping criterion, we applied the following procedure. A

set of 100 random instances were generated as a reference benchmark. An indicator

of algorithm performance was the average quality of the best solutions obtained for

42

these benchmark instances. Intuitively, a big population size D should allow for find-

ing good solutions in a small number of iterations. On the other hand, maintaining

big populations is computationally expensive. Population size D = 50 was selected

as further increases of the population size gave only marginal improvements in the

convergence of the solutions quality (cf. Fig. 3.2). For the fixed D crossover proba-

bility pC = 80% was selected (see Fig.3.3). pC determines the number of crossover

operations. It turned out that majority of the population (80%) are offspring. Hence,

it can be concluded that crossover is an effective optimization operator. After fix-

ing G, and pC , the mutation probability pM = 3% was selected. It can be seen in

Fig. 3.4 that pM should be neither too big, nor to small. Too little value of pM does

not provide sufficient search diversity. Too much mutation deters convergence of the

solutions. A limit of 10 iterations without solution improvement, and an upper limit

of 100 iterations in total were used as stopping criteria. Better combinations of these

parameters were also observed, as shown in Fig. 3.5. However, considering acceptable

solution quality for ”10/100” stopping criteria, and definite computational cost for

other combinations we decided to use the least expensive option.

43

Figure 3.2: Average distance from optimum vs. iteration number and D.

1.00
100 20 30 40 50

1.02

1.04

1.06

1.08

1.10

iteration number

C _
_

_
C

*m
ax

m
ax

pC=0.01
pC=0.1
pC=0.3
pC=0.7
pC=0.8

Figure 3.3: Average distance from optimum vs. crossover probability pC .

44

C _
_

_
C

*m
ax

m
ax

1.00

1.01

1.04

1.03

1.05

1.02

1E-4 1E-3 pM
1E-2 1E-1 1

Figure 3.4: Average distance from optimum vs. mutation probability pM .

1.0000
10/100 25/250 50/500 80/800 100/1E3 200/2E3 300/3E3 500/5E3400/4E3

1.0015

1.0010

1.0005

1.0020

1.0025

1.0030

C _
_

_
C

*m
ax

m
ax

Figure 3.5: Average distance from optimum vs. iteration limits.

45

Performance of the Algorithms

Running Times

The execution times of the algorithms are collected in Fig.3.6, and 3.7. The running

time of the branch and bound is denoted by B&B, and of the genetic algorithm by

GA. It can be seen that the branch and bound algorithm has exponential running

time in z for fixed m (cf.Fig.3.6). The execution time grows slower as a function of

m for fixed z (cf.Fig.3.7) because the maximum number of the search tree leaves is

mz. Nevertheless, execution time of the branch and bound algorithm allows only for

solving instances with small m, and z. Execution time of the genetic algorithm grows

with z (Fig.3.6) because the length of the string encoding solution is z. For m =

3, . . . , 20 execution time grows less than twice (Fig.3.7). We also tested dependence

of the execution times on size V of the problem. For small V execution time of the

branch and bound was shorter than for big sizes because less processors had to be

activated, and therefore the search trees were smaller. The execution time of the

genetic algorithm was independent of V .

Quality of the Solutions

The results of our study on the quality of solutions are collected in Fig.3.8-3.9. The

instances in Fig.3.8 had Ai parameters equal to a given value on all processors. The

remaining Ci, Si parameters were generated as described previously. Analogously,

46

Figure 3.6: Running time vs. z.

1E+00

1E+01

1E+02

1E+03

1E+04

t
[s

]

2 4 6 8 10 12 14 16 18 20

m

GA

B&B

Figure 3.7: Running time vs. m.

47

for Fig.3.9 parameters Ci were fixed on all processors, and Ai, Si were randomly

generated. Each figure represents quality of the solutions, i.e. the relative distance

from the optimum, in three cases: the average solution of a genetic algorithm (denoted

GA), the average random solution (denoted RND), and the worst selection of the

chunk targets ever observed (denoted Worst). Note that the worst case has its own

ordinate (’y’) axis different than RND, and GA cases. The random solutions (RND)

have random chunk destinations. In all cases load chunk sizes were calculated by

linear program (3.1.1)-(3.1.2).

These three cases demonstrate weaknesses and strengths of the two parts in the

solution of our problem: the combinatorial part which finds targets for the chunks

(dis), and the linear programming part which calculates optimum chunk sizes (αis) for

the given destinations. It can be seen that genetic algorithm constructs solutions that

are very close to the optimum. On average its solutions were not further 0.2% distant

form the optimum. The worst solution obtained by the genetic algorithm was 1.1%

away from the optimum. Thus, the genetic algorithm is a practical replacement for

the optimization branch and bound algorithm which has exponential running time.

The random solutions (RND) are also good on average because their distance from

the optimum is not greater than approximately 30%. This is good news because

solving a complex combinatorial problem of determining chunk targets (be it by

a branch and bound or by a genetic algorithm) may be too time consuming and

48

unprofitable on average. A random, or reasonable selection of processors and their

activation sequence, supplemented by a linear program (3.1.1)-(3.1.2) gives solutions

of acceptable quality on average. This tells us also about the nature of the problem

we are solving. Since relatively good results can be obtained only by adjusting chunk

sizes (even for random chunk destinations), the chunk size selection is an important

element in the solution of our problem. In other words, linear programming can

compensate for some bad decisions in combinatorial part of the algorithms. It can

be said that on average the combinatorial part of our problem (i.e. target selection)

improves a random solution by approximately 30%. Finally, the worst case really

exists. In the worst observed case of the chunk target selection a schedule 35 times

worse than optimum was constructed (cf. Fig.3.9).

It is possible to infer from Fig.3.8-3.9 on the features of the solutions and per-

formance of the algorithms. With growing A, C the quality of the random and the

worst case is improving. When A is very big schedule length becomes dominated by

the computation time. The selection of the chunk destinations is nearly meaningless

because schedule length is determined by computation time which is approximately

AV
m
. Similar conclusions can be drawn for parameter C. When C is very big, chunk

target selection tends to be immaterial because schedule length is determined by the

communication time which is approximately V C. Thus, we can concluded that good

solutions are easy to be obtained in the limit situations, when schedule length is

49

1.00
1E-3 1E-2 1E-1 1E0 A 1E1 1E2 1E3

1

2

3

4

5

6

7

8

9

10

1.15

1.20

1.25

1.30

1.35

1.10

1.05 R
N

D
,
 G

A

W
O

R
S
T

O
B

S
E

R
V

E
D

RND

GA

WORST

Figure 3.8: Relative distance from the optimum vs. A.

severely dominated either by communication or computation. We also tested depen-

dence on startup time S in range [1E-3,1E3]. It turned out that S constitutes at most

≈ 2% of the communication time, and hence this dependence was not strong.

3.2 With memory limits

In this section we assume that the amount of processor memory dedicated for the

computations is limited. The load is not processed instantly. Therefore, in no moment

of time can the load accumulated by a processor exceed the amount of available

memory. The processors are heterogeneous. The problem is to find the sequence of

processor communications, and the sizes of the load chunks such that the length of the

schedule is minimum. Similarly as before we propose two algorithms for this problem.

Exact branch&bound algorithm, and a heuristic based on the genetic search.

50

1.00

1.15

1.20

1.25

1.30

1.35

1.10

1.05

0

5

10

15

20

25

30

35

W
O

R
S
T

O
B

S
E

R
V

E
D

1E-3 1E-2 1E-1 1E0 C 1E1 1E2 1E3

RND

GA

WORST

R
N

D
,
 G

A

Figure 3.9: Relative distance from the optimum vs. C.

3.2.1 Problem Formulation

We assume that each processor Pi is defined not only by communication link startup

time Si, communication transfer rate Ci, processing rate Ai, but also by memory limit

Bi. The load is distributed in multiple small chunks, rather than in one long message.

Therefore, the load may accumulate in the processor memory if new chunks arrive

faster than the received load is processed. The method of memory management has

influence on the conditions that must be met to satisfy memory limitations. Below

we discuss some options. In all cases we assume that memory is allocated at the

beginning of communication with the arriving load chunk.

1) When load chunk j starts arriving, a memory block of size αj ≤ Bdj
is allocated

from the memory pool of the computer system. After processing chunk j memory

block is released to the operating system. Only after processing the previous chunk,

51

a new may be received. This approach was assumed in the earlier papers [23, 24,

25, 31, 44] and in Chapter 2. Unfortunately, in the case of multiple load chunks

this method is not very effective because the load from the successive chunks may

accumulate. Still, memory usage may be limited by gearing the chunk size to the

speed of computation and communication such that the load does not accumulate

[24].

2) When load chunk j starts arriving, many small blocks of memory are allocated

from the memory pool. The size of each small block is equal to the size of the grain

of parallelism. The total allocated memory size is αj . As processing of the load

progresses the memory blocks are gradually released to the operating system. This

method of memory management is illustrated in Fig.3.10a. Thus, the peak of memory

requirement takes place when a new chunk arrives.

3) As in the first case, memory block of size αj is allocated when chunk j starts

arriving. It is released after processing chunk j. However, it is required that the

total memory allocated to the chunks present in the processor never exceeds limit

Bdj
. This method of memory management is illustrated in Fig.3.10b.

Due to the simplicity of mathematical representation, in this work we adopt the

second method of memory management. For the same reason we assume that the

52

Figure 3.10: Memory usage for a) management method 2, b) management method 3.

time of returning the results of computations is negligible, and that processors can-

not compute and communicate simultaneously. Consequently, computations are sus-

pended by communications. We assume that the sequence of processor destinations

d is given. Hence, we know the number zi of load chunks sent to processor Pi, and

function g(i, k) ∈ {1, . . . , z} which is the global number of a chunk (i.e. the number

of originator message) sent to processor Pi as k-th for k = 1, . . . , zi. Let tj denote the

time moment when sending load chunk j starts. We will denote by xik the amount

of load that accumulated on processor Pi at the moment when communication k to

Pi starts. The problem of optimum chunk size selection can be formulated as the

following linear program:

min Cmax

subject to:

tj + Sdj
+ αjCdj

≤ tj+1 j = 1, . . . , z − 1 (3.2.1)

53

xi,k−1 + αg(i,k−1) −
tg(i,k) − (tg(i,k−1) + Si + Ciαg(i,k−1))

Ai

= xik

i = 1, . . . , m, k = 2, . . . , zi (3.2.2)

xik + αg(i,k) ≤ Bi i = 1, . . . , m, k = 1, . . . , zi (3.2.3)

tg(i,zi) + Si + Ciαg(i,zi) + Ai(αg(i,zi) + xizi
) ≤ Cmax i = 1, . . . , m (3.2.4)

n
∑

j=1

αj = V (3.2.5)

xi1 = 0, xik ≥ 0 i = 1, . . . , m, k = 1, . . . , zi (3.2.6)

tj , αj ≥ 0 j = 1, . . . , z (3.2.7)

In the above formulation inequality (3.2.1) guarantees that communications do not

overlap. The amount of load accumulated on Pi at the moment when chunk k starts

arriving is calculated in equation (3.2.2). By inequality (3.2.3) memory limit is not

exceeded. Computations finish before the end of the schedule by constraint (3.2.4),

and the whole load is processed by equation (3.2.5). The above formulation can be

adjusted to the case of processors equipped with communication front-ends when

simultaneous receiving the load and computation is possible. In such a situation

constraint (3.2.2) should be split into two constraints: xik ≥ xi,k−1 + αg(i,k−1) −

tg(i,k)−tg(i,k−1)

Ai
, and xik ≥ αg(i,k−1) −

1
Ai

(tg(i,k) − (tg(i,k−1) + Si + Ciαg(i,k−1))).

We conclude this section with an observation that the optimum multi-installment

divisible load distribution in a heterogeneous system with memory limits can be found

in polynomial time provided that the sequence of processor communications d is given.

54

In the next section we propose two methods of constructing d.

3.2.2 Branch&Bound Algorithm

The B&B algorithm is constructed as described in Section 3.1.2. The lower bound

is Cmax obtained from linear program (3.2.1)-(3.2.5) by assuming that load chunks

i + 1, . . . , z are each sent to ideal processors. An ideal processor Pid has all the best

parameters in the processor set, i.e. Aid = minm
i=1{Ai}, Cid = minm

i=1{Ci}, Sid =

minm
i=1{Si}, Bid = maxm

i=1{Bi}. If the resulting linear program (3.2.1)-(3.2.5) is infea-

sible then it means that volume V is greater than the available processor memory. If

the lower bound is greater than or equal to some already known solution then there

is no hope that any of d(i) descendants will improve the schedule. In both cases d(i)

is not expanded, and in this way the search tree is pruned.

3.2.3 Genetic Algorithm

A genetic algorithm for the current problem is constructed as described in Section

3.1.3. Quality of some solution d is schedule length Cmax(d) obtained as a solution

of the linear program (3.2.1)-(3.2.5) formulated for sequence d. Sequences infeasible

because of insufficient memory, were eliminated from the population.

55

3.2.4 Computational Experiments

Experiment Setting

B&B and GA were implemented in Borland C++ 5.5 and tested in a set of com-

putational experiments run on a PC computer with MS Windows 2000. Linear pro-

grams were solved using simplex code derived from lp solve [3]. Unless stated oth-

erwise the instance parameters were generated with uniform distribution from ranges

[0, 1] for parameters Ai, Ci, Si, and [0, 2V
z

] for parameter Bi. Infeasible instances with

z maxm
i=1{Bi} < V were eliminated.

