P0zZNAN UNIVERSITY OF TECHNOLOGY
INSTITUTE OF COMPUTING SCIENCE

SCHEDULING
DIVISIBLE
COMPUTATIONS
WITH ENERGY
CONSTRAINTS

Doctoral thesis

Jedrzej Marszatkowski

Supervisor:
prof. dr hab. eng. Maciej Drozdowski

Poznan, 2020

ABSTRACT

In this thesis scheduling and performance of data-parallel computations are
studied. Data-parallel computations consist in processing data objects of simi-
lar nature in distributed computing systems. Important features of data-parallel
applications are that the data objects are small in relation to the whole size of
processed information and can be processed independently. Since the volumes of
data objects are great usually, the time of distributing them for remote process-
ing must be taken into account. Furthermore, memory sizes of computer systems
are too small to process significant parts of load in core (RAM) and this limita-
tion should be also taken into account when planning a schedule for distributed
data-parallel computation. The schedule must be effective in two key criteria:
time and energy. Divisible load theory is used as a general framework for the
analysis of the considered parallel processing problems. Two key assumptions of
divisible load theory are that parts of the load can be processed independently in
parallel and that these parts can be flexibly sized as if the load were arbitrarily
divisible. These two assumptions suit well data-parallel computations. Further-
more, the two assumptions allowed to formulate scheduling models which can
be solved by computationally tractable methods, in some cases to optimality.
The scheduling algorithms optimizing time and energy performance are used

not only to effectively arrange communications and computations in time and

iii

space, but also to predict the performance. Since the performance of paral-
lel computation is ruled by many mutually dependent factors, isoefficiency and
isoenergy maps were applied as visual aids supporting performance analysis and
building understanding of the phenomena determining the performance. Isoeffi-
ciency and isoenergy maps are two-dimensional depictions of system parameter
values giving constant time- and energy-performance, respectively. The impact
of memory hierarchy and system heterogenity is studied. The trade-off between
solution quality and computational cost of scheduling algorithms is also exam-

ined.

CONTENTS

Abstract iii
1 Introduction 1
1.1 Motivation 1

1.2 Goalsand Scope 2
1.3 Methodology 3

1.4 Outline of the thesis 5

2 Related Work 7
2.1 Energy Consumption in Computer Systems 7
2.2 Divisible Load Theory 11
2.2.1 Reference Star Model 15

2.2.2 Star with Flat Memory 17

2.3 Isolines and isolinemaps L. 18

3 Computation Time and Energy Consumption Models 21
3.1 Testbed 21
3.2 Flat Memory Model 23
3.3 Hierarchical Memory Model 26

4 TIsoenergy Maps with Unlimited Memory

4.1 TIsoenergy Maps for Amdahl’s and Gustafson’s Laws

4.2 TIsoenergy Maps for Divisible Computations

4.2.1

4.2.2

The Energy Usage Model

Isoenergy Lines Calculations

4.3 TIsoenergy Maps Examples

4.3.1
4.3.2
4.3.3
4.34
4.3.5
4.3.6
4.3.7
4.3.8
4.3.9
4.3.10
4.3.11

Problem Size vs Communication Rate
Processor Power vs Network Power
Processor Number vs Network Power
Processor Number vs Startup Time
Processor Number vs Power Reduction Factor
Processor Number vs Communication Rate
Processor Number vs Processor Power
Processor Power vs Load Size
Network Power vs Startup Time
Network Power vs Computation Rate

Communication Rate vs Startup Time

4.4 Conclusions

5 Homogeneous Systems with Hierarchical Memory

5.1 Single-installment Processing

5.1.1
5.1.2
5.1.3

Mathematical Model and Solution Procedure
Time-Energy Trade-off in Close-up

Impact of Other Parameters on Time-Energy Trade-off . .

5.2 Multi-installment processing oL

5.2.1
5.2.2
5.2.3
5.2.4

Simple Multi-installment Scheduling Methods
Performance Comparison
Optimum Multi-installment Methods

Isoefficiency Maps

5.3 Conclusions

31
31
36
37
41
42
43
45
47
49
o1
53
95
95
58
o8
60

60

65

65
65
69
76

6 Heterogeneous Systems with Hierarchical Memory
6.1 Mathematical Model

6.2 Solution Methods
6.2.1 Fast Heuristics

6.2.2 Mixed Integer Linear Program
6.3 System Performance Modeling
6.4 Algorithm Performance Comparison

6.5 Conclusions

7 Summary and Final Remarks

A Summary of Notations

B Streszczenie w jezyku polskim

Bibliography

103

103

106
106
109

114

123

131

133

135

139

153

1 INTRODUCTION

1.1 MOTIVATION

Processing big volumes of data is a challenge resting at the core of contemporary
science and industry. For the purpose of dealing with the challenges of big
data processing many new technologies have been developed: data-processing
platforms and frameworks [8, 12, 27|, programming libraries [10, 11], database
management systems [7, 9, 65]. Another concern is energy consumption of the
computing equipment. It was established quite early [41, 49, 51] that powering
the data centers driving the Internet economy is very costly and energy is an
important component of the cost of ownership. Moreover, huge data centers
strain power grids. Thus, energy supply and cost impose limits on further
growth of data centers and supercomputers. Available energy limitations are
an important issue also in the sensor networks, aerospace, Internet of things
applications. This thesis is dedicated to the analysis and optimization of time-
and energy-performance in processing big data volumes. Effective scheduling of
parallel application execution will be the way of optimizing its performance.
Computing platforms, especially in the context of big data volumes, impose
a number of limitations. For example, distributing data for remote process-
ing is not instantaneous and communication delays are significant part of the
application execution time. Hence, communication delays must be taken into ac-

count when planning execution of a parallel application. Present-day computers

Scheduling divisible computations with energy constraints

have hierarchical memory structure ranging from CPU registers, through CPU
caches, core memory a.k.a. RAM, to the external storage (networked caches,
SDDs, HDDs). The size of memory is growing, but access speed is decreasing
when going to lower memory levels. Also energy intensity of applications oper-
ating on different memory levels differs extensively. Data volumes which must
be processed in the current applications easily exceed core memory size of con-
temporary computers. Therefore, using out-of-core memory should be avoided
or the drop in processing speed resulting from using lower memory levels must
be accounted for. Computer energy consumption is reduced by applying various
energy saving modes accessible, e.g., by ACPI [92] standard. A practical plan
for parallel application execution should exploit this option of energy saving,
e.g., by switching on a necessary computer when needed only. Finally, hetero-
geneity of computing platforms, be it in the form of mixing CPU with GPU
computing, applying various compute instances like Amazon EC2 [1], or central
processing servers with remote sensors, is one more reality of the current ap-
plications which should represented in the scheduling methods for the present
computing. In this thesis we intend to propose methods for scheduling paral-
lel applications taking into account communication delays, hierarchical memory

levels, existence of energy saving modes and system heterogeneity.

1.2 GOALS AND SCOPE

A high-level goal of this thesis is to advance energy efficiency by better man-
agement of the parallel application execution and system resources. Another
high-level goal is to foster understanding of time and energy performance rela-
tionships and limitations in parallel processing. A lower level goal of this thesis
is to represent distributed computing platforms and applications in scheduling
and performance models. The next goal is to propose algorithms solving these

models, and as a result to be able to construct effective schedules for parallel

CHAPTER 1. INTRODUCTION

applications and to predict their performance. By virtue of analyzing quality
criteria of the constructed schedules, understanding of the performance deter-
minants and relationships will be built.

In order to accomplish the above goals, models of computation runtime and
energy consumption on a single computer vs size of the processed data for data-
parallel applications will be developed and validated. On the basis of the indi-
vidual computer runtime and energy models, problems of constructing schedules
for parallel application on systems of distributed machines will be expressed as
optimization problems with the criteria of time and energy. The optimization
formulations will cover systems with unlimited memory, homogeneous systems
with hierarchical memory, and heterogeneous systems with hierarchical memory.
Since the formulated optimization problems must be solved, algorithms for this
purpose will be developed and their computational costs will be also assessed.
Finally, the impact of the computing platform and application parameters on
the time and energy criteria will be examined to depict performance phenom-
ena. That is to say that visual tools will be used to uncover time and energy

performance phenomena.

1.3 METHODOLOGY

Data-parallel computations consist in processing objects of similar nature in
distributed computing systems. The data objects are usually small in rela-
tion to the whole size of processed information and can be processed indepen-
dently. Data-parallel computations are quite common in processing big volumes
of data. Divisible load theory (DLT) is a general framework for scheduling
and performance analysis of parallel applications. DLT conventionally refers
to the processed data as to load. Two key assumptions of divisible load the-
ory are that parts of the load can be processed independently in parallel and
that these parts can be flexibly sized as if the load were arbitrarily divisible.

These two assumptions suit well data-parallel computations, or computations

Scheduling divisible computations with energy constraints

on large volumes of data. Furthermore, the two assumptions allowed in the
past to formulate scheduling models for various parallel processing problems,
and these formulations could be solved by computationally tractable methods.
Scheduling data-parallel computations is the subject of this thesis and divisible
load theory will provide the analysis framework. Divisible load theory assumes
linear dependence of computation time on the size of processed data. This as-
sumption will be validated experimentally both for the computation time and

for the consumed energy.

Going further into the technical details of the applied methodologies, math-
ematical scheduling problems will be formulated as optimization problems in
the framework mathematical programming, and in particular, of mixed integer
linear programming. These formulations need solving algorithms, while algo-
rithms may differ in the sense of computational cost and solution quality. The
algorithms will be assessed analytically according to the methodology of compu-
tational complexity theory [42] and experimentally in a series of computational

experiments, hence data analysis methods will be used.

Performance of parallel computation is ruled by many mutually dependent
factors. Though mathematical formulations of scheduling problems as opti-
mization problems provide analytical models of performance, understanding
the performance sensitivities and their relationships with the platform is not
easy. Therefore, isoefficiency and isoenergy maps will be applied as visual aids
supporting performance analysis and building understanding of the phenom-
ena determining the performance. Isoefficiency maps and isoenergy maps, re-
spectively, are two-dimensional depictions of system parameter values giving

constant time- and energy-performance.

4

CHAPTER 1. INTRODUCTION

1.4 OUTLINE OF THE THESIS

Further organization of the thesis is the following. In the next section a short
outline of the state-of-the-art on the approaches to energy optimization in com-
puter systems and on divisible load theory aspects related to this thesis will be
given. In Chapter 3 results of the measurements validating the model of time
and energy dependence on the size of processed load are presented. Chapter 4
is dedicated to performance visualization by use of isoenergy maps. Energy
consumption in homogeneous systems with hierarchical memory is studied in
Chapter 5. Chapter 6 introduces the most general problem of scheduling di-
visible computations on heterogeneous systems with hierarchical memory and
multi-installment load distribution. The last section is dedicated to conclusions.
Key notations used throughout the thesis are summarized in Appendix A. How-
ever, each chapter will use also its own local notation for the sake of simplifying

the notations where possible.

Scheduling divisible computations with energy constraints

2 RELATED WORK

In this section we provide a short introduction to the fields related to the thesis.
In particular a short outline of the studies on energy consumption in parallel
systems will be given. Divisible load theory with its basic assumptions, and
its classic scheduling formulations for star network with and without memory
limitations will be given. Finally, the idea of performance visualization by maps

comprising isolines will be introduced.

2.1 ENERGY CONSUMPTION IN COMPUTER SYSTEMS

Time and energy efficiency in parallel processing is intensively studied and a
wealth of results on this subject exists, see the surveys [50, 62, 68, 72, 80, 88, 101].
The problem of attaining time-energy efficiency has been attacked on several,
not mutually exclusive, levels of abstraction: (i) on hardware of computing
platform level [13, 59, 70, 77], (ii) algorithm level [23, 53, 97], (iii) runtime
environment level [20, 54, 60, 99], (iv) scheduling and management at a data
center level [14, 39, 40].

For example, progresses in CPU hardware can be illustrated by the results
from [66]. In [66] authors evaluated 64 CPUs with respect to their speed in
specpower_ssj2008 benchmark [83] transactional workload processing and energy
consumption when all the processor cores are used. We arranged these results

in Fig. 2.1 and added years of releasing certain processor models as color shades.

7

Scheduling divisible computations with energy constraints

300

=
a.
250
Py °
°

200
2005
150) L 2006

®
L .' ()
) ® 2007
° (X ® oo °
°
100 be o - L) ©2008
o0 °
e © ©2009
° i ©2010
50 ° e

2011
ops/s

0

0 100000 200000 300000 400000 500000 600000 700000

Figure 2.1: CPU Power vs Speed. On the basis of [66]. Shades of color indicate
year of introducing the CPU.

The lower-right corner in Fig. 2.1 is the ideal position with the highest speed and
the lowest power consumption. It can be observed that recent CPU generations
align along a kind of a Pareto-front because higher speed requires higher power
usage. Conversely, the older CPU generations (on the left side of Fig2.1 expose
both lower speed and higher power consumption. The progresses in CPU time
and energy efficiency are even better illustrated in Fig. 2.2 which is showing
operations per second and operations per Watt. It can be seen that newer
generation CPUs are closer to the ideal point with low energy consumption and

short processing time, than the older CPU generations.

Construction of efficient interconnections for big datacenters is studied in
[4, 38]. It appears that not only computers, but also networking consumes
considerable power. It is observed that communication equipment can easily
consume power in the range of hundreds of kW.

The problem of effective algorithms, hardware, and their co-design (level
(ii)) has been studied, e.g., in [4, 15, 18, 24, 38, 52]. The issue of energy-
efficient algorithms can be illustrated with the example of data compression.

It is believed that compression may provide performance benefits, and energy

CHAPTER 2. RELATED WORK

5,12E+03
; []
Py * Te e
2,56E+03 & . °
o ° ° P) °
° LY L]
1,28E+03 °de ° .
[]
2005 ol
»
6,40E+02 2006 °
@,
2007
3,20E+02 ® 2008
2009
1,60E+02 © 2010
e 2011
8,00E+01
SPECpower ssj ops
4,00E+01
1,0E+04 4,0E+04 1,6E+05 6,4E+05

Figure 2.2: CPU operations per Watt vs operations per second. On the basis
of [66]. Color shade indicates year of introducing the CPU.

savings when transferring data between remote computers or different levels of
memory hierarchy. However, it is demonstrated in [15, 52] that the real picture
is much more complicated. Only some compression algorithms, for some types

of data give any gain in energy.

Publications [69, 82, 84, 85, 95] serve as examples of the application-level
energy usage optimization. The energy cost and performance loss of parallel
applications executed at different energy gears are empirically studied in [69].
An energy gear is voltage-frequency combination of a CPU. In [85] multi-variable
linear regression is used to model execution time and energy consumption of the
high-performance Linpack benchmark. In [84] a problem of constructing the
shortest schedule for multiphase parallel computation, meeting energy limit is
considered. The energy use model distinguishes energy used in communication
and in computation. The model is experimentally validated. An index of iso-
energy-efficiency is introduced in [82], as the ratio of the energy consumed in
sequential computation to the energy consumed in parallel computation. Let us
observe, that despite similarity of the name the iso-energy-efficiency of [82] is

conceptually different than the isoefficiency in [33, 44, 45] and isoenergy maps

9

Scheduling divisible computations with energy constraints

in this work. Analogously to [33, 44, 45], we consider isolines as relations (in the
mathematical sense) linking system and application parameters such that energy
needed for the computation is constant. In [95] Amdahl’s law is used to construct
general analytical model of energy consumption in multicore processors.
Energy use in DLT applications has been considered, e.g., in [78] to assign
measurement workload in a wireless sensor network. The residual battery en-
ergies were used to determine workload partition, resulting in longer lifetime of

the whole network.

Publications [5, 96] serve as examples of dynamic voltage and frequency
scaling (DVFS) which can be applied at the runtime environment, or oper-
ating system levels, to optimize energy usage and respect application timing
constraints (deadlines).

The dedicated cluster level management of distributed application was stud-
ied, e.g., in [84, 91]. Energy usage optimization as an issue of scheduling and
management at the data center level has been analyzed, e.g., in [24]. In [24] rec-
ommendations for energy optimization in datacenters are given: proportionality
between energy and computation, frugal use of resources, robust components
which can tolerate mutual dis-synchronizations and delays caused by energy-
saving modes. Managing data centers for energy efficiency and profit, even at

global scale, was considered in [43, 71].

Now let us locate the contribution of this thesis in the relation to the above
literature. In this work we assume application level scheduling by the runtime
environment in a close cooperation with the computing platform. On the one
hand, our results give hints to the platform on the set of active machines and on
applying energy-saving modes. On the other hand, the algorithms in runtime
environment do their best with the provided heterogeneous computing platform.

In [18] techniques of energy-efficient hardware and software design are re-
viewed. Authors distinguish three phases of system design: 1) modeling and

conceptualization, 2) design and implementation, 3) runtime operation. Ac-

10

CHAPTER 2. RELATED WORK

cording to the distinction made in [18] we introduce a modeling and concep-
tualization method which can be applied at the design phase of a datacenter
development. As in [4, 38] we consider networking as an important component
of the overall power consumption. Many of the above papers introduce mod-
els of energy consumption. Some of the models are very detailed and tailored
to a single algorithm. Also in this thesis energy consumption models will be

proposed, validated and used.

2.2 Di1viSIBLE LOAD THEORY

Energy consumption models considered in this work are built on the divisible
load theory (DLT). DLT assumes that computation consists in processing big
amounts of data (the load) on remote computers. The data granularity is suffi-
ciently small to assume that the load is arbitrarily divisible. There are no prece-
dence constraints such that parts of the load can be processed independently of
each other. Hence, DLT represents well-structured highly parallelizable data-
intensive computations. DLT originated in the late 1980s, when computations
on clusters of workstations [2], and on chains of intelligent sensors [26] were
analyzed. Though the divisible load model is based on simple assumptions, this
can be considered its strength because its input data can be easily obtained.
The accuracy of DLT has been tested in many publications, e.g. [2, 34, 56].
The difference between the model and reality was in the range of 1% and bet-
ter. Furthermore, basic DLT models are tractable where many other scheduling
models for parallel applications are NP-hard. Thus, DLT is a good compro-
mise between model accuracy and cost. Not surprisingly, DLT proliferated in
many ways. Due to space limitations we direct interested readers to the surveys
[22, 28, 74, 75] on DLT.

In the divisible load scheduling problems considered in the thesis three as-
pects must be particularly considered: 1) load scattering algorithm, 2) gener-

ally the representation of the energy cost of the computation and in particular,

11

Scheduling divisible computations with energy constraints

3) non-linearity of time and energy dependencies on the size of processed load
in systems with hierarchical memory. The load can be distributed to processors
in single or in multiple installments scattering. In the former case each pro-
cessor may received a chunk of load for processing at most once. In the latter
case each processor may receive more than one load chunk for processing. In
the single-installment communications load chunks tend to be large which delays
start of the computations and results in larger memory footprint. Conversely, in
the multi-installment communications messages are shorter, computations start
earlier and memory footprint is smaller. However, scheduling multi-installment
communications is harder. Divisible load processing problems of similar nature
have been studied, e.g., in [16, 25, 32, 36, 55, 76, 79, 81]. Multi-installment
scattering of the load to heterogeneous processors was studied in [79]. Two
heuristics were proposed assuming that the sequence of communications with
the machines is a known repetitive pattern. Here we allow for any sequence of
communications, and what is more, the sequence need not be repetitive.

Almost all contemporary computer systems use hierarchical memory systems.

Memory hierarchy may include the following levels:

1. CPU registers,

2. CPU cache levels L1, L2, L3 and even 14,

3. Random Access Memory (RAM) a.k.a. core memory (often acting as a

cache for lower memory levels),

4. Solid State Drives (also acting as a cache of HDD [48]),

5. Hard Disk Drives (also acting as a cache for remote storage),

6. network storage (e.g. NAS using AoE, FCoE, NFS, SMB, and similar

protocols),

7. tape, optical devices and other forms of long-term storage.

12

CHAPTER 2. RELATED WORK

When going down the hierarchy, from CPU registers to the external storage,
several things change. Capacity increases while time performance decreases.
Usually time performance deteriorates both in terms of latency and through-
put. The size per storage device increases and price per storage unit (e.g. GB)
decreases while moving down the hierarchy. The last two issues play role in
designing data centers rather than in scheduling parallel applications. Things
get more complicated if one includes in this scheme memory of modern graphics
cards [63]. Introducing new forms of fast storage, such as SSD, between RAM
and HDD shifts the balance in time and energy costs between the 1/O software
stack and hardware. Since the intermediate SSD storage is faster, the I/O oper-
ations are called more often thus exposing computational costs of 1/O software
stack [87]. Such complex interactions lead to counterintuitive conclusions (cf.
”Software Considered Harmful” in [87]). It demonstrates that the more a study
of the impact of changing system parameters on time and energy performance is
needed. Memory architecture is a broad research and engineering field certainly
exceeding scope of this thesis. Interested readers might find further details,
e.g., in [48, 73, 86]. An important consequence of memory hierarchy existence
is nonlinear dependence of the computation time and used energy on the size of
processed data. In [36] hierarchical memory systems have been analyzed with
respect to time performance. Non-linear complexity divisible load scheduling
was studied in [16]. It was demonstrated that the classic DLT approach based
on load equipartition is not well suited for non-linear complexity algorithms un-
less clever data partitioning methods are applied. How this can be achieved was
demonstrated for vector outer-product and for matrix multiplication. Our case
is slightly different because the nonlinear execution time is a result of memory
hierarchy and not the data processing algorithm itself. Consequently, simple
load partitioning algorithms are applicable in our case.

In the cases when the memory system can be perceived as non-hierarchical, we

will be calling it flat memory system.

13

Scheduling divisible computations with energy constraints

Energy may be considered a special type of cost. Scheduling divisible com-
putations for minimum cost has been analyzed in [25, 29, 30, 64, 81]. Scheduling
with monetary cost has been considered in [25, 81]. In [76] a polynomial-time
algorithm has been proposed to build time-cost trade-off when communication,
computation times, and costs are proportional to the size of the load and all
communication links have the same speed. [55] is the first work studying a flat
(non-hierarchical) memory model. A heuristic has been proposed for the case
with communication times proportional to the size of the load. Let us note
that memory use model in [55] is different than it this thesis. If total load size
exceeds size of memory then a feasible solution does not exist in [55]. However,
in this thesis memory limits are soft: a feasible solution always exists, though
possibly with bad performance. Energy in processing divisible loads on homoge-
neous flat memory systems were subject of [32]. Interrelations between system
parameters were represented by maps of equal energy consumption similar to
weather maps. In [30, 81] only costs of computation were studied. In [29, 64],
the cost of communication and energy consumption have been also included.
Methods of designing effective communication have been proposed in [64]. In
[30] scheduling divisible loads has been formulated as a linear program minimiz-
ing schedule length with cost, memory, and processor availability constraints.
Thus, it has been demonstrated in [30, 81] that scheduling divisible loads for

minimum schedule length and cost is effectively a bicriterial problem.

The timing model of parallel computation here is different than in the earlier
publications assuming general type of computation cost. The costs of compu-
tation initiation (startup costs) will be taken into account. We assume that
computing system can be in two states: active state or idle state with reduced
power usage. The idle state represents various techniques, such as DVFS, ACPI,
used to achieve energy-proportional computing. Moreover, in this work we set
further goals than in [29, 30, 64, 81]. The methods of load partitioning and
computation/communication cost calculation will be components of a generic

performance analysis method.

14

CHAPTER 2. RELATED WORK

B SitouG | SytopG|S3tazGy comm
P comp oy
b comp by
P comp 053 |
0 Chax

Figure 2.3: Start interconnection and a schedule without returning results.

2.2.1 REFERENCE STAR MODEL

In this section a classic single-installment divisible load scheduling in a star
topology (single level network) method is introduced for further reference. We
assume that initially all load V is stored by the originator Py (root, master). It
is then divided into parts aq, ..., a,, and sent to processors Pi, ..., P, for pro-
cessing. The originator is only dividing and sending the load. There are no
computations on Py. Computations on each processor P; are started after re-
ceiving whole load chunk «; for i =1,...,m. P, ..., P, are not communicating
between each other. Star network can model many parallel systems where com-
puting master-worker paradigm is used, such as: CPUs in SMP system sharing
a bus, network workstations connected to the same Ethernet segment, comput-
ing clusters connected to a master controller via Internet. Parameters a;, C;

S; depend on both, the computing environment and the application.

Starting computation on a remote computer involves waking it up. Hence,
startup time S; elapses before P; (i = 1,...,m) can start receiving the load.
Startup time S; is an important element in modeling DLT applications. Without
the startup, arbitrary number of processors may be activated which is unrealistic
[22, 28]. Load of size «; is transmitted in time S; + «;C. On the receipt of the
load P; immediately starts computations which last «;a; units of time. When
the communication with P; is finished, the originator activates processor P;iq
and sends to it load a;41. The procedure is repeated until starting computations

on all m processors. Let us assume that the time of returning results is negligibly

15

Scheduling divisible computations with energy constraints

short. The requirement of negligibly short result return time can be relaxed,
and the process of result collection can be represented in DLT. It can be shown
[22, 26, 74] that for the optimality of the schedule length all the processors must
finish computations simultaneously. This is often called an optimality criterion
in DLT. The problem is to find load partitions a4, ..., @, such that the whole
schedule is the shortest possible. We can solve this using a system of linear

equations:

Q05 = Oj+1 + ai+1(ai+1 + Ci+1) for i = 1, ey — 1 (21)

iai =V (2.2)

The above linear equations system can be solved in O(m) time because

of its special structure. We can express «; (for ¢ = m,...,1) as a linear

function k;ou, + l; of a,,, where k,, = 1,1, = 0,k; = ki+1%@'“,li =

Si i C; .
Sitl 4 fo @t Then we will have
a; a;

V=>m"

ST T (2.3)

Ay, =

Load distribution is simpler to calculate if Vi,.S; = 0, so even closed-form

solutions exist. Note that k; = []™ ' %11 %+1 {50 4 < m, and [; = 0. Then,

Jj=i a;

the load sizes can be calculated from equation

Hmfl aj+1+C541

j=1 aj

Qy = 4 m m—1 aj11+C; (24)
Zth Hj=h J+1aj Jj+1

For homogeneous processors Vi, a; = a,C; = C the above equations reduces to
™ (k—1) a+C . .
a; = V07—, where k = “=. Closed-form solutions can be derived when

system is homogeneous or when startup times are negligible.

16

CHAPTER 2. RELATED WORK

In the solution (2.3) of equation system (2.1)-(2.2), a, could be negative. If
S0, the system is infeasible and load size V' is too small to activate all processors.
In the heterogeneous systems two questions arise: (1) which processors subset
should be used, (2) what is the optimum sequence for sending load to processors.

These questions are answered in the thesis albeit in a more general setting.

It has been shown in [98] that the problem of selecting optimum set of

processors is NP-hard even if all communication rates C; are equal zero.

2.2.2 STAR WITH FLAT MEMORY

In this section a simple model of single-installment divisible load processing
in star network with limited flat memory is introduced. In single installment
model a processor receives only one load chunk and the memory must be able
to fit the incoming amount of load. This may cause load size limitations. In
the case of flat memory model access time to all memory cells is constant. In
such a way we can approximate a more complex hierarchical memory system by
restricting it to just one memory level (which may be realistic representation
of the architecture of some mobile or embedded devices). Computing speed is
independent here of the size of used memory block. Yet, memory is a limited
resource, and only some amount can be accessed in constant speed. Let B;

denote the size of memory available for processor P;. A linear programming

approach finding load partitioning «j, ..., a,, has been proposed in [35]:
minimize Chqz (2.5)
subject to:
i
o;a; + Z(SJ + ajC’j) < Chag fori=1,..,m (26)
j=1
a; < Bjfori=1,..,m (2.7)

iai =V (28)

17

Scheduling divisible computations with energy constraints

ai, Craz > 0 (2.9)

In the above formulation schedule length is minimized by (2.5). A completion
time of computation on processor P; cannot exceed schedule length by (2.6).
According to (2.7), load assignments do not exceed sizes of memory buffers.
Constraint (2.8) guarantee that whole load is processed. Let us observe that
the above formulation becomes infeasible if load size is larger than the total
memory size, i.e., when V > """ B;. Note that the linear program assumes
that all processors take part in the computations and the sequence of starting
computations is given. However in general, when start-up times S; are nonzero
and size V of the load is too small some processors may be dropped from the
computation. The problem of selecting optimal sequence, subset of processors
and load part sizes will be subject of this thesis in the energy optimization

context.

The problem of scheduling divisible loads with nonzero communication start-
up times and limited memory buffers has been shown to be NP-hard in [37]
and sNPh in [17]. Various methods of solving the above problem have been

compared experimentally in [21, 37].

2.3 ISOLINES AND ISOLINE MAPS

In this section we present the concept and origins of isoline maps, which will
be used as visual aids in showing time and energy performance phenomena and

relationships.

The concept of graphical representation of points of equal value of certain
parameter as lines in two-dimensional pictures is widely used in science and
technology. Such lines are often referred to as isolines or contour lines. Examples
of two-dimensional depictions of complex physical object include [93] elevation
contour maps in cartography, isobar, isotherm, isohyet maps in meteorology,

enthalpy-entropy chart in thermodynamics [94]. The reason for such a wide

18

CHAPTER 2. RELATED WORK

use of isoline maps is that such visualizations proved very effective in building
understanding of sensitivities and relationships of complex phenomena in other

areas of science and technology.

Performance of parallel computations is measured by two classic metrics:

speedup S and efficiency &:

S(m) = L) gmy=S = TW

T(m) m mT(m)’ (2.10)

where T'(7) is execution time on ¢ machines. Speedup and efficiency measure
scalability of the parallel application. £ is often interpreted as the fraction of
the processor set which really computes. In a well-designed application S should
grow (preferably linearly) with the number of processors m and £ should be as
close to 1 as possible. However, in most cases speedup saturates at certain num-
ber of machines and efficiency decreases with m. The location of the maximum
speedup depends on the size of the solved problem. Usually bigger problems
allow to exploit more processors while preserving certain efficiency level. In
order to grasp this relationship a concept of isoefficiency function has been in-
troduced [45]. Isoefliciency function I(e,m) is size of the problem required to
maintain efficiency £(m) = e. Consider an example of finding a minimum span-
ning tree in a graph with n vertices. A straightforward parallel version of Prim’s
algorithm for this problem, has complexity T'(m) = c¢in?/m + canlogm, where
c1,co are constants (see e.g. [3], Section 10.6). Efficiency of this algorithm is
E(m) = c1n?/(c1n® + canmlogm). Hence, isoefficiency function for m machines
and efficiency level e < 1 is I(e,m) = cgemlogm/(c1(1 —e)). For a fixed value
of e, function I(e,m) can be viewed as a line of equal efficiency in the m x n
space. Such a line of equal efficiency will be called an isoefficiency line. Thus,
performance of parallel computations can be visualized as a set of isoefficiency

lines in m X problem size space [33]. Such a visualization will be called an iso-

19

Scheduling divisible computations with energy constraints

efficiency map of a parallel computation. Isoefficiency maps will be used in this
thesis. Furthermore, this concept is extended to the isoenergy maps, i.e., maps

of points of equal energy consumption in the space system parameters.

20

3 COMPUTATION TIME AND

ENERGCY CONSUMPTION MODELS

In this chapter we report on the results of experiments conducted to validate

computation time and consumed energy models used in the following sections.

3.1 TESTBED

In order to establish compute time energy models measurements were made
on different computers with exemplary applications: quicksort, searching for a
string in text, md5 hash calculation (rainbow tables), edge detection in bitmap
pictures and matrix transposition. These applications were implemented in gcc
and run under FreeBSD 8.1 and Ubuntu 14.04 LTS. The wattmeter (Lutron DW-
6090) with power resolution 1W, and time resolution 1s was used. The measured
computer was connected via the wattmeter to record energy consumption. Some
of measured computers had cooling fan speeds dependent on CPU and system
temperature. Changing fan speed caused a few Watts difference in measurement.
In order to make the results independent of ambient temperature, or thermal
results of the earlier experiments we decided to power the fans from outside
power source (Fig. 3.1 and Fig. 3.2). Lutron wattmeter is connected to another
computer/laptop which is logging data. Schematics of the testbed are shown on

Fig. 3.3.

21

Scheduling divisible computations with energy constraints

Figure 3.2: Measuring station - cooling fans powered from external power supply.

22

CHAPTER 3. COMPUTATION TIME AND ENERGY CONSUMPTION
MODELS

i

cooling Measured computer
(externally powered)

RS-232 connection

Data logging computer (@) &

CEETT B

Lutron DW-6090
power analyzer

>
)

|

i
i) | @)

L -

Figure 3.3: Scheme of measurement testbed.

3.2 FLAT MEMORY MODEL

Practical viability of the DLT linear timing model for distributed computation
has been demonstrated, e.g., in [2, 34, 56]. In the flat memory model whole
memory is considered a uniform resource with the same performance indepen-
dently of the size of used data structures. A key assumption of energy use model
in flat memory systems is that for the given application and platform power con-
sumption is constant and independent of the amount of processed load «;. In
other words, the application on the given platform achieves a point of stable
power usage. This assumption was verified experimentally. Power usage has
been measured on three different computers, with five exemplary applications:
quicksort, searching for a string in a text, md5 hash calculation (rainbow tables),
edge extraction in bitmap pictures and matrix transposition. The applications

were implemented in geec and run under FreeBSD 8.1. All the applications run

23

Scheduling divisible computations with energy constraints

Table 3.1: Power versus problem size.

Size o 50MB 100MB 200MB 400MB 800MB
App. o Cy o Cy “w Co o Cy o Cy
Intel Pentium IV 2.8GHz, 1GB RAM DDR 400MHz CL2.5
quicksort 1271 14 | 1276 1.1 | 127.8 1.0 | 1281 1.0 | 128.7 1.7
string search 1339 0.8 | 1342 1.0 | 1341 1.2 | 133.8 0.8 | 1347 1.3
md5 1276 0.7 | 1283 1.3 | 1285 1.3 | 1283 1.3 | 1283 1.2
edge detection 1274 1.2 | 1270 06 | 1276 1.1 | 1272 09 | 128.2 1.3
matrix transpose | 130.1 1.0 | 130.9 1.6 | 129.6 0.9 | 130.2 1.3 | 130.2 1.6
idle pn="727¢c, =22, k~18
hibernation wn=10.0, ¢, = 2.2, k = 13.0
AMD Athlon 64 X2 4800 2.5GHz, 4GB RAM DDR2 667MHz CL3
quicksort 1158 09 | 116.6 1.0 | 1174 1.4 | 1175 2.0 | 1179 25
string search 126.7 1.1 | 1259 0.5 | 1254 0.7 | 126.0 0.4 | 125.7 0.7
md5 111.7 04 | 1114 0.6 | 111.7 0.5 | 111.8 0.9 | 111.6 0.5
edge detection 1284 04 | 1284 04 | 128.3 0.4 | 1285 0.4 | 1278 1.1
matrix transpose | 128.6 0.4 | 128.5 0.5 | 1289 0.5 | 128.7 0.4 | 129.0 0.5
idle uw="768¢c,=16,k~1.6
hibernation nw=2=63,¢c, =87 k=194
AMD Phenom II X4 945 3.00GHz, 8GB RAM DDR2 800MHz CL5
quicksort 126.8 0.6 | 1274 1.0 | 127.1 0.9 | 126.8 0.6 | 1274 1.2
string search 125.7 0.7 | 126.3 1.0 | 126.0 0.5 | 126.1 0.7 | 1256 0.5
md5 1274 04 | 1262 04 | 1262 0.6 | 126.5 0.8 | 126.2 0.7
edge detection 1319 0.5 | 131.2 0.7 | 131.2 0.7 | 129.8 0.8 | 130.7 0.6
matrix transpose | 128.9 0.7 | 129.6 0.9 | 1288 0.6 | 129.0 0.8 | 1289 0.7
idle pn="13.0,¢c, =27, k=18
hibernation pw=6.3,c, =84, k=202

Table 3.2: Power versus problem size and computational intensity I in POLY
benchmark. Intel Pentium IV 2.8GHz, 1GB RAM DDR 400MHz CL2.5.

Size oy 50MB 100MB 200MB 400MB 800MB

I o Cy o Co o Cy o Cy o Coy
0 130.8 0.6 | 131.0 03 | 131.2 04 | 1314 0.4 | 1320 14
1 1334 04 | 133.8 09 | 1329 04 | 1332 04 | 133.7 0.8
2 106.8 1.5 | 106.2 04 | 107.1 1.6 | 107.1 1.7 | 106.9 14
4 1304 04 | 1309 1.0 | 1264 0.4 | 1261 0.3 | 126.7 0.9
8 122.7 04 | 122.7 0.5 | 1259 1.3 | 125.6 0.5 | 126.2 1.1
16 1156 0.4 | 1156 0.5 | 116.3 04 | 1165 1.0 | 1164 04
32 115.6 1.1 | 116.5 04 | 1151 0.5 | 1155 09 | 115.0 0.5

24

CHAPTER 3. COMPUTATION TIME AND ENERGY CONSUMPTION
MODELS

for at least 1 min. The experiments were repeated 3 times. The results are
collected in Tab. 3.1. The power ratings are in Watts. The applications are
reported in lines, and different load sizes in columns. Each entry consists of two
numbers: average power usage u in Watts and its coefficient of variation ¢, in
percents (%). The ’idle’ entry gives power usage of the computer switched on,
with operating system loaded, and waiting for the code to be executed. The
value of k given in this line is the ratio of average power consumption of all
active state measurements, and the average idle state power usage. Analogous
values are given for the hibernation state. Parameter k& will be further used in
Chapter 4. In the active state the variation in power usage is of the order of 1%.
Thus, it is low. No spikes in power usage were observed. No apparent correlation
between problem size «; and power usage could be found. Only for quicksort
there is hardly any correlation observable, but the changes are on the order of
noise (represented by the coefficient of variation), and were observed on two of
the three computers. The applications involve substantial CPU to core memory
communication. Quicksort, string search, matrix transpose are strictly memory-
bounded. In order to further verify the impact of CPU-memory communication
on power usage we applied POLY benchmark [47] measuring performance vs
different computational intensities I. Computational intensity I is the number
of floating point operations per memory reference. POLY consists in evalu-
ating polynomials by Horner’s rule. For example, a third-degree polynomial
Y[j1=S0+X[j1*(S1+X[j1*(S2+X[j1*S3)) has I = 3 because two memory ref-
erences Y[j], X[j] are made per 6 floating-point calculations. Computational
intensity I can be adjusted by changing the degree of a polynomial. In Tab. 3.2
we report power usage and its variability for different computational intensities
and problem sizes. It can be seen that frequent memory references (smaller I)
incur higher power usage. For changing problem sizes a; power usage remains
nearly the same. Similar results were obtained for Strassen matrix multipli-
cation, merge-sort, radix-sort, even if virtual memory was partially used. The

lack of the impact of hierarchical memory usage is a result of strong locality of

25

Scheduling divisible computations with energy constraints

memory references in these algorithms. Though memory interaction plays an
important role in determining power consumption, for computations with fixed
resource requirement profile, determined by computational intensity I, power
usage is constant. We conclude that there are applications for which power
consumption is independent of the size of solved problem «;. Furthermore, dis-
persion of used electric power is on the order of 1% and often smaller, which
is acceptable for modeling purposes. Thus, linear model of energy vs size of

processed data can be considered as confirmed for flat memory systems.

3.3 HIERARCHICAL MEMORY MODEL

The time and the energy required for the computations on a load chunk depend
on the chunk size av. An important determinant is how big « is compared to the
size of the main memory. In order to verify the relationship between computing
time, consumed energy, and the size of the load chunk a number of computa-
tional tests have been conducted. Example results are collected in Fig. 3.4 and
Tab. 3.3. Three example platforms and three applications (image edge detec-
tion, quicksort, search for a string in a text block) are reported upon. In Fig. 3.4
dependence of computing time and energy on load size « is shown. The dashed
lines represent best linear regression fit into the measured data. The values
in Tab. 3.3 have been obtained using linear regression fit to the measurements
shown in Fig. 3.4. Note that the vertical axes in Fig. 3.4 are logarithmic, and
hence, in this coordinate system the linear functions are not straight lines. It
can be verified that both runtime and energy consumption increase significantly
faster with problem size when out-of-core memory is used. Interestingly, usu-
ally power consumption of the out-of-core computations is lower than on-core.
However, the speed is by far lower, and hence, the overall energy consumption
increases much faster with work size a. The point of switching from one de-
pendence to the other is smaller than the hardware RAM size because some

memory is reserved by the operating system and runtime environments.

26

CHAPTER 3. COMPUTATION TIME AND ENERGY CONSUMPTION

MODELS

1E5 - B
‘measured LR ~measured R
N fit - in RAM e _fit-in RAM o
1E3 | fit - out of core . L E| fit - out of core . 1
z Lt = e
Py .]
E I IE4 | 5 1
= H
L] -
IE2 | E e *
A
vt]
.
- A -
1EI | e |
>]
p s
size [MB] size [MB]
1E0 | IE1 |
0 200 400 600 800 1000 0 200 400 600 800 1000
a) b)
T T T T T T T T T T
1ES |]
. measured g
"~ measured . fit- in RAM -
fit - in RAM - T fit - out of core .
g3 | L fit-ouofcore o | = .
2 S 8 -
£ x] ~
= g’ ' 1E4 E i
- [; 71
e e
_x""/
1E2 | e B g
A
- B3| 1
o
A~ size [MB] i size [MB]
1E1 L L L L L 1E2 H L L L L L
0 2000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
c) d)
Ha measured L
- 1ES | fit- in RAM - |
. fit - out of core
1E3 | 1 =z
< 8 !
£ g ¥
= IE4 } 5 E
' T g
H I
e
x 1E3 | 9
1E2 | B
’’’’’’ -
e /
o 1E2]
re !
x size [MB] i size [MB]
1EI S . . IEI . . .
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
e)
T T v T T T T T
1E3 | ‘measured L 1ES £ -]
fit - in RAM - . _measured .
fit — out of core fit = in RAM L] *
fit — out of core s
= -n
5 B
£ 1E4 | 5 E
£ 2
5
1E2 | 1
P
uniel .
- 1E3 e]
" = e
-
- X
IEI b o o B -
. 1E2 F 4
i size [MB] size [MB]
1E0 n IE1 n
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

g)

h)

Figure 3.4: Time and energy dependence on load size. Edge detection: a) time,
b) energy; quicksort : ¢) time, d) energy; string search, system 3 in Tab 3.3:
e) time, f) energy; string search, system 4 in Tab 3.3: g) time, h) energy, vs
problem sizes. Logarithmic vertical axes. Continuous lines are fit using linear

regression.

27

Scheduling divisible computations with energy constraints

It can be observed that the dependence of computing time and consumed
energy on chunk size can be represented by piecewise-linear functions. For

example, the time of processing load of size a on machine M; is

Ti(a) = max{ay;@, azia + ba; }. (3.1)

Component ay;c corresponds with computations in core with rate ay; (re-
ciprocal of speed). The second component represents out-of-core computations.
Functions 7; have two properties: 7;(0) = 0 and 7;(p;) = a1;0; = a2;p; + by, for
1=1,...,m, where p; is the size of the main memory on machine M; available
to the application (not necessarily the whole hardware RAM). Beyond p; the
machine starts using out-of-core memory. The energy consumed in the compu-

tations is determined by an analogous function:

gi(a) = max{ki;a, kajor + lo;} (3.2)

satisfying conditions €;(0) = 0,&;(p;) = k1:pi = koipi + l2;. For memory size p;,

both 7; and ¢; satisfy:

pi = baif(ari — az;) = loi /(K1 — k2i)- (3.3)

Let us observe that since out-of-core processing time and energy increase
much faster than on-core, we have: ay; < ao;,be; < 0 ky; < kog,lo; < 0, for
all machines M;. Values of these coefficients can be obtained by use of linear
regression on intervals of load sizes « as shown in Tab. 3.3. Only by;s are
given in Tab. 3.3, because lo;s can be calculated via the available RAM formula
(3.3) presented above: lo; = bo;(k1; — k2i)/(a1; — az;). Note that coefficients

a1, A2, bag, k14, koi, l2; depend both on the machine and the application.

Let us compare our scheduling model with the existing approaches. There
are papers, e.g. [55], assuming hard memory limits. It means that instances

with V' > 3", p; are infeasible. A border between on-core and out-of-core

28

MODELS

CHAPTER 3. COMPUTATION TIME AND ENERGY CONSUMPTION

UoIeds SULS ‘gOOWPOOOTIS dredeag
SIIV0' 7T nyung “ZzHH9' TOINVY dD8

LLTC LTLE0 T1'8¢6¢- TGIFP'0 8S00°0 “ZHD9 €OM0L9L-8V ANV ¥

oIROS SULIYS

£00WPOOOTHS @yedesg ‘STTF0 ¥ nyungn

T'¢VD I88¢°0 6¥6¥I- G¥E6'T ¥800°0 ZHDY TOINVY D8 ‘ZHDT EDS! '€

110syo1b

COOWPOOO TS 93e8edg ‘ST/THOFT nyungn

97'0¢c Gc68'0 ST0O¥e- T1€€¢0 9¢10°0 ZHOY TOIWVY dD8 “ZHOG EDS! '

UO01}0930P 98Pd oFeul

‘0'6 S 00VAM Tetae) AdH

G'SSE 60S0F G'80CF- €¥66'C 2600 ‘ZHIN99ZOINVY DT ‘ZHOS CDAI WNjusd ‘T
[an/r] [an/r] [an/s] [s] [am/s]

oy Ty q (49) In uoryeoridde ‘surgoeur :ose))

‘s1ojourered uorjouny A3eus pue owr) ojdwexy :¢'¢ o[qe],

29

Scheduling divisible computations with energy constraints

Table 3.4: Difference between hierarchical memory and proportional cost mod-
els.

1% [MB] 10000 12000 14000 16000 18000
ay = et [MB] 5714 6857 8000 9143 10286

az = gratis [MB] 4286 5143 6000 6857 7714
Eprop = (a1kyy + askiz) [J] 4000 4800 5600 6400 7200

ER =ci(a1) +e2(az) [J] 4000 4800 16400 41886 72000

m = 2, alj;] = a12 = 0.0068/1\/IB7 az1 = agz2 = 0.4S/MB, b21 = b22 = —295537 k}11 = klz =

0.4J/MB, ko1 = koy = 22J/MB, la; = lag = —162000J/MB, p = 7500MB, C = 0.002s/MB,
sS=0=0,P =pP°=0.

memory cannot be incontrovertibly inserted in such a model. In our case, by
equations (3.1), (3.2), a feasible solution always exists, albeit possibly with bad
performance. It is still possible to apply the very basic DLT approach [22]
assuming that computing time, and energy as a kind of cost, are proportional
to the assigned load size. Unfortunately, in this model energy can be very far
from reality in a hierarchical memory system. Tab. 3.4 gives an example of the
disparity of these two approaches. In Tab. 3.4 E,,, is the energy consumed in
the computations according to the proportional cost model, EF is the same type
of energy calculated according to equation (3.2). System parameters and the
formulae used to calculate Ep.op, ET are given in Tab. 3.4. It can be concluded
that the existing approaches cannot be easily adjusted to our situation, or are

significantly inconsistent with reality.

30

4 [SOENERGY MAPS WITH

UNLIMITED MEMORY

In this chapter performance of data-parallel applications is analyzed by use of
equal energy maps. As already mentioned, the reason for recursing to relations
of equal effectiveness, is that they facilitate building understanding of complex
relationships. For example, in [57] the influence of supply voltage (Vi) and
threshold voltage (V;;) on performance and power consumption of CMOS VLSI
chips is studied. In the realm of parallel processing, it has been observed that
with growing number of used processors the size of the problem must grow to
keep computation efficiency constant [44, 45]. It can be expected that even
more complicated relationships exist in the DLT models. Let us note that in

this chapter we assume flat memory model of non-restricting size.

4.1 ISOENERGY MAPS FOR AMDAHL’S AND

(GGUSTAFSON’S LAWS

We will introduce here two models of energy consumption related to SMP sys-
tems such as multicore CPUs. The models are derived from the laws of parallel
processing performance: Amdahl’s law [6], and Gustafson’s law [46]. Both laws
divide a parallel application into two parts: a sequential part, and a perfectly

parallelizable parallel part. Let 1 be the total size of the computation, and

31

Scheduling divisible computations with energy constraints

f <1 the size of the parallel part. We assume a system of m processors (cores)
which can be either idle or active. When idle, the cores use k times less electric
power than if running in the active state.

According to the Amdlahl’s law, the sequential part is executed in time 1— f,
and the parallel part is executed in time f/m on m processors. It was proposed
in [95] that during the sequential part only one core is used, while the remaining
m — 1 cores are idle using k times less power. In the parallel part all m cores are
active. Hence, the energy used by a parallel application executed on m cores is
[95]:

f

E=(1-) (1+mk_1>+mm:1+(m—1)(l—f)/k. (4.1)

In the Gustafson’s law the parallel part takes time f on m cores, and the se-
quential part time 1 — f on one core. Analogously to (4.1) during the sequential
part m — 1 cores are idle and each core consumes k times less power than if

active. Hence, the energy used up is:

E=(1-) (1+mk_1)+mf. (4.2)

Note that energy in (4.1), (4.2) is expressed in relative units, where 1 is the
energy consumed by one core executing the whole application.
Both (4.1), and (4.2) allow to represent one of the parameters, as a function

of energy E and the remaining parameters. For example, for Amdahl’s law from

(4.1) k is:
(1= f)m-1)
k=r—"t——" 4.3
and for Gustafson’s law, we obtain from (4.2):
-1
k= m (4.4)

(E—=mf)/(1-f)—1

Isoenergy maps (m, k) for f = 0.8 are shown in Fig. 4.1a for Amdahl’s
law (eq. (4.3)), and in Fig. 4.1b for Gustafson’s law (eq. (4.4)). Increasing

processor number m is the main way of reducing the computation time in parallel

32

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

1E2
E=10 —
k E=50 ——
E=100 ——
1E1 /.
a)
E=10 E=50
1E0
1E1 1E2 1E3
1E3
E=500 ——
k E=200 ——
E=100 ——
E=50 ——
E=20
E=10 ——
1E2
b)
1E1—f-
E=500
m
1E0
1E1 1E2 1E3

Figure 4.1: Isoenergy map for processor number m, and idle power reduction
factor k. a) Amdahl’s law, b) Gustafson’s law. Arrows show direction of de-
creasing energy F.

33

Scheduling divisible computations with energy constraints

processing. Hence, map (m, k) demonstrates if energy consumption incurred by
increasing parallelism can be compensated by effective application of low-energy
modes embodied by k. In Fig. 4.1a (Amdahl’s law) coefficient k cutting power
usage grows nearly linearly with m. Moreover, k must increase with decreasing
energy E. In Fig. 4.1b (Gustafson’s law) k grows rapidly with m, and not for
all m a feasible k exists. Note that m is a discrete parameter. Therefore, the
lines have step-wise form, and the isolines of k finish in certain point rather than
approaching a vertical asymptote. Since the isolines are roughly parallel to k
axis, the dependence of energy use on k is weak, and strong on m. The apparent

difference of the isoline shapes can be explained as follows. In Amdahl’s law

b

(4.1) the energy cost of parallel processing is constant because Z-m reduces to f.
Energy savings can be done only in the sequential part of the application. Since
the sequential part is not dominating in well designed parallel applications, the
energy saving coefficient k has any influence only if (m—1)(1— f) is very big. On
the contrary, in equation (4.2) parallel processing costs mf in energy. Since f is
big in a well designed parallel application, it is hard to compensate energy use
by aggressively clamping power down in the sequential part. Application of the
isoenergy maps in Fig. 4.1 in a practical scenario could look as follows: A parallel
application programmer, or a user, wants to use more processors m, but keep
energy constant. Thus, it is necessary to reduce energy use in the idle state, i.e.
increase parameter k. It can be achieved by modifying CPU and/or memory,
designing a subsystem in the operating system such that the application can
request CPU and memory suspension, incorporating in the operating system
algorithms discovering idle cores, better determining sequential parts in the
application at the development stage. The two pictures in Fig. 4.1 differ in

assessing scalability of this approach. In Fig. 4.1a it is linearly scalable. In

Fig. 4.1b increasing k gives only diminishing returns.

Fig. 4.2 depicts isoenergy map of k, and the size of the parallel part f, at
m = 1000. Let us note that for m = 1000 energy levels £ > 1000 do not repre-

sent any savings because the energy used by m = 1000 processors in the schedule

34

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

1E2 ;
E=2E1 ——
k E=5E1 ——
E=1E2 ——
[E=2E1] Efglé% —

1E1

E=5E2 \
1EO0 \
E-1 1

1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1

EO

1E4 T
E=2E1 ——
k E=5E1 ——
E=1E2 ——
E=2E2 ——
E=5E2 ——
1E3
b)
1E2
E=2E1 /
1E1 ‘/
E=5E2
1E0
1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1EO

Figure 4.2: Isoenergy map for parallel fraction f, and idle power reduction factor
k, for m = 1000. a) Amdahl’s law, b) Gustafson’s law. Arrows show direction
of decreasing energy E.

35

Scheduling divisible computations with energy constraints

of the length equal to the sequential one is just £ = 1000. Hence, only £ < 1000
are shown in Fig. 4.2. The map in Fig. 4.2 shows how low-energy modes (rep-
resented by k) interact with the potential application parallelism (represented
by f). The isolines are quite similar when f is very small, which is rare in well
designed parallel applications. When f is close to 1, the isolines become rad-
ically different. In Fig. 4.2a (Amdahl’s law) the power reduction coefficient k
decreases which means that it is becoming less and less needed in energy saving
because the sequential part in the parallel application is disappearing and the
parallel part consumes constant energy f. On contrary, in Fig. 4.2b (Gustafson’s
law) k must rapidly grow to compensate increasing contribution of the energy
consumed by the cores working in parallel. It follows, that compensating en-
ergy consumption incurred by parallel processing of computationally intensive
applications (represented by high f) using processor suspension modes is ulti-
mately futile. It is an indication for a decision-maker that for such applications
energy optimization must be achieved in other ways. Fig. 4.1 and Fig. 4.2 show
that Amdahl’s and Gustafson’s laws represent essentially different perceptions
of parallel application performance. In the Amdahl’s law parallel processing in
the energetic sense is essentially for free. In the Gustafson’s law the size of the
problem grows with the number of cores m, and hence, parallelism incurs costs.
It can be concluded that from the energy point of view Amdahl’s law misses an

important component of the cost of parallel computation.

4.2 ISOENERGY MAPS FOR DIVISIBLE

COMPUTATIONS

The models introduced in the previous section lack such important details as
costs of communication and starting additional processors. In this section an
energy use model addressing such deficiencies is introduced. It represents pro-
cessing divisible loads. Optimum schedules for divisible computations provide

timings necessary to calculate energy consumption. Though the schedules are

36

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

constructed in the standard way for DLT [22, 26, 28, 29, 74] we report neces-
sary details to make the presentation self-contained. Given the timings of the
schedule we can multiply it by electric power to derive formulae for energy con-
sumption. In this step we partially use results from [29]. Empirical evidence

supporting our electric power use model was provided in Chapter 3.

4.2.1 THE ENERGY USAGE MODEL

We assume that at the beginning of the computation load of size V resides at
originator (initiator, file server) Py. The originator is in a star interconnec-
tion with homogeneous worker computers (processors) Pi,...,P,. The star
interconnection may represent multiple CPUs sharing a bus, a cluster of work-
stations, or a set of machines in a global grid. The sole role of the originator
is to control the computation, and distribute the load. Communications are
performed between the originator and the worker processors only (cf. Fig. 4.3).
Volume V' of load is partitioned into chunks of size ag,...,a,,, and sent to
Py, ..., Py, respectively. Starting computation on a remote computer involves
waking it up, loading virtual machines, application code and its libraries. Hence,
startup time S elapses before P; (i = 1,...,m) can start receiving the load.
Startup time S is an important element in modeling DLT applications. Without
the startup, arbitrary number of processors may be activated which is unreal-
istic [22, 28]. Load of size o is transmitted in time o;C. On the receipt of the
load, P; immediately starts computations which last a;a units of time. When
the communication with P; is finished, the originator activates processor P;y
and sends to it load a; 1. The procedure is repeated until starting computations
on all m processors. Now the goal is to partition load V into chunks aq, ..., an,
such that schedule is as short as possible. Let us assume that the time of return-
ing results is negligible. It can be shown [22, 26, 74] that for the optimality of
the schedule length all the processors must finish computations simultaneously.
Though we assumed that the result collection time is negligible and that commu-

nication with the worker processors is executed only once, the result collection

37

Scheduling divisible computations with energy constraints

P SI (XIC eoe Sl (Xl'C l SI (X’H-IC con SI (x’mCm
0] | | adivk v | | idle

IS l oyC | : cixla ' computation

P e
——— : o :
Ecommumcatlon: ! : | :
S l OL,'C iO(.ia computation

h idle | adtive = |
S l OLH—IC a;’-Ha computation

P _idle | i Cactive |
E S | o, C | Omd

Fn e | [active | timg_

Figure 4.3: Communication, computation and power use schedule.

time, parallel communication, concurrent communication and computation can
be comprised in DLT models when necessary [22, 26, 28, 29, 74]. Most of these
options for processing the load will be subject of Chapter 5. We assume that
load chunks «; fit in the core memory such that parameters a, C' are not affected
by the load sizes. Since all processors finish computations simultaneously (see
Fig. 4.3) processor P; (i = 1,...,m—1) computes as long as it takes to activate
P11, send and process its load a;y1. Moreover, all load must be processed.

Hence, we have a system of linear equations:

ac; =S+ (C+ a)ait for i=1,....m—1 (4.5)

38

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

Denoting k = 1+ C/a it can be derived from (4.5):

a; = S(;(Ifﬁ))—i—/im_iam fori =1,...m, (4.7)

where oy, from (4.6), and (4.7) is

V(l-k) S(m(l—fz)—lJrnm).

1—km a(l—rm)(1—k) (48)

Oy =

Note that only «,, > 0 has practical sense, yet negative values can be obtained
from equation (4.8). Such a situation may arise if the volume of load V is too
small to employ all m processors. In the further discussion the combinations
of parameters a,C,m, S,V such that a,, < 0 will be called infeasible. From a;

schedule length T' can be calculated:

T=S4+(C+a)ay =82 +Vz (4.9)
where from (4.7), (4.8)
m—1 m
— _ m—l_’% (m(l_’%)_l_FK)
=1t 1=k I (4.10)
1— m—1
20 = (C + a)(T I_i)lim (4.11)

Practical viability of the above model of distributed computation has been con-
firmed, e.g., in publications [2, 34, 56]. Parameters a,C,S are platform- and

application-dependent and can be measured as shown in Chapter 3.

The energy consumption can be split into three components: E — the energy
consumed in the idle state, EFN — energy beyond the idle state consumed

ERC

in communication, and — the energy beyond the idle state consumed in

computation. Hence, the total energy consumed by the system is

E =FE!l 4+ ERN 4 ERC, (4.12)

39

Scheduling divisible computations with energy constraints

Let P¢ denote the power consumed by the active processors, and PN the power
consumed in the network equipment when communicating. We assume, that the
energy costs brought by components of a computer, such as CPU, RAM, HDD,
NIC, power supply unit, fans, cooling equipment are specific for the platform
and the application, and are all comprised in P¢. This value is constant in
the performed computation, as shown in Section 3.2. A more detailed model of
energy consumption in computers will be used in Chapter 6. We assume that
in the idle state both the network, and the computers use k times less energy,
than in the active state. Parameter k represents in a synthetic way the degree
of proportionality in energy use. For example, recently introduced FVER index
of datacenter energy performance [67] is equal to 1+ 1/(k —1) = k/(k —1). If

the system were idle all the schedule length T, the energy consumed would be:
E' =T((m +1)P° + PN)/k. (4.13)

The network is active when performing communications, after finishing load
distribution it switches back to the idle state. Hence, energy E#V consumed in
the network beyond the idle state energy is:

EMV:PNEi£0n9+CV) (4.14)

Processor P;, consumes energy P *-1(S +a;(C +a)) above the idle state. The

energy consumed by all processors beyond the idle state by (4.6) is:

k—1 o
ERC = PCT (mS +CV + E (S+(C+ a)o@)
i=1

= Pcﬁ%lmms+2cv+avy (4.15)

40

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

Thus, from (4.12)-(4.15) we obtain:

E= T((m +1)P° + PN /k + pyi=1 -
pok—1 ; (2m5 +2CV +aV). (4.16)

(mS+CV) +

The energy use model presented above is fairly generic and can be extended
to accommodate more details. This will be subject, at least to some extent, of

the following chapters.