GA requires tuning, i.e., population size D, parameters pC , pM as well as the limits

on the iteration number must be determined. We applied the following tuning proce-

dure. A set of 10 random instances with m = 4, and n = 8 were generated and solved

by B&B and GA. The average relative distance from the optimum was a measure

of the quality of tuning. First, population size D = 40 was selected as increasing D

beyond 40 did not improve significantly solution quality but increased complexity of

the algorithm. Second, crossing over probability pC = 50%, and mutation probability

pM = 5% were selected for which best quality was obtained in minimum number of it-

erations. Finally, the limits of iteration numbers 100 (without quality improvement),

and 1000 (in total) were selected for which solution distance from the optimum was

better than 0.1% (in the tuning process). As in Section 3.1.4 we used random chunk

destinations as algorithm RND. The worst activation sequences were also recorded.

56

communications
t

t

t

P1 memory usage

P1 P2 P2P1 P1P0 P0 P0P0 P0

P2 memory usage

5E5

3E5

0 4.1E6 6.3E6 9.0E6 13.9E611.2E6 16.0E6 18.4E6

1.4E5

3E5

Figure 3.11: Solution for m = 2, z = 6, V =2E6, A1 = A2 = 8.98, C1 = C2 =
7.39, S1 = 2.01, S2 = 3.02, B1 =5E5, B2 =3E5.

Before discussing the quality of the algorithms let us discuss features of the op-

timum solutions. In Fig.3.11 an optimum schedule constructed by B&B algorithm

is presented. It is a typical situation that memory buffers are filled to the maximum

capacity. We observed that if the number of messages is small then memory buffers

were empty when a new message arrived (i.e. xik = 0). With the increasing number of

messages z we observed an increase in the number of the optimum solutions in which

the old load is not completely processed on the arrival of the new load (xik > 0).

Intuitively, this seems reasonable because when z is small each message must carry

nearly a maximum load. Hence, messages sent to processor Pi have maximum load

Bi, which requires that the load is completely processed before receiving a new chunk.

Running Times

Dependence of the B&B and GA execution times on z, m, B are shown in Fig.3.12,

Fig.3.13, Fig.3.14, respectively. Each point in these diagrams is an average of at least

57

ten instances. The worst case number of leaves visited in a B&B search tree is mz.

Thus, the execution time of B&B is exponential in z for fixed m (see Fig.3.12), and

polynomial in m for fixed z (cf. Fig.3.13). The execution time of GA grows with z

because the length of the solution encoding and sizes of linear programs increase with

z (see Fig.3.12). GA running time dependence on m is weaker: 10-fold increase of m

resulted in 60% increase of the execution time (Fig.3.13). In Fig.3.14 dependence of

the running time on memory size is shown. For this diagram processor memory sizes

Bi were generated with uniform distribution from range [0, κ2V
n

], where κ is shown

along horizontal axis as a ’memory factor’. With growing κ the size of available

memory is growing on average, and more solutions are feasible. Consequently, less

branches can be cut in B&B, and deeper search trees have to be examined. Finally,

when κ is sufficiently big, infeasibility of a solution becomes rare on average, and it

is not limiting search tree in B&B. As a result, dependence of B&B execution time

on κ levels-off.

Quality of the Solutions

In this section we examine quality of the solutions constructed by the algorithms,

and the impact of heterogeneity of the distributed system on the quality of solutions.

First, let us note that GA turned to be very useful in deriving optimum, and near-

optimum solutions. Over 55% of the instances were solved to the optimality by GA

58

Figure 3.12: Execution time vs. z, for m = 4.

Figure 3.13: Execution time vs. m, for z = 4.

59

algorithm. The biggest observed relative distance from the optimum was 1.2%. In

Fig.3.15, Fig.3.16, Fig.3.17 we show dependence of the solutions quality on the range

of C, A, B, respectively. Along the vertical axis a relative distance from the optimum is

shown for three kinds of solutions: an average for the genetic algorithm (denoted GA),

an average for a randomly selected sequence od destinations (RND), and for the worst

case ever observed (WORST). Note, that for the WORST dependence a dedicated

axis is shown at the let side of the diagrams. For Fig.3.15, the communication rates Ci

were generated from range [1−λC , 1+λC]. The remaining parameters were generated

as described above. Thus, with growing λC heterogeneity of the communication

system was growing. Values of λC are shown along horizontal axis denoted as C

range. As it can be seen in Fig.3.15 with growing heterogeneity of Ci parameters

the quality of both random and the worst case solutions is decreasing. Note, that

this dependence is growing especially fast when Ci variation (λC) is big. In Fig.3.16

dependence of the solution quality on heterogeneity of Ai parameters is shown. For

this diagram parameters Ai were generated from the range [1−λA, 1+λA]. The other

parameters were generated as described above. Some weak dependence of the solution

quality on the diversity of A parameter can be observed: with growing A diversity,

quality is getting worse. For Fig.3.17 the memory sizes were generated from range

[2V
n
−λB, 2V

n
+λB], for fixed value of V . The value of λB is shown along the horizontal

axis. Again, a weak trend of decreasing quality of the solutions can be observed with

60

memory factor
21 1.5 2.5 3

1E+1

1E+3

1E+2

ex
ec

u
ti

o
n
 t

im
e

[s
]

BB
GA

Figure 3.14: Execution time vs. memory size, for m = 4, z = 4.

growing λB. Note that in Fig.3.16 and Fig.3.17 the distance from the optimum of

RND, and WORST solutions is bigger than in Fig.3.15. This demonstrates that

narrowing the diversity of C simplifies obtaining a good solution, and communication

rate is a key parameter in performance optimization of the heterogeneous systems.

Furthermore, the distance between WORST, RND, and GA or B&B solutions can be

used as an estimate of the gain from finding the optimum, or near-optimum, sequence

of processor activations. As it can be inferred this kind of gain is ≈ 10-40% for the

random (RND) solution on average, and ≈ 10-fold for in the worst case.

61

C range

C
m

a
x

_
_

_
_

C
m

a
x

*

1E-3
1.00 1

2

3

4

5

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1E-2 1E-1 1E0

6

7

8

9

G
A

,
R

N
D

GA
RND
WORST

W
O

R
S

T

Figure 3.15: Quality of the solutions vs. range of C, m = 4, z = 8.

C
m

a
x

_
_

_
_

C
m

a
x

*

1.00

1.05

1.10

1.15

1.20

1.25

1.30

A range
1E-3 1E-2 1E-1 1E0

G
A

,
R

N
D

GA
RND
WORST

W
O

R
S

T

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3.16: Quality of the solutions vs. range of A, m = 4, z = 8.

62

C
m

a
x

_
_

_
_

C
m

a
x

*

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1

3

5

7

9

11

13

B range
1E+1 1E+2 1E+3 1E+4 1E+5

G
A

,
R

N
D

GA
RND
WORST

W
O

R
S

T

Figure 3.17: Quality of the solutions vs. range of memory sizes, m = 4, z = 8, V =
1E6.

3.3 Conclusions

The problems we analyzed in this chapter consist in determining optimum destina-

tions for the load chunks and adjusting their sizes to the speeds of processors, com-

munication links and possibly memory sizes. A linear programming formulation has

been proposed for a fixed processor activation sequence. We divided solution methods

into two parts: combinatorial one which finds destinations for the load chunks, and

a linear programming part which finds optimum chunk sizes for the given targets.

We have shown that in the worst case solutions can be arbitrarily bad if any of the

two parts is ignored. Two algorithms were proposed to find an optimum, or near

optimum processor activation sequence. The running times, and quality of the solu-

tions were compared in a series of computational experiments. It turned out that the

63

proposed genetic algorithm is very effective in finding near-optimum solutions. In a

set of computational experiments we demonstrated that on average the combinato-

rial part improves the solution quality by approximately 30 %. The algebraic part

(LP) is a very important element in the construction of the schedule, and to some

extent it is able to compensate bad decisions in the combinatorial part. The impact

of heterogeneity on the solution quality has been also studied. It appears that with

growing system heterogeneity good quality solutions are harder to be found. Espe-

cially narrowing communication speed diversity simplifies obtaining good solutions.

Chapter 4

Multiple Loads Single Distribution

In this chapter we analyze complexity of scheduling divisible loads T1, . . . , Tn of sizes

V1, . . . , Vn on m parallel processors P1, . . . , Pm interconnected in a star topology. We

assume that processors have sufficient memory buffers to store the received loads, and

computations do not have to start immediately after receiving the load. Note that

even for uniform and identical processors n tasks are not equivalent to a single task

with load
∑n

j=1 Vj because each task is a separate scheduling entity, separate memory

object, and requires a separate set of communications.

By constructing a schedule the originator decides on: the sequence of the tasks, the

set of processors Pj assigned to each of tasks j, the sequence of processor activation,

and the sizes of the load parts. Our objective is minimization of the schedule length,

denoted by Cmax. Let us now point out several possible assumptions on the structure

of the schedule.

In some cases the time of returning the results may be so short in comparison with

the load scattering and computing phases, that the result returning may be neglected

64

65

in the construction of the schedule. This assumption is commonly used in modeling

divisible load computations [7, 17, 36]. It has been observed in the earlier DLT papers

that if the result returning time may be neglected, then the schedule for a single task

is the shortest when all the activated processors complete computations at the same

moment. This requirement may be extended to the multiple loads case. We will say

that a schedule has simultaneous completion property if the computations on all parts

of each task finish simultaneously. Simultaneous completion of the computations may

be also justified by technological reasons: When a parallel application finishes at the

same time on all processors, then managing it in a parallel computer batch system is

simpler than if it were finishing on different processors in widely scattered moments

of time.

On the other hand, the process of result returning may be equally time consuming

as load distribution and computations. In such cases we will assume that the amount

of returned results is βjαij, which means that the volume of results is proportional

to the amount of received load, and coefficient βj is application specific. The result

returning phase must be explicitly scheduled. We assume that transfer rates and

startup times are the same for sending the load to the processors, and for returning

the results.

It is assumed in this chapter that the originator constructs permutation schedules

(see e.g. [13, 35] for the classic definition). By permutation schedule we mean that

66

P1

P2

P3

P0

T1 T2 T3

a11 a32

a32

a22 a13

a13

a23

a23

a33

a33

a22

a11

a31

a31

a21

a21idle idle

idle

Figure 4.1: An example of a permutation schedule.

a task is sent to the processors only once, that a processor executes the task only

once, and the sequence of the tasks is the same on all processors. Consequently,

communications and computations are non-preemptive, i.e. cannot be suspended

and restarted later. If Pi 6∈ Pj , then a dummy computation interval of length 0

is inserted on Pi. An example of permutation schedule is shown in Fig.4.1. When

returning of the results is considered we will also assume permutation schedules by

which we mean that the order of the tasks in distribution, computation, and result

collection phases is the same.

To simplify presentation some elements of the general formulation of divisible load

scheduling problem as defined in Chapter 1 will not always be used here. Unless stated

otherwise it is assumed that memory size is not bounding ∀i,jBij = ∞, processor

availability is not constrained (∀iri = 0, di = ∞), costs of computations are negligible,

computation startup time is zero ∀i,jpij = 0. Further organization of this chapter is

the following. In Section 4.1 computationally hard cases are identified. In Section

4.2 some polynomially solvable cases of the problem are presented. Bounds on the

67

quality of approximation algorithms are given in Section 4.3. In Section 4.4we analyze

the problem of scheduling identical tasks on identical processors This problem is

particularly interesting due to compact encoding of the instances.

4.1 Complexity

In this section we identify NP-hard, or NP-hard in a strong sense [26] cases of multi-

ple divisible load scheduling problem. In our proofs of the computational complexity

we will be using the NP-complete problems: Partition, Partition with equal

cardinality and the strongly NP-complete 3-Partition problem, defined in Sec-

tion 1.3.

Theorem 10. Multiple divisible load scheduling problem is NP-hard even for one
(m = 1) unrelated processor, when result returning is considered.

Proof. Before presenting the proof let us comment on a single unrelated processor. In

classic deterministic scheduling theory single processor cannot be unrelated. However

here, we have in fact two processors: communication medium is one classic theory

processor, and P1 is another classic processor. For m = 1 this problem is obviously in

NP because NDTM has to guess the sequence of tasks execution. We will show that

our scheduling problem is NP-hard by the following polynomial time transformation

from Partition, to a decision version of our problem:

n = q + 1,

Vj = 1, βj = 1 for j = 1, . . . , n,

68

F+1FE' E-E' 2 +1F

P1

P0
S C V1 1n n n+ S C V1 1n n n n+b

A V1n n
... ...A V11 1 A V1k kA V1j j A V1l l

Figure 4.2: Illustration to the proof of Theorem 10.

S1j = 0 for j = 1, . . . , n,

C1j = 0 for j = 1, . . . , q, C1n = F ,

A1j = ej for j = 1, . . . , q, A1n = 1.

We ask if a schedule with length at most y = 2F + 1 exists. Suppose, that the

partition instance has a positive answer. Then a feasible schedule of length 2F + 1

can be constructed as shown in Fig.4.2.

Suppose the scheduling problem instance has a positive answer. Then task Tn

is continuously performed because S1n + VnC1n + VnA1n + S1n + βnVnC1n = 2F +

1 = y. As computations are non-preemptive, each of the tasks T1, . . . , Tq must fit

either into interval [0, F], or into interval [F + 1, 2F + 1]. For the set of tasks T[0,F]

which computations are performed in [0, F] we have
∑

Tj∈T[0,F]
A1jVj =

∑

Tj∈T[0,F]
ej ≤

F . Analogously, for the tasks in interval [F + 1, 2F + 1]:
∑

Tj∈T[F+1,2F+1]
A1jVj =

∑

Tj∈T[F+1,2F+1]
ej ≤ F . Thus, the partition instance also has a positive answer.

Consequently, the scheduling problem is NP-hard. 2

Theorem 11. If result returning time is negligible, then multiple divisible load schedul-
ing problem for two (m = 2) unrelated processors is NP-hard in the strong sense.

69

Figure 4.3: Illustration to the proof of Theorem 11.

Proof. We prove the theorem by reduction from 3-partition. We assume (without

loss of generality) that F > q. Were it otherwise, all ej can be multiplied by q > 1 to

fulfill this requirement. The instance of the scheduling problem can be constructed

as follows:

n = 4q + 1, Vj = 1 for j = 1, . . . , n,

S1j = 0, S2j = 0, C1j = 1, C2j = ej , A1j = ∞, A2j = F 3ej for j = 1, . . . , 3q.

S1,3q+1 = 0, S2,3q+1 = 0, C1,3q+1 = 1, C2,3q+1 = 1, A1,3q+1 = F 4 + F, A2,3q+1 = ∞,

S1j = 0, S2j = 0, C1j = F 4, C2j = 1, A1j = F 4 + F, A2j = ∞ for j = 3q + 2, . . . , 4q,

S1,4q+1 = 0, S2,4q+1 = 0, C1,4q+1 = F 4, C2,4q+1 = 1, A1,4q+1 = 1, A2,4q+1 = ∞,

y = q(F 4 + F) + 2.

We ask whether a schedule not longer than y exists. If 3-partition instance has

positive answer then a feasible schedule of length y may look like the one in Fig.4.3.

Observe that processor P2 can start executing tasks immediately after its first com-

munication. Thus, there can be also other schedules not longer than y when a 3-

partition exists.

70

Suppose, a feasible schedule not longer than y exists. Due to the values of param-

eters Aij , tasks T1, . . . , T3q can be executed on P2 only, and tasks T3q+1, . . . , T4q+1 on

P1 only. The total computing time on P1 is q(F
4 +F) + 1 = y− 1, while the shortest

load distribution operation lasts one unit of time. As a result, P1 must compute all

the time with the exception of the first time unit when the load of T3q+1 is sent. The

sum of all communication times is equal to y−1. Thus, originator must communicate

all the time with the exception of the last time unit when task T4q+1 must be executed

on P1.

Total computing requirement put on P2 by tasks T1, . . . , T3q is qF
4. After exclud-

ing the first communication of T3q+1, P2 can be idle at most qF + 1 time units. To

avoid idling on P1, sending the load for the second task executed on P1 must start at

time F + 1 at the latest. Therefore, no more load can be sent to P2 than for three

tasks. Suppose that two tasks Ti, Tj are started on P2 before sending the load for the

second task on P1, and Ti is started first. Then, there would be excessive idle time

on P2 since the end of Tj computations till the end of the communication operation

of the second task executed by P1. Let us calculate this idle time. F 4 + ej is the

span of the interval since the end of Ti communication operation (moment when P2

can start computing) till the end of the communication operation of the second task

executed by P1 (when P2 can start receiving any new load). F 3(ei + ej) is the time

of computing operations which can be executed on P2 in this interval. The idle time

71

on P2 would be at least F 4 + ej − F 3(ei + ej). Since F > q and F > 1 we have

F 4 + ej − F 3(ei + ej) > F 4 − F 3(F − 1) = F 3 ≥ F 2 + F 2 > qF + 1, while the idle

time on P2 cannot be greater than qF + 1. Hence, exactly three communications to

P2 must be done before sending the second task to P1.

The sum of computation times of the first three tasks Ti, Tj, Tk allocated to P2

must be equal to F 4. If it is less, then it is at most F 3(ei + ej + ek) ≤ F 4 − F 3

which results in F 3 > qF +1 idle time on P2 while communication of the second task

allocated to P1 with the originator. Suppose it is more, then sending their loads last

longer than F and the sending operation of the second task allocated to P1 cannot

start at time F + 1, which results in additional idle time on P1. Consequently, the

three tasks must be processed in exactly F 4 time units. Otherwise schedule of length

y cannot exist.

The same reasoning can be applied to the following tasks assigned to P1. The load

distribution operations of these tasks cannot be started later than by 1+iF 4+(i+1)F

for i = 1, . . . , q − 1. This creates free time interval for at most three communications

of the tasks assigned to P2. Also no less than three tasks can be started by the

originator, otherwise there will be excessive idle time on P2. The processing times of

the three tasks must be equal to F 4, otherwise either P2 or the originator must be

idle for a too long time. We conclude that for each triplet of tasks assigned to P2

their computing time is F 4. Hence, 3-partition instance has a positive answer. 2

72

In the following theorem we consider a simpler case of uniform processors, but

with simultaneous completion required, i.e., each task must be finished at the same

time on all used processors.

Theorem 12. If result returning time is negligible and simultaneous completion is
required, then multiple divisible load scheduling on uniform processors is NP-hard
already for two (n = 2) tasks, even if the sequence of the tasks is known.

Proof. First we will calculate the amount of a single application load that can be

distributed, and processed on a star network with Ci = 0, until time τ . Without loss

of generality, let us assume that the sequence of processor activation is P1, . . . , Pm.

The amount of load V that can be distributed, and processed in time τ is (compare

formula 2.2.1):

V =

m
∑

i=1

τ

Ai
−

m
∑

i=1

m
∑

j=i

Si

Aj
(4.1.1)

Suppose that 1
Ai

= Si for all i. Formula (4.1.1) reduces to:

V =

τ

m
∑

i=1

Si −
m

∑

i=1

m
∑

j=i

SiSj =

τ
m

∑

i=1

Si −
1

2
(

m
∑

i=1

Si)
2 −

1

2

m
∑

i=1

S2
i (4.1.2)

Note that V in (4.1.2) does not depend on the sequence of processor activation.

We will show NP-hardness of the problem by a polynomial time transformation

of Partition problem. Assume that ei > 2 for i = 1, . . . , q. Were it otherwise, all

73

P1

P2

P0

Pm

... idle

2F 3F 3 1F+

E'

T1 T2

Figure 4.4: Illustration to the proof of Theorem 12.

ei may be multiplied by 2 without changing the answer to the partition instance.

The transformation of a partition instance to a scheduling problem instance is as

follows:

n = 2, m = q,

Si = ei, Ai = 1
Si

= 1
ei

, Ci = 0, for i = 1, . . . , q

V1 = 4F 2 − 1
2

∑m
i=1 e2

i , V2 = F

y = 3F + 1.

As already mentioned the sequence of task execution is given: T1 precedes T2. We ask

if a schedule of length at most y exists. Suppose the answer is positive for partition

problem. A feasible schedule for the instance of the scheduling problem is shown in

Fig.4.4.

Processors corresponding to set E ′ in partition are used by T2. Let us check

that the schedule is feasible. T1 completes computations at time τ = 3F . If we

supply the values of startup times Si, and processing rates Ai into equations (4.1.1),

74

(4.1.2), we get 3F
∑m

i=1 ei−
1
2
(
∑m

i=1 ei)
2− 1

2

∑m
i=1 e2

i = 6F 2− 1
2
(2F)2− 1

2

∑m
i=1 e2

i = V1.

Thus, T1 is executed feasibly. The communications of T1 finish at time 2F , therefore

communications of T1 which take
∑

i∈E′ Si = F fit in F time units of available time.

In the last time unit of interval [y − 1, y] the selected processors process
∑

i∈E′

1
Ai

=

∑

i∈E′ ei = F units of load. Hence, also T2 is executed feasibly.

Suppose that a schedule of length y exists. Task T1 is executed first. All m

processors must be used by T1. Suppose it is otherwise, and some processor is not

exploited. Without loss of generality we can renumber the processors such that Pm

is the unused processor. By (4.1.2) the volume of the processed load for T1 is at most

V ′
1 = y

∑m−1
i=1 Si −

1
2
(
∑m−1

i=1 Si)
2 − 1

2

∑m−1
i=1 S2

i = (3F + 1)
∑m−1

i=1 ei −
1
2
(
∑m−1

i=1 ei)
2 −

1
2

∑m−1
i=1 e2

i = (3F + 1)
∑m

i=1 ei − (3F + 1)em − 1
2
(
∑m

i=1 ei)
2 − 1

2

∑m
i=1 e2

i + 1
2
(e2

m +

2em

∑m−1
i=1 ei)+ 1

2
e2

m = V1 +2F − (3F +1)em + e2
m + em

∑m−1
i=1 ei = V1 +2F −em(3F +

1−
∑m

i=1 ei) = V1+2F−em(F +1) < V1 because em > 2. Hence, allm processors must

be used by task T1. If all processors are used then T1 communications complete by

2F , and due to simultaneous completion requirement, its computations finish at time

3F . This leaves interval [2F, 3F +1] free for communications, and interval [3F, 3F +1]

for the computations of T2. Note that ∀iSi ≥ 2, and any communication in interval

[3F, 3F + 1] gives no contribution to the processed load of task T2. Consequently

communications of set P ′ of the processors selected for executing T2 must satisfy

∑

i∈P ′ Si =
∑

i∈P ′ ei ≤ F . The load of T2 processed in interval [3F, 3F + 1] must

75

satisfy
∑

i∈P ′

1
Ai

=
∑

i∈P ′ ei ≥ F . Thus, the answer is positive for partition instance

if the elements corresponding to the processors in set P ′ are selected to set E ′. 2

The case of arbitrary processor sequence is not simpler. We explain it in the

following observation.

Observation 13. If result returning time is negligible and simultaneous completion
is required, then multiple divisible load scheduling on uniform processors is NP-hard
even for two (n = 2) tasks, and arbitrary sequence of the tasks.

Proof. The proof for the previous problem can be adjusted to the current situ-

ation. If the sequence of tasks is (T2, T1), then the length of the schedule is at least

the length of the communications of T2 plus the length of the schedule for T1. Com-

munications of T2 last at least minPi∈P{Si} = mini∈E{ei} > 1. The duration of T1

processing is at least 3F (see the proof of Theorem 12). The schedule length is at

least 3F + 2. Thus, only sequence (T1, T2) allows for a schedule of length at most

3F + 1, which by the proof of Theorem 12 exists if and only if partition exists.

2

Note that Theorems 10 and 11 can be proved also for non-permutation schedules.

Preemption in computation and communication can be eliminated by sufficiently long

communication or computation startup times. Theorem 12 relies on the simultaneous

completion of T1, and hence it holds also for non-permutation schedules.

Now we will prove that scheduling multiple divisible loads on parallel identical

processors is alsoNP-hard. In the proof ofNP-hardness we will use theNP-complete

76

Tk T2qTjTi

V F+e=2 kk

V F+e=2 2q2q

V F=n. . .

. . .
V F+e=2 ii

V F+e=2 jj

T2 +1q T2 +2q T2 +3q

P1

P2

P0

0 F 2F 3F 2 3 +1qF+ F2qF4F

Figure 4.5: Illustration to the proof of Theorem theo-id-par.

problem Partition with equal cardinality defined in Section 1.3.

Theorem 14. Scheduling of multiple divisible loads is NP-hard even for two identical
processors.

Proof. We will show that our scheduling problem isNP-hard by presenting a polyno-

mial time transformation from Partition with equal cardinality to a decision

version of our problem. Without loss of generality we assume that ei are multiples

of 3, for i = 1, . . . , 2q. Were it otherwise all ei can be multiplied by 3 to satisfy this

requirement. The transformation is as follows:

m = 2, S = F, C = 0, A = 1, n = 2q + 3,

Vj = 2F + ej for j = 1, . . . , 2q, V2q+1 = F, V2q+2 = 1, V2q+3 = 1,

We ask if a schedule with length at most y = (2q + 3)F + 1 exists. Suppose, that

the partition with equal cardinality instance has a positive answer. Then a

feasible schedule of length (2q + 3)F + 1 can be constructed as shown in Fig.4.5.

Suppose there is a schedule of length at most y. Without loss of generality,

let P1 be the first processor which started computations. Note that only 2q + 3

communications of length S = F can be initiated and completed. Also n = 2q + 3.

Thus, the load for each task is sent in only one message, and each task can be executed

77

on one processor only. The time required for processing the tasks
∑n

j=1 VjA = 4qF +

3F + 2 is equal to the length of available processing intervals on processors P1, and

P2 with the exception of the 3F time units of initial waiting for the load. Hence,

there is no idle time in the computations on the processors. Tasks T2q+1, T2q+2, T2q+3

have to be sent from the originator at the end of the schedule, because no other

tasks with communications initiated at 2qF, (2q + 1)F, (2q + 2)F can be finished

by y = (2q + 3)F + 1. T2q+2, T2q+3 must be executed on different processors because

processing times of other tasks are multiples of 3 and otherwise there would be an idle

time on some processor. This leaves (2q +2)F free time on P1, and (2q +1)F time on

P2. Let Ti denote the set of tasks executed by processor Pi, for i = 1, 2. If T2q+1 were

processed by P2, then at most q−1 tasks from {T1, . . . , T2q} would be processed on P2.