4.2.2 ISOENERGY LINES CALCULATIONS

Now we proceed to the method of plotting the isoenergy lines. In some cases it
is possible to derive analytically value of one parameter as a function of all other
parameters and the energy. For example, it is possible to derive k from (4.16)
to obtain equation (4.17). Then all two-dimensional isoenergy maps involving
k can be obtained by sweeping a range of some parameter X and calculating k
for the given X, at certain energy level F and other parameters fixed. Below

we list parameters obtained analytically as functions.

T((m +1)PC + PN] — (PN +2P%)(mS + CV) — PaV

b= E— (PN +2P%)(mS + CV) — PCaV (4.17)
. Ek — PN[(k — 1)(mS + CV) + T

T m+ 1T+ (k—1)(2mS + (2C + a)V) (4.18)

Ek — PC[(m+ 1)T + (k—1)(2mS + (2C + a)V
PN _ [(T +)(k _(1)(m;(+ o (V) (4.19)
Ek — Sz[(m + 1)P¢ + PN] — (k — 1)mS(PN + 2PC)
= lm+ 1)PC PV + (k- 1)(PNC + (2C 1 a)PO) (4.20)
g Bk =Vz[(m+ 1)PC + PN] — (k= 1)V[PNC + PY(2C + a)] (4.21)
21[(m + 1) PC¢ + PN] + m(k — 1)[PN + 2P¢] '

where T, z1, zo were given in equations (4.9), (4.10), (4.11).

41

Scheduling divisible computations with energy constraints

Unfortunately, for parameters a,C, m no explicit function representation is
known. Furthermore m is discrete. In these cases the isoenergy line can be
found numerically for a given energy level E. Let (X,Y") denote an isoenergy
map for parameters X and Y. For example, in the isoenergy map (a,C) let
parameter a be an independent variable. We set certain value of a, while the
remaining system parameters are fixed. Using equation (4.16) the value of C' at
which energy is E can be found numerically, e.g., by binary search over C'. This
procedure is repeated for a range of a values. The isoenergy maps involving any

pair of parameters a, C, m were constructed numerically.

4.3 ISOENERGY MAPS EXAMPLES

In this section we give examples of typical isoenergy map forms for divisible com-
putations. Let us first make some general observations. Note that some amount
of energy inevitably must be used. For example, at least energy P¢aV must
be consumed in the computations. Furthermore, some parameter combinations
may be infeasible, as observed in Section 4.2. Consequently, some isoenergy

lines (e.g. for £ < P°Va) or some parts of the line may be inaccessible.

8

Since our model has 8 parameters, there are (2

) = 28 two-dimensional
isoenergy maps. Due to limited space only a subset will be presented. A bigger
collection of isoenergy maps can be found at [31]. Rather than studying obvious
candidates for energy saving like a,V, P¢, we analyze the less obvious ones
and the relation between the cost of communication and computation. Unless
stated otherwise, the isoenergy maps were constructed for reference parameters:
m = 1000,a = 1E-3, C =1E-8, S = 100,V =1E11, k = 3, P¢ = 200, PN = 50.
The above values can be interpreted as follows. There are m = 1000 processors.
A load unit is processed in 1 ms (a = 1E-3), and communicated in 10ns (C' =1E-
8). If the load units were 10 bytes, then processing speed of a processor would

be 10kB/s, communication speed 1GB/s, and the size of load would be 1TB. A

processor uses P¢ = 200W, and the network PN =50W. In the idle state power

42

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

usage is k = 3 times smaller. In such a configuration the load is processed
in T ~ 1.51E5s using F =~ 2.34E10J (6500kWh). In the isoenergy maps we
explore wide ranges of the parameters. For example, values up to 1E4W for
PC, or 1IE9W for PN are shown in Fig. 4.5. It may be disputable if such values
make sense, especially if we assume a single chip point of view. The rationale
for such wide range of values are the following: A processor in our model might
range from a single shader in a graphics card to an entire datacenter, hence
wide range of PC. If we intend to analyze a datacenter with many processors
then PV may be indeed big [4, 38]. Our principal objective is to uncover shapes
of the isoenergy lines to observe mutual interactions between the platform and
application parameters. If we discover some phenomenon in the extreme range
of parameters, we can safely exclude such phenomena in practice. Hence, the
investigated parameter ranges should not preclude exposing the shapes of the

isoenergy lines.

4.3.1 PROBLEM SI1ZE vS COMMUNICATION RATE

The map (V,C) for the reference parameters is shown in Fig. 4.4. The con-
figurations in the upper-left corner, where communication is slow and problem
size small, are infeasible as explained in Section 4.2. With the progress in high
performance computing sizes V of the solved problems inevitably grow. Fig. 4.4
determines whether the energy consumption induced by growing problem size
can be compensated by faster communication. Map (V,C) shows that energy
consumption grows mainly with V. Only for C greater than certain threshold
does the energy use depends also on C. The threshold value of C' is determined
by the relation between the energy consumed in the computation VaP¢ and
the energy used up by processors waiting in the idle state to start computations,
which is roughly VO(P“m + PN)/k. Hence, for Pm > PN and C greater
than approx. ak/m =3E-6 can the two parameters compensate each other. It
means that communication must be faster to keep with growing V' and maintain

constant energy use. Alternatively, it can be said that for C > ak/m communi-

43

Scheduling divisible computations with energy constraints

N
infeaSible [SUPPPPPRIRL L |
.......................... = Nt
lE_S’ SRUNRPTEX i I\ |
1E6} |
[E=1E11 |
1E-7¢ |
E=1E11 ——
1E-8 E=1F12 —— |
E=1E13
E=1E14 —— |
E=1E15 ——
E=1E16 ——
E=1E17 —— |
feasibilig/ --------- V
1E-g L SASIDILY |

1E10 1E11 1E12 1E13 1E14 1E15 1E16 1E17 1E18

Figure 4.4: Isoenergy map for load size V', and communication rate C. The
arrow shows direction of decreasing energy F.

44

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

cation is too slow and incurs unnecessary energy cost by holding the processors
idle. Application of isoenergy map (V,C) in a real-world scenario could look
like this: It is planned to process increasing problem sizes V' using the existing
application and datacenter. What should be done to prepare for such change
and curb energy use? The energy consumption will inevitably increase with V.
The main component is computation, product VaP¢ must be minimized. This
can be achieved by better algorithms and programming (a), better hardware
(PY). Further changes depend on the interaction between a,C,m, k, P¢, PN.
If Pm > PN and C < ak/m no changes in networking subsystem are needed.
For the example application parameters introduced at the beginning of this
section P“m > PN condition holds, C=1E-8< ak/m = 3E-6 and changes in
the communication subsystem are ineffective. Assume however, that by more
advanced algorithm and better programming speed of the application increases
ten-fold, i.e. a is reduced to a=1E-4. Then, at roughly m = 3E4 processors it
will be necessary to increase communication speed (1/C), roughly proportion-
ally to the increase of V, to curb energy costs.

The shape of the isolines on map (V, PY) is quite similar, and for very big
values of PV, the network power influences energy usage on the scale comparable
with V. The isolines on map (V,S) have similar shape as in Fig. 4.4, but
the lines are parallel to S axis in nearly whole feasible range of parameters.
Hence, reducing startup time S is in general insufficient to compensate energy

consumption incurred by growing problem size V.

4.3.2 PROCESSOR POWER vS NETWORK POWER

The isoenergy map (P, PY) is shown in Fig. 4.5. Processor power P¢ and the
network power PV are two main parameters determining overall energy con-
sumption. This map shows whether growing network power PV can be com-
pensated by reducing processor power P¢, or vice versa. The isoenergy lines
have knee-like shape with energy decreasing toward lower-left corner, i.e. when

PN and P are decreasing. In the upper part of the map the isoenergy line is

45

Scheduling divisible computations with energy constraints

1E9

1e8k | E=1E13

1E7 |

1E6 | \

= — '
1E4}
1E3 —\
- E=1E13 ——
E=1E09 - E=1E12 ——
E=1E11
1E21 E=1E10 —— 7
E=1E09 ——
PC
1E1
1E0 1E1 1E2 1E3 1E4

Figure 4.5: Isoenergy map for network power PV, and processor power PC.
Arrows show direction of decreasing energy E.

46

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

parallel to P® axis, and PV is determining energy consumption. The energy
use is dominated here by component TPY /k from E! (see equation (4.13)). On
the lower part (parallel to PV axis) energy consumption is determined by the
energy aV P¢ needed to compute the whole load. The two parameters can com-
pensate each other only in a narrow range of values. The shapes of the isolines
on (PY, PY) map remain the same for wide range of system parameters [31].
In the areas where either P¢, or PN play role, their reductions correspond with
roughly proportional reductions in energy consumption. A real world use of
map (P¢, PV) could be as follows. A system designer reduces computer power
P, by using better hardware: CPUs, memory, power supplies and cooling,
but ignores energy in the communication subsystem. Isoenergy map (P¢, PV)
demonstrates that it will ultimately lead to exposing energy used in network-
ing, and then PN will have to be reduced, too. Though P¢, PN hardly ever
can compensate for one another, they have to be minimized in unison because

minimizing one exposes the second power type.

4.3.3 PROCESSOR NUMBER VS NETWORK POWER

Isoenergy map (m, PYV) is shown in Fig. 4.6. Users increase processor numbers
m to take advantage of concurrency, and reduce the computation time. Thus,
map (m, PV) shows whether energy costs resulting from greater processor num-
ber m can be compensated by reducing network power PN. The isolines have
step-wise form because processor numbers m are discrete. For the assumed pa-
rameters, configurations with more than m = 1411 are infeasible. It can be seen
that for big load sizes and sufficient energy budget (Fig. 4.6 upper part), PN
on the isoenergy line increases roughly linearly with m. This means that the
energy use decreases with decreasing PV and increasing m. The former could be
intuitively expected, the latter can be explained as follows. Load size V is suf-
ficient to effectively exploit many processors, and computations scale well with
m. With each new processor schedule gets shorter which spares energy because

load chunks are smaller, computations start earlier, and we pay less for keep-

47

Scheduling divisible computations with energy constraints

1E10 T

(E=1E11 ——
E=1E14 ////”/””ﬂ—_——h‘\?E=5E1o S

E=2.02E10 —— -

1E8
~Teasibility e

1E6

{’\

E=2.02ET0 m

1E4

1E2

IR

1E0
1EO 1E1 1E2 1E3 1E4

Figure 4.6: Isoenergy map for processor number m, and network power PV,
Arrows show direction of decreasing energy E.

48

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

ing idle (waiting) processors. Hence, certain inefficiencies in the communication
can be compensated by concurrency of computations. This applies to quite big
values of PN and E, or small m. However, even the topmost lines in Fig. 4.6
bent down at the right ends, showing that this way of energy savings is limited.
On the other hand, when the energy budget is tighter (Fig. 4.6 the lower part)
the situation changes radically. By a tight energy budget we mean here that
the energy level is at the minimum attainable by changing the two parameters
m, PN only. Both ends of the isoline are almost parallel to axis P, and energy
use has a minimum for some small m. This shape emerges in the following way.
On the left end certain isolines are inaccessible because other components incur
high energy consumption which cannot be compensated by P alone. On the
right end increasing processor number brings higher activation costs which hit
against tight energy budget, and again P" alone becomes insufficient to keep
energy use constant. On the one hand, it is hard to expect that users will resign
from increasing processor numbers m since it is an essential idea of parallel pro-
cessing. On the other hand, there is a limit to energy savings by reducing PV
when m is growing. Consequently, reducing the overall energy consumption by

limiting PV does not scale well with m.

4.3.4 PROCESSOR NUMBER VS STARTUP TIME

Isoenergy map for processor number m and startup time S is shown in Fig. 4.7.
The upper-right corner of the map contains infeasible configurations. Map
(m, S) shows how startup times S should change with growing processor num-
ber m to avoid using additional energy, and to what extent such compensation
is possible. Observe that for a fixed S the energy E has minimum at certain
m. The shape of the isoenergy lines can be explained as follows. When the
number of processors is small, the contribution of the startup to the overall
energy consumption is also small, and S alone cannot compensate for energy
usage incurred by other parameters. Hence, some isolines cannot be seen for

arbitrarily small m. When the number of processors increases two factors come

49

Scheduling divisible computations with energy constraints

1E8 B o -
E=5E10 ——
E=2.5E10 —
E=2.2E10 ——
i i E=2.1E10 ——
1E6 I .. linfeasible (E-2IE10
— E=2.004E10 ——
feasibility =«-«----
& E=5E10
1E4]
1E2

1EO \

TN

=2.004E1(Q
1E-4 ‘
m
1E-6
1EO0 1E1 1E2 1E3 1E4

Figure 4.7: Isoenergy map for processor number m, and startup time S. Arrows
show direction of decreasing energy F.

50

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

into play: Schedule length decreases, and the cost of processor activations in-
creases. Initially, adding a few processors reduces schedule length. This spares
some energy because the system is used for a shorter time. These savings can
be "wasted” in longer startups. Therefore, the isoenergy lines are bent down
for small m. If the processor number increases even further the reduction of the
schedule length is insufficient to compensate the energy needed for the startups,
and S must decrease to keep energy constant. The form of the right end of the
isoline depends on the energy budget. Again, a tight budget means here that
the energy level approaches minimum achievable by changing the two param-
eters m, S. If energy budget is tight then the relative contribution of startups
quickly increases with m. Consequently, startup times must radically decrease
which ultimately becomes unattainable. Thus, in the areas where the isolines
are parallel to axis S, no further reduction of S will provide any energy sav-
ings. This signifies lack of scalability of energy optimizations based on S only.
Note that energy range is narrower in Fig. 4.7 than in the earlier figures. It is
approximately 60% of the highest isoline. Moreover, values of S in Fig. 4.7 are
in range from moderate to exceptionally big. This means that energy savings
here are shallower than by changing values P¢, P and product aV discussed

earlier.

4.3.5 PROCESSOR NUMBER VS POWER REDUCTION FACTOR

In Fig. 4.8 isoenergy map (m, k) is shown. The shapes of the isolines can be
explained as follows. For small m schedule length decreases with each new
processor. This reduces the idle part of energy (E! in equation (4.13)), and a
bit more energy can be "wasted” by decreasing k. When the effect of shortening
schedule length T with growing m slows down, and still energy use increases
with each added processor, then constant energy use can be maintained by
aggressively cutting of power from the idle equipment, and %k ascends with m.
Consequently, for fixed k energy use has a minimum at certain processor number

m. The increase of k is particularly sharp for tight energy budgets. In effect,

o1

Scheduling divisible computations with energy constraints

1E5

—_— —
E=2.001E10
k E=2.01E10
E=2.1E10

E=2.2E10
E=2.5E10
E=3E10
1E4 feasibility -

E=2.001E10

1E3

1E2

1E1

HH T
S

/ §E=3E10
1E0 ::Tlhm“i 5 m

1EO0 1E1 1E2 1E3 1E4

Figure 4.8: Isoenergy map for processor number m, and idle power reduction
factor k. Arrows show direction of decreasing energy FE.

52

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

using low power modes is inefficient when m is big. A similar conclusion was
drawn for (m,k) and Gustafson’s speedup law (cf. Fig. 4.1b). The lowest
isoenergy line energy level is more than 67% of the highest one. Thus, savings
by cutting off power from the idle equipment may have smaller effect than

reducing P, PN, aV .

4.3.6 PROCESSOR NUMBER VS COMMUNICATION RATE

Isoenergy map for processor number m and communication rate C' is shown in
Fig. 4.9. Map (m,C) shows how communication rates C' should change with
growing processor number m to avoid using additional energy, and to what
extent such compensation is possible. Note that the isolines have step-wise form
because processor numbers m are discrete. The top-right corner of the chart
contains infeasible configurations. As observed in Section 4.2.1 it is not possible
to run computations on large number of processors m when communication
speed is very low (i.e C is large) because the whole load can be processed on
a subset of processors. Closer examination of formula (4.8) reveals that in the
numerator of the second part of the sum term 1—x"" becomes dominant and with
m tending to infinity the second part of the sum tends to S/C. Consequently,
component V(1 — k)/(1 — ™) ~ V(C/a)!=™ is the biggest in (4.8). Thus,
with growing m, communication rate C' must quickly decrease to guarantee
feasibility of the load partitioning. It can be observed that in general in the
isolines C' decreases with m which is intuitively expected because adding each
new machine increases activation energy costs which must be compensated by
shorter communication. Only in a narrow interval of small processor number
and low energy budgets are the isolines are lightly concave. It is because some
initial increase in the processor number reduces schedule length and hence also
idle waiting which allows for slightly slower communication (C can grow a bit).
Note that communication rate values are extremely large in Fig. 4.9 for small
m. This means that communication rate C' — processor number m interaction

plays important role only if processor numbers are large.

53

Scheduling divisible computations with energy constraints

E=1E20
C E-1E19 ——
E-1E18 — —
1E4 E-1E17 ——
E-1E16 —
E-1E15 ——

E=1E14
E=5E13
feasibility ------

1E2

1E0

1E-2

1E-4

1E0 1E1 1E2 1E3

Figure 4.9: Isoenergy map for processor number m, and communication rate C'
for a = 1E-2.

54

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

4.3.7 PROCESSOR NUMBER VS PROCESSOR POWER

Isoenergy map (m, P¢) is shown in Fig. 4.10. It can be observed that for large
energy budgets, P¢ can be large and since the energy, firstly, depends on the
computation time Va, and secondly, it dominates the whole energy consump-
tion, the isolines are nearly parallel to m axis. This means that there is no
compensation between m and P€ in this area. The situation is different for
tight energy budgets. On the one hand, some energy will be consumed anyway,
e.g. PNCV in distributing the load. This cannot be compensated by reducing
P or m. Hence, the isolines for small energy budgets turn down (toward small
PC) and end abruptly. On the other hand, increasing m requires energy in
activating new machines. This cost can be compensated by reducing P¢. Con-
sequently, also for large m the isolines turn down. It means that with respect
to energy costs and for tight energy budgets, there is an optimum number of

processors which balances energy costs and gains of parallelism.

4.3.8 PROCESSOR POWER vs LOAD SIZE

In Fig. 4.11 isoenergy map for processor power P¢ and load size V is shown. In-
feasible solutions are located at the bottom of the isoenergy map where problem
sizes are too small to run computations on all processors. It can be seen that
with growing processor power load sizes have to decrease to keep energy at con-
stant level. This is an expected behavior because energy VaP¢ consumed in the
computations has to be kept constant. The isolines are very regularly spaced in
the map and almost parallel to each other. The (P®, V) isoenergy map confirms
a quite natural conclusion that bigger problems need more efficient processors

to keep the same energy levels.

55

Scheduling divisible computations with energy constraints

1E5 :
c]
P]
(L] — —
\
—
1E0 F’—'_'/ E
E-le1§ ——
| E-te17 ——
1E-21 Ete16 ——
E-1el5 —
E-feld ——
E-1e13 ——
1E-3 i
1E0 1E1 1E2 1E3

Figure 4.10: Isoenergy map for processor number m, and processor power P¢
for C' = 1E-2.

56

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

- 3 E=1e19
118V E=1el8 |
E=le17 —— |
E=1e16
E=1e16 ——
E=le14 ——
TEAG [s E=1e13 ——
\ E=1el2 ——
E=lell ——
E=1e10 ——
1E14 E=1e9
\\ E=1e7 .
E=1e6
1E10 \
\
1E8
1E6
—
1E4
C
T Y M P
1E0 1E1 1E2 1E3

Figure 4.11: Isoenergy map for processor power P¢, and load size V for m = 10.

o7

Scheduling divisible computations with energy constraints

4.3.9 NETWORK POWER vS STARTUP TIME

Isoenergy map for network power PV and startup time S is shown in Fig. 4.12.
The top of the map contains infeasible configurations where startup times are too
large to activate all processors. For E = 201E13 the map has knee-like shape.
For bigger energy levels we can see only part of the knee shape. This shape of
isoenergy line means that with respect to keeping energy usage stable in very
wide ranges of its values S remains unrelated to growing network power PY. At
some extreme values of PV, startup S can compensate growing network power
because power PV is used in the network when a machine starts. However, the
range of PV and S must be large for this compensation effect to emerge. Let
us also note that most of the (P, S) is covered by a plateau with little energy
changes. This means that in practical ranges of system parameters S and PV

are secondary factors determining energy consumption.

4.3.10 NETWORK POWER VS COMPUTATION RATE

Isoenergy map for network power P and computation rate a is shown in
Fig. 4.13. The bottom of the map contains infeasible configurations where low
computation rate a (computation is too fast) results in computation time too
short in relation to the communication time to allow starting all the processors.
In a wide area of a and PV pairs isoenergy lines are parallel to the PV axis.
It means that energy consumption VaP® in computation is a key component
of the total energy consumption and the changes in a cannot be compensated
by changes in networking power PY. Conversely, for tighter energy budget
and fast computations, like £ = 1E14 and a =~ 1E-4, the isoline has knee-like
shape. This means that for very large network power P and fast computation
(low a) the energy consumed in the network becomes dominant. Then, decreas-

ing computation rate a (faster computations) can compensate growing network

58

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

1E8
............... AP EP P
1E7 \\ :
1E6
1E5
1E4
E=201e13 ——
E=205e13 ——
E=21e14
1E3 | E=22e14
E=23e14
E=24e14
E=25e14
E=3e15 —— PN
feasibility ------
1E2 :
1EO 1E1 1E2 1E3 1E4 1E5

Figure 4.12: n Isoenergy map for network power PV and startup time S for
k = 100.

59

Scheduling divisible computations with energy constraints

power PV, It can be observed that such an effect is limited by feasibility of
system configurations because small a required for the compensation to emerge

also restricts the feasibility area where the effect appears.

4.3.11 COMMUNICATION RATE VS STARTUP TIME

A (C,S) isoenergy map is shown in Fig. 4.14. The top-right area of the map is
infeasible. It means that both too large startup times and too slow communi-
cations (C is large) prevent activating the required number of processors. We
can see knee-like shape of the isolines in Fig. 4.14. Again, such knee-like shapes
signify that two effects can dominate the energy consumption and they compen-
sate each other only in a narrow area of system configurations. For very large
S and small C' the machine activation cost mS(PC + P¥) dominates energy
VCPYN consumed in communications. Consequently, energy is determined by S
and independent of C' (top of the picture). Conversely, for large C' and small S
(the right side of the picture) energy consumption in communications is larger
than the machine startup energy, and total energy consumed does not depend
on S. The two parameters can compensate one another only is a relatively nar-
row area when mS(P¢ + PV) ~ VCPN. Note similarity of the isoenergy map

to the map (PV, P®) in Fig. 4.5.

4.4 CONCLUSIONS

In this section we proposed a new concept of isoenergy map. Such maps show
relationships between parameters determining energy use in processing divisible
loads. They indicate how changes in one parameter of the system must be
matched by changes in other parameters, to achieve the energy savings. The
maps can be also used to identify conditions when some parameters have no

influence on the overall energy use.

60

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

1E2

E-1e19 ——
a E=1e18 ——
E=1e17 ——
E=1e16 ——
1E1 | E=1e15 ——
E=1e14 ——]
feasibility ------ e
1EO0
1E-1 3
1E-2
1E-3
S T L T L T s
1EO0 1E1 1E2 1E3 1E4 1E5

Figure 4.13: Isoenergy map for network power P, and communication rate a.

61

Scheduling divisible computations with energy constraints

R e e e s S ———
1E6 ﬁl]| \ [-‘.
1E4 :
1E2
1E0
1E-2
1E-4
E=6e16 ——
1E-6 L E=5e16 4
E=4e16 —— k
E=25e15 p
E=22e15 —— !
1E-8F E=21el5
feasibility ------ C

1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1

Figure 4.14: Isoenergy map for communication rate C', and startup time S at
a = 10.

62

CHAPTER 4. ISOENERGY MAPS WITH UNLIMITED MEMORY

The idea of isoenergy maps has been applied to analyze performance for
three energy use models. It has been observed that Amdahl’s and Gustafson’s
perceptions of parallel application are essentially different, and consequently
give opposing indications. For divisible loads we expected that increasing pro-
cessor number m may bring only costs. But it appears that increasing m reduces
schedule length and subsequently minimizes the consumed energy. Our anal-
ysis confirms that that intuitively obvious parameters of processor power P,
network infrastructure power PV or the time of computation aV are the most
influential and hence most scalable determinants in energy saving. Parameters
like idle state power consumption factor k and startup time .S allow for shallower
energy reductions. There are pairs of parameters, e.g. the number of processors
and startup time (m,S) or network power consumption (m, PY), which can
compensate each other to keep energy use constant. On the other hand, in cer-
tain conditions some pairs, e.g. processor power and network power (P, PN)
or communication rate and startup time (C,S), are mutually independent and
changing one parameter may be counterproductive because the other one should
be optimized. Our study revealed more intricate relationships which manifest
in local minima on the isoenergy maps. The minima imply that inefficiencies
in one parameter (e.g. PV, P, S, k) can be, but only to a limited extent, com-
pensated by some other parameter (e.g. increasing processor number m). This

means that scalability of such optimizations is again restricted.

Isoenergy maps provide a generic method of analyzing energy performance
trade-offs. Any scheduling model, or energy use model may take advantage of
isoenergy maps as a visualization front-end. In the complex relationships ruled
by many factors isoenergy maps give holistic view and sense of direction for

optimization efforts.

The models presented here fit well structured, intensive computations. There-
fore, future work should be targeted at other types of applications, e.g., with
multiple phases of computation and communication like NAS Grid Benchmarks

[90] or Map-Reduce applications [19, 58]. Transaction-based loads typical of

63

Scheduling divisible computations with energy constraints

OLTP or web-servers expose far greater variety of resource use profiles. More-
over, perception of the computing platform is very basic and further details
should be incorporated. For example, systems with limited and hierarchical
memory imposing limits on the workload sizes will be subject of the following

chapters.

64

5 HOMOGENEOUS SYSTEMS WITH

HIERARCHICAL MEMORY

In this chapter a homogeneous computer system with hierarchical memory is
considered. Two types of load distribution are introduced. Firstly, single install-
ment load distribution and MIP methods used to solve the problem. Secondly,
methods using multi installment distribution are presented. Simple heuristics

and optimal MIP methods are used for solving the problem.

5.1 SINGLE-INSTALLMENT PROCESSING

In this section single installment load distribution and MIP methods are used

to portion of the load sent to the machines.

5.1.1 MATHEMATICAL MODEL AND SOLUTION PROCEDURE

In this section we formulate a problem of time- and energy-efficient scheduling
of divisible loads in systems with hierarchical memory. We assume that there
is a load of size V to be processed on m homogeneous machines. We will be
looking for the lowest possible energy E subject to a limited processing time 7.

The time schedule of communications and computations is shown in Fig. 5.1a.
The process starts with the load held by the originator (initiator, resource allo-

cator, etc.), computer further denoted as My. The originator is connected with

65

Scheduling divisible computations with energy constraints

w5 [ca [5] Ca |5 [Ca]
a) M1| S | Ca, | tf = max{a,a;a,a, +b,} |
Mz| N | Ca, | o |
w5] Ca] 2 | |
m[S [Ca | 7]

W[Fs [Pce 175 | 7 Ca 75 e
b) mi[P’s | P'Ca, | EF = max{k,a,: k., +1L} |
M, Ps | PYCa, | EF |
M| pis [PV Ca| EX |
M,| PSS |P"éa,,| EF |

Figure 5.1: Schedule of the DLT computation a) timing b) energy usage.

all worker machines (computers, processors) My,..., M,,, by means of some
network with communication rate C. The originator is dividing and distribut-
ing the load. Communications are performed only between M, and the workers,
one at a time. The load of volume V is sent in chunks of size aq,...,a,, to
machines My, ..., M,,, respectively. Machines take nonzero startup time S be-
fore they become capable of performing communication. This might represent
a simple waking up time, as well as more complicated processes like loading
appropriate VMs or platforms in dynamically scalable clouds. When the trans-
fer of a chunk of load to machine M; is finished, M; starts processing it, while
the originator activates machine M;,; in order to send to it load «;41. The
procedure is repeated until starting computations on all m processors.

It is often assumed in DLT that the time of returning results is negligible.
Discussion on extensions of the DLT networking model including results collec-
tion time, parallel communications or communications concurrent with compu-
tations can be found in [22, 26, 28, 74]. For intelligibility of the further analysis
such alternative communication and computation strategies are not considered
in this section.

It is assumed that a machine can be in one of four states: idle (I), starting
up (S), networking (N) or running, i.e. performing computations (R). With

tN 4R

YV T

these states power consumption rates P/, P9, PN P and durations ¢/, S

66

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

are connected, respectively. As these states might be of complicated nature, we
assume that the powers are averages representing the on-going processes. The
product of power consumption and time gives overall energy usage. Startup time
S is the time a machine needs to wake up from idle and become operational,
i.e. start networking or computations. The value of S is equal for all machines.
The idle state can represent various situations in reality. Firstly, the machine
can be turned off or hibernated to HDD and waiting for a signal to boot up.
The corresponding P! value will be the lowest, possibly a few Watts, but the
startup time will be the longest one, even up to dozens of seconds depending on
the software to be loaded. Secondly, the machine can be suspended to RAM,
then the startup time will be at the level of seconds, but the power consumption
will be around several dozens of Watts. Finally, the machine can be on and
waiting to start executing a new task within a second, but the idle power rate

will be up to 100W.