Processing the tasks on P2 would take 2F (q−1)+
∑

Tj∈T2
ej +F < (2q +1)F , and an

idle time would arise on P2. Thus, T2q must be executed on P1, exactly q tasks from

{T1, . . . , T2q} have to be on P2, and the same number on P1. Since T2q+1 is executed

on P1, the processing requirements of the tasks on P1, and on P2 must be equal

to the remaining available time, i.e.,
∑

Tj∈T1−{T2q+1}
AVj = 2qF +

∑

Tj∈T1−{T2q+1}
ej =

∑

Tj∈T2
AVj = 2qF +

∑

Tj∈T2
ej = 2qF +F . Hence,

∑

Tj∈T1−{T2q+1}
ej =

∑

Tj∈T2
ej = F ,

and the answer to partition with equal cardinality is affirmative. 2

In the proof of Theorem 14 tasks use one communication. Yet, the restriction to a

single communication is not presumed, but it follows from the features of the instance.

78

Therefore, Theorem 14 applies both to single-distribution and to multi-installment

processing. For similar reasons it applies to permutation, and not-permutation sched-

ules, in the case with or without the simultaneous completion of the computations.

We conclude from the above results that the problem of scheduling multiple di-

visible loads is computationally hard. This means in practice that this problem has

a hard combinatorial core which could not be expected by the earlier DLT literature.

The main sources of the computational complexity are sequencing the tasks, selecting

the processors to use, sequencing processor activation.

4.2 Polynomial cases

4.2.1 Fixed activation order, no result returning

When the task execution sequence, the set of used processors, and the processor acti-

vation orders are known, then the optimum distribution of the load can be found by

using linear programming. Let us first study the case when simultaneous completion

of the computations is not required, and results returning time can be ignored. For

the sake of notation simplicity, and without loss of generality, let us assume that the

order of task execution coincides with task numbers. The set of processors exploited

by Tj is Pj . The order of processor activation can be different for each task. Let the

number of the i-th processor activated for task Tj be given by function h(j, i). The

amount of load from task j = 1, . . . , n sent to processor i = 1, . . . , m is denoted by

αij ≥ 0.

79

The optimum distribution of the load can be found by the linear program:

minimize Cmax

subject to:

l−1
∑

j=1

|Pj |
∑

i=1

(Sh(j,i)j + αh(j,i)jCh(j,i)j) +

k
∑

i=1

(Sh(l,i)l + αh(l,i)lCh(l,i)l) +

n
∑

j=l

αh(l,k)jAh(l,k)j ≤ Cmax

l = 1, . . . , n, k = 1, . . . , |Pj| (4.2.1)

∑

i∈Pj

αij = Vj j = 1, . . . , n (4.2.2)

Term
∑l−1

j=1

∑|Pj |
i=1(Sh(j,i)j + αh(j,i)jCh(j,i)j) in inequalities (4.2.1) is the time of sending

the load for tasks T1, . . . , Tl−1. Sending the load to processors h(l, i) activated as

i = 1, . . . , k in the sequence of processors executing task Tl lasts
∑k

i=1(Sh(l,i)l +

αh(l,i)lCh(l,i)l).
∑n

j=l αf(l,k)jAh(l,k)j is the time of computing the load parts of tasks

Tl, . . . , Tn, sent to the processor h(l, k), activated as the k-th for task Tl. Thus,

inequalities (4.2.1) ensure that computations complete before the end of the schedule.

By constraints (4.2.2) all tasks are fully processed. Let us consider an example.

Example 1. m = 3, n = 2, |Pj| = m, h(j, i) = i, for j = 1, 2, i.e., all processors

are used, and the order of processor activation coincides with processor numbers for

both tasks. Processors are identical: ∀i,jAij = 1, ∀i,jCij = 1, ∀i,jSij = 1. V1 =

32, V2 = 2. For these values the solution from (4.2.1)-(4.2.2) is: α11 = 18.5, α21 =

80

P1

a11 a12

a12a11

a21 a22

a22a21

a31

a31

T1

P2

T2

P3

19.333 29.667 35 3937.667 39.333

P0

idle

Figure 4.6: Optimal schedule for Example 1 (does not preserve proportion).

9.75, α31 = 3.75, α12 = 2.0, α22 = 0, α32 = 0, Cmax = 40. The last two communications

of T2 contain no load, because α22 = 0, α32 = 0, but still contribute startup times

S1 = S2 = 1. Thus, this is not the best activation order, and processor P3 need

not be used in processing T2. After removing P3 from P2 we get from (4.2.1)-(4.2.2)

the optimum solution: α11 ≈ 18.333, α21 ≈ 9.333, α31 ≈ 4.333, α12 ≈ 1.667, α22 ≈

0.333, Cmax ≈ 39.333, shown in Fig.4.6. Exclusion of both P3, and P2 from processing

T2 does not reduce schedule length anymore. 2

Observe that in the optimum schedule for Example 1 computations on T1 do

not finish on all processors at the same time. It demonstrates that simultaneous

completion of the computations on all processors for all tasks is not necessary for the

optimality of the solution. This observation departs from the standard situation in

single divisible load processing. Let us analyze one more example.

Suppose that tasks are of equal size ∀Tj
Vj = V , processors are identical, and

∀Tj
Pj = P, i.e., each task uses all processors. We experimentally studied patterns

81

that appear in the optimal load distribution under the above conditions. When com-

munication delays are big in comparison with computing time then not all processors

are exploited. It is the case when C ≫ A
m
. When communication delays are of similar

order as computations (C ≈ A
m

) then load of each task is distributed nearly equally

between the processors. The exceptions are the leading and trailing tasks. In the

leading tasks distribution is unequal so that waiting for the first load chunk to pro-

cess is minimized. In the trailing tasks the distribution is also unequal such that

processors stop computing at the same time. This is demonstrated in Fig.4.7 where

changes of αij from task to task are shown for m = 3. Each line in Fig.4.7 and Fig.4.8

represents the load from the consecutive tasks assigned to a certain processor. On

the contrary, when communication delays are short in comparison with computing

times, e.g. when C ≪ A
m
, then total load of all tasks is distributed nearly equally

between the processors, but computations of each task are concentrated on one pro-

cessor. This is demonstrated in Fig.4.8. Such a situation is not very comfortable for

a user of a parallel application because a distribution optimal globally (for all tasks)

is not necessarily a solution which is using parallelism.

It was assumed in (4.2.1)-(4.2.2) that the computation completion times are arbi-

trary. If simultaneous completion is required, then a linear programming formulation

can be given to deal with the simultaneous completion. Let τl ≥ 0 denote the com-

pletion time of computations on task Tl. The following linear program solves the case

82

0

1E3

1 3 5 7 9 11 13 15 17 19 21 23
j

aij

a1j

a2j

a3j

2E3

3E3

4E3

5E3

6E3

7E3

8E3

9E3

1E4

Figure 4.7: Distribution of the load (αij) vs task number (j); m = 3, n = 24, V =
1E4, C = S = 1, A = 3.

a1j

a2j

a3j

0

1E3

1 3 5 7 9 11 13 15 17 19 21 23

aij

2E3

3E3

4E3

5E3

6E3

7E3

8E3

9E3

1E4

j

Figure 4.8: Distribution of the load (αij) vs task number (j); m = 3, n = 24, V =
1E4, C = S = 1, A = 1E2.

83

with simultaneous completion:

minimize Cmax

subject to:

τl−1 + αh(l,k)lAh(l,k)l ≤ τl

l = 2, . . . , n, k = 1, . . . , |Pj | (4.2.3)

l−1
∑

j=1

|Pj |
∑

i=1

(Sh(j,i)j + αh(j,i)jCh(j,i)j) +

k
∑

i=1

(Sh(l,i)l + αh(l,i)lCh(l,i)l) +

+
n

∑

j=l

αh(l,k)jAh(l,k)j ≤ τl

l = 1, . . . , n, k = 1, . . . , |Pj | (4.2.4)

τn = Cmax (4.2.5)

∑

i∈Pj

αij = Vj j = 1, . . . , n (4.2.6)

By inequalities (4.2.3), the computations of task Tl can be feasibly performed in

interval [τl−1, τl]. Inequalities (4.2.4) ensure that communications and computations

of task Tl are completed by time τl. By (4.2.5) the end of the last task is also the end

of the schedule. The tasks are fully processed by (4.2.6).

Let us now return to Example 1. For linear program (4.2.3)-(4.2.6) a solution

α11 = 19, α21 = 9, α31 = 4, α12 = 1, α22 = 1, Cmax = 40 is obtained, which is longer

than the one presented in Fig.4.6.

84

4.2.2 Fixed activation order, with result returning

The methods used in the previous section can be extended to deal with the returning

of the results. Without loss of generality we assume that tasks are executed in the

order of their numbers, and this is also the order of sending the loads from the

originator to the processors. Yet, the set of processors used by a task, the sequence

of processor activation, and the sequence of result collection can be arbitrary. Let us

denote by:

Tjdd - the last task which distributes the load before task Tj distributes its load,

Tjrd - the last task which returns its results to the originator before task Tj distributes

its load,

Tjdr - the last tasks which distributes the load before task Tj returns its results,

Tjrr - the last task which returns its results to the originator before returning task Tj

results,

tDj - the time moment when distribution of task Tj load starts,

tRj - the time moment when collection of task Tj results starts,

tij - the time moment when Pi finishes computing load αij,

h(j, i) - the number of the i-th processor activated for task Tj ,

g(j, i) - the processor returning results as i-th in the sequence, for task Tj.

Optimum distribution of the load can be found by solving the following linear

program:

85

minimize Cmax

subject to:

tDj ≥ tDjdd +

|P
jdd |

∑

i=1

(Sh(jdd,i)jdd + αh(jdd,i)jddCh(jdd,i)jdd) j = 1, . . . , n, (4.2.7)

tDj ≥tg(jrd,k)jrd +

|P
jrd |

∑

i=k

(Sg(jrd,i)jrd +βjαg(jrd,i)jrdCg(jrd,i)jrd)

j = 1, . . . , n, k = 1, . . . , |Pjrd| (4.2.8)

tRj ≥ tDjdr +

|P
jdr |

∑

i=1

(Sh(jdr,i)jdr + αh(jdr,i)jdrCh(jdr,i)jdr) j = 1, . . . , n (4.2.9)

tRj ≥ tg(jrr,k)jrr +

|Pjrr |
∑

i=k

(Sg(jrr,i)jrr +βjαg(jrr,i)jrrCg(jrr,i)jrr)

j = 1, . . . , n, k = 1, . . . , |Pjrr| (4.2.10)

tRj ≥ tg(j,k)j j = 1, . . . , n, k ∈ Pj (4.2.11)

tkj ≥ tDj +

k
∑

i=1

(Sh(j,i)j + αh(j,i)jCh(j,i)j) + αh(j,k)jAh(j,k)j

j = 1, . . . , n, k ∈ Pj (4.2.12)

tkj ≥ tkjdd + αkjAkj l = 1, . . . , n, k ∈ Pj ∩ Pjdd (4.2.13)

Cmax ≥ tg(n,k)n +

|Pn|
∑

i=k

(Sg(n,i)n + βjαg(n,i)nCg(n,i)n) k = 1, . . . , |Pn| (4.2.14)

∑

i∈Pj

αij = Vj j = 1, . . . , n (4.2.15)

Inequalities (4.2.7), (4.2.8) guarantee that distribution of Tj load may take place only

after all the preceding communication operations. Similarly, (4.2.9), (4.2.10) ensure

that collection of Tj results follow after the preceding communication operations. By

inequalities (4.2.11) returning of the results can start when the results are available.

86

Computation of some part of the task Tj on processor k can finish only after receiv-

ing the load part and processing it by inequalities (4.2.12). By inequalities (4.2.13)

computations exploiting the same processor do not overlap. The end of the schedule

is set by the end of returning the results of the last task by inequalities (4.2.14). All

the load is processed by equation (4.2.15).

4.2.3 Computation cost, processor availability, and memory

limits

The linear program for the calculation of the load distribution can be generalized to

handle computation cost, restrictions on processor availability, and memory sizes. We

will give the formulation as a proof of feasibility of such an extension. For the sake

of simplicity we assume that processor availability applies to all the tasks, and that

the results are not returned to the originator. It is assumed that the load may be

sent to the processors before actually starting the computations. The received load is

buffered in the external storage (e.g. hard disk) until processing the load of a task is

started. The external storage is relatively cheap, therefore it is possible to accumulate

big loads on it. On the other hand, core memories are more expensive and smaller.

The core memory size restrictions apply when an application is running. Therefore,

memory restrictions apply on per-task base: no chunk i of a task j may have size

αij greater than the memory limit Bij on processor i. Let G denote the limit on the

costs of computation. The optimum distribution of the load can be found using the

87

following linear program:

minimize Cmax

subject to:

a−1
∑

j=1

|Pj |
∑

i=1

(Sh(j,i)j + αh(j,i)jCh(j,i)j) +
k

∑

i=1

(Sh(a,i)a + αh(a,i)aCh(a,i)a)+

+

n
∑

j=a

αh(a,k)jAh(a,k)j ≤ Cmax a = 1, . . . , n, k = 1, . . . , |Pj| (4.2.16)

a−1
∑

j=1

|Pj |
∑

i=1

(Sh(j,i)j + αh(j,i)jCh(j,i)j) +

k
∑

i=1

(Sh(a,i)a + αh(a,i)aCh(a,i)a)+

+
n

∑

j=a

αh(a,k)jAh(a,k)j ≤ dh(a,k) a = 1, . . . , n, k = 1, . . . , |Pj| (4.2.17)

rh(a,k) +

n
∑

j=a

αh(a,k)jAh(a,k)j ≤ Cmax a = 1, . . . , n, k = 1, . . . , |Pj| (4.2.18)

rh(a,k) +
n

∑

j=a

αh(a,k)jAh(a,k)j ≤ dh(a,k) a = 1, . . . , n, k = 1, . . . , |Pj| (4.2.19)

n
∑

j=1

|Pj |
∑

k=1

(fh(j,k)j + αh(j,k)jlh(j,k)j) ≤ G (4.2.20)

∑

i∈Pj

αij = Vj j = 1, . . . , n (4.2.21)

αij ≤ Bij i = 1, . . . , m, j = 1, . . . , n (4.2.22)

The sum of the first two components of the left side of inequalities (4.2.16), (4.2.17)

is the end of the communication time for task a sent to the k - the processor used by

this task. The last component of the left side of inequalities (4.2.16)-(4.2.19) is the

computation time of the parts of the tasks assigned to the same processor as task j

part k and after task j. Thus, the left sides of inequalities (4.2.16), (4.2.17) express

the time when the computations finish, provided that their start is determined by the

88

end of the communications. The first component of (4.2.18), (4.2.19) is the earliest

start time of computations, when it is determined by the restricted availability of a

processor. Thus, inequalities (4.2.18), (4.2.19) express the time when the computa-

tions finish, provided that their start is determined by the availability of the processor.

Inequalities (4.2.16), (4.2.18) guarantee that computations on each processor finish

before the end of the schedule. By inequalities (4.2.17), (4.2.19) computations finish

also before the end of processor availability. Constraint (4.2.20) ensures that the limit

on the computation cost is not exceeded. No task uses more memory than the amount

admissible for the given task on the processor by (4.2.22).

4.2.4 Continuous computing

In this section we assume simultaneous completion, use of all processors by each task,

and negligible result returning time. Moreover, it is assumed that the tasks occupy

processors continuously from the start of computations on the first task, till the end

of the last task. We will call this situation continuous computing. An example of a

continuous computing is shown in Fig.4.9. Let us start with some observations.

Observation 15. When computing is continuous, only the schedule for the first task
decides on the length of the whole schedule.

Proof. Since all processors are used by each task, selection of the processor set is

immaterial. With the exception of the first task, the sequence of processor activation

can be arbitrary because processors are used in the same interval due to continuous

89
P0

P0

P1

P1

Pm

idle

idle
Pm

T1

T1

T2

T2

T3

T3

T4

T4

...
...

a)

b)

Figure 4.9: Example of a) continuous, b) non-continuous computing.

computing and simultaneous completion. With the exception of the first task the

load assigned to processor Pi for task Tj is αij =
Vj

Aij

∑m
l=1

1
Alj

, and a decision on task

chunk sizes is not necessary. 2

Note that also the sequence of the tasks matters because only some task sequences

may result in continuous computing (cf. the proofs of Theorem 12, and Observation

13).

Observation 16. If the first task has the shortest possible completion time, and
computing is continuous, then the schedule for all tasks is optimum.

Proof. The schedule cannot be shorter because all processors work in parallel since

the end of the first task, and the first task is completed in the shortest possible time.

2

Continuous computing is possible when the load of any task Tj is distributed to

the processors before starting of the computations on Tj . This leads to the following

greedy approach to the construction of continuous schedules:

1. For i = 1 to n do: select Ti as the first task, and construct for it an optimum

90

schedule Si.

2. Select the shortest schedule S in S1,. . . ,Sn. Set T
′ = T − {Ti};

3. While T ′ 6= ∅ do:

3.1. select task Tj which communication interval
∑m

l=1(Slj +Cljαlj) fits in the interval

between the end of communication and the end of computation of the preceding task,

and which maximizes interval between Tj ends of communications and computations,

i.e., which maximizes A1jα1j −
∑m

l=1(Slj + Cljαlj), where αlj =
Vj

Alj

∑m
k=1

1
Akj

; if there

is no task satisfying the above conditions then stop;

3.2. append Tj to the end of schedule S; set T
′ = T ′ − {Tj}.

If the resulting schedule has continuous computing property, then it is optimal by

Observation 16. Beyond the construction of the optimum schedule for the first task

the above algorithm can be implemented to run in O(nm + n2) time.

Unfortunately, it is hard to claim that the above algorithm builds optimum sched-

ules in polynomial time in general. To our best knowledge, the complexity of schedul-

ing single divisible load (step 1 in the above algorithm) on heterogeneous star remains

open in the general case. Two decisions must be made: the set of used processors,

and the sequence of their activation must be selected. If ∀i,jSij = 0 then it can be

shown that all processors take part in computations, and they should be activated

according to increasing Cij for task Tj [2, 7, 10]. If ∀i,jSij 6= 0 then it can be shown

91

that processors participating in the computation should be activated according to in-

creasing Cij for task Tj [2]. Yet, it is not known which processors should be used (cf.

Fig.4.4). Hence, it is not guaranteed that the above method constructs a schedule

with continuous computing property if such a schedule exists.

We are going to propose sufficient conditions under which an optimum schedule

can be constructed by the above algorithm. This means that in the set of optimum

schedules with continuous computing there is a subset satisfying our conditions. Sup-

pose the processors are identical. Executing the tasks according to the increasing

sizes (Vj) will be called SPT (for Shortest Processing Time) sequence. Let us assume

that tasks are ordered according to SPT rule, i.e., V1 ≤ V2 ≤ · · · ≤ Vn.

Theorem 17. If computing is continuous, and ∀Tj∈T Vj > Sm
A
m
−C
then SPT maximizes

the interval between the completion of the task communication, and starting of its
computations on identical processors.

Proof. The requirement ∀Tj∈T Vj > Sm
A
m
−C
can be rewritten as ∀Tj∈T

AVj

m
> Sm +

CVj, which means that load distribution time is shorter than computation using all

processors in the same interval. This requirement should be satisfied by real parallel

applications which have high computing demands. The proof is based on pairwise

interchange.

Consider two tasks Ti, Tj executed continuously one after another. For the simplic-

ity of presentation let us denote by e = Sm + CVi, E = AVi

m
, f = Sm + CVj, F =

AVj

m
.

Note that e < E, f < F . A task preceding Ti, Tj completes its communication x0

92

Ti
TiTj

Tj

E EFF

e ef f

x0
x0

x11
x21x12

x22

... ...

P0
P0

Pm
Pm

P1
P1

a) b)

Figure 4.10: Illustration to the proof of Theorem 17.

units of time before the end of its computations (cf. Fig.4.10). Suppose that Ti

precedes Tj (cf. Fig.4.10a). The time from the end of Ti communication to the

start of Ti computation is x11 = x0 − e. The length of the interval since the end

of Tj communication till the beginning of Tj computation is x12 = x0 + E − e − f .

The worse of the two interval lengths is min{x11, x12}. Now suppose that the order

of the two tasks is inverted. Then the lengths of the intervals are (cf. Fig.4.10b)

x21 = x0 − f, x22 = x0 + F − e− f . The smaller of the intervals is min{x21, x22}. Let

us analyze the conditions under which it is better to execute the two tasks in the or-

der (Ti, Tj), than in the order (Tj , Ti), i.e. when min{x11, x12} > min{x21, x22}. Note

that changing the order of the two tasks does not influence the rest of the schedule.

Let us assume that min{x11, x12} = x11 then x0 − e < x0 + E − e − f , hence

f < E. Suppose that min{x21, x22} = x21 then x0 − f < x0 + F − e − f , hence

e < F . Sequence (Ti, Tj) is better when x11 = x0 − e > x21 = x0 − f from which

we get e = Sm + ViC < f = Sm + VjC, and Vi < Vj. Thus, SPT sequence is

desired. Suppose that min{x21, x22} = x22 then e > F . Sequence (Ti, Tj) is better

93

if x11 = x0 − e > x22 = x0 + F − e − f , and f > F which is in contradiction with

f = Sm + CVj <
AVj

m
= F .

Let us assume that min{x11, x12} = x12 then f > E. If min{x21, x22} = x21 then

e < F . Sequence (Ti, Tj) is better when x12 = x0 + E − e − f > x21 = x0 − f ,

from which we get E > e. Altogether we have e < E < f , and Vi < Vj. Finally,

if min{x21, x22} = x22, and e > F . If we put together the conditions for this case

we have: e < E, e > F, f < F, f > E. Using e < E < f , and e > F > f we get

a contradiction. We may conclude that by using interchanges between all pairs of

consecutive tasks (excluding the first task), any continuous computing sequence can

be changed to a continuous computing SPT sequence. 2

Thus, if it is possible to maintain continuous computing at all, then SPT will

also do it, provided that ∀Tj∈T Vj > Sm
A
m
−C
. The conditions of the optimality of SPT

sequence in continuous computing are the following.

Theorem 18. SPT is the optimum task sequence on identical processors if ∀Tj∈T Vj >
Sm

A
m
−C
, and xj > Sm+Vj+1C for j = 1, . . . , n−1, where x1 =

CV1−
SA
C

[(1+ C
A

)m−(1+ C
A

)]+(m−1)S

(1+ C
A

)m−1
,

xj = xj−1 +
VjA

m
− Sm − VjC for j = 2, . . . , n − 1.

Proof. If it is possible to maintain continuous computing on identical processors

at all, then according to Theorem 17, SPT sequence will also have this property

because SPT maximizes the distance between task communication completion and

computation start. By Observation 16 the first task must be finished in the shortest

possible time. On identical processors task T1 with the smallest load V1 satisfies

94

TjT2T1

P1

P0

x1
xj-1

xjx2

...

......

Pm

Pm-1

Pm-2
... ...

Aam1

__
m
AV2

__
m
AVj

S+Cam1 Sm+CV2 Sm+CVj Sm+CVj+1

Aam-1,1

Aam-2,1

Aa1,1

S+Cam-1,1

Figure 4.11: Illustration to the proof of Theorem 18.

this condition. Hence, the SPT task sequence is optimal among the schedules with

continuous computing property on identical processors.

It still remains to ensure that continuous computing is possible. It is the case if

xj > Sm + Vj+1C, for j = 1, . . . , n − 1, where xj is the time between end of task

Tj communication, and the start of its computation (cf. Fig.4.11). This condition

demands that communication of Tj+1 finishes before its computation has to start.

The length xj of the interval for the communication of Tj+1 is equal to xj = xj−1 +

VjA

m
− Sm − CVj for j = 2, . . . , n − 1. Length x1 of the first interval is x1 = Aαm1.

Now we calculate αm1. Since computations on T1 must finish simultaneously on all

processors we have (cf. 1.4.1).

Aαi1 = S + αi+1,1(A + C) i = 1, . . . , m − 1 (4.2.23)

αi1, for i = 1, . . . , m − 1, can be expressed as a function of αm1:

αi1 = αm1(1 +
C

A
)m−i +

S

A

m−i−1
∑

j=0

(1 +
C

A
)j. (4.2.24)

95

The size of the first task is:

V1 =

m
∑

i=1

αm1(1 +
C

A
)m−i +

S

A

m−1
∑

i=1

m−i−1
∑

j=0

(1 +
C

A
)j (4.2.25)

from which we derive:

x1 = Aαm1 =
V1 −

SA
C2 [(1 + C

A
)m − (1 + C

A
)] + (m−1)S

C
1
C

[(1 + C
A
)m − 1]

. (4.2.26)

2

We finish our considerations of continuous computing with an observation. Con-

tinuous schedules have very simple structure. This seems to hold a promise of a simple

algorithm constructing optimum continuous schedules. Unfortunately, it turned out

that multiple divisible load scheduling problem is complex enough, such that instances

must be very restricted to construct guaranteed optimum continuous schedule.

4.2.5 m = 1

Observation 19. If result returning time is negligible, then multiple divisible load
scheduling problem for one (m = 1) unrelated processor is solvable in O(n log n) time
by Johnson’s algorithm [28].

Proof. If the results are not returned, and only one machine (m = 1) is available, then

execution of a task reduces to two operations: communication operation involving

originator P0, followed by computation operation involving P1. This situation is

equivalent to two-machine flowshop. Two-machine flowshop is solvable in O(n log n)

time by Johnson’s algorithm [28] (or see e.g. [13, 35]). 2

96

For the completeness of the presentation let us note that in our case Johnson’s

algorithm divides the set of tasks into two subsets: T1 comprising the tasks for which

S1j + C1jV1j < A1jV1j , and set T2 comprising the remaining tasks. Tasks in T1 are

executed in the order of increasing S1j+C1jV1j , while tasks in T2 are ordered according

to decreasing A1jV1j . T1 is executed first.

Though this special case may seem trivial, it represents practical situations when

parallel computations both start and complete in roughly the same time on all pro-

cessors. In such situations all processors are working in parallel, and behave like a

single processing facility, i.e., a single processor.

4.3 Approximability

In this section we study the bounds on the quality of approximation algorithms for

multiple divisible load scheduling problem. By a greedy heuristic we mean an algo-

rithm which is not unnecessarily delaying communications and computations. This

means that if there is some load to be distributed and communication medium is

available, then the load is immediately distributed. If there is some load already at a

processor and the processor is free, then the computation on the load is immediately

started.

Theorem 20. Length CH
max of a schedule built by any greedy heuristic H solving

multiple divisible load scheduling problem on identical processors satisfies:

CH
max

C∗
max

≤ 2m,

where C∗
max is the optimum schedule length.

97

Proof. Intervals of two types can be distinguished in any schedule for our problem:

Intervals of total length EC when initiator performs communications, and intervals

of total length EA when initiator does not perform any communications because all

processors compute. In the case of identical processors EC =
∑n

j=1(
∑

Pi∈Pj
S +CVj).