The energy consumed by machine M; can be calculated as:

E;=E’+E/+E+Ef

The running energy Ef* depends on the size of assigned load «; as determined
by equation (3.2). As the communication rate is C, the total communication
time is calculated as th = C'ay; and energy as Efv = PN(Ca; for machine M;. If
some machines are not used in the schedule, their loads are a; = 0 so in effect
EN =0 and EF = 0. However, we need a binary decision variable z; indicating
whether machine ¢ is used in the schedule. Thus, the energy consumed in the
startup is EY = ;S P?. The idle time can be calculated from the length of the
schedule T and the remaining three times t/ = T — Sx; — Ca; — tf*. Hence, we
get:

E;, = 2;SP° + ti]PI + Co; PN + max{kjoy, koo + l2} (5.1)

67

Scheduling divisible computations with energy constraints

Energy Ey consumed by the originator Mj is calculated differently. It uses
power PV when other machines are starting up or during communication and
the originator goes idle when all the load is distributed. Originator does not go
idle when some other machine is waking up, because this would require some
wake up time from him too. Including suspension of the originator into the

model would complicate the model beyond reasonable need. Thus, we get:
Bo=PNO @S+ tN)+ PHT = "tV =" 2,8) (5.2)
i=1 i=1 i=1 i=1

Considering that

m

> ot = czm:ai =CV
i=1 i=1

equation (5.2) can be transformed to a more convenient form:

Ey=PN() 2:8+CV)-P'()_2;5+CV)+P'T =

=1 i=1

=pPlT + (i ;S + CV)(PN — P (5.3)

=1

Total consumed energy is:

E= ZE + E, (5.4)

i=1
The problem of time- and energy-efficient scheduling can be formulated as
an integer linear program for minimizing schedule length:

min 7', subject to £ < F, (5.5)

where E’ is energy limit, or as an integer linear program for the minimization
of energy consumed:

min F, subject to T < T7, (5.6)
where T” is some limit on makespan. In both cases, it is further required that:

68

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

iai =V (5.7)
=1

ixiSﬁ-Ci(xi—l—tng Vi=1,...,m (5.8)
i=1 =1

th+ Sa; + Coy +tl =T Vi=1,...,m (5.9)

a; <V, Vi=1,...,m (5.10)

z; € {0,1} Vi=1,...,m (5.11)

In the above formulations, the sum of all load chunk sizes must be equal to
the whole load (5.7). Inequality (5.8) ensures the proper timing: the startups
and communications of machines My, ..., M;_; have to elapse before machine
M; starts up. The startups, communication and computation of machine M;
must end before the end of schedule T. Note that constraint (5.8) is an implicit
equivalent of optimality criterion used in DLT. Equation (5.9) allows to calculate
the value of idle time t!. Inequality (5.10) sets x; to 1 if machine M; is used in
the schedule. When minimizing schedule length with the objective function (5.5)
and constraints (5.7)-(5.11) energy E necessary for that schedule is calculated
from (5.4). When minimizing the energy usage with the objective function
(5.6), and constraints (5.7)-(5.11) schedule length T" has to be given, as we do

not perform direct bicriterial optimization with the above formulation.

5.1.2 TIME-ENERGY TRADE-OFF IN CLOSE-UP

In our model we have a set of 12 parameters: V,C, S, PS, P! PN ki, ko, a1, as,
size of the RAM indirectly represented by ls and by, and machine number m.
Testing all relationships between all possible values of these parameters is not
doable in the limited space of this thesis. Thus, we decided to stick to the
analysis of the relationships between schedule length and energy consumption.

In the following charts all parameters have fixed values except for m and one

69

Scheduling divisible computations with energy constraints

Table 5.1: Index of the analyzed parameter ranges.

Parameter Unit Default Range Studied

value Min Max in Fig.
1% [MB] 10000 200 100000 5.2 - 5.6
C [s/MB] 0.006 0.00001 0.1 5.7
S [s] 70 0.1 100 5.8
pPs [W] 101 101 112 -
Pt [W] 6 6 79 -
PN [W] 91 91 116 -
k1 [J/MB] 13.00 9.03 18.72 5.9
k [J/MB] 294.43 150 500 5.10
ay [s/MB] 0.08 0.025 04 5.9
a [s/MB] 2.37 0.53 2.37 -
p [MB] 996 100 100000 5.11

parameter the impact of which will be analyzed. With that setting we generate
a series of (T, F') values using increasing number of available machines. A guide

to the analyzed parameter ranges is given in Tab. 5.1.

Now let us discuss shortly the default values we used in our analysis. The
units used in Tab. 5.1 are seconds, MegaBytes, Watts. The size of the load
V' = 10000 is 10GB. The value of C' = 0.006 means that 1MB of data will be
transfered in 0.006s and represents network with bandwidth ca. 1300Mbit/s.
Power consumption values P1 = 6, P° = 101, PNV = 91 are chosen from the
range of values observed on real machines in experiments described in Section
3.3. The power rate at the startup P! = 6 and the startup time S = 70s
represent computers waking up from hibernation to HDD, and then loading
system or other necessary software. This is again a real measured value and time
of 70s is acceptable in schedules of lengths usually between 1000s and 10000s.
Unless stated otherwise the above values were used for all charts. Parameters
describing processing rate and energy cost of computations a; = 0.08,ay =
2.37, k1 = 13.00, ko = 294.43 were chosen from the range of measured values
presented in Tab. 3.3. The machine represented in this analysis had 996MB of

RAM available for the data. This may represent a 1GB machine with lightweight

70

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

1.4E+06 .«

m=10

1.4E+05
3E+02 3E+03 3E+04
Time [s]

Energy [J]
\
\

Figure 5.2: Minimum time and minimum energy points for different load sizes
(log scale).

operating system and software, or for example 1.5GB VM or even 2GB machine
with much heavier environment. Values of [= —280303.72 and by = —2274.89
where calculated to represent RAM of 996MB.

To obtain data for the charts presented in this study, the ILP model pro-
posed in the previous section was programmed in CPLEX 12.6 software. Time
minimization (5.5) was performed first with changing the number of machines
available for the computations: every point in a chart is a result of solving one
minimization problem. Usually values of m up to 20 or 30 were tested, because
larger values increase solution time beyond a few minutes. Since changes of m
are of discrete nature, the corresponding points in the charts are connected with
dashed lines to guide the eye and help analyzing the results. When an energy-
makespan relationship for fixed machine number is represented by more than
just points, we proceed differently. For the selected numbers of machines we
examined minimum energy derived from (5.6) with schedule length increasing
with the resolution of 1s. As this change is continuous in nature (any arbitrary

time value can be used) we marked these schedules with solid lines.

71

Scheduling divisible computations with energy constraints

In Fig. 5.2 energy and makespan for two different problem sizes V' are de-
picted. This figure will suit us to discuss some phenomena, but also to explain
how to read the following charts, as they contain many different curve shapes.
The diagonal dashed lines for V' = 5000 and V' = 10000 mean that allowing
more machines for computations was both decreasing schedule length and en-
ergy used. However, the curves have pipe-like shape, i.e. the set of points on the
left end of the curve forms a vertical line. This means that allowing more com-
puters than in the point at the bottom of the pipe did not shorten the schedule
while it increased energy usage. The reason is that it is impossible to use more
machines. Machines start in sequence; machine M; can start computations at
time Zgzl z;S+C Zle o; and at some number of machines j this time exceeds
T (here the optimum schedule length). Thus, the machines that were available,
but not used, were only wasting power P! in the entire time 7. Note that the
maximum number of usable computers changes with V' and should be set prior
to computations to avoid wasting energy E!. Due to single installment load
distribution the loads «; are uneven. Consequently, for both data series (the
dashed lines of the shortest schedules) virtually all machines performed out-of-
core computations. For example, for V' = 10000 only the last two machines
are computing on-core. If we increase schedule length, more machines can get
a load equal to 996MB of RAM and compute on-core which is energetically
cheaper. For V' = 10000 it is possible to give 996MB to at most nine machines
and 1036MB to the remaining one, in this way obtaining the schedule with the
lowest energy marked on the chart by a triangle. Between the point of the
shortest time (bottom of the pipe) and the point of the lowest energy (triangle)
we have a line of the minimal energy for a given schedule length. This line can
be understood as a trade-off line where we can reduce computation time at the
cost of increased energy consumption. And vice versa, we can reduce energy

intake, but at the cost of longer processing.

72

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

1500000
1250000 —-"

o -7
1000 000 A0

Energy [J]

750 000 -7

500 000
m=10
250 000

700 900 1100 1300 1500 1700 1900
Time [s]

Figure 5.3: Minimum energy line close-up for 7 to 10 machines.

Now let us zoom on the area of points representing the shortest schedules
with 7 to 10 machines and follow the analysis in Fig. 5.3. We extended the line
representing the minimum energy schedules from the point of the lowest energy
to the right. It is visible that the energy grows with time; this is due to the idle
time of machines in the schedule. Actually with every second (m + 1) * P! of
energy is added. This line also separates the region of infeasible solutions which
is located below the line. Similar lines have been observed for smaller machine
numbers. For m = 9 energy savings which can be achieved by the time-energy
trade-off are more limited. Due to single-installment load distribution it is not
possible to build a schedule with more than only two machines operating on-core.
Similarly, for m = 8 and m = 7 no energy savings below the level achieved at
the shortest schedule are possible by lengthening the schedules. Here the longer
schedules with some machines operating on-core still use more energy (than the
minimum) because of overloading the machines computing out-of-core.

Fig. 5.4 shows these phenomena for schedules on 9 to 15 machines with
even higher resolution. It is visible now that the time-energy trade-off line for
m = 10 has two knees. Let us trace the line rightward from the point of the

shortest makespan. We start in the steepest descent area, where only the last

73

Scheduling divisible computations with energy constraints

700 000 -

650 000

600 000

550 000

500 000

Energy [J]

450 000

400 000

350 000

300 000

750 770 790 810 830 850 870 890 910
Time [s]

Figure 5.4: Time-energy trade-off close-up for 9 to 15 machines.

two machines are receiving loads «; smaller than their RAM size. This limited
use of the on-core processing is again due to single-installment load distribution.
Lengthening the schedule allows to shift the load processed out-of-core in the
eight first machines to the last two machines. When the schedule is long enough,
the penultimate machine receives load of the RAM size and only the last machine
can receive a load smaller than the RAM size, then the minimum energy line
reaches its first knee around 7' = 770. The process of shifting the load to the last
machine, still working on-core, continues with increasing schedule length until
arriving at the second knee (being the point of the lowest energy of T & 840).
Here the last machine receives a load equal to its RAM size. The line is steeper
in the area where the RAM of the two last machines is being progressively filled
with load, than in the area where this happens only to last machine. Another
interesting effect can be observed with the minimum energy line for m = 11.
The machines can finally conduct all the computations on-core, but the schedule
must be long enough to start m = 11 processors. When such length is reached,
the line gets another bend (T & 835), and in a small area computations on 11
machines are more energy-efficient than on 10. For machine numbers m > 11,

we portrayed here only a line for m = 15 because all these lines have the same

74

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

205 000 A

200 000 -

195 000

190 000

185 000

Energy [J]

180000

=w

ST

175000

170000

165 000

160 000

Time [s]

Figure 5.5: Time-energy trade-off for systems with shorter startup S = 7.

shape as it is not effective to include more than 11 machines in the schedule.
The lines differ only by an offset of the startup and idle energy used by the
excessive idle machines.

Fig. 5.5 presents a system where machines start quicker, i.e. in S = 7. The
rest of the parameters remain unchanged. The figure shows minimum energy
lines for m = 10 to m = 15 machines. The (dashed) line of the shortest schedules
is slightly smoother than before which will be discussed in the next section (see
Fig. 5.8). As the startup is shorter, it is possible to use more machines in the
schedules and thus reduce the makespan. As previously, the (solid) lines of the
time-energy trade-off start at the points of the shortest schedule. The shapes of
the minimum energy lines for m = 10 and m = 11 are similar as in the previous
examples; however for m > 11 new phenomena emerge. Previously, straight
lines run from the knee of the lowest energy to the rightmost part of the chart.
Now they have segments where the minimum energy is stair-casing down. Note
that the steps of the ”stairs” and points of minimum energy always appear at
the same schedule lengths. Each such step represents excluding one machine
from the schedule. The size of the energy drop is S * (PN + P®) — 25 P! which

is the energy consumed by a starting machine and the originator waiting for

(0]

Scheduling divisible computations with energy constraints

1E+08

V=100 000
muooo—o—roc—o—-o—-o—--._____.
L V=50000,
4.00-.—&-.—4——--— - =
1E+07 edes
=10000 ,
‘."..__-—’_—
= -
& - v=5000 4
& 1E+06 s R
& S
e~
‘-
1E+05
V=200
1E+04
7E+01 7E+02 7E+03 7E404
Time [s]

Figure 5.6: Energy vs time for different load sizes V.

the machine to start minus the energy used by the two machines remaining idle.
The number of steps depends on the number of machines which can be switched
off to reach the lowest energy schedule. Here, the lowest energy is achieved at
m = 11, with all machines operating on-core. Thus, e.g. the schedule with

m = 12 can switch off one machine, giving it one drop, and so on.

5.1.3 IMPACT OF OTHER PARAMETERS ON TIME-ENERGY

TRADE-OFF

In this section we will examine the relationships between time and energy con-
sumption in a broader scene. Therefore, we will analyze mainly the shortest
schedules, skipping in some charts the whiskers of the time-energy trade-off
for clarity. The time-energy trade-off will be still present in the discussion.
However, we will focus on the impact of the system parameter changes on the

performance of the computations.

In Fig. 5.6 we analyze the impact of the problem size V. For V = 200 we
observe a straight vertical line, perpendicular to the time axis. This means

that the time of the computations could not be improved by applying more

76

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
3E+06 S
,-——”—._-—" m=1
~e- ==
‘:,-}—’_‘_..—-"
- e
P
2
_Z~
>
o

=
oo
@
o
u

0

u

=

)

o

m=9
3E+05
SE+02 5E+03
Time [s]

Figure 5.7: Energy vs time for different communication rates C.

machines while the energy cost was still growing. The reason is that there was
not enough load to exploit more than one computer and all machines beyond
M were merely wasting energy in the idle state for the entire time 7. The lines
for V' = 5000 and V = 10000 were discussed previously (section 5.1.2). For
V' = 50000 and especially for V' = 100000 the curves become nearly horizontal,
i.e. almost perpendicular to energy axis. In this area it is possible to significantly
shorten computations by adding more machines, but savings in the energy will
be very limited because for V' > 1000 virtually all machines perform out-of-core

computations, which is a result of single-installment load distribution.

In Fig. 5.7 we can observe how different values of communication rate C affect
the computations. For the slowest communication at C' = 0.1, the number of
machines that can receive load is the smallest (m = 8) and the schedules are
longer and more energy-consuming than for faster communications. We get
better results with C' = 0.01 and C=1E-5. However, the difference between
them seems small considering the range of change in the network speed. The
curves for communication rate C' <1E-5 are not visible in the chart because they

overlap the curve of C' =1E-5. This shows that there are limitations of speeding

(s

Scheduling divisible computations with energy constraints

1E+06

Energy [J]
.
o
-ty
e
PN
1
@
S

1E+05
5 E+01 5 E+02 SE+03
Time [s]

Figure 5.8: Energy vs time for different startup times S.

the computations up and reducing the energy usage by means of improving only
the networking capabilities. This observation is in line with the isoenergy map
(C,m) in Fig. 4.9 showing that parameter C alone has limited capability of

reducing energy usage.

Startup time S is a parameter limiting the number of machines that can be
included in the schedule. In the previous charts the significant value of S was one
of the main bottlenecks preventing the increase of machine number. In Fig. 5.8
we study the effect of changing S on the performance of the computations. For
S = 100 it is possible to use only 8 machines and we can see a very clear pipe-
like shape in Fig. 5.8. For S > 50 the shortest schedule is also the one with
the minimum energy. However, for S < 10 the minimum energy is reached
before arriving at the shortest schedule and hitting the limit of the number of
machines that can be used in the schedule. Although it could be expected that
the minimum energy is achieved when all, or as many as possible, machines
receive a load small enough to process it in RAM, it is not the case. For S = 10
half of the machines still perform out-of-core computations in the minimum
energy schedule. In the case of § = 1 the number of machines at minimum

energy schedule grows to 28, and the pipe shape is more outstretched. With

78

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
3E+06
,.__e'f"“—u—h‘
Lo T
oci
e

= .. ;;Q’,"’L
— TN
& o™
2
S

3E+05

SE+02 Time [s] SE+03

Figure 5.9: Energy vs time for different on-core computation rates a;.

decreasing S the share of machines computing out-of-core shrinks, but actually
never disappears. For really small startups, such as S = 0.5 and S = 0.1, the
impact of the startup time on the number of usable machines is milder as we
see no sharp upright pipe shape. Since the curves noticeably bend upward at
their leftmost ends it means that the shorter computation time is gained at the
cost of increased energy consumption. Yet, the shape of this line depends also

on the load size V (see Fig. 5.6).

The impact of computation rate a; is shown in Fig. 5.9. Let us observe
that computation rate a; and energy cost ki are mutually related. Decreasing
a1 means shorter computation and consequently smaller energy consumed per
load unit. Yet, as observed in Section 3.3 this relationship is not linear because
computer systems are not energy-proportional. For example, power consump-
tion of the computing equipment does not halve with dividing CPU speed by
two. Therefore, with halving a; (i.e. doubling the speed) we divided k; by 1.2,
starting with a; = 0.1,k; = 13 as reference values. Fig. 5.9 zooms in on the
area where the most interesting observations can be made. The processing rate

here affects the number of machines that can be used in a schedule. For the

79

Scheduling divisible computations with energy constraints

fastest processing at a; = 0.025 and a; = 0.05 it is m = 9, and m increases for
the cases of slower processing, up to m = 12 at a; = 0.1. For slower processing
there are visible schedules with lower energy which may seem to be a paradox.
The explanation is as follows. For m = 9 (marked on chart) all processing is still
done out-of-core, and with slower computations more machines can be included
into the schedule and the load is divided into smaller chunks. Thus, on some
machines the load is fitting into memory, in effect allowing more energy-efficient
on-core computations. Now let us discuss whiskers marking the lines of mini-
mum energy. For clarity of the chart, whiskers are shown only for the border
values a; = 0.4 and a; = 0.025, and are drawn only partially in the area of
the linear growth. Note that the shapes of the whiskers for a; = 0.4 resemble
the ones discussed earlier. The minimum energy curve for m = 9 has the same
shape as in Fig. 5.4 and for the cases of m = 11,m = 12 there are staircase
patterns as in Fig. 5.5. The curve for m = 10 has one more bending point.
The curve is changing its slope three times, because in the shortest schedule
there were three machines with load «; smaller than the RAM size. This al-
lowed to off-load the out-of-core computations and fill the three machines up
to the RAM size in three stages of increasing the makespan. A different shape
of minimum energy line can be observed for a; = 0.025 and m = 10. Within
the minimum length schedule it is not possible to include the tenth machine
into computations. Still, for its minimum energy line two steps can be seen.
Firstly it obtains energy minimum using only 9 machines. The line is slightly
higher than the one for m = 9 because of the idle energy of the tenth machine.
Then after adding some more time to the makespan the tenth machine can be
included in the computation, reaching the energy-optimal energy point for the

computation rate a; = 0.025.

In Fig. 5.10 the impact of changing the energy cost of out-of-core computa-
tions ks on total energy consumption is depicted. Out-of-core computations are
the costliest part of the analyzed the schedules. The startup time was shortened

to S = 7 to allow better insight into the discussed phenomena. At a given value

80

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL

=500
kaOO -
—e--""7
T k=300 __ -
a7 s L
e e
-7 _a 7 k=200
4" ,"’
2E+06 ot Pt KF150_ - -
- P -
@ m=9 s ,f” -
& TN e et
1 ,/, /r/
// - X g -
il .-
’ r,, /V/
v =
| ol
| T2
2E+05
2E+02 2E+03 2E+04
Time [s]

Figure 5.10: Energy vs time for different energy factors ks in out-of-core com-
putations.

of m the points on all the curves align to vertical lines (see the line marked for
m =9). There are the same minimum schedule lengths for the same number of
machines, as ko has no impact on the schedule length. If we treat the ko = 300
curve as a reference, then we have systems with costlier out-of-core computa-
tions ko = 400 and ko = 500, as well as less less costly systems at ko = 200 and
ko = 150. Yet, all of the curves converge to a much smaller difference in en-
ergy consumption with an increasing number of machines. Part of this happens
before loads «; start to fit into RAM; even on m = 9 all machines still work
out-of-core. The savings in energy usage are a sheer result of the parallelism
shortening the schedule. For bigger values of m the convergence is even more
apparent because more machines operate on-core. This shows that, the reduc-
tions of the energy intake of the equipment have limits. Conversely, energy costs

of worse hardware can be often compensated with better parallelism.

Fig. 5.11 represents an example of a slightly different configuration. Param-
eters a; = 0.066, as = 0.53 represent a faster machine with an SSD drive. This
results in higher energy demand k; = 9.03, ko = 82.66, P° = 112, PV = 116.

Machines are waiting almost ready to start processing with § = 5 and P! = 79.

81

Scheduling divisible computations with energy constraints

- =4 m=1
= »
1E+06 ‘____,,-f:/,—;.mﬂ
k RAM=100MB_ , __e--3%=°~ Pt
.’C"..“"._._.V_.‘ : ‘—”. /’/
B s T
RN\/‘=7'00M el o » m=1
o o a® -7 .
e AGY. A0 .
E2N (N W L
o S P
. .l g
= -’ >
2 7 o L
,o” ,1’ Qy/
// ///
/// g
L7 27 A06% _ 8 m=1
) Rt
e
~o-——o———"
1E+05
9 900 9000

Time [s]

Figure 5.11: Energy vs time for different RAM sizes p.

Also communication is faster C' = 0.002, which represents effective connection
speed of ca 4000 Mbit/s. The parameter changed in Fig. 5.11 is RAM size p on
the machines. Parameters by and Iy were changing accordingly. For p =10GB
all the data fit into RAM, and the curve here has quite wide area of time-energy
trade-off. For p =5GB and p =2GB with increasing number of computers the
chunks of load start fitting into memory, and the curves are overlaying with
the one for p =10GB. For the remaining four sizes of RAM, we observe pipe
shapes similar to the previous charts. Still, there are differences: the number of
machines which can be included into the schedule before the curve upright turn
greatly increases because the system is generally faster. This also broadens the

area near the optimum energy, from a few machines up to 20 machines even for

RAM=100MB.

5.2 MULTI-INSTALLMENT PROCESSING

In this section divisible load processing methods using multi installment distri-
bution are presented. Simple heuristics algorithms and optimal MIP methods

will be used for solving the scheduling problem.

82

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL

M[S [Coy [Ca [Cou] ... [Coul Mo[S JColCulCd] .-
M[S T Cu] h M[S 1Cd] (o) [Col ()] IM‘
M, [S [Cou] h M| [§ 1Cd] (o) [Col_t(a) ’
M (S [Cul 5 M [S ICa] () Cal (o)]
M, Canl | M,

T T

a) b)

Figure 5.12: a) Single-installment schedule. b) Multi-installment schedule.

5.2.1 SIMPLE MULTI-INSTALLMENT SCHEDULING METHODS

Let us remind that processing time in load size « is 7(«) = mazaia,as + by
and energy is e(a) = mazxkia, ks + l2 (see equations (3.1), (3.2)). Let us assume
that My sends load chunks of equal size «. Actual methods of calculating
a for each specific algorithm will be given in the following. The sequence of
communications to My, ..., M, is repeated iteratively until exhausting the load.
The number of communications may be indivisible by m and the size o/ of the
last sent chunk may be smaller than a. It is assumed that computations on each
of the machines M, ..., M, last longer than sending the load to the remaining
m — 1 machines. This imposes a requirement that (m — 1)Ca < 7(a) which
can be reformulated as m < a1/C + 1 for « < p and m < as/C + 1+ by /(Ca)
for a > p. Thus, the number of processors which can be effectively exploited is
limited and it is bigger when slower out-of-core processing takes place. Now we
derive schedule length T" and energy E used when chunks of size « are applied.

For simplicity of exposition let m > 1.

The number of iterations in which all m machines obtain load « is N, =

[-£.]. The number of chunks of size o in the last iteration is Ny = [(V —

N,ma)/a]. Size of the last chunk is of = V — (mN, + Ny)a. Then, the
schedule length is (cf. Fig. 5.12b):

NiCa + max{afC + 7(af), 7(a N >0
T=S54N,(Ca+7(a))+ d ¢ (e, (e} !

max{(m — 1)Ca, o’ C + 7(af)} Ny=0
(5.12)

83

Scheduling divisible computations with energy constraints

Deriving energy consumption requires calculating idle times on My, ..., M,,, as
well as computing and communication durations. At the start of the schedule M;
is idle until time C(i — 1)a. Thus, total energy used before machines activation
is BY = PIY"" (i—1)Ca = P!'(m—1)m/2Ca. Starting m machines consumes
ES = PSmS units of energy. Energy consumed on My, ..., M,, in the computa-
tions and communications is B = (N,m+N;)(PNCa+e(a))+PNCal +e(al).

Let us assume that a/C + 7(af) < 7(a), ie., the schedule ends on the
last machine receiving a chunk of size a (see Fig. 5.12b). The idle time at
the end of the schedule on M; € {M,..., My, }is (Ny —i)Ca, on My, 41 it is
7(a)—Caf —7(af), and on M; € {Mn,42,..., My} itis 7(a) = (i— Ny —1)Ca.

Thus, total idle time on M, ..., M,, at the end of the schedule is

Ny m
1= (N;—i)Ca+r(a)—Caf —7(af)+ Y (r(a) = (i — Ny —1)Ca) =
i=1 i=Ny+2
(m — Np)r(a) + %(m _ D)@N; —m)Ca — Caf — 7(a). (5.13)

Suppose that a/C 4 7(af) > (), which means that My, 11 has no idle time
at the end of the schedule. Idle time on machines M; € {My,..., My, } is
(Ny—i)Ca+71(al)+Cal —7(a) and on M; € {My,12,..., My} itis 7(af) +
Cal — (i— Ny —1)Ca. Hence, total idle time on Mj, ..., M,, at the end of the

schedule is

Ny m
I= Z((Nf—i)Ca+T(af)+Caf—T(&))—FZ(T(af)—FCaf—(i—Nf—l)C'a) =
i=1 i=N;+2
(m — 1)(r(a) + Caf) — Nyr(a) + %(m CDEN;—m)Ca. (5.14)

Energy wasted in idle waiting at the end of the schedule is EL = P'1.

It remains to calculate the energy consumed by the originator. M starts
in networking state and then it is continuously communicating or busy waiting
until distributing the last piece of work. The idle time on My is max{r(a) —

C(af),7(af)}. Hence, the energy consumed on My is Eyg = PNT + (P! —

84

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

PNYmax{r(a)—C(af),7(af)}. Finally, total energy consumed by the methods

using load chunks of fixed size « is

E=E, + E5+ Ef + F} + E,. (5.15)

Now we will propose methods of choosing load chunk a.

Simple static chunk (SSC) algorithm assumes that load chunk sizes are
equal to the size of RAM memory, i.e. agsc = p. Thus, SSC avoids using out-
of-core memory. A disadvantage of simple static chunk algorithm are the final
outstanding load chunks. It means that if @ = [V/(pm)] # |[V/(pm)| = ¢

then in the last iteration of load distribution some processors may remain idle.

Static chunk with underload (SCU) algorithm assumes agcy = V/(g1m).
Thus, algorithm SSU sends load chunks of size at most p and avoids out-of-core

processing at the cost of one more iteration.

Static chunk with overload (SCO) attempts to round the number of com-
munication iterations down, at the cost of possibly using out-of-core processing.
Hence, in SCO size of the load chunk is agco = V/(mmax{1,¢2}). In this

formula value 1 means that at least one load distribution iteration will be done.

Guided Self-Scheduling Adaptation (GSS) algorithm uses the idea of
the classic loop scheduling algorithm [28]. Let V' be the size of load re-
maining on My to be distributed. Chunk sizes are calculated as aggs =
min{V’max{1,min{V’/m, p}}}. Thus, otherwise than in the three previous al-
gorithms, load chunk sizes decrease in the course of the schedule. Assuming that
V' > p, the algorithm starts with load chunk sizes of RAM size. When V' < p,
GSS gradually decreases chunk sizes and thus also minimizes the spread of ma-
chine completion times. GSS does not send load chunk sizes smaller than some

fixed size which is denoted here as 1 by convention. This can be a result of data

85

Scheduling divisible computations with energy constraints

4.2E+05 |

wsl W [

-S|

—%=SSC, apha<RAM
4.0E+05 —%=S5SC, alpha=RAM
-+--5SC, alpha>RAM
——SCuU

—4—SCO
3.8E+05

Energy [J]

—0—-GSS

3.6E+05

3.4E+05

3.2E+05

Time [s]

3.0E+05

150 200 250 300 350 400 450 500 550 600 650

Figure 5.13: Time-energy diagram for the default system.

structures representing processed load or some size which sufficiently amortizes
the fixed overheads in processing one load chunk. In the further considerations
we assume that it is IMB. For V' > mp the maximum number of usable pro-
cessors in GSS is the same as in the previous algorithms because initial load
chunks have size p. However, if V/p > m GSS immediately uses chunks smaller
than p, chunk sizes decrease and communications are getting shorter. In such
a situation GSS is able to start more machines than SSC, SSU, SCO without

entailing idle time on My, ..., M,

5.2.2 PERFORMANCE COMPARISON

In this section we compare performance of the above introduced scheduling al-
gorithms. Unless stated to be otherwise, the system and application param-
eters were the following: V = 10GB, a; = 0.082s/MB, a3 = 2.366s/MB,
by = —2274.9s, k1=13J/MB, ky = 294J/MB, I, = —280kJ, C =7.8ms/MB,

86

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

S = 10s, PT = 14W, PN = 91W, P® = 101W, p=996MB. It can be verified
that processing out-of-core is roughly 28 times slower per MB than processing
on-core. The energy consumption per MB is roughly 23 times higher out-of-
core. Communication rate C corresponds with communication speed of ~1Gb/s.
PT S, P% represent a system which quite effectively switches from idle to run-
ning state, e.g. from hibernation to an SSD disk. The size of RAM accessible
for storing data is p = 996MB. Values in similar range were found experimen-
tally in real systems (Chapter 3). Since our problem is bicriterial, we will show
performance as consumed energy E vs schedule length T for changing number

of machines m.

We start with a time-energy chart in Fig. 5.13 for the above reference param-
eters to introduce the phenomena guiding performance. The dependencies are
shown only partially for better visibility (but will be shown for a wider range
of time and energy in the next figure). Since schedule length 7' (in general)
decreases with growing number of used machines m, the smallest m is shown
on the right-hand-side of the chart and the dependencies progress leftward with
growing m. It can be observed that with growing m not only T decreases but
so does used energy FE. Energy performance is ruled by the following effects.
On the one hand, growing number of machines shortens the schedule and the
root My is using less energy. On the other hand, adding machines incurs energy
cost. As a result, it can be observed that energy first decreases with shortening
of the schedule, but then is starts to increase. This phenomenon can be seen
also in the following figures and was already observed in the previous section
(cf. the pipe shapes). The shortest schedules are built by the single installment
method (SI, in the upper-left corner), but using m = 24 and more machines has
big cost in energy needed to start them. At these values of m it is possible to
fit the whole load V' in core memories. Note that SI has apparent energy use
minimum at m =~ 28. Big irregularities in time and energy can be observed in
SCO. Since V is not always divisible by mp and rounding chunk sizes up results

in various values of the difference between « and p, therefore even small excesses

87

Scheduling divisible computations with energy constraints

of chunk sizes above p are escalated to big increases in time and energy con-
sumption. Consequently, SCO has big irregularity in performance and should
be avoided. Results for the simple static chunk (SSC) algorithm are shown for
three chunk sizes: 680MB, 996 MB, 998MB, where p=996MB. It can be seen that
even small increase of the chunk size beyond p has bad impact on the energy
use. Chunks smaller than p have advantage of shorter waiting time at the start
of the schedule and better load balance at its end. Hence, a small dominance
of SSC with a < p for the maximum usable number of machines. For the given
parameters the maximum number of processors which can be applied without
idle time is m = 11. Static chunk with underload (SCU), SSC with o < p and
guided-self-scheduling (GSS) have very similar performance. Still, SCU suffers
from minor irregularities in performance (T, E for m = 11 are bigger than for
m = 10) which are results of uneven rounding of V/(mp). Moreover, GSS is
able to construct slightly shorter schedule due to decreasing chunk sizes and

consequently a better load balancing.

In Fig. 5.14a time-energy chart is shown for V = 10G and V = 100G.
The static chunk with overload (SCO) manifests great irregularities because
T, E are not monotonic with growing m. Due to this adverse feature SCO
will be omitted in the further discussion. The single installment method (SI)
greatly improves its performance with growing m because it is becoming able
to shift the load from the out-of-core to the on-core processing for sufficiently
big m as discussed in section 5.1.2. Finally, at V = 10G and m > 11 its
performance becomes comparable with multi-installment methods. In Fig. 5.14b
time-energy chart is shown for p = 100MB and p = 10GB. For SI dependencies
for p = 1GB, 10GB are shown because SI’s results for p = 100MB are out of the
range shown in Fig. 5.14b. It can be seen that SI method is competitive with the
remaining algorithms only if the load is stored in core. What is more, under such
circumstances SI is able to build the best energy schedules (bottom-left part of
the chart). SI is capable of constructing such shorter schedules, but it activates

new machines which brings energy costs bigger than in the other methods. SSC

88

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

1.E+08

Energy [J]

R &

-£2-Sl, V=100G
-S|, V=10G

1.E+07
-+-SSC, V=100G

—>-SSC, V=10G
-<-SCU, V=100G
——5CU, V=10G
-#-SCO, V=100G
—4—SCO, V=10G

1.E+06
-€>-GSS, V=100G

—0-GSS, V=10G

Time [s]
5.E+05

5.E+03 5.E+04

1.E+05
5.E+01 5.E+02

-£3-SI, RAM=1G
—&- S|, RAM=10G
=% SSC, RAM=100M
~++5SC, RAM=10G

7
/
!
H
2.9E+05 !
;
!
!
!
!
j
!
!
/
2.7E405 H
!
!
!
|
/
!
3
; -A- SCU, RAM=100M
!
!
!
H
!
;
!
!
H
j
!
!
!
!
H
!

Energy [J]

——SCU, RAM=10G
~@©- GSS, RAM=100M

—0O—-GSS, RAM=10G

2.5E+05

b) 2.3E+05

2.1E+05

1.9E+05

Time [s]

1.7E+05
1.3E+03

6.4E+02

3.2E+02

1.5E+05
8.0E+01 1.6E+02

Figure 5.14: Time-energy dependence a) for V' = 10G and V = 100G, b) for

varying p.

89

Scheduling divisible computations with energy constraints

method for p = 10G uses just one load chunk, schedule length T is constant,
and adding each new machine only increases energy costs. Surprisingly, energy
performance of the multi-installment methods for small p = 100MB is better
than for p = 10GB because small load chunks reduce initial and final idle times.
It can be also observed that GSS for p = 10GB is capable of constructing
shorter schedules than other multi-installment methods because by shrinking
chunk sizes it is able to avoid idle times on processors and still activate more
of them. Yet, GSS uses more energy in this case. Both GSS and SI approach
the minimum schedule length determined by communication time: S 4+ CV.

However, GSS is more energy-efficient.

In Fig. 5.15a time-energy relation is shown for two values of the startup time
S = 0.1s and S = 10s. Two effects of reducing startup time can be observed.
The schedules get shorter roughly by the startup time of the first processor,
and energy consumption is decreased by the amount of energy saved in the
startup of the machines. In Fig. 5.15b impact of changing processing rate a;
is analyzed. The value of a; can be changed by designing a faster algorithm
to solve the considered problem. Assuming, that this new application runs
on the same computer, also k; must decrease proportionally. Three values of
ap are shown: a; = 0.1,0.05,0.02 which corresponds with an algorithm twice
and five time faster. The number of processors which can be activated by
algorithms SSC, SCU decreases with increasing processing speed (a; decreases).
Hence, this number decreases from m = 13 machines for a; = 0.1 to m = 3
for a; = 0.02. Though time- and energy-performance of all multi-installment
heuristics is similar, GSS algorithm has an advantage of using more machines
than SSC, SCU and consequently is able to build shorter schedules though at
higher energy costs. The single installment method is able to construct schedules
of comparable length but by using more machines and energy. The advantage
in energy of multi-installment methods over SI grows with decreasing a; (i.e.

speeds increases).

90

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL

2.80E+05
=
>~ -8-8,5=10
0
o —=-5|,5=0.1
c
wi -%-55C, =10
——55C, 5=0.1
-6~ SSU, 5=10
—-55U, 5=0.1
-&-GSS, 5=10
~O GSS, $=0.1
a)
o’ "
e o
00000000
Time [s]
1.40E+05
70 140 280 560 1120
3.2E+06
-
=)
&
5 -£4-81,a1=0.1 —-0-5,a1=0.05 ——5l,a1=0.02
C
w =%-5SC, al=0.1 —X-SSC, a1=0.05 —+-55C, a1=0.02
1.6E+06
-#--SCU, a1=0.1 —A-SCU,al=0.05 —A—SCU, al=0.02
-©-GSS, al=0.1 -0-GSS,al=0.05 —O-GSS, al=0.02
8.0E+05
4.0E+05
2.0E+05
1.0E+05
Time [s]
5.0E+04
8.00E+01 1.60E+02 3.20E+02 6.40E+02 1.28E+03

Figure 5.15: Time-energy dependence a) for S = 10s and S = 0.1s, b) for
changing a;.

91

Scheduling divisible computations with energy constraints

5.2.3 OPTIMUM MULTI-INSTALLMENT METHODS

In the following we propose an algorithm constructing the shortest multi-
installment load distribution in a homogeneous system. Then, the performance
of such load processing method will be studied by use of isoefficiency maps.
Thus, by referring to isoefficiency maps we focus on time performance only.
The time-energy performance in multi-installment processing will be examined

in Chapter 6.

Mathematical Model of Parallel Application

Again, we will be assuming that execution of the data-parallel application is ini-
tiated by a root processor My, which schedules communications and distributes
the load. Computing environment is homogeneous and comprises m identi-
cal machines My,...,M,,. The system interconnect is equivalent to a single
level tree and My communicates directly with worker processors. The machine
starting process lasts for S time units. Load of total size V is distributed to
the worker processors in installments (messages, load chunks). Sending a load
chunk of size a takes time O + Ca, where O is a fixed delay required to start the
communication and C is communication rate (in seconds per byte). Note that
by introducing overhead O we apply more precise communication time model.
Only after receiving the whole load chunk can the worker machine start pro-
cessing the load. A machine may receive more than one load chunk, but only
after finishing computations on the previous one. Let n be the total number of

load chunks distributed by the originator.

Let us remind that dependence of the computing time on load of size « in a

system with two memory levels is represented by function

7(a) = max {a1a, asax + ba } (5.16)

92

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

The process of collecting results is not explicitly scheduled because, e.g., the
size of results is small and their transfer time is very short, or the results are
stored on the worker machines for further processing. The optimum schedule
of the computations requires determining: (i) where to send the load (i.e. the
sequence of load distributions to the processors), (ii) when to send the load, (iii)

sizes of the sent load chunks.

Let z;; be a binary variable equal to 1 if load chunk j is sent to machine
M; and equal to 0 otherwise. We will denote by «;; the size of load chunk j
sent to processor ¢. If the chunk is sent to some other processor, then «;; = 0.
The moment when sending chunk j begins will by denoted by t;. Let T" be the
length of the schedule. We will use auxiliary variables ¢;; = t;x;; and 7 =
max{aia;j, asa;j + ba}. The problem of constructing the shortest computation

schedule can be formulated as a mixed integer linear program (MIP):

minimize T' (5.17)
subject to:
ti+CY o +0Y a;<tiy j=1,...n (5.18)
i=1 i=1

Qij + Caij + Owij + 75 < T

(5.19)
]:1, ,n 1717 ,m
gij + Cauj + Oz + 135 < qu+ (1 —zy)Z
(5.20)
i=1,....m j=1....n—1 I=j5+1,....n
Sy ay <ty j=1,....n (5.21)
i=1

i=1 j=1

aijSinj i=1,...,m j:L...,TL (523)

93

Scheduling divisible computations with energy constraints

day=1 j=1....n (5.24)
i=1

Zri; > q;5 20

t;>qi; >t — Z(1 —xy5) (5.25)

aroj + Zugj > Tij 2 41045
asij +ba + Z(1 — uy) > 7ij > asc; + be (5.26)
i=1,....m j=1,...,n
In the above formulation x;;, oj, g5, t;, T, Tij, u;; are decision variables. C, O, S,
V,a1,as2,bs, m,n are constants defined by the parallel application and comput-
ing platform, while Z is a large number. Decision variables x;; determine the
sequence of communications and any n-message sequence to the m processors
can be constructed. The purpose of constraint (5.18) is to guarantee that the
jth message fits in interval [t;,¢;11] and messages do not overlap in the com-
munication channel. Inequalities (5.19) ensure that computations finish before
the end of the schedule. Constraints (5.20) establish that if load chunks j,1
are sent to processor ¢, then there is enough time to receive the jth chunk and
process it before receiving the Ith chunk starts. By (5.21) the processor which
is receiving the jth load chunk is already started when sending the jth chunk
begins. Inequality (5.22) guarantees that the whole load is processed. Con-
straint (5.23) ensures that a processor that is not receiving the jth load chunk
receives load of zero size in the jth communication. By (5.24) only one machine
can receive the jth load chunk. Inequalities (5.25) ensure that the auxiliary
variable ¢;; is equal to t;x;;. Using product ¢;x;; directly is not possible in
a linear program. It is possible to obtain the same value by linearizing con-

straints (5.25) and an additional variable ¢;;. Inequalities (5.26) guarantee that

94

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

Tij = max{alaij7a2aij + ba}. The trigger binary variable u;; = 0 determines
whether the first (ai;;) or the second component (asc;; + b2) in the max is

active.

5.2.4 ISOEFFICIENCY MAPS

Isoefficiency Map Construction

Schedule length T' calculated by solving (5.17)-(5.26) can be used in performance
evaluation of data-parallel applications. Let T'(m,n,V) denote the value of
T obtained for a particular number of machines m, communications n, and
problem size V. The time of processing the same amount of load on a single
machine is T(1,1,V) = S + O + CV + max{a1V, a2V + ba}. Thus, efficiency
of the computation is E(m,n, V) = T(1,1,V)/(mT(1,1,V)). The isoefliciency
function for a given value of efficiency e can be defined as I(e,m,n) = {V :
E(m,n,V) = e}. Function I(e,m,n) allows to draw one isoefficiency line, i.e. a
line of efficiency e in the m x V space. The isoefficiency line depicts how problem
size V should grow in order to maintain equal efficiency e with changing number
of machines m. A collection of isoefficiency lines drawn in some area of m x V'
space is an isoefficiency map.

Due to the complex nature of the formulation (5.17)-(5.26) it is not possible
to derive a closed-form formula of I(e,m,n). Therefore, I(e,m,n) has been
found numerically, using the following approach: It has been established that
for fixed m,n, efficiency function £(m,n, V') has a single maximum &y,ax(m,n)
at load size Viax(m,n) and is monotonous on both sides of Viax(m,n). A
bisection search method has been used to find load sizes V' < Vijax(m,n) for
which certain efficiency level e < Eax(m, n) is achieved. Precisely, for a probe
value V times T'(1,1,V) and T(m,n,V) were calculated and if the resulting
efficiency satisfied T'(1,1,V)/(mT(m,n,V)) < e then the probe load size was
increased, respectively decreased in the opposite case. Analogous method has

been applied to calculate I(e,m,n) for load sizes greater than Viyax(m,n). The

95

Scheduling divisible computations with energy constraints

values of Vipax(m,n) and Emax(m,n) have been found by a modification of the
bisection method: Efficiency has been calculated for two probe values Vp, V5 in
some tested interval. Then the load size interval has been narrowed to V; or V5,
whichever resulted in the smaller efficiency. Both in the bisection search and in
the search for the maximum efficiency the procedures have been stopped if the
width of the searched V intervals dropped below 1MB.

As the MIP solver Gurobi 7.5.2 has been used. Observe that MIP is an
NP-hard problem, and in the worst-case MIP solvers run in exponential time
in the number of variables. In order to obtain solutions in acceptable time,
the MIP solver run times have been limited to 300s on 6 CPU threads on Intel
i7@2GHz, the MIP optimality gap was set to 0.5%. Consequently, the obtained
solutions mostly were not guaranteed optimum. Still, the solutions are always
feasible and can be considered as good approximations of the optimum solutions

of (5.17)-(5.26).

Performance Modeling

In this section we present isoefficiency maps and discuss the performance phe-
nomena they show. Unless stated to be otherwise the reference instance pa-
rameters were: for the computing time function 7(a) : a3 = 0.109s/MB, ay =
4.1328/MB, by = —27109s, for the communication delays C' = 5ms/MB, O =
75ms, machine startup time S = 25.4s, and a limit of n = 20 load chunks.
The a1, ag, bs parameters correspond with usable RAM size p = 6739MB. Since
these parameters are machine- and application-dependent and can vary widely
(cf. Section 3.3), we will concentrate on the frequent phenomena rather than
on particular performance numbers.

In Fig. 5.16 isoefficiency map for the load sizes smaller than Vi.x(m,n) is
shown, and in Fig. 5.17 for the loads above Vijax(m,n). For better clarity,
maximum values of efficiency Enax(m,n, V), and the corresponding load sizes
Vinax(m,n) are shown in Tab. 5.2. The line of maximum efficiency &y ax(m,n)

is denoted as MAX in Figs 5.16, 5.17 and the isolines are labeled with their ef-

96

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

Table 5.2: Maximum efficiency and corresponding load sizes vs m at n = 20
installments.

m 2 3 4 5 6 7 8
Emax(m,n, V) | 34.2 34.0 33.7 33.4 33.2 32.8 32.4
Vinax(m,n) 134485 | 120827 | 123329 | 105097 | 119663 | 95748 | 115514
m 9 10 11 12 13 14 15
Emax(m,n, V) | 31.5 30.9 30.4 29.6 28.7 27.7 26.7
Vinax(m, n) 115514 | 75048 81394 86545 90457 94532 | 98591
m 16 17 18 19 20

Emax(m,n, V) | 25.7 24.8 23.8 22.9 22.1

Vinax(m, n) 99460 100506 | 100354 | 99708 102240

ficiency levels. The efficiency for m = 1 is always 1, so no isolines for m = 1
are shown. Note that m, shown along the horizontal axis, is a discrete variable
and consequently the isolines are step functions. It can be observed in both
figures that efficiencies greater than 1 (consequently also super-linear speedups)
are possible. Though such situation is rare in typical parallel applications, it is
not unusual in the context of memory hierarchies. If only one machine is used
(as in the calculation of T'(1,1,V)) then for V' > p the processing rate tends
asymptotically to as. Conversely, if the load is distributed between many pro-
cessors then it can be processed on-core with rate a;. In our case as/a; ~ 37.9
and efficiency levels close to 37 can be expected. The values in Tab. 5.2 are
slightly smaller than as/a; which is a result of communication delays and ma-
chine startup times. The Eyax(m,n) line shows problem sizes V' which achieve
the best balance between the advantage of processing load on-core over out-of-
core processing, the costs of starting the machines, communicating and avoiding
idle time. MIP (5.17)-(5.26) is a discrete optimization problem and, e.g., there
are fixed overheads S, O which can be switched on and off by the choice of the
communication sequence. Furthermore, the best communication sequences are
not always repetitive patterns. Consequently the Eyax(m,n) is neither smooth

nor does it show an obvious trend.

97

Scheduling divisible computations with energy constraints

1.0E3

1.0E2 B]] N N .

| | | | | m | ——— e=05
l.OEl 1 1 1 1 1 1 I I
2 4 6 8 10 12 14 16 18 20

Figure 5.16: Isoefficiency map for the load sizes V' below maximum efficiency.
Logarithmic vertical axis.

Let us consider the part of the isoefficiency map for problem sizes smaller
than Vipax(m,n) as shown in Fig. 5.16. For such load sizes machines in set
My, ..., M,, compute on-core, but if the same load were processed on just one
machine then the load may spill to out-of-core. As it is not possible to derive
a closed-form formula of the (5.17)-(5.26) solution, we will analyze range of
E(m,n, V). The efficiency in this part of the isoefficiency map can be bounded

in the ensuing range:

S+O0+CV+adV S+O0+CV+dV

< \% .
mS—l—an—&—mC’V—i—alV_g(m’n’)< mS +mO +a,V

N

(5.27)

In the numerator of (5.27) a1 < a’ < as is an equivalent rate of processing on
one machine. Product mT (m,n,V) in denominator of (2.10) can be interpreted
as area in time x m space which is easier to assess than the schedule length
T(m,n,V). The area of mT (m,n,V) in (5.27) is bounded from below by m.S +

mO + a1V which is total machine startup time m.S, minimum fixed overhead

98

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

of communications mO and total work of the computations in core a;V. For
the upper bound of the area, mnO + mCV is an upper bound of machine
waiting during the communications. It can be verified that both bounds of
E(m,n, V) in (5.27) are increasing with V', and value of V derived from the
bound formulas increases with m for fixed efficiency e. Indeed, it can be seen
in Fig. 5.16 that problem sizes V must grow with the number of machines
m to maintain some fixed level of efficiency. The isolines grow slightly faster
than linearly with m because the total processor waiting time in the actual
solutions increases faster than linearly with m. One more peculiarity can be
seen in Fig. 5.16 around V = p = 6739MB where a bunch of isolines coalesce.
This is a result of using out-of-core memory while calculating T'(1,1,V) used
in the efficiency formula. At V = p the single reference machine starts to use
out-of-core memory which extremely expands T'(1,1,V) and I(e,m,n) has to
increase only marginally to attain the required efficiency level. Consider, e.g.,
the upper bound of (5.27). The size of the load required to attain efficiency e
isV=(S+0)(em—1)/(C+d —ay). When m grows also V grows, but the
single machine must use out-of-core memory and a’ tends to as > a;. As a
result, the increase in the numerator (S + O)(em — 1) is intensively suppressed
by a’ growing in the denominator (C'+ o’ — a1). Hence, V grows very slowly in

the isolines near V ~ p.

In the part of the isoefficiency map above Viax(m,n) (see Fig. 5.17) the
single reference machine considered in T'(1,1, V') uses out-of-core memory while
machines Mji, ..., M,, use out-of-core memory at least partially. In the dom-
inating pattern of load distribution some part of the load is processed in load
chunks of RAM p size while the remaining load is distributed to the machines
in roughly equal sizes and processed out-of-core. Thus, for n installments and
m machines, n —m > 0 load chunks have nearly RAM size, and the remaining
m chunks have size roughly [V — (n — m)p]/m. This load partitioning is intu-
itively effective because load as big as possible is processed in RAM, while the

remaining load processed out-of-core is as small on each machine as possible.

99

Scheduling divisible computations with energy constraints

1.0E6

—x—lezl i ‘ ‘ ‘

9.0ES - =3 A — | Lo 1
—=— e=15 j : :][—L | ‘

8.0E5 [—eo— e=2 : i
—e— =4 : ;
—a— e=8 ; |

70ES H . |6 ‘ 4
—— MAX ‘ jFI :

6.0E5 [i
e 45:1

SOES L2k 1
> — ‘

40ES [: = = ==-. - - -) T
e ‘ \ ‘ I |

3.0E5 b | e T | | —

20ES | s G
= 2 s & a 222 S S

LOES [—

0.0E0 i L i i i i . i
2 4 6 8 10 12 14 16 18 20

Figure 5.17: Isoefficiency map for the load sizes V' above maximum efficiency.

This load partitioning pattern results in the following efficiency formula

S+0+V(C+az)+be
mS+nO+CV+(n—m)par+m[(V—(n—m)p)as/m+bs)

E(m,n, V) =~ . (5.28)

In the denominator of (5.28) area mT(m,n,V) is calculated. It is assumed
that data transfers to one machine overlap with other machines computations
(latency hiding), and consequently, only C'V area is used on communications
in all machines. Furthermore, (n — m)pa; is the area of computing in core,
and m[(V — (n — m)p)az/m +bs] out-of-core. From (5.28) estimation of the

isoefficiency function can be derived:

ba(en — 1)+ S(em — 1) + O(en — 1)
(C+az)(l—e) '

I(e,m,n) ~ (5.29)

In the derivation of (5.29) property p = bs/(a; — az2) of (5.16) has been used.
Note that by < 0,e > 1,n > m,|by] > S > O, and I(e,m,n) > 0. Moreover,

load size necessary for certain efficiency e is almost independent of the number

100

CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

of machines m in (5.29). Thus, (5.29) represents well the bottom-right part of
Fig. 5.17 where isoefficiency lines are nearly parallel to the horizontal axis. The
top-left part of Fig. 5.17 can be considered an artifact. Note that with growing
V' the time of processing load out-of-core dominates in the computation time.
As a result efficiency tends to (Vag + bs)/(m[Vas/m + bs]) = 1 with growing
V' and it is not possible to obtain schedules with efficiency significantly smaller
than 1 without introducing artificial idle time. In other words, to construct
a schedule with low efficiency, overheads are 'necessary’ in the denominator
of the efficiency equation like in (5.28). Yet, with decreasing m the amount
of the overheads decreases and it is becoming impossible to build a schedule
with some low efficiency level unless some idle time is added. Since introducing
artificial idle time is counterproductive, we do not show isoefficiency lines for
e < 1in Fig. 5.17. The isoefficiency lines coalesced along top-right to bottom-
left diagonal all represent schedules approaching the situation when (unneeded)

idle times are kept in the schedule for efficiency e close to 1.

5.3 CONCLUSIONS

In this section the problem of scheduling divisible loads for the criteria of energy
and makespan in homogeneous systems with memory hierarchy has been consid-
ered. The performance evaluation has shown that there is a trade-off between
the two criteria. The time- and energy-performance is ruled by: i) sizes of load
chunks which determine on-/out-of-core processing, ii) number of effectively
usable processors which imposes lower bound on schedule length, iii) amount
of idle time which affect wasted energy. The trade-off as well as the overall
performance is ruled by a complex interplay between the speed and power of
computing on-core vs out-of-core, costs of activating new machines, communi-
cation delays, and the size of the solved problem. It can be observed that in
the wide ranges of system parameters parallel processing has a synergistic effect

on energy and makespan: it is possible to economize on both criteria by adding

101

Scheduling divisible computations with energy constraints

new machines. However, this phenomenon is limited to big size computations
and short startup times. Bigger startup times quickly cut off chances for time
and energy savings. Thus, parameters affecting the parallelism will also influ-
ence optimality of the schedules length. Moreover, it could be observed that the
energy savings obtained by the change of one parameter, or one part of the sys-
tem, are usually limited. Progress in all areas is needed for a steady reduction
of power consumption required to fuel high performance computations and big
data centers.

In Section 5.2.4 the performance has been visualized in the isoefficiency
maps. It has been established that efficiency greater than 1 is possible as a
result of memory hierarchy: parallel machines and multi-installment processing
allow for computations on-core which is faster than if the same load was put
on one machine, necessarily out-of-core. For problem sizes smaller than the
maximum efficiency size Viax(m,n), the efficiency decreases with increasing
machine number. For problem sizes larger than the maximum efficiency size,
the efficiency is almost independent of machine number. The idea of isoefficiency
maps for systems with hierarchical memory can be extended to other pairs of
system parameters than m and V as a future research subject.

Although almost all contemporary computer systems have hierarchical mem-
ory, representing this hierarchy seems a novel idea in scheduling and performance
models of parallel computations. Thus, the scheduling model proposed here is a
valuable instrument in analytical performance modeling of distributed systems.
Since homogeneous systems were examined in this section, heterogeneous sys-
tems are the next and tempting research subject. These will be examined in

Chapter 6.

102

6 HETEROGENEOUS SYSTEMS WITH

HIERARCHICAL MEMORY

In this chapter load distribution strategies in heterogeneous systems with hier-
archical memory are analyzed. The impact of system heterogenity is the key
interest of this chapter. Firstly, simple heuristic algorithms using processor sort-
ing rules are introduced. Secondly, Mixed Integer Linear Programming solutions
using multi-installment distribution are presented. Then the effect of hetero-
genity on system performance is studied. Algorithms performance is compared

in Section 6.4.

6.1 MATHEMATICAL MODEL

We assume that computations are performed in a single-level tree system with
root My and worker machines My, ..., M,, in the leaves. The machines M; can

be in one of four states:
1. idle - consuming power P/,
2. starting - which takes time S; and power P,
3. networking - busy-waiting or receiving the load, using power PV,

4. computing - when the received load is processed.

103

Scheduling divisible computations with energy constraints

M| s, | 0,+C,a,, |02+C20L22 «ee|0+Coy |+e+ communication
M, S, |Ol—i-C]o,11 | (o) s ’T(am) ‘
M| diestars, |5, 10, +Coot, | t(0) oo T(0)

M| jaesar 5 [0+Coy [o) |
M, idiestart, - ., | S, cee T(O,)

T#

Figure 6.1: Multi-installment schedule. n; denotes the last chunk sent to ma-
chine M;.

Communications and computations proceed according to the following scheme
(see Fig. 6.1). Initially volume V of load is held by the originator My which is
in the networking state, while machines M, ..., M, are idle. M, is not pro-
cessing the load. Mj is scheduling of the computations by sending load chunks
to the chosen processors. If My is capable of processing some load in parallel
with communications, then this capability may be represented as an additional

worker processor. My activates the machines which takes energy

E? = 8;P} (6.1)

on machine M;. Note that not all machines have to be used. For example, some
computer which is too slow, or is consuming too much power, may be kept
idle. Let us observe that idle state energy should not be ignored because, unless
completely disconnected from electric network, idle machines still contribute to
the costs that the system owner must bear. The originator activates machines
just-in-time which means that completion of the starting operation coincides
with the beginning of receiving the load to process. The duration and energy
cost of sending a wake up signal is negligible and starting some machine M; can
be performed in parallel with some other machine M; communicating with M.

Transferring « units of load to M; takes time

teomm (o) = O; + aCh, (6.2)

104

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

where O; (e.g. in seconds) is a fixed overhead also called communication startup
time, C; is communication rate (in seconds per byte). In the whole communica-
tion time machine M; draws power PiN . Then, the energy cost of communication
is

The computation starts after the entire load chunk is received. The load is dis-
tributed in a multi-installment manner and a processor may receive more than
one load chunk. Mj sends the load to the worker processors one at the time,
i.e. the load is distributed sequentially. Let ¢ = (o7y,...,0,) be the sequence
of the communications, where ¢; is the index of the machine receiving the load
in the 7th communication from My and n is the number of communications. As
discussed in Section 3.3, time 7;(«) and energy ¢;(«) required for the computa-
tions on load chunk of size o on machine M; are given by equations (3.1) and
(3.2), respectively. We assume that the size of produced results is small and the
time of returning the results to Mj is very short compared to the whole schedule
length. Hence, the result return operation need not be explicitly scheduled (re-
sult return can be easily tackled in DLT, see [22, 28, 74]). After processing the
received load chunk a machine is busy-waiting to receive another load chunk.
The busy-waiting is energetically equivalent with networking and M; consumes

power P in this state.

The problem considered here consists in constructing a schedule of minimum
length T and energy E. Let M = {Mj, ..., M,,} be the set of worker processors.

A scheduling algorithm for our problem must determine:

e subset M’ C M of machines participating in the computation,

e sequence o of load distribution communications between My and worker

machines in M/,

e the load chunk sizes.

105

Scheduling divisible computations with energy constraints

This problem is effectively bicriterial. Multiple criteria problems can be handled
in various ways [89]. In order to deliver the relationship between E and T', we
will minimize one criterion — energy FE, for a constrained value of the other

criterion — schedule length 7.

6.2 SOLUTION METHODS

In this section we introduce two types of strategies for load distribution. Firstly,
we introduce two groups of fast heuristics which distribute load iteratively,
choose the sequence of communications and regulate load chunk sizes according
to some simple rules. These heuristics extend algorithms from Section 5.2.1
to the heterogeneous case. Secondly, a method of constructing an optimum
multi-installment schedule is presented which sequences communications and

sizes load chunks using mixed integer linear programming (MIP).

6.2.1 FAsST HEURISTICS

Our heuristic algorithms are defined by the processor sorting rule (PSR) and
the load chunk sizing algorithm. Beyond these two components, the mode of
operation is similar as described in Subsection 5.2.1.

Initially all processors are idle. The originator starts the first idle machine
on the PSR list and sends it a load chunk. The processors are activated until
exhausting idle machines or until receiving a request for new load from some
ready processor. Then, the originator sends load chunks to the ready processors
first. A processor is ready at some moment ¢t if it has already been started,
received and processed its load chunk by ¢. Let Mg(t) be the set of processors
ready at t. The originator ranks online processors in Mg(t) according to PSR
and sends a load chunk to the processor on the topmost position. Consequently,
processor M; preferred by PSR may receive a new load chunk earlier than some

other processor M; which joined Mg before M;. Let us also note that further

106

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

idle processors will be started when no processors are ready (because they are
computing and the originator is not communicating with them). This procedure

is repeated until exhausting load V.

Processor Sorting Rules (PSR). The considered processor priority rules
order the processors according to: k1 — non-decreasing ky;, k2 — non-decreasing
ko;, 12 — non-decreasing ly;, al — non-decreasing a1;, a2 — non-decreasing as;,
b2 — non-decreasing bs;, C — non-decreasing C;, S — non-decreasing 5;, PI
— non-decreasing P{, PN — non-decreasing P, PS — non-decreasing P, O
— non-decreasing O;, RAM — non-increasing p;, Rnd — order the processors
randomly. The Rnd rule is introduced as reference method, to verify the utility

of the other rules.

From the four load chunk sizing methods introduced in Section 5.2.1 we will
use here only GSS and SSC. The former had performance (see Section 5.2.2)
similar or better than SCU. The SCO method exposed strong performance ir-
regularities. Hence, we omit SCO and SCU here. Let us shortly remind the
idea of SSC and GSS.