Note that nS +C
∑n

j=1 Vj ≤ C∗
max because each load must be sent. In the worst case

some heuristic may activate all processors while only a single processor is necessary

for each task. Consequently,
∑n

j=1

∑

Pi∈Pj
S−nS = S

∑n
j=1(|Pj|−1) ≤ Sn(m−1) ≤

(m− 1)C∗
max. Some heuristic may also tend to use less processors than necessary. In

the worst case |Pj| = 1, and EA ≤
∑n

j=1 AVj . Note that
∑n

j=1
AVj

m
≤ C∗

max. Hence

EA ≤ mC∗
max. Altogether we have CH

max = EC +EA ≤ C∗
max +(m−1)C∗

max +mC∗
max.

2

Let us note that from the worst case analysis in Section 2.3 it follows that a solution

built by an arbitrary greedy algorithm in heterogeneous system can be arbitrarily bad.

The results of Theorem 20 can be further strengthened. If S = 0, then in the above

proof
∑n

j=1

∑

Pi∈Pj
S − nS = 0, and the ratio of schedule lengths can be narrowed to

CH
max

C∗

max
≤ m + 1. If ∀Tj∈T CVj + mS <

VjA

m
, then EC ≤

∑n
j=1(mS + CVj) ≤

∑n
j=1

VjA

m
≤

C∗
max. Consequently

CH
max

C∗

max
≤ m + 1.

In the latter case a better bound can be obtained by a heuristic CC attempting

to build a schedule with continuous computing property: Divide the load of each task

into m equal parts and send them to the processors. For each task start computations

98

synchronously on all processors as soon as all processors have received their share of

the load. Since all processors compute in parallel we have EA ≤ C∗
max. Hence,

EC + EA ≤ 2C∗
max, and

CCC
max

C∗

max
≤ 2.

4.4 Identical processors, identical tasks

It follows from Theorem 14, and results in [21], that the only problem with non-zero

startup time which may admit polynomial solvability is scheduling of identical tasks

on identical processors. Now it is assumed that returning the results lasts negligible

time and processors can compute and communicate simultaneously, memory size is

sufficiently big. We assume that all tasks have load V for j = 1, . . . , n, and that

also C = 0. Observe that the parameters of an instance in this special case are

A, S, m, V, n, and a polynomial time algorithm must have a running time polyno-

mial in log A, log S, log m, log V, log n. On the other hand, sheer assignment of the

tasks to the processors requires pseudopolynomial time Ω(n). Furthermore, it is not

known if our problem is in class NP at all. If it belongs to NP then a solution,

which is a sequence of communications, should be a string of a length polynomial in

log A, log S, log m, log V, log n. Intuitively, it may be expected that in our case a poly-

nomial algorithm, within the given time, can only identify patterns of the optimum

schedule. Unfortunately, the results of Section 4.4.2 show no apparent regularity of

optimum communication sequences, and such pattern solutions may be hard to be

99

found. The compact description of the problem instance causes difficulties in clas-

sifying complexity. Therefore, we separated this problem into new section in this

work.

We will use startup time S as time unit, and will denote by k the computation

time of a task on a single processor, i.e. k = V A
S
. Let us start with some observations

on possible patterns of the optimum schedules.

Observation 21. The earliest time moments when the communications may be fin-
ished, and the computations started are integer time instants (0, 1, 2, 3, . . .).

Note that within k time units of some task j computation on a single processor,

the load of ⌈k⌉ other tasks can be sent to the processors. Out of this ⌈k⌉−1 tasks can

be sent to other processors than j, but the ⌈k⌉-th task after j may be executed on

the same processor as task j, because at the time of receiving the load for ⌈k⌉-th task

after j, the processor computing task j will be free (Fig.4.12). We will say that the

number of processors m is not bounding if the number of processors effectively used

follows from the number of communications which may be performed in the interval

of a single task computation, i.e. when m ≥ ⌈k⌉. In the opposite case we will say

that the number of processors is bounding.

Observation 22. When the number of processors is bounding, and processors are
computing all the time since the earliest possible activation time to the simultaneous
completion of the computations, then schedule is optimum.

Proof. Such a schedule cannot be made shorter because there is no idle time on the

processors which could be eliminated. 2

100

Observation 23. When processor number is not bounding, and initiator is sending
the load all the time with the exception of an interval not longer than 1, at the end of
the schedule, and the processors computing in this last interval finish the computations
simultaneously, then the schedule is optimum.

Proof. Let us assume, for the time being, that the number of processors is infinite.

If the initiator sends the load to a new processor in each time unit, and each task,

with the exception of at most ⌊k
2
⌋ trailing tasks (this number is explained in the

following theorem), is executed on a different processor, then these tasks cannot be

completed earlier (see Fig.4.12a) because initiator is communicating all the time,

and no additional processor can be activated for some task without delaying some

other task. At the end of the schedule originator may be idle at most k time units

after sending the load of the last task. These time units may be used to activate

additional processors, and parallelize execution of the trailing tasks. If a new processor

is activated in each time unit, with the exception of an interval of length at most 1

at the end of the schedule, then no more processors can be activated at all. If

the computation on the trailing tasks activates processors at the earliest possible

moments, processors work without idle time, and finish computations simultaneously,

then the trailing tasks cannot be completed earlier. Observe, that this reasoning does

not require infinite number of processors. The above schedule can be folded to ⌈k⌉

processors (see Fig.4.12b). 2

It implicitly follows from Observations 22, 23, that there are optimal schedules

101

1

a) b)

1
1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6

6

7 7

7

7

8 8

8

8

8
8 8

8

9 9

9

9

9 9

9 9

P1 P1
P2 P2

P3
P3

P4 P4

P5 P5

P6
.

.
.

P0 P0

Figure 4.12: Illustration to the proof of Observation 23.

in which processors stop computing simultaneously. In the following discussion we

assume m > 1 because the case of a single processor is solved by a greedy algorithm.

4.4.1 n > min{⌈k⌉, m}

In the special case considered here the number of tasks is big enough to perform

several repetitions of a certain pattern in a schedule. We discuss it in the following

theorems.

Theorem 24. If n > min{⌈k⌉, m} then the optimum schedule for identical tasks on
a star of identical processors with C = 0 can be determined in polynomial time.

Proof. The proof analyzes possible cases, and proposes an optimum schedule for

each of them. The schedules have two parts: a leading part which we will call a

main sequence, and a trailing part which will be called a tail. In the main sequence

initiator sends messages to consecutive processors in time intervals with integer ends.

It means that after sending load of some task j to processor Pi in interval [l, l + 1],

task j + 1 is sent to processor P(i+1) mod (min{m,⌈k⌉})+1 in interval [l + 1, l + 2], where l

is integer. Task j is processed in interval [l + 1, l + k + 1], and task j + 1 in interval

102

[l + 2, l + k + 2]. W.l.o.g. let Pmin{m,⌈k⌉} be the processor executing the last task from

the main sequence. Since n > min{m, ⌈k⌉} the optimum schedule has both the main

sequence, and the tail. Let a denote the number of tasks in the tail, and t the time

moment when the load of the last task of the main sequence is sent to the processor.

The tail schedules differ in the particular cases. Below we list and analyze possible

cases.

1. k is integer. ⌈k⌉ = k

1.1. Processor number is not bounding. Since m ≥ k, the number of usable

processors is k and it is determined by the number of communications which can be

done during the computation of a single task. The schedules proposed in this case

are optimum by Observation 23.

1.1.1. k is odd. In this case Cmax = t + k, and the tail comprises a = (k − 1)/2

trailing tasks. Task n−a+ i, for i = 1, . . . , a, is sent to processors Pi, Pk−i in intervals

[t − 1 + i, t + i], [t + k − i − 1, t + k − i], respectively. It is processed on Pi, Pk−i in

intervals [t+ i, t+k], [t+k− i, t+k], respectively. Here Cmax = t+k (see Fig.4.13a.).

1.1.2. k is even. In the current case a = k/2, Cmax = t+k+ 1
2
. Task n−a+i is sent

to processors Pi, Pk−i+1 in intervals [t−1+ i, t+ i], [t+k− i, t+k− i+1], respectively.

It is processed on Pi, Pk−i in intervals [t + i, t + k + 1
2
], [t + k − i + 1, t + k + 1

2
],

respectively. (see Fig.4.13b.)

103

1 1
1 1

2 2

2 2

3 3

3 3

4 4

4 4

8

8

8

85 5

5 5

6 6

6

9

9
9

9
6

6

6

7 7 7

7

7

7

7

7

P1 P1

P2 P2

P3 P3

P4 P4

P5 P5

P6

P0 P0

a) b)

Figure 4.13: Proof of Theorem 24. Processor number is not bounding.

1.2. Processor number is bounding. We have m < k. The schedules proposed here

are optimum by Observation 22.

1.2.1. m ≤ 3. Here a=1. The last task uses allm processors. The communications

to them can be feasibly made in interval [t, t + m] because m < k, m ≤ 3 and k is

integer. Processing time available on the processors until the end of the main sequence

is at most 3 ≤ k (because 1 < m < k and k is integer) which can be consumed for

computations of a single task. The schedule of the tail simultaneously finishes on all

processors (Fig.4.14a).

1.2.2. m > 3 and odd. a = m, Cmax = t + (m + 1)/2 + k. The first (m + 1)/2

tasks continue the schedule of the main sequence tasks, finishing at t + (m + 1)/2 + k

on processor P(m+1)/2. The remaining (m − 1)/2 tasks are split into two parts and

executed on processors placed symmetrically to P(m+1)/2. Precisely, task n− i−1 (for

i = 1, . . . , (m− 1)/2) is executed in intervals [t + (m + 1)/2 + i, Cmax], and [t + (m +

1)/2 + k − i, Cmax], on processors P(m+1)/2+i, P(m+1)/2−i, respectively (Fig.4.14b).

104

1 1 1
1 1 1

2 2 2

2 2 2

3 3 3

3 3 3

4

6
6

6

6 6 6

7

7

8

8

9

9 9

9

10

10 10
10

4

4 4

4 44

5

5 5 5
5

5

4
4
4

P1 P1
P1

P2 P2
P2

P3 P3
P3

P4
P4

P5

P0 P0
P0

a) b) c)

Figure 4.14: Proof of Theorem 24. Processor number is bounding.

1.2.3. m > 3 and even. a = m/2, Cmax = t + k + (k −m + 1)/2. Tasks of the tail

are scheduled symmetrically on processors Pm/2−i+1 and Pm/2+i analogously to case

1.1.2. (Fig.4.14c).

2. k is fractional

2.1. Processor number is not bounding. Since m ≥ ⌈k⌉, schedule length is de-

termined by the processing power which can be engaged during the schedule. The

maximum processing power is used when the originator starts computations on inac-

tive processor at the end of every time unit. Though there may be (⌈k⌉−k)-long idle

times on the processors, a schedule constructed as if k were ⌈k⌉ (case 1.1) is optimal

by Observation 23 (cf. e.g. Fig.4.12)

2.2. Processor number is bounding. The main sequence starts computations on the

processors at the earliest time moments by Observation 21, and processors have no idle

times. Since the differences between the ends of the computations on the processors

at the end of the main sequence are integers, which is dictated by communication

delays, it is possible to apply the constructions from case 1.2, such that processors

stop computing simultaneously. This schedule is optimal by Observation 22.

105

Identifying a proper case for the construction of a tail requires checking fraction-

ality, parity of k, and comparing k with m. All this can be done in polynomial time

O(max{log m, log k}). 2

4.4.2 n ≤ min{⌈k⌉, m}

The case with too few tasks to have both the main sequence, and a tail is more

involved. We start an analysis with the case of non-bounding processor number.

Non-bounding processor number

Since the processor number is not bounding there is no advantage in sending load to

a processor more than once. Hence, with each time unit of the schedule computation

on one new processor can be activated. In time x > 1, ⌊x⌋ processors P1, . . . , P⌊x⌋

are able to compute for times x − 1, . . . , x − ⌊x⌋, respectively. The total processing

capacity in x > 1 units of time is
∑⌊x⌋

i=1(x − i). For example, in a schedule of length

7, different processors will work for 1, 2, 3, 4, 5, 6 time units, performing 21 units of

work. Our problem of scheduling n tasks with computational demand k can be

represented as finding decomposition of numbers x−1, . . . , x−⌊x⌋ into n sums equal

at least k. From this transformation of the scheduling problem to a number theory

problem, we can draw a conclusion, that an ideal solution in which all tasks finish

computations simultaneously, not always exists. This number-theoretic problem, in

turn, may be represented as another scheduling metaphor. We will treat the n tasks

106

of the original problem, as processors, and processing capacities x − 1, . . . , x − ⌊x⌋

of the original processors, as tasks. This transforms our original scheduling problem

into problem P ||Cmax with n processors, tasks of length x − 1, . . . , x − ⌊x⌋, and a

demand that each processor works for at least k units of time. Problem P ||Cmax can

be solved by a pseudopolynomial algorithm for a fixed number of processors [37]. Yet,

it can be observed that the transformation to problem P ||Cmax, though helpful, is not

sufficient because the completion time of a task (in the original problem) depends on

the number of processors executing it. We demonstrate it in the following example.

Example 2. n = 3, k = 11. Since 3k = 33, schedule length must be at least 8.