Simple Static Chunk (SSC). This algorithm assumes that load chunk
sizes are equal to the size of available RAM of the machine, i.e. o; = p,,. Thus,
SSC avoids using out-of-core memory. A disadvantage of SSC algorithm is lack
of balancing the load in the final stage of computation. It means that in the
last iteration many processors may be idle while a few processors strive with
unnecessarily big load chunks. However, predicting which processors will be
used in the last iteration is hard because the algorithm is running online in a

heterogeneous system.

Guided Self-Scheduling Adaptation (GSS). Let V' be the size of the
load remaining to be distributed and M, be the processor about to receive the

ith load chunk. The size of the chunk is calculated as

a; = min{V’, max{1, min{V’/m, p,, }}}.

107

Scheduling divisible computations with energy constraints

By referring to the remaining load V', load chunk sizes decrease in the course of
the schedule. Assuming that the initial size of the load is greater than memory
size (V' =V > ps,), the algorithm starts with load chunk sizes of RAM size.
When V' < p;, GSS gradually decreases chunk sizes and in this way equalizes
the spread of machine completion times. GSS does not use chunk sizes smaller
than some fixed size, by convention denoted as 1 in the above equation. In the

further considerations we assume that it is 1MB.

Computational complexity of the heuristics is O(V/min{p;}logm) and
O(V'logm) for SSC and GSS, respectively. The logm component is a result
of applying, e.g., processor priority queue and enforcing some PSR. Terms
V/min{p;},V are upper bounds on the number of load chunks. Though com-
plexity of the algorithms depends on V', they are very fast in practice as will be

shown in Section 6.4.

It is possible to apply all the above PSRs and choose the best result. Some
studies demonstrate [61] that combining many simple methods is a lightweight
method of improving solution quality. Such heuristics will be referred to as

super-SSC, or super-GSS, in the following text.

Let us now proceed to the technical matters of time and energy calculation.
Since values of o, a;, T' cannot be determined in the analytical way for a hetero-
geneous system, they are found a posteriori for some schedule S, e.g., obtained

by simulation or from runtime logs. Given schedule S, the consumed energy is:

m
E=Ey+ Y (E/+E’+Ef+E), (6.4)

i=1
where: Ej is the energy consumed by the originator, E! is the energy consumed
by M; in the initial idle state, E is the energy consumed by machine M; while
starting, Eft is the energy consumed by M; while processing the assigned load,
EXN is the energy consumed by M; in networking and busy-waiting. Since the

originator can only communicate or busy-wait, Eg = PY¥T. The M; energy

in the idle state is EZI = Pl-lidleStarti, where idleStart; is the time before M;

108

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

begins waking up (see Fig. 6.1). If some machine is not used in the computation,
then idleStart; = T. The energy consumed in starting this machine is Fg; =
SiPiS y;, where y; = 1 if M; participates in the computation, y; = 0 otherwise.

The energy consumed in computations on M; can be calculated as:

Bl = Z max{ki;a;, koo + lo;).

jioj=i

In the busy-waiting and communications M; draws power P}¥. Hence,

EzN = PZ.N(T — idleStart; — S;y;—

Z max{ai;oj,azio + b }).

Jioj=i

6.2.2 MIXED INTEGER LINEAR PROGRAM

In this section we formulate the problem as a mixed integer linear program
(MIP). Both divisible load scheduling [98], and mixed integer linear program-
ming in general, are NP-hard. This means that according to the current state
of knowledge (unless P=NP), to solve these problems to optimality exponen-
tial runtime algorithms are required. In our case, the worst-case computational
complexity grows exponentially in the number of processors m and the number
of installments n. However, for reasonable problem sizes MIPs can be solved
fairly well by modern solvers. Thus, utility of MIPs must be assessed on the
practical basis rather than by the worst-case pessimistic estimation. This will
be subject of Section 6.4. The notations used in the following linear program

are collected in Tab. A.3.

Given schedule length limit 7, the minimum-energy schedule can be calcu-

lated by solving the following mixed integer linear program:

minE = Ey+ Ef + Bl + E5 + EN (6.6)

109

Scheduling divisible computations with energy constraints

subject to:

Ey=P)T

Eij > kiiaij By > ko + loiwij

1= 17 ,m -] = 1’ 1
m

B =" (idleStart, P! + idle;PN)
1=1

E® = i Si P Yin
i=1

EN = i i(Oiwij +a;; C)BY

i=1 j=1
m
my=1 j=1...,n
1=1
;g <V, i=1,....m j=1,...,n

m
ZSimijgtj j:l,...,n
i=1

tj+ZaijCi+ZOixij§tj+1 j:].,...,’n

i=1 i=1

qij + Ciaij + Oy + 15 < qu + (1 —2) 2

i=1,....m j=1....n—1 I=j5+1,....n

Gij < Zxi; qij >0

Qi <t;j qij>t;—Z(1—x4)

110

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
aricij + Z'uig > i Tij > a1
agij + boizij + Z" (1 — wij) > 7j
(6.19)
Tij = 24045 + bosxy;
1=1,....m j=1,...,n
qij + Ciaj + Oy + 15 < T
(6.20)
j = 17 7n Z = 1) 7m
Y>> =V (6.21)
i=1j=1
idleStCL’l"ti Z tj — (1 — (yij — yi,j—l))Z — Sly”
idleStCLTti S tj + (1 — (yij — yi,j71)>Z — Sz‘yij (622)
J = 27 1= 17 ,m
wdleStart; > t1 — (1 —yin)Z — Siyn t=1,...,m
idleStart; < t; + (1 — yﬂ)Z — Sy 1=1,....m
(6.23)
idleStart; > T —yinZ i=1,....,m
idleStart; <T +yinZ i=1,....,m
IEiijij i:l,...,m j:l,...,n (624)
yijgyidqu i:l,...,m jzl,...ﬂ’L—l (625)
y,;jgyivj_lJrz,;j i:l,...,m j:2,...,n (626)
Yil = T41 1= 1,...,m (627)
idle; =T — (idleStart; + Z Ciaij + Siyin+
=1
’ (6.28)

n n
+ZOT’E” +Z’Tij)i = 1,...,m
j=1 7j=1

111

Scheduling divisible computations with energy constraints

Let us note that by use of binary decision variables x;;, y;; any subset of the
m machines and any communication sequence of length n can be achieved. In
the above MIP total energy usage is minimized by equation (6.6). Equations
(6.7)-(6.12) define components of the energy consumption. In particular, by
(6.8) energy spent in the computations is a sum of the energy parts E;; spent
on computing on load chunks j on machines M;. The dependence of energy
parts E;; on load chunk sizes «;; is defined by inequalities (6.9). Since ER is
minimized, (6.9) guarantees that E;; = max{ki;aj, kaia;j + lo;}. Since ly; < 0,
term lo;x;; in (6.9) makes the constraint more restrictive when z;; = 0, a;; =
0 and helps easier solving the MIP. In (6.10) energy E’ is the sum of the
energy idleStart; P! used while waiting before starting the processors and energy
idle; PN consumed later in the busy-waiting. In (6.11), y;, = 1 only if processor
M; is used in some installment. Consequently, energy cost SZ-PI»S of starting M;
is paid once, and only if M; is indeed activated. Energy cost of networking is
calculated in (6.12). By equation (6.13) only one machine may receive some load
from the originator in installment j. Inequality (6.14) guarantees that a machine
is not receiving any load if it is not chosen to take part in the jth communication.
If a machine is chosen to take part in the computation, then by inequality (6.15)
there is always enough time for starting the machine. The jth communication
fits in time interval [t;,t;41] by (6.16). Let us remind that ¢;; = t;z;;. Hence,
constraints (6.17) ensure that if some machine M; receives the jth and /th load
chunks, then there is enough time between ¢; and ¢; to transfer the load to M;
and process it. Constraints in (6.18) serve the purpose of linearizing product
t;x;;, that is, they guarantee that ¢;; = t;z;;. Such a product cannot be
directly used in a MIP because it would change the formulation into a quadratic
programming problem. However, it is possible to substitute ¢;z;; with additional
variable ¢;; and constraints (6.18). Constraints (6.19) guarantee that processing
load chunk j on M; lasts for time 7,; = max{a;cj;,agi;j + bo;}. Let us
observe that for u;; = 0 (6.19) guarantee that asic;; + ba; < T35 = anioy;

which implies a;; < p;, and vice versa, for u;; = 1, ayay; < Ty = agiouj + bay

112

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

and «a;; > p;. The two big constants Z’, Z" in (6.19) have been chosen to
avoid using arbitrarily large numbers, which are hard to operate upon for MIP
solvers, and still make the formulation as tight as possible. Since for any feasible
solution 7;; < ag;V/, the first big constant has been set to 7' = (ag; — a1;)V
which guarantees that the first inequality in (6.19) is not binding if u;; = 1.
The Z" constant, has been set to Z"” = —by; which guarantees that as;cv; +
baixi; + Z" (1 — w;j) for u;; = 0 is not binding because ag;icv;j + ba;xi; — bay >
ai;04; = T;; because 0 > by;,a2; > ai;. Inequalities (6.20) guarantee that
computations on each machine finish before the end of the schedule. By (6.21)
all work is executed. Inequalities (6.22), (6.23) serve the purpose of calculating
time idleStart; which is the idle time before activating machine M; (Fig. 6.1).
Note that (y;; — yi;—1) = 1 and the inequalities in (6.22) are binding omnly if
Yij 7 Yi,j—1 which happens if the jth communication is the first message sent
to M;. Thus, idleStart; = t; — 5; where j is the first load chunk sent to M;.
Inequalities (6.23) are a boundary case of (6.22). The constraints in (6.24)-
(6.27) define the trigger variables y;;, used in (6.11), (6.22), (6.23), (6.28) such
that y;;s are equal to 0 before the first message sent to M; and equal to 1 from
the first message sent to M; on. Equations (6.28) allow to calculate the length

of busy-waiting intervals on machines M; (used in (6.10)).

For practical matters, let us note that the big constant Z, used in constraints
(6.17), (6.18), (6.22), (6.23) can be substituted with 7" if (6.6)-(6.28) is solved
for some known value of T. MIP (6.6)-(6.28) can be reformulated to calculate
minimum schedule length T', or to minimize T' subject to a limit on the usage
of energy E. In the former case (T is minimized), constraints (6.7)-(6.12) are
removed, while the big constant Z can be set to some upper bound on the sched-
ule length. For example, Z = 2(max?,{S;} +V max™,{C;} + nmax",{O;} +
max!”; {max{a1;V,az;V + b2; }}). In the latter case (minimization of T' subject

to E), T is again minimized while equation (6.6) becomes a constraint.

113

Scheduling divisible computations with energy constraints

1E7

Energy:[J]

n=1 ——

n=4
n=>5
n=6
n=7
n=8
n=9

1E6 o - n=10
n=11

. n=12 ——
idle --------
ideal 1 -=---

time [s]

1E5

1E3 1E4

Figure 6.2: Energy vs time for changing number of installments n. Logarithmic
axes.

6.3 SYSTEM PERFORMANCE MODELING

Parameters of heterogeneous systems on various divisible applications may differ
significantly (cf. Tab. 3.3). Therefore, rather than discussing particular numbers
we will analyze tendencies which appear in many test instances. The behavior
of optimum problem solutions will be demonstrated on the example data shown
in Tab. 6.1. The values in Tab. 6.1 have been generated pseudo-randomly.
Generating test instances is described in more detail in the next section. Unless
said to be otherwise V' = 24GB. The time-energy trade-offs presented in this
section were obtained by first finding the minimum schedule length T* for the
given m,n limits as described at the end of Section 6.2.2, and then MIP (6.6)-
(6.28) has been applied to calculate minimum energy consumption for test values
of T starting with 7™ and increasing with a step of 1s. Gurobi version 7.5.2

with at most 0.2% optimality gap has been applied as the MIP solver.

114

MEMORY

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL

867G TI69 TGS 1919 Go8. V226 over GLET G8FL TILI [aN] *d
z8°0 GL0 1600 990 200 €200 1100 FE00 80 290 sl ‘o
80T €6 16 0z1 i 66 96 an 80T 86 M ¢d
6 1T 02T 80T erT erT €6 96 06 66 M) yd
i G €6 z 0L 6 1L 88 9 i (M jd
28) TG 9 z1 €z T'T 7'e 08 29 [s] s
6000 ¥000 €000 €000 G000 €000 6000 FOO0 €000 L0OO [AIN/S] ‘D
T0Z€966- 8LT0EET- 08TFFFI- TLEPTST- ET16090T- 0LEECEFT- S9EFOT- TG8TS0T- £997L9- T099E9-] %2

TTL8T6T 8199'80T 0769°0T€ 61LS°608 ¥TSS 67T 7208 T8¢ €67S LTT L8IS €LY FHOL 90T T¥g0 LLE [AIN/ L] *oy

969°€T G67'9T LCO'€T 6L0°ST <9971 LCV'6 ¢S90T TE9°LT

699791

6cLCcT [AIN/r] 'y

6C°661L- G0'GI9CL- 0L°LEVOT- TV LIVCT- L6°LLSTT- V8 ET60T-86°€CIE- 8T'CLCTT-€9°CV9G- LE°LCAS- [s] *2q

9€896¢°T 96ET1ST'T GETICEE'E OFI9CT'C GSPI8S T 8T6STI'C LILG06°0 665L88°'F 0LF9L8 0 C0V8L0E [dIN/S] *ep
86£L80°0 695501°0 8L6S80°0 LESTOT'0 FIEFIT'0 959500 8690L0°0 8FOTFT'0 119851 0 LLITIT 0 [dIN/S]

Ip

OHE ®§N w§\< NE @E mﬁw ﬁE mE

P4l

P4l

‘s1ojourered WIYSAS 1897, :T°9 O[QR],

115

Scheduling divisible computations with energy constraints

4.4E5

4.3E5

4.2E5

Energy [J]

4.1E5

4.0E5

3.9E5

3.8E5

3.7E5

3.6E5 ' n=12 —

time [s]

3.5E5 :
250 300 350 400 450 500 550

Figure 6.3: Closeup on energy vs time for changing number of installments n.

In Fig. 6.2 and Fig. 6.3 dependence of total energy usage on schedule length T’
for different numbers of load chunks 7 is shown. In Fig. 6.2 two lower bounds are
also shown: a diagonal line representing energy usage if all processors remained
idle (denoted ”idle”), and a horizontal line of energy usage if all work were done
in RAM on an ideal processor with all the best parameters of the given proces-
sors and no other processors were present (denoted "ideal 1”). The following
phenomena can be observed in Fig. 6.2 and Fig. 6.3: Time—energy functions are
not convex and may have many local optima, ”cliffs” in energy usage separate
intervals of monotonous time-energy dependencies. The existence of many local
optima and non-monotonic nature of the relationships make optimization efforts
hard. The ”cliffs” appear when schedule length T is sufficiently large to switch
off some machine (this will be discussed in the following text, see Fig. 6.5). The
intervals of decreasing E with increasing T', e.g. at T = 300 for n = 10,11, 12
in Fig. 6.3, represent the opportunity of shifting the load from faster but more

energy-intensive machines to the slower but more energy-economic ones. The

116

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

fact that energy consumption increases with schedule length is a result of busy-
waiting and idle processors. We will return to the impact of idle processors
power in the following (Fig. 6.8). It can be observed in Fig. 6.2 and Fig. 6.3
that with increasing number of load chunks n performance of multi-installment
processing improves, however, the returns are diminishing. This is intuitively
expected because more installments mean smaller load chunks, shorter commu-
nications, earlier starting of the computations, and using less the out-of-core
memory. The minimum number of chunks which allow processing the whole
load in RAM is n = 4 here, but the processors with the biggest main memory
are not necessarily the fastest or best in the energy efficiency sense. Thus, if
schedule is long enough, it may be still profitable to use out-of-core memory even
if RAM size is sufficient (this will be discussed in the following, cf. Fig. 6.6). It
can be verified in Fig. 6.3 that using more than n = 8 installments does not give
substantial performance gains. Thus, a small multiple of the minimum number
of chunks which allow fitting the load in core memory should be sufficient in

typical cases.

In Fig. 6.4 distribution of the load between the processors is shown with
changing schedule length T for n = 10 installments. The total load size obtained
in many messages is shown. In Fig. 6.4 dependence of energy E on schedule
length T is also shown to allow coordinating the ”cliffs” in energy usage with
the changes of load distribution. Fig. 6.4 serves the purpose of illustrating how
complex processor load distribution interplay in heterogeneous systems can be.
It can be verified in Fig. 6.4 that steep reductions in energy usage coincide
with removing processors from computation (load assignments become zero).
The case of machines My, M7, My, Mio in Fig. 6.4 (shown as continuous lines)
is illustrative. At T = 318 M; is switched-off and its load is taken over by
My which is needed as a faster machine. But then at T" = 323 the schedule is
long enough to give up My and use a slower but more energy-efficient M;. As
longer schedules are allowed (T grows) machine M; gives its load to the other,

more energy-efficient machines, and is switched off at T" = 343. This situation

117

Scheduling divisible computations with energy constraints

8000 . 4.2E5
Ml ——
| J—
7000 = M3z
2 M4
s M5
S M6 --eoes N
6000 | &\ M6~ 4 4085
2 \\ M8 -
S MY ——~
5000 F-d & e wt 'Ml()_ —_
4000 3.8E5
3000 s ‘\/
2000 = 3-6E>
>
20
[P}
1000 &
: time [s
0 | 3.4E5

280 300 320 340 360 380 400 420 440

Figure 6.4: Distribution of the load between machines and energy consumption
vs schedule length T'. The left axis is for load sizes, the right axis is for energy
E. Number of installments: n = 10.

Table 6.2: Processors omitted in the best schedules vs schedule length T', for
m = 10 machines.

end of T range | 292 313 338 346 377 379
omitted none 2 2,9 1,2,9 29,10 | 1,2,7,9
end of T range | 431 468 540 560 665 945
omitted 2,7,9,10 | 1,2,7,9,10 | 2,7-10 | 1,2,7-10 | 2,6-10 | 1,2,6-10

is repeated twice more: M is switched on again at T" = 355 to take the load
of My, switched off at T' = 381, and switched on once more at 7" = 410 to
substitute M7g, and off at T' = 433. Thus, machine M; which is comparatively
slow but more energy-efficient than the other machines acts as a substitute for

the faster M7, Mg, M.

In Fig. 6.5 changes of energy usage with schedule length are shown for
increasing sets of available machines. This means that from the machines
in Tab. 6.1, subset {Mj,..., M,,} were available for the computation, where

m = 6,...,10. Labels added at the relationships are indices of the used proces-

118

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
4.]E5 T / T
1,..,10 " m=6 :
m=7 ——
4.0E5 m=8
05 F m=9 ——
= 1,..9 m=10 ——
& \\
3.9E5 1300 [y
3.8E5 e
134,567
6.8.10 Ry
3.7E5 13 34356
46,8
13,.% 3,45,
3.6E5 f
34568
timei[s]
3.5E5
250 300 350 400 450 500 550

Figure 6.5: Energy vs time for changing number of machines m at the number
of installments n = 12.

sors. For better clarity indices of machines absent in the optimum working set
vs changing T are listed in Tab. 6.2 for {M;,..., Myp}. It can be observed that
adding machine Mg to the working set was profitable and the minimum energy
use point moved to shorter schedules (see Fig. 6.5, T' ~ 430). When schedules
get shorter (see Tab. 6.2), additional machines are switched on and energy usage
instantly increases as a direct result of the starting energy cost. Observe pivotal
role of My which joins and leaves the best processors (cf. Tab. 6.2). It is worth
observing that in this heterogeneous system the trajectory of increasing energy
E with shortening schedule length 7" can be different depending on the actual
set of available machines. For example, for the set of m = 10 machines the
energy used can be bigger than (because of the cost of holding more machines),
smaller than (because the schedule is shorter), or in-between (a subset of the
extra machines work) the energies consumed by smaller sets of m = 8,9 ma-

chines (see Fig. 6.5 in T range [300,400]). Thus, a bigger set of machines gives

119

Scheduling divisible computations with energy constraints

1E-1
~
%
é % +
T
% +
¥ % +
- st
%% + + V4
1E-2 " s W
x % : I i n=4 +
*x X ik ox . + N » n=5 X
n=6 *
o - k . n=7 a]
X n=8 ©
1E-3 | *
x + +
n
v X
" time [s]
1E-4
400 600 800 1000 1200 1400 1600 1800

Figure 6.6: Out-of-core memory usage vs time for changing number of install-
ments n.

an advantage of choosing more energy-efficient subset of processors, but also a
disadvantage of holding machines which are available but not engaged in the

computation.

Let us consider now the utility of using out-of-core memory. Even if the
number of load chunks n is sufficient to process the whole load in the core
(here n > 4), it may be profitable to use some out-of-core memory. This may
allow for fewer communications or for starting fewer processors. In Fig. 6.6
usage of the out-of-core memory is shown for various schedule lengths 7" and
installment numbers n. The fraction max; ;{c;;/p; — 1} is shown along the
vertical axis. In other words, the relative excess of load chunk sizes a;; over
RAM size p; is shown. For n = 4 installments and 7" > 1240 it is possible to
process three load chunks in main memory of one processor while the remaining
load is processed out of core in another processor, which allows to avoid starting
other machines. Thus, in this case out-of-core memory usage persists though

it seemed unnecessary. However, it can be seen in Fig. 6.6 that indeed with

120

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
3500
3000 |2
g
2500 8 /\
o
5 /
2000 /
1500
!f R
; :
1000 m=10, n=12 ———
I."' m=8, n=15 -==--
K m=6, n=20 rrrrreeee
500 / -
AR installment number
o L2
0 2 4 6 8 10 12 14 16 18 20

Figure 6.7: Average chunks sizes vs installment number for selected numbers of
installments n and machines m.

increasing number of installments n the use of the out-of-core memory ceases.
The above observations can be rephrased as confirming presence of a trade-off
between the cost of starting more processors or using the less efficient out-of-core

memory.

In Fig. 6.7 average sizes of installments are shown for different combinations
of processor set size m and the number of installments n. The averages have
been taken over schedule lengths T from the minimum schedule length 7™ to
the minimum-energy E* schedule length (e.g. for m = 10,n = 12 for all the
points T' = 278, ...,432 with a step of 1s, see Fig. 6.5). Each point in Fig. 6.7
represent an average from at least 110 samples. A common pattern in the
shape of the relationships can be observed in Fig. 6.7: Initial installments are
small, and they grow slowly until reaching a maximum in the second part of

communication sequence. The sizes of the final installments quickly fall. The

121

Scheduling divisible computations with energy constraints

5.0E5 \{ i

4.8E5 | § k
9
4.6E5 gj /g

Energy [J]

4.4E5

8 4

4

4.2E5

4.0ES ¥ i %LCOLD
‘ T :

lL\L_\\/ v
3.6E5

3.4E5 Nl LPt] o ST [s]

sopite,,

300 400 500 600 700 800 900

Figure 6.8: Energy vs time for various idle state power P; configurations at
m = 10 machines, and n = 12 installments.

small initial chunks allow to start the computations quickly by avoiding lengthy
data transfers. The trailing messages are shorter to allow balancing the load on

the machines which receive some work as the last one(s).

Let us return to the impact of idle processors power P} on the time—energy
trade-off. Even idle processors consume energy which is signified by the lower
bound ”idle” in Fig. 6.2. In Fig. 6.8 the time—energy trade-off is shown for the
previous instance with various P, S; settings. The original instance is shown
as "mixed”. The same instance with machines starting from hibernation to
disk are denoted "HDD” (S; € [40,90]s, P! € [1,7]W, see the next section for
details of test instance generation). The setting corresponding to starting from
a suspension to RAM (S, € [0.1,6]s, P! € [70,100]W) are denoted "RAM”.
The case for cold-starting (as if the machines were disconnected from electric
power, P! = 0,5; = 120s) is shown as "cold”. Finally, the same instance with

all processors idle power changed to P{ = 0, but retaining their original startup

times is an optimistic lower bound (LB) on possible idle power vs startup time

122

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

cases. Hence, the LB line shows potential for possible improvements by modifi-
cations of energy-saving modes. It can be observed that the lower the idle power
P! is, the wider the range (both in time and in energy) between the shortest

K

and the lowest-energy schedules. The more realistic cases, where P/ is bigger,
have narrower options for optimizing the energy usage. Suspending machines
to RAM allows for only marginally shorter schedules, but the energy cost only
increases with 7' as P/s are not significantly smaller than the power consumed
in communication or computation. The cold- and HDD- start do not dominate
the original case (mixed) because of long, and consequently, energy-costly star-
tups. Therefore, short schedules, even though compute- and power-intensive,
can be more effective than long schedules with many machines mostly in low
energy mode. Furthermore, using a mix of machines — some in shallower and
some in deeper suspension (mixed case) — is advantageous because it allows for
a quick start of computations using the machines in shallower suspension, while
simultaneously activating the machines in a deeper sleep mode. This conclusion
is supported by a statistically significant correlation between the position in
communication sequence and parameters S;, P! (e.g. machines with smaller S,
receive load earlier), and lack of strong correlation with other parameters. In
general, keeping machines in idle state should be avoided (which is the strategy

of many cloud infrastructure providers).

6.4 ALGORITHM PERFORMANCE COMPARISON

In this section we compare performance of our algorithms. Quality of the sched-
ules and the time taken to find them will be evaluated. Quality of the schedules
is measured by schedule length T" and energy usage E. In general, there is no
unique way to compare performance of two algorithms constructing solutions
as a trade-off between two criteria [100]. Moreover, it is not possible to reduce
such trade-offs to one dimension (i.e. a single numerical score) without loos-

ing some information [100]. In the case of MIPs, it would require considering

123

Scheduling divisible computations with energy constraints

three-dimensional trade-off: between the solving algorithm runtime, the ob-
tained schedule length T and the used energy E. Though conceptually possible,
it would be unwieldy. The fast heuristics introduced in Section 6.2.1, however,
construct only a single solution for a given instance, not a trade-off between T'
and E. This restricts options for algorithm performance comparison. Hence, in
the further discussion we will reduce algorithm performance examination to just
two reference points of practical importance: the shortest schedules (minimum
schedule length T*) and the lowest energy schedules (minimum energy E*). So-
lution quality will be measured either as a distance from the shortest known
schedule length T, or as the distance from the lowest known energy usage E*.
The algorithm runtime to construct the schedules, how this runtime is traded
for solution quality, and sources of solution inefficiency will be discussed in the

following.

To this end, a set of instances have been generated pseudorandomly. The
numbers of machines were m € {1, 2,5, 10, 20, 50, 100, 200, 500, 1000}. For each
number m a set of 30 test instances has been generated, with p; < U[256, 8048]MB,
ki1 o< U[9,18]J/MB, k;s o U[45,540]J/MB, a;; o« UJ[0.05,0.15]s/MB, ag; o
U[0.3,4.4]s/MB, C; o UJ[0.001,0.01]s/MB, O; o U[1E-6,0.02]s, P®, PN o
U[90,120]W, where « Ula, b] means that the value was drawn from a uniform
distribution in range [a,b]. Values b;, lo; were calculated so that the two linear
components of execution time and energy consumption, respectively, intersect at
pi (cf. Section 3.3). With probability 0.5 a machine was chosen to have a short
startup (e.g. because it is suspended to RAM), otherwise it had a long startup
(as if starting from hibernation to HDD). In the former case, P! oc U[70, 100]W
and S; oc U[0.1,6]s. In the latter case, P! oc U[1,7]W and S; oc U[40,90]s.

Hence, idle power P! and wakeup time S; have been correlated in this way

that machines with low P need more time to wake up, and vice versa, short
wakeup time S; is possible in shallower suspension mode using higher power.
Unless stated to be otherwise n = 12 has been assumed for the MIP model

(6.6)-(6.28). Gurobi version 7.5.2 has been used as the MIP-solver using 6 par-

124

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
1E4 .
MIPT ——
MIPT10% - ---
1E3 SUGSS ----- o
SuUSSC
GSS e
1E2 CSS -rooom
ﬂ 1E1 -7 : / /” - -
Q e
g //.. - - i
S 1E0 = S
1E-1 o
1E-2
m
1E-3
1 10 100 1000

Figure 6.9: Algorithm runtimes vs number of machines m. Logarithmic axes.

allel threads and runtime limit of 1200s. Two versions of the model have been
solved: with MIP optimality gap set to 0.2% and with the gap set to 10%. The
experiments have been conducted on a PC computer with Intel i7@2.8GHz and
Windows 7.

Algorithm runtime quartiles Q1, Q2 (median), Q3 vs changing number of
machines m are shown in Fig. 6.9. For the algorithms based on MIP (6.6)-
(6.28) runtimes for finding minimum schedule lengths 7" with 0.2% MIP gap
(denoted as "MIP T”) and 10% MIP gap (MIP T10%) are shown. The runtimes
for finding the lowest energy schedules are similar and have been omitted to
avoid cluttering the picture. As it can be seen the runtime cost of solving the
MIP model quickly increases and the median runtime reaches the 1200s limit
at m = 9,n = 12 for MIP gap 0.2%. Relaxing the optimality requirements
(MIP T10%) helps, but still median runtime reached the time limit around
m = 20 processors. Were it not for the limit of 1200s, it should be expected
the MIP solver runtime would continue exponential growth. Thus, the MIP

model can be used for moderate size instances. Conversely, the SSC and GSS

125

Scheduling divisible computations with energy constraints

4
o
=
35 |-
2
] Al
5 & sL+
. Sugsc
a) 25 ¥
2 0
CSSir SuGSS
.{.
15
' M|P10%
1 time[s] " 1 MR,
0.001 001 01 1 10 100 1000
4
=
o
]
35 G
2
w
=}
alB
b) 25
All
s+
2 L
sugsc
+
All
15 Gssir SUG!
. time[s] MIP10% MIR
0.001 001 01 1 10 100 1000

Figure 6.10: Solution quality vs algorithm runtime for a) schedule length crite-
rion, b) energy criterion. Logarithmic runtime axes. m = 10 machines.

heuristics are by far faster and distribute the load to m = 1000 machines in less
than 10s. The super-SSC and super-GSS (denoted SuSSC, SuGSS, respectively)
are by an order of magnitude slower than SSC and GSS because they execute
the heuristics with all processor sorting rules (PSRs). The dispersion of the
heuristics’ runtime is also much smaller and Q1, Q2, Q3 overlap in the picture.
Now we should examine how these runtime costs are exchanged for the solution

quality.

126

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

The trade-off between solution quality and algorithm runtime cost is shown
in Fig. 6.10. Computational complexity of solving the problem depends on m,n,
and in the case the heuristic algorithms also on V. In order to avoid concealing
the algorithm runtime vs solution quality relationship by this dependence of
computational complexity on m,n, V', these parameters have been set to m =
10,n = 12,V = 24000MB. In Fig. 6.10 boxes represent algorithm runtimes
(horizontally) and relative distance from the best obtained solution (vertically)
on a population of 30 test instances. The boxes span from quartile Q1 to Q3 in
time (horizontally). Quality span is represented analogously along the vertical
dimension. Medians (Q2) of runtime and quality are also marked. There are
14 PSRs of the fast heuristics SSC and GSS. Statistical analysis (ANOVA)
revealed that neither in the runtime nor in the solution quality has any sorting
rule a statistically sound advantage for the considered m,n,V. Thus, to avoid
cluttering the picture the results of all the sorting rules are put together in boxes
distinguishing only SSC and GSS methods (denoted ”All SSC”, ”All GSS”,
respectively). The results for the super-SSC and super-GSS methods, which
choose the best result among all processor sorting rules, are shown as SuSSC and
SuGSS, respectively. It can be seen in Fig. 6.10 that the solutions constructed
by solving the MIP model (6.6)-(6.28) are always the best with respect to the
solution quality. But this guarantee of quality comes at the cost of the runtime,
the highest among all the studied methods. Relaxing the MIP gap to 10%
(MIP 10%), helps with respect to the runtime with only minor loss in solution
quality. However, as shown in Fig. 6.9, this approach has limited scalability
because at m = 20 also the relaxed MIP model exceeds the 1200s time limit.
The heuristic solutions are on average 1.7 — 3 times worse in schedule length
T (Fig. 6.10a) and 1.5 — 2.3 times worse on energy E criterion (Fig. 6.10b).
Conversely, heuristic methods are by 4 — 5 orders of magnitude faster than
solving the MIP model. It can be observed that GSS algorithm is better than
SSC, but it is slightly slower (approx. 50% longer runtimes). The super-SSC

improves solution quality compared to the original SSC methods, but it is still

127

Scheduling divisible computations with energy constraints

Table 6.3: Idle time fraction in schedule length.

Quar- All machines Only active machines
tile MIP SSC| GSS MIP SSC| GSS
Q1 0.0001 | 0.4736 | 0.3530 || 0.0001 | 0.2507 | 0.3530
Q2 0.0326 1]0.5342 || 0.0313 | 0.4505 | 0.5342
Q3 0.1124 1]0.7177 || 0.1061 | 0.6825 | 0.7177

worse both in solution quality and runtime (when referring to time the medians)
than the original GSS methods. The super-GSS is only marginally better in
solution quality than the original GSS methods. It can be concluded that the

GSS methods dominate other heuristics.

Let us now analyze the sources of heuristic algorithm inefficiency with re-
spect to solution quality. In Tab. 6.3 quartiles Q1, Q2, Q3 of the fractions of
the schedule length spent in busy-waiting or idle are shown. The fractions were
collected over a population of 30 instances with m = 10 compared to the mini-
mum length reference solution. In the case of heuristic algorithms all processor
sorting rules were considered. This statistic has been collected for all available
machines (even if some of them were not used), and separately, only for the
machines which indeed took part in the computation. It can be seen that the
solutions from the MIP model have very little idle time. The results for all
machines and for the activated machines do not differ much. This signifies that
MIP schedules almost always use all available processors, idle times are short if
any, communications and computations are very well coordinated to avoid idle
times. These quality results come at twofold price: computational complexity
of solving the MIPs, and benchmarking the application and the platform to ob-
tain precise data used in the model. Conversely, SSC quite often has long idle
time. In particular, values 1 mean that some processors are not activated at all.
This is confirmed by the fact that overall amount of idle time in SSC schedules

decreases if only the active processors are considered. Thus, SSC has a potential

128

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL

MEMORY
1E3 o 1E3 =
) B RAM -----
£ 5 Rnd
= 2
— 25
£ =
1E2 1E2
1E1 1E1
1E0 1E0
1 1
1E3 1E3 =
T S L
£ 5 Rnd
= 2
— 25
£z =
1E2 g 1E2
1E1 / A 1E1
1 m 1
- 1E0

1E0

1 10 100 1000 1 10 100

c) d)

Figure 6.11: Time and energy quality among the heuristics vs processor num-
ber m. a) SSC-heuristics schedule length, b) SSC-heuristics energy; ¢) GSS-
heuristics schedule length, d) GSS-heuristics energy. Continuous lines show
quality medians of the worst, Rnd, and the best heuristics. Logarithmic axes.

for improvement by tuning the set of used processors. GSS schedules involve
almost all processors which is signified by equal values both when all machines,

and if only the active ones are taken into consideration.

In Fig. 6.11 evaluation of heuristic solutions quality is extended to bigger
processor numbers m. Relative distance from the lower bound is shown along

the vertical axes. The lower bound of schedule length is

m

LB(T) = Smin + Omin + Pmin * Omin + V/(Z 1/(111‘),

=1

(6.29)

where Smin, Omin, Pmin, Cmin, are minimum machine startup time, minimum
communication overhead, minimum RAM size and communication rate in the

processor set, respectively. In (6.29) it is assumed that the shortest possible

129

1000

Scheduling divisible computations with energy constraints

communication is done and then, whole load V is processed on all machines in
parallel. The energy lower bound is

LB(E) = SminPSin + (Omin + VCmin)PrJrYin + Vkl min + P({VLB(T)v (630)

m

where P2, is minimum machine starting power, P is minimum networking

n
power, and ki in is the minimum energy per load unit in the processor set. In
(6.30) it is assumed that the least energy-costly machine startup is executed,
all the load is transfered over the least energy-consuming communication link
and the load is processed on the most energy-efficient processor. In Fig. 6.11
quartiles Q1, Q2, Q3 for the population of all the method solutions are shown.
Moreover, the medians (Q2) of the best, the worst, and Rnd processor sort-
ing rules are shown as continuous lines. It can be seen that the median of
all method does not differ much from the performance of Rnd order. Some
methods slightly distinguish themselves both in positive and in the negative
sense. For example, the order of increasing on-core computing rates ay; (that
is decreasing computing speeds) allows for a bit shorter schedules (Fig. 6.11a,
Fig. 6.11c), and consequently more energy-efficient solutions among the SSC-
heuristics (Fig. 6.11b). For these cases sorting rule al improves schedule length
and energy quality measures by roughly 30% related to the Rnd median quality.
Depending on the number of processors, results of al are in the lowest 10-30%
of the results population of Rnd sorting rule. Similar observations can be done
for GSS algorithm with the k1 rule (Fig. 6.11d). It can be concluded that the
quality of solutions generated by the heuristics is similar, but PSRs al, k1 have

some modest advantage.

130

CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

6.5 CONCLUSIONS

In this section time- and energy-performance of processing data-parallel com-
putations in heterogeneous systems with hierarchical memory has been studied.
Hierarchical memory subsystems incur complex dependence of the running time
and energy consumption on the size of solved problem. These dependencies have
been represented by piecewise-linear functions. The computation scheduling
problem has been rendered as an optimization problem consisting in selecting
the set of activated processors, the sequence of processor communications, and
sizing the load chunks. Two approaches have been proposed: solving a MIP for-
mulation, or applying fast heuristics. The results obtained indicate that due to
the existence of idle processors which still consume some power, there are sharp
local optima in the energy vs schedule length trade-offs. Hence, short sched-
ules, even though compute- and power-intensive, can be more effective than long
schedules with some machines in low-energy computing mode and some other in
the idle mode. Moreover, holding machines in a diverse set of energy modes is
advantageous because the machines in shallow suspension can quickly start the
computations, while simultaneously starting the machines in deeper suspension
modes. It has been also established that limited use of the out-of-core mem-
ory may be beneficial by limiting communications or activating fewer machines.
The performance of the scheduling algorithms is determined by various factors.
The schedules obtained by solving an MIP are almost always the best, but this
dominance comes at cost: MIP runtime and the need for information on the
model parameters. The fast heuristics proposed here build solutions approx. 3
times worse than the MIP’s with respect to solution quality, but in 4-5 orders
of magnitude shorter time. Among the fast heuristics, GSS methods offer good
trade-off between solution quality and runtime, sending the load to the fastest

or the least-energy consuming processors is moderately advantageous.

131

Scheduling divisible computations with energy constraints

132

7 SUMMARY AND FINAL REMARKS

In this thesis problems of scheduling divisible computations in systems with
hierarchical memory, for the criteria of energy and time performance were ana-
lyzed. The computation time and energy models for machines with hierarchical
memory were not assumed but constructed on the basis of measurements on
practical algorithms in real computer systems. These models are piecewise-
linear functions of the size of load (data) to be processed. Divisible load pro-
cessing both in homogeneous and heterogeneous systems was considered. Two
types of scheduling algorithms for load processing were proposed: fast greedy
algorithms and mixed integer linear programming-based methods. Results of
the performance modeling confirm existence of a trade-off between time and en-
ergy criteria. However, it was also shown that in many cases both energy usage
and schedule length can be reduced by increasing parallelism of the computa-
tions. In heterogeneous systems frequent irregularities of schedules construction
were observed. The impact of various computing platform components on time
and energy performance in processing divisible loads was analyzed by use of
isoenergy and isoefficiency maps. These two-dimensional visualizations helped
to expose complex connections between seemingly independent computing sub-
systems and the parameters representing them. The two types of algorithms
solving divisible load scheduling problems, that is the greedy heuristics and the
MIP-based problems, also expose a trade-off between computational complex-

ity and solution quality (both in energy and in time performance). Thus, high

133

Scheduling divisible computations with energy constraints

quality solutions come at the cost of computational time, but also benchmarking
of the data-parallel application on a specific computing platform necessary to
obtain specific scheduling model parameters.

We believe that this thesis opens options for further studies on energy perfor-
mance in parallel processing. The reported above trade-off between the bench-
marking and complexity costs and quality of the solutions calls for further in-
vestigation of the algorithms that can possibly offer better quality solutions
and require less information on the scheduled computation. The concept of
isoline maps also can be extended to other performance models and scheduling

problems.

134

A SUMMARY OF NOTATIONS

Table A.1: Chapter 4 summary of notations.

load assigned to machine M; (e.g. [bytes])

computing rate (e.g. [s/byte])

communication rate (e.g. [s/byte])

sum of all forms of consumed energy (e.g. [J])

energy consumed in the idle state (e.g. [J])

energy above the idle state consumed in communication
energy above the idle state consumed in computation
size of parallel part of the computation (Section 4.1)
power reduction factor for the idle state

number of processors

processor power in active state (e.g. [W])

network power in active state (e.g. [W])

startup time (e.g. [s])

size of load (e.g. [bytes])

135

Scheduling divisible computations with energy constraints

Table A.2: Chapter 5 summary of notations

a2, b2

the amount of load sent to M; in the jth communication;

processing rate on-core, e.g. [s/MB]

parameters of computation time out-of-core, e.g. [s/MB], [s]
communication rate (1/bandwidth) [s/MB]

= max{kia, ko + I3}, energy consumed in processing load of size « in
a hierarchical memory system, cf. Section 3.3

schedule energy [J]

idle state energy on machine M; [J]

networking energy on machine M; [J]

energy consumed by the starting machine M; [J]

running M; machine energy [J]

energy rate per data unit on-core [J/MB]|

parameters of energy consumed out-of-core, per data unit, e.g. [J/MB],
s

Ll]nnber of machines

fixed communication overhead, Section 5.2.3 [s]

idle state power of the machines [W]

networking power [W]

running power [W] of the machines

size of RAM available to store data

startup time (e.g. [s])

= max{aq, asa + ba}, time of processing load of size « in a hierarchical

memory system, cf. Section 3.3
schedule length [s]

idle time of machine M; [s]

networking time of machine M; [s]

running time of machine M; [s]

decision variable =1 if computer 7 is activated; =0 otherwise
size of load to process [MB]

136

APPENDIX A. SUMMARY OF NOTATIONS

Table A.3: Chapter 6 summary of the main notations.

MIP variables

Qij the amount of load sent to M; in the jth communication;

E sum of all forms of the consumed energy;

Eo energy consumed by the originator;

ET total energy consumed in idle waiting before starting the processors and later
in busy-waiting;

E;; energy consumed by machine M; in the computations on the jth load chunk;

EN total energy consumed in the networking;

ER total energy consumed in the computations;

ES total energy consumed in staring the processors;

idleStart; the time until starting machine M;;

idle; the total time when machine M; is busy-waiting;

Qij a variable equal to the product t;x;;;

t; the time when the jth communication begins;

Tij the duration of computation on the jth load chunk on machine M;;

Uij a binary variable equal 1 if 735 = ag;4; + b2s, 0 if 745 = arsaiy;

Tij a binary variable equal 1 if machine M; receives load in the jth communication,
0 otherwise;

Yij a binary variable equal 1 if machine M; received some load in the communi-
cation jth or earlier, 0 otherwise;
constants

ai1i,a2i,b2; parameters of machine M; piecewise-linear computing time function;

C; communication rate of machine M; (inverse of bandwidth);

kii, k2i,lo; parameters of machine M; piecewise-linear energy function;

m size of the set of available machines

n number of communications

O; fixed communication overhead of machine M;;

P! idle state power of machine M;;

PN networking power of machine M,;

pP? starting state (power up) power of machine M;;

Si startup time from idle of machine M;;

p size of RAM on machine M; available to store data

T schedule length;

\%4 size of load to process;

AVANY A big constants.

137

Scheduling divisible computations with energy constraints

138

B STRESZCZENIE W JEZYKU

POLSKIM

WSTEP

Przetwarzanie duzych ilosci danych jest jednym z najwazniejszych zastosowan
technologii informatycznych we wspélczesnych nauce i przemysle. W celu spro-
stania wyzwaniom zwiazanym z przetwarzaniem duzych iloSci danych opraco-
wane zostalo wiele nowych technologii: platformy i frameworki do przetwarzania
danych [8, 12, 27], biblioteki programistyczne [10, 11], systemy zarzadzania ba-
zami danych [7, 9, 65]. Jednak ogromne centra danych stuzace przetwarzaniu
duzych ilosci informacji obciazaja sieci energetyczne. W zwiazku z tym, dostawy
energii i jej koszty narzucaja ograniczenia w dalszym rozwoju centréw danych i
superkomputeréw. Ograniczenia energetyczne sa waznym zagadnieniem réwniez
w przypadku sieci sensoréw, lotnictwa i kosmonautyki czy aplikacji internetu
rzeczy. Praca ta jest poSwigcona analizie i optymalizacji czasu oraz wydajnosci
energetycznej w przetwarzaniu duzych iloéci danych. Efektywne zaplanowanie
przetwarzania réwnoleglego bedzie sposobem na optymalizacje jego wydajnosci.
Platformy obliczeniowe, zwlaszcza w kontekscie duzych ilo$ci danych, naktadaja
szereg ograniczen. Na przyklad, dystrybucja danych do zdalnego przetwarzania
nie jest natychmiastowa, a opdznienia w komunikacji stanowia znaczaca czesé

czasu wykonania aplikacji. Dlatego opdznienia w komunikacji musza by¢ brane

139

Scheduling divisible computations with energy constraints

pod uwage przy planowaniu wykonania réwnoleglych obliczen. Wspolczesne
komputery maja hierarchiczna strukture pamieci, poczawszy od rejestréw CPU,
poprzez pamieci podreczne procesora, pamieé operacyjna, czyli tzw. RAM, az
po zewnetrzne pamieci masowe (sieciowe, SDD, dyski twarde). Rozmiar pamieci
rosnie, ale predkos¢ dostepu maleje w miare ,,oddalania” sie od procesora. Takze
energochtonnos$é aplikacji pracujacych na réznych poziomach pamieci znacznie
sie r6zni. Wielkosci danych, ktére musza byé przetwarzane w dzisiejszych apli-
kacjach, z tatwoscia przekraczaja wielkosci dostepnych pamieci operacyjnych
wspotczesnych komputeréw. Dlatego nalezy unikaé korzystania z pamieci ze-
wnetrznych lub liczy¢ sie ze spadkiem szybkosci przetwarzania wynikajacym z
korzystania z nizszych pozioméw pamieci. Praktyczny plan réwnoleglego wyko-
nywania aplikacji powinien wykorzystywaé opcje oszczedzania energii poprzez
wlaczanie niezbednego komputera tylko w razie potrzeby. Wreszcie, heteroge-
nicznos¢ platform obliczeniowych, czy to w postaci mieszania CPU z oblicze-
niami na GPU, stosowania réznych instancji obliczeniowych, takich jak Amazon
EC2 [1], czy tez centralnych serweréw przetwarzania ze zdalnymi czujnikami,
jest jeszcze jedna rzeczywistoscig obecnych aplikacji, ktére powinny byé repre-
zentowane w metodach szeregowania obliczen. W pracy tej zamierzamy zapro-
ponowa¢ metody szeregowania zadan rownoleglych uwzgledniajace opdznienia
komunikacyjne, hierarchiczne poziomy pamieci, istnienie trybdéw oszczedzania

energii oraz heterogeniczno$¢ systemu.

CEL I ZAKRES PRACY

Gléwnym celem tej pracy jest zwiekszenie efektywnodci energetycznej przez lep-
sze zarzadzanie przetwarzaniem réwnolegltym i zasobami systemowymi. Ko-
lejnym istotnym celem jest zrozumienie ograniczen przetwarzania réwnolegtego
oraz zaleznosci pomiedzy czasem i energia jako miarami wydajnosci. Celem niz-
szego poziomu jest stworzenie modeli szeregowania i wydajnosci dla platform i
aplikacji przetwarzania rozproszonego. Jako podstawowe narzedzie modelowa-

nia wykorzystana zostala idea obliczen jednorodnie podzielnych (ang. divisible

140

DODATEK B. STRESZCZENIE W JEZYKU POLSKIM

load theory). Zaklada ona, ze obliczenia mozna dowolnie dzielié¢ na czesci i
wykonywaé w sposéb réwnolegly. Odpowiada to réwnoleglemu przetwarzaniu
duzych zbioréw danych. Nastepnym celem jest zaproponowanie algorytméw
rozwigzujacych te modele, tak aby méc konstruowaé efektywne harmonogramy
dla aplikacji rownolegltych i przewidywaé ich wydajnosé. Dzieki analizie jakosci
skonstruowanych harmonogramoéw, poznane zostana determinanty wydajnosci i
relacje miedzy nimi. Zbadany zostanie wplyw platformy obliczeniowej i parame-
tréw aplikacji na kryteria czasu i energii. Aby osiagnaé powyzsze cele opraco-
wane zostang, modele czasu wykonywania obliczen i zuzycia energii na jednym
komputerze w zaleznosci od wielkosci przetwarzanych danych. Modele opty-
malizacji obejma systemy z nieograniczong pamiecia, systemy homogeniczne z
pamiecia hierarchiczna i systemy heterogeniczne z pamiecia hierarchiczna. Dla
sformulowanych problemdéw optymalizacji opracowane zostana algorytmy, a ich
koszty obliczeniowe zostang réwniez ocenione. Oznaczenia uzyte w dalszej czedci

polskiego streszczenia objasniono w zataczniku A.

MODELE MATEMATYCZNE CZASU OBLICZEN I

ZUZYCIA ENERGII

W celu stworzenia modeli zuzycia energii w czasie obliczen, wykonano pomiary
na roéznych komputerach z przykladowymi aplikacjami: quicksort, wyszukiwa-
nie ciggu w tekscie, obliczanie wartosci skrétu md5 (tablice teczowe), wykry-
wanie krawedzi na obrazach bitmapowych i transpozycja macierzy. Aplikacje
te zostaly zaimplementowane w gcc i uruchomione pod FreeBSD 8.1 i Ubuntu
14.04 LTS. Do pomiaréw zuzycia energii zastosowano watomierz Lutron DW-
6090 o rozdzielczosci mocy 1W i rozdzielczosci czasowej 1s. W niektérych z
mierzonych komputeréw predkosci wentylatorow zalezne byly od temperatury
procesora i systemu. Natomiast zmiana predkosci wentylatora powodowala kilka
watéw roznicy w pomiarze. Aby uniezalezni¢ wyniki od temperatury otoczenia

lub wynikéw termicznych wezesniejszych eksperymentow, konieczne bylo zasile-

141

Scheduling divisible computations with energy constraints

measured . .

measured fit - in RAM

fit - in RAM --------] fit - out of core
fit - out of core

time [s]
energy [J]
"

1E4 [1

e 1E3 |

A~ size [MB] size [MB]
L L L L L L L 1E2 H L L L L L L
0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000 8000 10000 12000
a) b)
! ! ! ! - ! ! ! !
o measured R
fit - in RAM o L 1E5 | fit - in RAM E
fit - out of core . fit - out of core .
3 P
g . 5 .
= o~ IE4 | 5 i 9
1 RN IS
B
i T
P
. 1E3 | ’ E
- e)
e J
e 1E2 | E
AT ’l
- A
; size [MB] : size [MB]
A . . . 1B
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
c) d)

Rysunek B.1: Zalezno$é czasu i energii od wielkodci obciazenia. quicksort: a)
czas, b) energia; Wyszukiwanie ciagdéw znakéw: c) czas, d) energia, w zaleznosci
od rozmiaru problemu. Osie pionowe sa logarytmiczne. Linie ciagle zostaly
dopasowane za pomocg regresji liniowej.

nie tych wentylatorow z zewnetrznego zrédla zasilania. Watomierz Lutron jest
podlaczony zlaczem szeregowym do innego komputera, ktéry rejestruje dane.

Schematy stanowiska pomiarowego pokazano na rys. 3.3.

Czas i energia potrzebne do obliczenn porcji danych (obciazenia) zaleza od
wielkosci porcji . Waznym wyznacznikiem jest to, jak duza jest paczka danych
a w poréwnywaniu z wielkoscia dostepnej dla procesu pamieci operacyjnej. Aby
zweryfikowaé zwiazek miedzy czasem obliczen, zuzyta energia i rozmiarem pro-
blemu, przeprowadzono szereg testéw obliczeniowych. Na podstawie przepro-
wadzonych testéw (Rys. B.1) zaobserwowalidmy, ze czas obliczen mozna zapisaé

jako funkcje maksimum dwdéch funkceji liniowych:

7i(a) = max{ai;¢, ag; + ba; }.

142

DODATEK B. STRESZCZENIE W JEZYKU POLSKIM

Sktadnik a1;a odpowiada obliczeniom w pamieci operacyjnej ze wspotczynni-
kiem ay; (odwrotnosé predkosci). Drugi sktadnik reprezentuje obliczenia poza
pamiecia operacyjna. Funkcje 7; maja dwie wlasciwosci: 7;(0) = 01 7;(p;) =
a1ip; = a9;p; + boy, dla ¢ = 1,...,m, gdzie p; to rozmiar pamieci dostepnej
dla aplikacji na maszynie M; (niekoniecznie calej pamieci RAM sprzetu). Dla
rozmiaréw problemu a« wiekszych od p; maszyna zaczyna korzystaé¢ z pamieci
dyskowej. Energia zuzywana w obliczeniach jest okreslana przez analogiczna
funkcje:

Ei(a) = max{k”a, ina + ZQZ}

speliajaca réwniez analogiczne wymagania: €;(0) = 0,&;(p;) = k1ip; = kaipi +

l2;. Dla rozmiaru dostepnej pamieci p;, obie funkcje 7; oraz &; spelniaja:

pi = bai/(a1i — ag;) = loi/(k1i — k2i).

Zauwazmy, ze poniewaz dla przetwarzania poza pamiecia operacyjna (ang. out-
of-core) czas i energia rosna znacznie szybciej niz przy przetwarzaniu on-core,
mozemy zalozyé ze: ai; < agq,bay; < 0 k1; < koj,la; < 0, dla wszystkich ma-
szyn M;. Zauwazmy, ze wspélczynniki aq;, as;, ba;, k14, k2i, lo; zaleza zaréwno
od parametréw maszyny, jak i od uruchomionej aplikacji. Przyktady zaleznosci

Ti(@),€;(a) przedstawiono na Rys. B.1

[zOMAPY

Przedstawiamy tu koncepcje map izolinii, ktére zostana wykorzystane jako wi-
zualne pomoce w pokazaniu zjawisk i zaleznoéci czasowych i energetycznych.
Koncepcja graficznego przedstawiania punktow o réwnej wartosci danego
kryterium na dwuwymiarowych obrazach jest szeroko stosowana w nauce i tech-
nice. Przykladami dwuwymiarowych przedstawien zlozonych obiektéw fizycz-
nych sa mapy konturowe elewacji w kartografii, izobary, izotermy, mapy izo-

hietowe w meteorologii, mapy entalpii w termodynamice [94]. Powodem tak

143

Scheduling divisible computations with energy constraints

szerokiego wykorzystania izomap jest fakt, ze takie wizualizacje okazaly sie bar-
dzo skuteczne w budowaniu zrozumienia zwiazkéw i podatnosci na zmiany dla
zlozonych zjawisk w wielu dziedzinach nauki i techniki. Pewnym rodzajem
mapy izolinii sa mapy izoefektywnosci wprowadzone w [33], rozwazane takze
w rozdziale 5.2.4. Mapy izoenergetyczne stanowia ogdlna metode wizualizacji
przetargéw w zakresie charakterystyki energetycznej. Kazdy model szeregowa-
nia lub model wykorzystania energii moze postugiwaé¢ sie mapami izoenerge-
tycznymi jako metoda wizualnej prezentacji. W ztozonych relacjach pomiedzy
wieloma czynnikami mapy izoenergetyczne daja holistyczny obraz i orientacje

w kierunku dziatan optymalizacyjnych.

IZOMAPY W OBLICZENIACH JEDNORODNIE PODZIELNYCH

Przykladowa mapa (V, C') zostala pokazana na rys. 4.4. Taka izomapa pokazuje
jak powiazane ze soba sa parametry rozmiaru rozwiazywanego problemu V i
odwrotnosci predkosci C. Rys. 4.4 pokazuje, czy zuzycie energii spowodowane
rosnaca wielkoscia problemu moze by¢ zrekompensowane przez szybsza komu-
nikacje. Konfiguracje w lewym gérnym rogu, gdzie komunikacja jest szybka,
a rozmiar problemu niewielki, sa niemozliwe do zrealizowania, gdyz wykonanie
obliczen w sposob réwnolegly na wszystkich procesorach zalozonej konfiguracji
wymagaloby nieplanowanego przestoju. Wraz z postepem w wysokowydajnych
obliczeniach rozmiary V rozwiazywanych probleméw nieuchronnie rosna. Mapa
(V, C) pokazuje, ze zuzycie energii ros$nie giéwnie z V. Tylko w przypadku C
wiekszego niz okre$lony prég, zuzycie energii zalezy réwniez od C. Wartosé
progowa C jest okreslona przez relacje pomiedzy energia zuzyta w obliczeniach
VaPC¢, a energia zuzyta przez procesory czekajace w stanie bezczynnosci na roz-
poczecie obliczen, ktéra wynosi w przyblizeniu VC(Pm + PN)/k. Tak wiec
dla P¢m > PY i C wigkszego niz okolo ak/m =3E-6 te dwa parametry moga
wzajemnie sie kompensowaé. Oznacza to, ze komunikacja musi by¢ szybsza, aby
rownowazy¢ rosnace V' i utrzymacé stale zuzycie energii. Alternatywnie, mozna

powiedzieé, ze dla C' > ak/m komunikacja jest zbyt wolna i powoduje niepo-

144

DODATEK B. STRESZCZENIE W JEZYKU POLSKIM

trzebne koszty energii poprzez utrzymywanie procesoréw w stanie bezczynnosci.
Zastosowanie mapy izoenergetycznej (V, C') w realnym scenariuszu moze wygla-
da¢ nastepujaco: Planowane jest przetwarzanie rosnacych rozmiaréw problemu
V' przy uzyciu istniejacej aplikacji i centrum danych. Co nalezy zrobi¢, aby
przygotowaé sie do takiej zmiany i ograniczyé¢ zuzycie energii? Zuzycie energii
nieuchronnie wzroénie wraz z V. Gléwnym skladnikiem sg obliczenia, iloczyn
VaP® musi byé¢ zminimalizowany. Mozna to osiggnaé dzieki lepszym algoryt-
mom i programowaniu (minimalizacja a), lepszemu sprzetowi (PY). Dalsze
zmiany zaleza od interakcji pomiedzy a,C,m,k, P¢, PN. Jedli Pm > PV i

C < ak/m nie sa potrzebne zadne zmiany w podsystemie sieciowym.

SYSTEMY HOMOGENICZNE Z PAMIECIA

HIERARCHICZNA

W celu uszeregowania obliczen jednorodnie podzielnych w homogenicznych sys-
temach komputerowych (tj. skladajacych sie z takich samych komputeréw)
zastosowano dwie metody dystrybucji pracy do wykonania. Pierwsza metoda
polega na jednorazowej komunikacji z komputerem. Rozwiazanie problemu dys-
trybucji obliczen zostalo zapisane jako zadanie mieszanego programowania li-
niowego (ang. mixed integer linear programming, MIP). Druga metoda zaktada
dystrybucje wieloetapowa. Rozwiazanie uzyskano metodami heurystycznymi
oraz przez sprowadzenie do mieszanego programowania liniowego (MIP).

W przypadku przetwarzania jednoetapowego harmonogram komunikacji i
obliczen przedstawiono na rys.5.la. Na poczatku caloé¢ danych do obliczen
znajduje sie na inicjatorze czyli komputerze oznaczonym dalej jako M. Inicja-
tor jest polaczony ze wszystkimi maszynami podrzednymi M, ..., M,,, przy
pomocy pewnej sieci o wysokiej przepustowosci 1/C. Inicjator jedynie dzieli
i rozsyta dane. Komunikacja jest wykonywana tylko pomiedzy M, a maszy-
nami podrzednymi, nie ma komunikacji pomiedzy My, ..., M,,. Wolumen V

jest wysylany w kawatkach o rozmiarze as,...,qa, odpowiednio do maszyn

145

Scheduling divisible computations with energy constraints

My, ..., M,,. Maszyny potrzebuja niezerowego czasu na rozruch S zanim beda
w stanie odebra¢ dane. Czas rozruchu S jest waznym elementem modelu obli-
czen, poniewaz bez niego moze by¢ aktywowana dowolna liczba procesoréw, co
nie ma praktycznego sensu [22, 28]. Po zakonczeniu odbierania danych przez
maszyne M;, M; zaczyna je przetwarzaé¢, podczas gdy inicjator aktywuje ma-
szyne M; 1 w celu wysltania do niej danych o rozmiarze «;y;. Procedura jest
powtarzana do momentu rozpoczecia obliczen na wszystkich procesorach m.