Assume that Cmax = 8 + x, and 0 ≤ x ≤ 1. With a schedule of this length processors

will work for x, 1 + x, 2 + x, . . . , 7 + x time units. Two possible assignments of these

computing intervals to tasks are shown in the following table (intervals are identified

by their lengths):

solution A solution B

task intervals sum task intervals sum

1: 7 + x, 2 + x, 1 + x 10 + 3x 1: 7 + x, 3 + x 10 + 2x

2: 6 + x, 3 + x, x 9 + 3x 2: 6 + x, 4 + x 10 + 2x

3: 5 + x, 4 + x, 9 + 2x 3: 5 + x, 2 + x, 1 + x, x 8 + 4x

Solution A has x = 1, and Cmax = 9. Solution B has x = 3
7
, and Cmax = 8.75, because

each task requires k = 11 units of computation time. 2

Our problem can be solved by a dynamic programming algorithm. Suppose that

107

the optimum schedule length is C + x, where 0 ≤ x ≤ 1. Our method finds the

smallest x for which a feasible schedule exists, or determines that no schedule with

x ≤ 1 exists. Let the intervals on the processors be ordered according to their

decreasing length, i.e. C + x− 1, C + x− 2, . . . , 1 + x, x The method is based on the

calculation of function

u(a1, b1, . . . , aj , bj , . . . , an, bn, i) =















































1 if a schedule exists which is using

the first i intervals, task j receives

aj units of processing in interval

[1, C] and uses bj processors in in-

terval [C, C + x],

0 otherwise.

for aj = 0, . . . , k, bj = 0, . . . , k, j = 1, . . . , n, i = 0, . . . , C. Function f may be

calculated using the following recursive equations:

u(a1, b1, . . . , an, bn, 0) =

{

1 if a1 = b1 = · · · = an = bn = 0

0 otherwise,

u(a1, b1, . . . , aj , bj, . . . , i + 1) = u(a1, b1, . . . , aj − C + i + 1, bj − 1, . . . , i)

for aj = 0, . . . , k, bj = 0, . . . , k, j = 1, . . . , n, i = 0, . . . , C − 1. Given the values of

u(a1, b1, . . . , an, bn, C) = 1 it is possible to calculate schedule length Cmax(a1, b1, . . . , an,

bn, C) = C + maxn
j=1{

k−aj

bj
}, where x = maxn

j=1{
k−aj

bj
} is the extension of the sched-

ule beyond C. The optimum schedule extension x can be found for such vector

(a′
1, b

′
1, . . . , a

′
n, b′n, C) for which maxn

j=1{
k−aj

bj
} is minimum, i.e.

(a′
1, b

′
1, . . . , a

′
n, b′n, C)=

argmin

(a1,b1,...,an,bn,C)
{

n
max
j=1

{
k − aj

bj
}|u(a1, b1, . . . , an, bn, C)=1}.

If x > 1 then the initial value of C was assumed too small. In the opposite case the

108

optimum assignment of the intervals can be deduced from the values of function u by

backtracking from u(a′
1, b

′
1, . . . , a

′
n, b′n, C) to u(0, . . . , 0).

Observation 25. There is an algorithm with complexity O(k2k+1 log k), for schedul-
ing identical divisible tasks on a star of identical processors, when n < min{⌈k⌉, m}
and processor number is not bounding.

Proof. Calculation of function u as describes above requires determining (k +

1)2nC values of u. C ≤ 2k because a schedule with optimum length Cmax ≥ 2k + 1

admits sequentially executing two tasks on the same processor. This means that the

number of tasks is n > min{m, ⌈k⌉}, which is a different case studied in Section 4.4.1.

Since n < k, and C ≤ 2k, the total number of calculations for a certain C does not

exceed (k + 1)2k2k which is O(k2k+1). A proper schedule length C may be found in

log k steps of binary search over values 1, . . . , 2k. 2

Unfortunately, the dynamic programming method described above is not polyno-

mial. However, we infer from Observation 25 that this case can be solved in constant

time if k is fixed. Example optimum communication patterns for n = 2, and several

small values of k are shown in the following table. Symbol • denotes that a commu-

nication must be performed, but the schedule length is the same no matter if we send

load of task T1, or of T2.

109

k communication pattern

1 (1, 2)

2 (1, 2, 2)

3 (1, 2, 2)

4 (1, 2, 2, 1)

5 (1, 2, 2, 1)

6 (1, 2, 2, 1, •)

7 (1, 2, 2, 1, •)

8 (1, 2, 1, 2, 2, 2)

9 (1, 2, 2, 1, 1, 2)

10 (1, 2, 1, 2, 2, •)

11 (1, 1, 2, 2, 2, 2, 2)

12 (1, 2, 2, 1, 2, 1, 1)

No apparent regularity can be observed in the above communication patterns. Thus,

it is possible that a polynomial length description of the solution may not exist. This

poses a question if the current problem is NP at all. For several special cases some

features of the optimum solution can be determined.

Observation 26. If n = 1 then optimum schedule length can be found in O(log k)

time as minimum x satisfying
∑⌊x⌋

i=1(x − i) ≥ k.

Observation 27. If i is an integer, k ∈ {2i, 2i + 1} and 1 < n, i ≤ n ≤ k, then the
optimum task distribution sequence is 1, 2, 3, . . . , n, n, n − 1, . . . , n − i + 1.

Proof. A pattern of processor availability intervals assignment is shown in Fig.4.15a.

It is essential in this pattern that n > 1, and task n is assigned intervals of length

i + 1, i. Since the originator is activating a new processor in each time unit, this

pattern is optimal by Observation 23.

110

Figure 4.15: Special pattern of load distribution for n ≤ min{m, ⌈k⌉}.

The relations between n, k are the following: i ≤ n ≤ k = 2i + 1 where i is a

positive integer, with the exception of i = 1, n = 1. This pattern can be also applied

for even k. If k is even, one should apply a pattern of interval distributions as for

k + 1, but the last k = 2i processors should stop computing 1
2
before the end of the

schedule dictated by the solution for odd k + 1 (see Fig.4.15b for k = 7, Fig.4.15c for

k = 6, and n = 4). 2

Observation 28. For n = 2 a schedule of length C exists, where C is minimum
integer satisfying 2k ≤

∑C
i=1(C − i).

Proof. This observation can be shown by demonstrating that it is always possible

to partition set {C − 1, . . . , 1} into two subsets A, B such that the sum of elements

in A (w.l.o.g.) is equal to k, and at least equal k for set B. It can be shown by

induction: For k = 1, C = 3, decomposition of set {2, 1} is A = {1}, and B = {2}.

Suppose the observation is satisfied for some k ≥ 1, and set {C − 1, . . . , 1}. Then

A = {α, . . . , ω}, and k = α + · · · + ω. Note that A 6= {C − 1, . . . , 1} because

k = α + · · · + ω, and
∑C

i=1(C − i) ≥ 2k. It follows that also set {C ′ − 1, . . . , 1},

111

where 2(k + 1) ≤
∑C′

i=1(C
′ − i), can be partitioned such that the sum of elements

in A′ is k + 1, and in B′ is at least k + 1. Set A′ can be constructed by exchanging

one of the numbers in A for the one number in {C − 1, . . . , 1} − A bigger by 1, or

adding by {1} to A. This is possible because A 6= {C − 1, . . . , 1}. Consequently

B′ can be constructed by using the remaining elements of {C ′ − 1, . . . , 1} because

∑C′

i=1(C
′ − i) ≥ 2(k + 1). 2

Processor number is bounding

Following the discussion from the previous section, let us observe that there seems

to be no simple way of determining the number of necessary processors when the

processor number is not bounding. Consequently, it is not easy to say, in the general

case, whether the processor number is small enough to influence the construction

of the schedule. A simple sufficient condition (for processor number restricting the

schedule) demands that the amount of required work exceedes the amount of load

which can be processed on m processors in at most m + 1 units of time, i.e. nk ≥

∑m
i=1(m + 1 − i). Note that m + 1 processors could be activated in m + 1 units of

time if the processor number was not bounding. Since processor number is bounding,

unlike in Section 4.4.2, it may be advantageous to send load of different tasks to the

same processor. In the following we present a method of calculating schedule length

for a given communication pattern.

112

Minimum schedule length for a given communication pattern

For a given communication pattern the problem of verifying if a schedule of length

C exists can be reduced to finding maximum flow in a network. The construction of

the network is shown in Fig.4.16. Beyond source s, and sink t there are n nodes in

set VT representing tasks, and at most mn nodes in set VP which represent positions

of the task communications to some processor. Let ni denote the number of tasks

executed on processor Pi. For each communication l to processor Pi a node denoted

Pil, is created in set VP (cf. Fig.4.16). The communications are counted from the last

message sent to Pi (for which l = 1) to the first one (for which l = ni). There are arcs

(s, vj) of capacity k for each node (task) vj ∈ VT . For a node vj ∈ VT , and Pil ∈ VP

an arc (vj , Pil) is created if task Tj is sent to processor Pi as the l-th message counted

from the end communications to Pi. The capacity of arcs (vj , Pil) is not bounded.

For a pair of task positions l, l +1 on processor Pi, an arc (Pil, Pi(l+1)) is created with

the capacity C − τl, where τl is the time moment when communication l to processor

Pi is finished. An arc (Pini
, t) with capacity C − τni

is created for each processor Pi.

A schedule of length C exists for the given network, and communication pattern,

if the maximum flow saturates arcs (s, vj) for each vj ∈ VT . A schedule for processor

Pi can be constructed analogously to the construction of a schedule for problem

1|rj, pmtn|Cmax. Here, flows φ(vj, Pil) are lengths of the pieces of tasks Tj, ready times

are the communication completion times τil dictated by the communication pattern.

113

T1

P11

Pi1

P12

Pi2

C-t11

C-ti1

C-t12

C-ti2

C-tn1-1

C-tni-1

C-tnm-1

C-tn1

C-tni

C-tnm

P1 -1n1

Pini-1

Pmnm-1

P1n1

P1n1

Pmnm

VT

VP

T2

s

k k k k

...

... ...

...

...

...

...

t

Tj Tm

Figure 4.16: Construction of a network for a given pattern.

For a feasible schedule on Pi it is necessary to fulfill τl +
∑l

h=1 φ(vj , Pih) ≤ C. This

inequality is satisfied by the construction of a chain of nodes Pi1 → Pi2 → . . . Pini
→ t,

and the capacities of the subsequent arcs. Note that a flow
∑l

h=1 φ(vj, Pih) is passed

by arc (Pil, Pil+1) with capacity C − τl for l = 1, . . . , ni − 1.

Observation 29. For a given communication pattern, the optimum schedule length
can be found in O(m6 log m) time.

Proof. The above algorithm which verifies feasibility of a schedule with length C,

for a given communication pattern, can be used to find the optimum schedule length

C∗
max. Let Z be the number of communications performed in the communication

pattern. Any schedule must be at least as long as Z because each communication

lasts a unit time. The optimum schedule length C∗
max is the minimum C for which

all arcs (s, vj) are saturated, and consequently the value of the flow is φ = nk. If a

schedule with length C = Z does not exist because φ < nk, then its length must be

114

increased by some value ∆. The value of the flow φ is determined by the a capacity

of a minimum cut. When C is growing by ∆, then the capacity of the cut may grow

by µ∆ where µ is a multiplier from set {1, . . . , m}. The multiplier µ is determined by

the number of arcs on the minimum cut which capacities grow as C is growing. It can

be observed in the network (cf. Fig.4.16) that on the cut separating source s from

sink t the minimum number of edges with capacity growing with C is one, and the

maximum is m. Suppose φ < nk is the value of the flow obtained for C. The length

of the schedule must be increased by ∆ = (φ − nk)/µ. Though the actual multiplier

is not known initially, it can be determined by a binary search over the interval of

(discrete) values {1, . . . , m}. The number of nodes in the network is 2 + n +
∑m

i=1 ni

which is O(m2) because no task has to be delivered to a processor twice and hence

ni ≤ n < m. Thus, for a given communication pattern and value of C the maximum

network flow can be constructed in O(m6). The minimum schedule length for a given

communication pattern can be found in O(m6 log m) time. 2

Observation 30. An optimum solution can be found in O(mm2+6 log m) time.

Proof. No task has to be delivered to a processor twice. Hence, the longest

communication pattern has at most nm < m2 communications. There are at most

mm2
communication patterns, and for each of them the shortest schedule can be

constructed in O(m6 log m) time. Thus, the complexity of an algorithm based on full

enumeration of communication sequences is O(mm2+6 log m). 2

115

4.5 Conclusions

In this section we studied combinatorial aspects of scheduling multiple divisible loads.

It has been demonstrated that this problem is computationally hard for unrelated

processors, for uniform processors with simultaneous completion requirement, and

even for identical processors. When the order of task execution, the used processors

and their activation sequence are given, then the optimum distribution can be found

in polynomial time by applying linear programming. The case of a single processor

boils down to a well known operations research problem of scheduling in two-machine

flowshop. Finally, bounds on the performance of heuristics for the problem have

been searched for. The problem of scheduling multiple identical tasks on identical

processors turned out to be surprisingly complex. For certain sub-cases solutions can

be identified in polynomial time, for other cases only exponential algorithms were

proposed.

Chapter 5

Summary

In this work we have examined the DLT problems taking into considerations the three

points of view: single load single distribution, single load multiple distributions and

multiple loads single distribution. All the three problems are computationally hard in

general. However, if the solution of the combinatorial part of the problem is known,

i.e. the sequence of communications is given, then these problems can be solved by a

reduction to linear programming.

In the single load multiple distributions case two algorithms were proposed: an

exact branch&bound algorithm, and a genetic search heuristic. Using the results of

the simulations it could be concluded that adjusting sizes of the load chunks to the

given communication pattern is an essential element in multi-installment processing.

It was also observed that solutions are harder to find when heterogeneity of the

computing environment is growing. Especially communication parameter C influence

it strong.

116

117

In the multiple loads problem special cases solvable in polynomial time were iden-

tified, and bounds of the worst-case behavior of the heuristic methods were identified.

Finally, a special case of identical tasks and identical processors was studied.