W teorii obliczen jednorodnie podzielnych zazwyczaj zaklada sie, ze czas
zwracania danych z maszyn do inicjatora jest pomijalny. Przy takim zalozeniu
mozna wykazaé [22, 26, 74], ze optymalnym rozwiazaniem jest takie, w ktérym
obliczenia na wszystkich maszynach koncza sie réwnoczesnie. Rozwiazanie pro-
blemu uszeregowania obliczen zapisano w zadaniu mieszanego programowania
liniowego (5.5)-(5.11).

W przypadku przetwarzania wieloetapowego paczki danych do maszyn roz-
sylane moga by¢ wiecej niz raz. Do rozwigzania tego problemu proponujemy
proste algorytmy zachlanne oraz metody programowania liniowego dajace roz-

wiazania optymalne. Przedstawione heurystyki to:

Simple static chunk (SSC) algorytm ten zaklada, Ze rozmiary paczek da-
nych sa réwne rozmiarowi dostepnej pamieci RAM, tj. agsc = p. W ten sposéb
SSC unika korzystania z pamieci zewnetrznej. Wada takiego podejscia jest to, ze
na koncu uszeregowania sa ,wystajace” komputery, nieréwno konczace oblicze-
nia. To znaczy, ze w ostatniej iteracji dystrybucji obcigzenia niektdére procesory

moga pozostaé bezczynne.

Static chunk with underload (SCU) algorytm ten przyjmuje ascy =
V/([V/pm]m) gdzie m to liczba homogenicznych maszyn z pamigcia o rozmia-
rze p. Tak wiec, algorytm SSU zaokragla w dét rozmiar paczki danych ktora
uzyskuje kazdy komputer tak, aby unikaé¢ niezréwnowazenia obciazen kompute-

row kosztem ewentualnej dodatkowej iteracji.

146

DODATEK B. STRESZCZENIE W JEZYKU POLSKIM

Static chunk with overload (SCO) zaokragla liczbe iteracji w dét, kosztem

ewentualnego wykorzystania przetwarzania w pamigci zewnetrzne;j.

Guided Self-Scheduling Adaptation (GSS) algorytm wyznacza rozmiary
paczek danych jako aggs = min{V’/ max{1,min{V’/m,p}}}, gdzie V' jest ilo-
Scig danych pozostajaca do przetworzenia. Rozmiary paczek zmniejszaja sie
w trakcie realizacji uszeregowania. Zakladajac, ze V' > p, algorytm poczat-
kowo wysyla paczki o rozmiarach réwnych rozmiarowi dostepnej pamieci RAM.
Kiedy V' < p, GSS stopniowo zmniejsza rozmiary paczek, a tym samym mini-
malizuje réznice w czasach ukonczenia poszczegdlnych maszyn. GSS nie wysyla
paczek o rozmiarze mniejszym niz pewien staly rozmiar, ktory jest tu ozna-
czony jako 1. Dla V > mp liczba uzytych procesoréw w GSS jest taka sama
jak w poprzednich algorytmach, poniewaz poczatkowe kawaltki obciazenia maja
rozmiar p. Jednakze, jesli V/p > m GSS od razu wysyla paczki mniejsze niz
p, rozmiary paczek zmniejszaja sie, a komunikacja jest coraz krétsza. W ta-
kiej sytuacji GSS jest w stanie uruchomi¢ wiecej maszyn niz SSC, SSU, SCO,
jednoczesnie nie zwigkszajac czaséw bezczynnosci niektérych maszyn na koncu
uszeregowania.

Uzyskane wyniki symulacyjnych badan wydajnosci pokazaly, ze istnieje prze-
targ pomiedzy energia a czasem uszeregowania. Wydajnosé czasowa i ener-
getyczna sa regulowane przez: i) wielkodci wysylanych paczek danych, ktére
determinuja prowadzenie obliczenn w pamieci wewnetrznej lub zewnetrznej, ii)
liczbe procesoréw mozliwych do réwnoleglego uzycia , co daje obnizenie kosztdw
dzieki skréceniu uszeregowania, iii) czas bezczynnosci, ktéry ma wplyw na ilogé
zmarnowanej energii. Mowiac ogélniej, o wydajnosci decyduje zlozona zaleznosé
miedzy szybkoscia i poborem mocy elektrycznej obliczen w pamieci wewnetrznej
i zewnetrznej, kosztami uruchomienia nowych maszyn, opéznieniami w komuni-
kacji oraz wielkoScia rozwiazanego problemu. Mozna zauwazyé, ze w szerokim
zakresie parametrow systemowych przetwarzanie réwnolegte ma wplyw na ener-

gie i czas uszeregowania: mozliwe jest zaoszczedzenie na obu kryteriach poprzez

147

Scheduling divisible computations with energy constraints

dodanie nowych maszyn. Zjawisko to jest jednak ograniczone do obliczen duzych
rozmiarow i krétkich czaséw rozruchu maszyn. Wieksze czasy rozruchu szybko
zmniejszaja szanse na skrocenie czasu uszeregowania i oszczedno$é energii przez
zastosowanie réwnoleglosci obliczen. Tak wiec wszystkie parametry wplywajace
na mozliwos¢ uzyskania efektywnych obliczen rownolegltych beda mialty rowniez
wplyw na optymalizacje dlugosci uszeregowan i zuzycia energii. Co wiecej,
mozna zaobserwowac, ze oszczednosci energii uzyskane w wyniku zmiany jed-
nego parametru lub jednej czeSci systemu sa zazwyczaj ograniczone. Dlatego
do zmniejszania zuzycia energii elektrycznej uzywanej do zasilania wysokowy-
dajnych obliczen i duzych centrow danych niezbedny jest postep we wszystkich

podsystemach tak platformy, jak i aplikacji rownolegtle;j.

SYSTEMY HETEROGENICZNE Z PAMIECIA

HIERARCHICZNA

Celem badan nad systemami heterogenicznymi byta analiza wplywu réznorod-
noéci komputeréw na mozliwe do uzyskania wyniki wydajnosciowe. W przy-
padku systeméw heterogenicznych ograniczono sie¢ do wieloetapowej metody
dystrybucji danych. Do konstrukcji uszeregowan uzyte zostaly proste algo-
rytmy heurystyczne wykorzystujace pewne zasady preferencji procesoréow wg
ich parametréw wydajnoéciowych, a takze zaprezentowano rozwiazania uzywa-
jac mieszanego programowania liniowego. Algorytmy zachtanne zaproponowane
do szeregowania zdan w systemach heterogenicznych to adaptacje wczesniej wy-
korzystanych algorytméw Simple Static Chunk (SSC) i Guided Self-Scheduling
(GSS). Dla tych algorytméw rozwazamy ustawianie kolejnosci uzycia proceso-
row, np. wg predkosci komunikacji, czaséw rozruchu, mocy w stanach spo-
czynku, komunikacji, rozruchu, rozmiaru pamieci. Stosowano réwniez uszere-
gowanie w losowej kolejnosci dystrybucji danych stosowane jako punkt odnie-
sienia. Mozliwe jest zastosowanie wszystkich zasad sortowania réwnoczesnie i

wybranie z nich najlepszego rozwiazania. Czas przeszukiwania rozwigzan dla

148

DODATEK B. STRESZCZENIE W JEZYKU POLSKIM

wszystkich zasad sortowania nadal bedzie dalece krétszy niz znalezienie rozwia-
zan metoda programowania liniowego, a dzieki réznorodnosci metod wyboru
kolejnoéci dystrybucji danych unikamy powtarzania zlych decyzji. Ta droga
zwiekszamy niezawodnosé metod zachlannych i ostabiamy znaczenie ich najgor-
szych przypadkow. Taka metode bedziemy nazywaé odpowiednio SuperSSC i
SuperGSS. Zaréwno szeregowanie zadan jednorodnie podzielnych, jak i mieszane
programowanie liniowe w liczbach catkowitych w ogdlnosci, sa zagadnieniami
NP-trudnymi. Oznacza to, ze zgodnie z aktualnym stanem wiedzy (chyba ze
P=NP), do optymalnego rozwiazania tych probleméw wymagane sa wykladni-
cze czasy dziatania algorytmoéw. W naszym problemie, w najgorszym przypadku
ztozonos¢ obliczeniowa roénie wyktadniczo wraz z liczba procesoréw m i liczba
paczek danych n. Jednak dla rozsadnych rozmiaréw probleméw sformutowania
mieszanego programowania liniowego (MIP) moga by¢ rozwiazane do$¢ dobrze

przez wspolczesne solvery.

W pracy dokonano poréwnania jak rézne typy algorytméw szeregowania
wymieniaja czas swojego dziatania na jako$¢ tworzonych rozwiazan. Przetarg
pomiedzy jako$cia rozwiazan a czasem dziatania algorytmu pokazany jest na
rys. 6.10. Zlozono$¢ obliczeniowa rozwiazania problemu zalezy od m,n, a w
przypadku algorytmoéw heurystycznych réowniez od V. W celu unikniecia za-
mazania zaleznosci jakosci rozwiazania od czasu dzialania algorytmu przez za-
leznos¢ ztozonosci obliczeniowej od m,n, V', parametry te zostaly ustawione na
m = 10,n = 12,V = 24000MB. W prostokatach na wykresie 6.10 przedstawiono
czasy dzialania algorytmu (w poziomie) oraz wzgledna odleglo$é od najlepiej
uzyskanego rozwigzania (w pionie) na populacji 30 instancji testowych. Prosto-
katy te rozciagaja sie od kwartyla Q1 do Q3 w czasie (poziomo). Rozpietosé
jakosciowa jest reprezentowana analogicznie wzdluz wymiaru pionowego. Na
rys. 6.10 zaznaczone sg réwniez mediany (Q2) czasu trwania i jakosci. Chociaz
istnieje 14 zasad sortowania procesoréw dla heurystyk SSC i GSS, to analiza
statystyczna (ANOVA) wykazala, ze ani w czasach wykonania algorytmu, ani

w jakosci rozwigzan nie ma zadnej reguly sortowania, ktéra miataby statystycz-

149

Scheduling divisible computations with energy constraints

nie uzasadniong przewage dla rozpatrywanego m,n,V. Tak wiec, aby uniknaé
bataganu na wykresie, wyniki wszystkich regul sortowania sg umieszczane w
ramkach z rozréznieniem tylko na metody SSC i GSS (oznaczone odpowiednio
jako All SSC, All GSS). Wyniki dla metod SuperSSC i SuperGSS, ktére wy-
bieraja najlepsze rozwiazanie sposréd wszystkich regut sortowania procesora,
sa przedstawiane odpowiednio jako SuSSC i SuGSS. Jak widaé¢ na rys. 6.10,
rozwiazania skonstruowane poprzez uzycie modelu MIP sa zawsze najlepsze
w odniesieniu do jakosci rozwigzania. Ale ta gwarancja jakosci zostala uzy-
skana kosztem czasu obliczen, najwyzszego spoérod wszystkich badanych metod.
Ostabienie zadanych gwarancji jakosci rozwigzania, ktére tworzy solver MIP do
10% odleglosci od optimum poprawia czas wykonania z niewielkg utrata jakosci
rozwigzania. Podejscie to ma jednak ograniczona skalowalno$¢, poniewaz przy
m = 20 réwniez ostabiony model MIP przekracza limit czasowy 1200s co widaé
na rys. 6.9. Rozwiazania heurystyczne sa $rednio 1,7 — 3 razy gorsze w dlugoéci
uszeregowania i 1,5 — 2,3 razy gorsze w kryterium energii. I odwrotnie, metody
heurystyczne sa o 4 — 5 rzedéw wielkosci szybsze od rozwiazania modelu MIP.
Mozna zauwazy¢, ze algorytm GSS jest lepszy niz SSC, ale jest nieco wolniejszy
(ok. 50% dluzszy czas dzialania). Super-SSC poprawia jako$¢ rozwigzania w
poréwnaniu z oryginalnymi metodami SSC, ale jest i tak gorszy zaréwno pod
wzgledem jakosci rozwiazania jak i czasu dzialania (w odniesieniu do mediany
czasu) niz oryginalne metody GSS. Super-GSS jest tylko nieznacznie lepszy w
jakosci rozwiazania niz oryginalne metody GSS. Mozna stwierdzié¢, ze metody

GSS dominuja nad innymi heurystykami.

PODSUMOWANIE I UWAGI KONCOWE

W niniejszej pracy analizowano problemy zwiazane z planowaniem obliczen jed-
norodnie podzielnych w systemach z pamigcia hierarchiczna, dla kryteriéw wy-
dajnosci energetycznej i czasowej. Nie zalozono modeli wydajnosci czasowych i

energetycznych, lecz skonstruowano je w oparciu o badania wlasciwosci rzeczy-

150

DODATEK B. STRESZCZENIE W JEZYKU POLSKIM

wistych algorytméw w rzeczywistych systemach komputerowych. Modele te sg
funkcjami odcinkowo liniowymi dla wielkosci obciazenia (danych) do przetwo-
rzenia. Rozwazano przetwarzanie danych w ukladzie homogenicznym i hete-
rogenicznym. Zaproponowano dwa rodzaje algorytméw szeregowania dla prze-
twarzania obciazenia: szybkie algorytmy zachlanne i metody korzystajace z
programowania liniowego. Wyniki modelowania wydajnosci aplikacji réwno-
leglych potwierdzaja istnienie przetargu pomiedzy kryteriami czasu i energii.
Wykazano jednak réwniez, ze w wielu przypadkach zaréwno zuzycie energii,
jak i dtugosé uszeregowania mozna zredukowaé poprzez zréwnoleglenie obli-
czen. W systemach heterogenicznych zaobserwowano czeste nieregularnosci w
budowie uszeregowan. Analiza wplywu réznych skladnikéw platformy oblicze-
niowej na czas i wydajnos¢ energetyczna w przetwarzaniu zadan jednorodnie
podzielnych zostata wsparta zastosowaniem map izoenergetycznych i izoefek-
tywnosci. Te dwuwymiarowe wizualizacje pozwolilty na wyeksponowanie ztozo-
nych powigzan pomiedzy pozornie niezaleznymi podsystemami obliczeniowymi.
Dwa rodzaje algorytmoéw konstruujacych rozwiazania probleméw szeregowania
obliczen jednorodnie podzielnych, czyli heurystyki zachtanne i modele oparte
na MIP, rowniez cechuja sie¢ przetargiem pomiedzy zlozonoscia obliczeniowa a
jakoscig rozwiazania. Tak wiec, wysokiej jakosci rozwiazania powstaja kosztem
czasu obliczeniowego, ale takze benchmarkingu aplikacji na konkretnej platfor-
mie obliczeniowej, niezbednego do uzyskania wymaganych parametrow modelu
uszeregowania. Wierzymy, ze ta praca otwiera mozliwosci dla dalszych badan

nad wydajnoécia energetyczna w przetwarzaniu réwnolegtym.

151

Scheduling divisible computations with energy constraints

152

BIBLIOGRAPHY

1]

[7]

8]

[9]
[10]

[11]

[12]

[13]

Amazon, Amazon EC2 Instance Types, year=2019, howpublished = [on-
line] https: // aws. amazon. com/ ec2/ instance-types/.

R. AGRAWAL AND H. JAGADISH, Partitioning techniques for large-grained
parallelism, IEEE Transactions on Computers, 37 (1988), pp. 1627-1634.

S. G. A1, The design and analysis of parallel algorithms, Old Tappan,
NJ (USA); Prentice Hall Inc., 1989.

M. AL-FARES, A. LOUKISSAS, AND A. VAHDAT, A scalable, commod-
ity data center network architecture, in Proceedings of the ACM SIG-
COMM’08, ACM, 2008, pp. 63-74.

S. ALBERS, Energy-efficient algorithms, Communications of the ACM, 53
(2010), pp. 86-96.

G. AMDAHL, Validity of the single processor approach to achieving large
scale computing capabilities, in Proceedings of the AFIPS ’67 Spring joint
computer conference, ACM, 1967, pp. 483-485.

APACHE SOFTWARE FOUNDATION, Hbase and MapReduce. [on-line]
https://hbase.apache.org/book/mapreduce.html, 2014.

——, Welcome to apache hadoop. [on-line] http://hadoop.apache.org/,
2014.

—, Apache CouchDB. [on-line] http://couchdb.apache.org/, 2015.

——, Apache MRQL. [on-line] https://mrql.incubator.apache.org/,
2015.

——, Giraph - Welcome To Apache Giraph! [on-line] http://giraph.
apache.org/, 2015.

—, Apache spark lightning-fast unified analytics engine. [on-line]
https://spark.apache.org/, 2018.

F.-A. ARMENTA-CANO, A. TCHERNYKH, J. M. CORTES-MENDOZA,
R. Yanvapour, A. Y. Drozbpov, P. Bouvry, D. KLIAZOVICH,
A. AVETISYAN, AND S. NESMACHNOW, Min_c: Heterogeneous concentra-
tion policy for energy-aware scheduling of jobs with resource contention,
Programming and Computer Software, 43 (2017), pp. 204-215.

153

Scheduling divisible computations with energy constraints

[14]

[17]

[18]

[19]

A. ArvaniA, H. S. AGHDASI, AND L. M. KHANLI, Energy-aware virtual

machine consolidation algorithm based on ant colony system, Journal of
Grid Computing, 16 (2018), pp. 477-491.

K. BARR AND K. ASANOVIC, Energy-aware lossless data compression,
ACM Transactions on Computer Systems, 24 (2006), pp. 250-291.

O. BEAUMONT, H. LARCHEVEQUE, AND L. MARCHAL, Non linear di-
visible loads: There is no free lunch, in 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, IEEE, 2013, pp. 863—
873.

O. BEAUMONT, A. LEGRAND, L. MARCHAL, AND Y. ROBERT, Inde-
pendent and divisible tasks scheduling on heterogeneous star-shaped plat-
forms with limited memory, in 13th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, IEEE, 2005, pp. 179-186.

L. BENINI AND G. DE MICHELI, System-level power optimization: tech-
niques and tools, ACM Transactions on Design Automation of Electronic
Systems, 5 (2000), pp. 115-192.

J. BERLINSKA AND M. DROZDOWSKI, Scheduling divisible mapreduce
computations, Journal of Parallel and Distributed Computing, 71 (2011),
pp- 450-459.

J. BERLINSKA AND M. DROZDOWSKI, Comparing load-balancing algo-
rithms for mapreduce under zipfian data skews, Parallel Computing, 72
(2018), pp. 14-28.

J. BERLINSKA, M. DROZDOWSKI, AND M. LAWENDA, Fzperimental study
of scheduling with memory constraints using hybrid methods, Journal of
Computational and Applied Mathematics, 232 (2009), pp. 638-654.

V. BHARADWAJ, D. GHOSE, V. MANI, AND T. ROBERTAZZI, Scheduling
divisible loads in parallel and distributed systems, IEEE Computer Society
Press, Los Alamitos, CA, 1996.

A. BouNCEUR, M. Bezoul, R. EULER, N. KADJOUH, AND F. LALEM,
Brogo: A new low energy consumption algorithm for leader election in

wsns, in 2017 10th International Conference on Developments in eSystems
Engineering (DeSE), IEEE, 2017, pp. 218-223.

J. CARTER AND K. RAJAMANI, Designing energy-efficient servers and
data centers, Computer, 43 (2010), pp. 76-78.

S. CHARCRANOON, T. G. ROBERTAZZI, AND S. LURYI, Parallel proces-
sor configuration design with processing/transmission costs, IEEE Trans-
actions on Computers, 49 (2000), pp. 987-991.

Y. CHENG AND T. ROBERTAZZI, Distributed computation with commu-

nication delay, IEEE Transactions on Aerospace and Electronic Systems,
24 (1988), pp. 700-712.

154

BIBLIOGRAPHY

[27]

[28]

[29]

[35]

[36]

[37]

J. DEAN AND S. GHEMAWAT, MapReduce: Simplified data processing on
large clusters, in OSDI’04: Sixth Symposium on Operating System Design
and Implementation, 2004, pp. 137-150.

M. DROZDOWSKI, Scheduling for Parallel Processing, Springer-Verlag
New York Inc, 2009.

——, Energy considerations for divisible load processing, in Proceedings of
the 8th international conference on Parallel Processing and Applied Math-
ematics (PPAM 2010), Part IT. LNCS 6068, R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Wasniewski, eds., Springer, 2010, pp. 92-101.

M. DROZDOWSKI AND M. LAWENDA, The combinatorics in divisible load
scheduling, Foundations of Computing and Decision Sciences, 30 (2005),
pp. 297-308.

M. DrROZDOWSKI, J. MARSZAEKOWSKI, AND J. MARSZALKOWSKI, Isoen-
ergy maps, Tech. Rep. RA-17/2011, Institute of Computing Science, Poz-
nan University of Technology, 2011.

M. DroOzDOWSKI, J. M. MARSZALKOWSKI, AND J. MARSZALKOWSKI,

Energy trade-offs analysis using equal-energy maps, Future Generation
Computer Systems, 36 (2014), pp. 311-321.

M. DRrOzZDOWSKI AND L. WIELEBSKI, Isoefficiency maps for divisible
computations, IEEE Transactions on Parallel and Distributed Systems,
21 (2010), pp. 872—-880.

M. DrROZDOWSKI AND P. WOLNIEWICZ, Experiments with scheduling di-
vistble tasks in clusters of workstations, in Proceedings of the 6th Interna-
tional Euro-Par Conference on Parallel Processing, LNCS 1900, A. Bode,
T. Ludwig, W. Karl, and R. Wismuller, eds., Springer-Verlag, 2000,
pp. 311-319.

——, Divisible load scheduling in systems with limited memory, Cluster
Computing, 6 (2003), pp. 19-29.

——, Out-of-core divisible load processing, IEEE Transactions on Parallel
and Distributed Computing, 14 (2003), pp. 1048-1056.

——, Optimum divisible load scheduling on heterogeneous stars with lim-
ited memory, European Journal of Operational Research, 172 (2006),
pp- 545-559.

N. FARRINGTON, E. RUBOW, AND A. VAHDAT, Data center switch archi-
tecture in the age of merchant silicon, in 17th IEEE Symposium on High
Performance Interconnects (HOTT), IEEE, 2009, pp. 93-102.

D. FERNANDEZ-CERERO, A. JAKOBIK, D. GRzONKA, J. KOLODZIEJ,
AND A. FERNANDEZ-MONTES, Security supportive energy-aware schedul-
ing and energy policies for cloud environments, Journal of Parallel and
Distributed Computing, 119 (2018), pp. 191-202.

155

Scheduling divisible computations with energy constraints

[40]

[51]
[52]

[53]

[54]

——, Security supportive energy-aware scheduling and energy policies for
cloud environments, Journal of Parallel and Distributed Computing, 119
(2018), pp. 191-202.

S. FULLER AND L. MILLETT, Computing performance: Game over or
next level?, Computer, 44 (2011), pp. 31-38.

M. R. GAREY AND D. S. JOHNSON, Computers and intractability, vol. 29,
WH Freeman New York, 2002.

I. Goiri, J. BERRAL, J. OrIioL FiTo, F. JuLia, R. Nou, J. GUITART,
R. GAvALDA, AND J. TORRES, Energy-efficient and multifaceted resource
management for profit-driven virtualized data centers, Future Generation
Computer Systems, 28 (2012), pp. 718-731.

A. GraMA, A. GupTA, AND V. KUMAR, Isoefficiency: Measuring the
scalability of parallel algorithms and architectures, IEEE Parallel & Dis-
tributed Technology, 1 (1993), pp. 12-21.

A. GupTA AND V. KUMAR, Performance properties of large scale par-
allel systems, Journal of Parallel and Distributed Computing, 19 (1993),
pp. 234-244.

J. GUSTAFSON, Reevaluating Amdahl’s law, Communications of the ACM,
31 (1988), pp. 532-533.

R. HOCKNEY, The Science of Computer Benchmarking, SIAM, Philadel-
phia, 1996.

H. HUNTER, L. LASTRAS-MONTANO, AND B. BHATTACHARJEE, Adapt-
ing server systems for new memory technologies, Computer, 47 (2014),
pp. 78-84.

R. Katz, Tech titans building boom, IEEE Spectrum, 46 (2009), pp. 40—
54.

T. KAUR AND I. CHANA, Energy efficiency techniques in cloud computing:
A survey and taxonomy, ACM Computing Surveys (CSUR), 48 (2015),
p- 22.

P. KOGGE, The tops in the flops, IEEE Spectrum, 48 (2011), pp. 48-54.

R. KoTHivAL, V. TARASOV, P. SEHGAL, AND E. ZADOK, FEnergy and
performance evaluation of lossless file data compression on server systems,
in Proceedings of SYSTOR 2009: The Israeli Experimental Systems Con-
ference, ACM, Article No. 4, 2009.

J. LAaNG, G. RUNGER, AND P. STOCKER, Towards energy-efficient lin-
ear algebra with an atlas library tuned for energy consumption, in 2015
International Conference on High Performance Computing & Simulation
(HPCS), IEEE, 2015, pp. 63-70.

K. L1, Optimal task execution speed setting and lower bound for delay and
energy minimization, Journal of Parallel and Distributed Computing, 123
(2019), pp. 13-25.

156

BIBLIOGRAPHY

[55]

[58]

[59]

[61]

[62]

[65]

[66]

X. Li, V. BHARADWAJ, AND C. Ko, Processing divisible loads on

single-level tree metworks with buffer constraints, IEEE Transactions on
Aerospace and Electronic Systems, 36 (2000), pp. 1298-1308.

X. L1, B. VEERAVALLI, AND C. Ko, Distributed image processing on a
network of workstations, International Journal of Computers and Appli-
cations, 25 (2003), p. 10.

S. LiN AND K. BANERJEE, A design-specific and thermally-aware method-
ology for trading-off power and performance in leakage-dominant cmos
technologies, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 16 (2008), pp. 1488-1498.

N. MAHESHWARI, R. NANDURI, AND V. VARMA, Dynamic energy effi-
cient data placement and cluster reconfiguration algorithm for mapreduce
framework, Future Generation Computer Systems, 28 (2012), pp. 119-127.

M. MALIK, K. NESHATPOUR, S. RAFATIRAD, R. V. JosHi, T. MoHs-
ENIN, H. GHASEMZADEH, AND H. HOMAYOUN, Big vs little core for
energy-efficient hadoop computing, Journal of Parallel and Distributed
Computing, 129 (2019), pp. 110-124.

T. MAQsooD, N. TziriTAas, T. LoukopouLOS, S. A. MADANI, S. U.
KHaN, C.-Z. XU, AND A. Y. ZOMAYA, Energy and communication aware
task mapping for mpsocs, Journal of Parallel and Distributed Computing,
121 (2018), pp. 71-89.

J. MARSZALKOWSKI, D. MoKwA, M. DROZDOWSKI, .. RUSIECKI, AND
H. NAROZNY, Fast algorithms for online construction of web tag clouds,
Engineering Applications of Artificial Intelligence, 64 (2017), pp. 378-390.

T. MasTELIC, A. OLEKSIAK, H. CLAUSSEN, I. BRANDIC, J.-M. PIER-
SON, AND A. V. VAsiLAKOS, Cloud computing: Survey on energy effi-
ciency, Acm Computing Surveys (CSUR), 47 (2015), p. 33.

X. ME1, K. ZHao, C. Liu, AND X. CHU, Benchmarking the memory
hierarchy of modern GPUs, in Network and Parallel Computing, Springer,
2014, pp. 144-156.

M. MoGEes, L. RAMIREZ, C. GAMBOA, AND T. ROBERTAZZI, Mone-
tary cost and energy use optimization in divisible load processing, in Pro-
ceedings of the 2004 Conference on Information Sciences and Systems,
Princeton University, 2004, p. 6.

MoNGoDB INC., Mongo db manual 2.4. [on-line] http://docs.mongodb.
org/manual/core/map-reduce/, 2014.

S. NESMACHNOW, B. DORRONSORO, J. E. PECERO, AND P. BOUVRY,

Energy-aware scheduling on multicore heterogeneous grid computing sys-
tems, Journal of Grid Computing, 11 (2013), pp. 653—-680.

L. NEwWCOMBE, Z. LIMBUWALA, P. LATHAM, AND V. SMITH, Data
centre fized to variable energy ratio metric DC-FVER, tech. rep., BCS
Data Centre Specialist Group, 2012. [on-line] http://dcsg.bcs.org/
data-centre-fixed-variable-energy-ratio-metric-dc-fver.

157

Scheduling divisible computations with energy constraints

[68]

(78]

K. O’BRIEN, I. PIETRI, R. REDDY, A. LASTOVETSKY, AND R. SAKEL-

LARIOU, A survey of power and energy predictive models in hpc systems
and applications, ACM Computing Surveys (CSUR), 50 (2017), p. 37.

F. PAN, V. FREEH, AND D. SMITH, Ezploring the energy-time tradeoff in
high-performance computing, in Proceedings of 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS05), IEEE, 2005,

p- 9.

J. PArRk AND W. BAEK, Analyzing and optimizing the performance
and energy efficiency of transactional scientific applications on large-scale
numa systems with htm support, Journal of Parallel and Distributed Com-
puting, 127 (2019), pp. 1-17.

C. PATEL, R. SHARMA, C. BASH, AND S. GRAUPNER, Energy aware

grid: Global workload placement based on energy efficiency, Tech. Rep.
HP1-2002-329, HP Laboratories Palo Alto, 2002.

J.-M. PIERSON, Large-scale Distributed Systems and Energy Efficiency:
A Holistic View, John Wiley & Sons, 2015.

H. PLATTNER, Changes in hardware, in A Course in In-Memory Data
Management, Springer, 2014, pp. 23-32.

T. ROBERTAZZI, Ten reasons to use divisible load theory, Computer, 36
(2003), pp. 63-68.

T. ROBERTAZZI, Divisible load scheduling. [on-line] http://www.ece.
sunysb.edu/"tom/dlt.html, 2011.

N. V. SHAKHLEVICH, Scheduling divisible loads to optimize the computa-
tion time and cost, in International Conference on Grid Economics and
Business Models, Springer, 2013, pp. 138-148.

L. SHARIFI, L. CERDA ALABERN, F. FREITAG, AND L. VEIGA, En-
ergy efficient cloud service provisioning: keeping data center granularity
in perspective, Journal of Grid Computing, 14 (2016), pp. 299-325.

H. Sui, W. WANG, AND N. KwWOK, Energy dependent divisible load theory
for wireless sensor network workload allocation, Mathematical