Streszczenie w języku polskim

Teoria szeregowania zadań jednorodnych (ang. Divisible Load Theory (DLT)) zaj-

muje się nowym modelem systemów rozproszonych. Zakłada się tu, że ziarno obliczeń

jest bardzo małe oraz, że nie występują zależności pomiędzy ziarnami obliczeń. W

związku z tym obliczenia i zadania mogą zostać podzielone na części o dowolnych

rozmiarach. Części te mogą być przetwarzane niezależnie od siebie w sposób równoległy.

Rozmiary zadań powinny zostać dopasowane do przepustowości łącz komunikacyjnych

oraz szybkości jednostek przetwarzających w ten sposób, aby obliczenia zakończyły się

w możliwie najkrótszym czasie. Model zadania jednorodnego dowiódł swojej wszech-

stronnej przydatności jako narzędzie do modelowania systemów rozproszonych.

Celem tej pracy jest analiza problemu szeregowania zadań jednorodnych z trzech

punktów widzenia:

• jednoetapowej dystrybucji pojedynczego zadania,

• wieloetapowej dystrybucji pojedynczego zadania,

• jednoetapowej dystrybucji wielu zadań,

118

119

Wszystkie trzy przypadki są obliczeniowo trudne, w ogólności. Jednak gdy znany

jest wzorzec komunikacji do wykonania można je rozwiązać przez sprowadzenie do

problemu programowania liniowego.

W przypadku jednoetapowej dystrybucji pojedynczego zadania zakładamy, że

praca jednego zadania, które ma zostać wykonane jest dystrybuowana jednokrotnie

do danego procesora.

Kolejny przypadek dotyczy problemu gdzie mamy do przetworzenia jedno zadanie,

które może być przesyłane do danego procesora więcej niż jeden raz. Analizujemy

tutaj dwa algorytmy: dokładny branch&bound oraz heurystyczny algorytm genety-

czny. Dla obu przypadków zostały wykonane eksperymenty obliczeniowe, porównano

czasy wykonania oraz dokładność rozwiązań. W ich wyniku stwierdzono, że wraz ze

wzrostem heterogeniczności systemu komputerowego, optymalne rozwiązania są coraz

trudniejsze do znalezienia.

Ostatni przypadek dotyczy problemu gdzie mamy wiele zadań, które mogą być

dystrybuowane jednokrotnie do danego procesora. Dopuszcza się sytuację gdzie praca

jednego zadania może być wysłana kilkukrotnie, ale za każdym razem do innego proce-

sora. Ze względu na to, że problem ten jest obliczeniowo trudny, wskazano przypadki

specjalne, które mogą zostać rozwiązane w wielomianowym czasie. Określono również

ograniczenie na jakość algorytmów heurystycznych w najgorszym przypadku.

Notation summary

Ai - processing rate (reciprocal of speed) of Pi,

Aij - processing rate (reciprocal of speed) of Pi for load/task j,

αi - load assigned to Pi for single load,

αij - load assigned to Pi for load/task j,

Bi - memory size of processor Pi,

Bij - memory size of processor Pi, available for load/task j,

βj - fraction of input load returned as results for load/task j,

Ci - communication rate (reciprocal of bandwidth) of the link to Pi,

Cij - communication rate (reciprocal of bandwidth) of the link to Pi for load/task j,

Cmax = max{ti} - schedule length,

Cmax - an upper limit on schedule length,

D - population size (Chapter 3),

di - deadline of Pi, upper limit of Pi availability for computations,

E - set of integers in Partition and 3-Partition problems,

ei - value of element i in Partition and 3-Partition problems,

120

121

F - a number defined for Partition and 3-Partition problems,

fi - fixed part of the cost of using processor Pi,

g(j, i) - functions addressing task or processors in the sequence of communications,

G =
∑

i∈P ′(fi + αili) - total cost of the schedule on processors in set P
′,

G - an upper limit on cost G,

h(j, i) - the number of the i-th processor activated for task Tj ,

li - coefficient of the linear part of the cost of using Pi,

m - number of processing nodes,

n - number of loads/tasks,

P - set of available processing nodes,

P ′ - set of nodes participating in the computations,

Pj - set of processors executing task j,

Pi - processing element (processor) i,

pi - computation startup time on processor Pi,

q - the number of elements in Partition and 3-Partition problems,

ri - release time of Pi, lower limit of Pi availability for computations,

Si - communication startup time of the link to Pi,

ti - completion of the computations on Pi,

T - upper limit of the schedule length,

Tj - task j,

122

Tjdd - the last task which distributes the load before task Tj distributes its load,

Tjrd - the last task which returns its results to the originator before task Tj distributes

its load,

Tjdr - the last tasks which distributes the load before task Tj returns its results,

Tjrr - the last task which returns its results to the originator before returning task Tj

results,

tDj - the time moment when distribution of task Tj load starts,

tRj - the time moment when collection of task Tj results starts,

tij - the time moment when Pi finishes computing load αij,

τl - the completion time of computations on task Tl.

V - single load size,

Vj - size of load/task j,

z - number of installments in multi-installment processing.

Bibliography

[1] S. Bataineh and T.G. Robertazzi. Bus oriented load sharing for a network of sen-

sor driven processors. special issue on Distributed Sensor Networks of the IEEE

Transactions on Systems, Man and Cybernetics, 21(5):1202–1205, September

1991.

[2] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling

divisible loads on star and tree networks: Results and open problems. IEEE

Trans. on Parallel and Distributed Systems, 16:207–218, 2005.

[3] M. Berkelaar. Mixed integer linear program solver. ftp: // ftp. es. ele. tue.

nl/ pub/ lp/ _solve , 1995.

[4] V. Bharadwaj and G. Barlas. Access time minimization for distributed multi-

media applications. Multimedia Tools and Applications, 12 (2/3):235–256, 2000.

[5] V. Bharadwaj, D. Ghose, and V. Mani. Optimal sequencing and arrangement in

distributed single-level tree networks with communication delays. IEEE Trans-

actions on Parallel and Distributed Systems, 5, No. 9:968–976, 1994.

123

124

[6] V. Bharadwaj, D. Ghose, and V. Mani. Multi-installment load distribution in tree

networks with delays. IEEE Transactions on Aerospace and Electronic Systems,

31 (2):555–567, 1995.

[7] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi. Scheduling divisible loads

in parallel and distributed systems. IEEE Computer Society Press, September

1996. Los Alamitos.

[8] V. Bharadwaj, D. Ghose, and T. Robertazzi. Divisible load theory: A new

paradigm for load scheduling in distributed systems. Cluster Computing,

vol.6(1):7–17, 2003.

[9] J. Błażewicz. Złożoność obliczeniowa problemów kombinatorycznych.

Wydawnictwa Naukowo-Techniczne, 1988. Warszawa.

[10] J. Błażewicz and M. Drozdowski. Distributed processing of divisible jobs with

communication startup costs. Discrete Applied Mathematics, 76:21–41, 13 June

1997. Issue 1-3.

[11] J. Błażewicz, M. Drozdowski, and K. Ecker. Management of resources in parallel

systems. J.Błażewicz, K. Ecker, B. Plateau, D. Trystram Handbook on Parallel

and Distributed Processing, Springer, Heidelberg, pages 263–341, 2000.

125

[12] J. Błażewicz, M. Drozdowski, and M. Markiewicz. Divisible task scheduling -

concept and verification. Parallel Computing, 25:87–98, 1999.

[13] J. Błażewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Węglarz. Scheduling com-

puter and manufacturing processes. Springer-Verlag: Heidelberg, 1996.

[14] S. Charcranoon, T. Robertazzi, and S. Luryi. Load sequencing for a parallel

processing utility. Journal of Parallel and Distributed Computing, 64:29–35, 2004.

[15] Y.C. Cheng and T.G. Robertazzi. Distributed computation with communication

delays. IEEE Transactions on Aerospace and Electronic Systems, 24(6):700–712,

November 1988.

[16] Y.C. Cheng and T.G. Robertazzi. Distributed computation for a tree network

with communication delays. IEEE Transactions on Aerospace and Electronic

Systems, 26(3):511–516, May 1990.

[17] M. Drozdowski. Selected problems of scheduling tasks in multiprocessor com-

puter systems. Poznań Univ. of Technology Press, Poznań, 321, 1997. Series:

Monographs, http://www.cs.put.poznan.pl/mdrozdowski/h.ps.

[18] M. Drozdowski and M. Lawenda. The combinatorics in divisible load scheduling.

Foundations of Computing and Decision Sciences, 30(4):297–308, 2005.

126

[19] M. Drozdowski and M. Lawenda. Multi-installment divisible load processing in

heterogeneous systems with limited memory. PPAM, Pozna, Poland, Lecture

Notes in Computer Science(3911):847–854, September 11-14 2005.

[20] M. Drozdowski and M. Lawenda. On optimum multi-installment divisible load

processing. in.: J.C.Cunha, P.D.Medeiros (eds.), Euro-Par 2005 Parallel Pro-

cessing, Lecture Notes in Computer Science(3648):231–240, 2005.

[21] M. Drozdowski, M. Lawenda, and F. Guinand. Scheduling multiple divisible

loads. International Journal of High Perfomance Computing, 20(1):19–30, 2006.

[22] M. Drozdowski and P. Wolniewicz. Experiments with scheduling divisible tasks

in clusters of workstations. in: A.Bode, T.Ludwig, W.Karl, R.Wismüller (eds.),

Euro-Par 2000, LNCS 1900, Springer-Verlag:311–319, 2000.

[23] M. Drozdowski and P. Wolniewicz. Divisible load scheduling in systems with

limited memory. Cluster Computing, 6:19–29, 2003.

[24] M. Drozdowski and P. Wolniewicz. Out-of-core divisible load processing. IEEE

Trans. on Parallel and Distributed Systems, 14(10):1048–1056, 2003.

[25] M. Drozdowski and P. Wolniewicz. Optimum divisible load scheduling on hetero-

geneous stars with limited memory. European Journal of Operational Research,

172:545–559, 2006.

127

[26] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the

theory of np-completeness. Freeman, 1979. San Francisco.

[27] D.E. Goldberg. Genetic algorithms in search, optimization and machine learning.

Addison-Wesley, 1989.

[28] S.M. Johnson. Optimal two- and three-stage production schedules with setup

times included. Naval Research Logistics Quarterly, 1:61–67, 1954.

[29] K. Ko and T.G. Robertazzi. Scheduling in an environment of multiple job submis-

sion. Proceedings of the 2002 Conference on Information Sciences and Systems,

March 2002. Princeton University, Princeton NJ.

[30] P. Li, B. Veeravalli, and A.A. Kassim. Design and implementation of parallel

video encoding strategies using divisible load analysis. IEEE Transactions on

Circuits and Systems for Video technology (CSVT), 2004.

[31] X. Li, V. Bharadwaj, and C.C. Ko. Optimal divisible task scheduling on single-

level tree networks with buffer constraints. IEEE Trans. on Aerospace and Elec-

tronic Systems, 36(4):1298–1308, 2000.

[32] X. Li, B. Veeravalli, and C.C. Ko. Distributed image processing on a network

of workstations. International Journal of Computers and Applications, ACTA

Press, 25(2):1–10, 2003.

128

[33] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A realistic net-

work/application model for scheduling divisible loads on large-scale platforms.

École Normale Supérieure de Lyon, Laboratoire de l’Informatique du Parallél-

isme, Research Report 2004-21, 2004.

[34] Z. Michalewicz. Genetic algorithms + data structures = evolution programs.

Springer-Verlag, 1996.

[35] M. Pinedo. Scheduling: theory, algorithms, and systems. Prentice Hall, Engle-

wood Cliffs, 1995.

[36] T. Robertazzi. Ten reasons to use divisible load theory. IEEE Computer,

36(5):63–68, 2003.

[37] M.H. Rothkopf. Scheduling independent tasks on parallel processors. Manage-

ment Science, 12:437–447, 1966.

[38] TOP500 Supercomputer Sites. http: // www. top500. org/ .

[39] J. Sohn and T. Robertazzi. A muli-job load sharing strategy for divisible jobs

on bus networks. Dept. of Electrical Engineering, SUNY at Stony Brook, Stony

Brook, New York, Technical Report 697, 1994.

129

[40] J. Sohn, T. Robertazzi, and S. Luryi. Optimizing computing costs using divisible

load analysis. IEEE Transactions on Parallel and Distribute Systems, 9(3):225–

234, 1998.

[41] S. Suresh, V. Mani, S.N. Omkar, and H.J. Kim. Parallel video processing using

divisible load scheduling paradigm. to appear in Korean Journal of Broadcast

Engineering.

[42] B. Veeravalli and G. Barlas. Efficient scheduling strategies for processing multiple

divisible loads on bus networks. Journal of Parallel and Distributed Computing,

62:132–151, 2002.

[43] P. Wolniewicz. Divisible job scheduling in systems with limited memory.

PhD Thesis, Poznań Univ. of Technology, 2003. http://www.man.poznan.pl/

~pawelw/phd.pdf.

[44] P. Wolniewicz and M. Drozdowski. Processing time and memory require-

ments for multi-instalment divisible job processing. Parallel Processing and

Applied Mathematics: 4th International Conference PPAM 2001, LNCS 2328,

Springer-Verlag:125–133, 2002. in R.Wyrzykowski, J.Dongarra, M.Paprzycki,

J.Waniewski (eds.).

[45] L. Xiaolin. Studies on divisible load scheduling strategies in distributed comput-

ing systems: Design, analysis and experiments. PhD thesis, National University

130

of Singapore, 2001.

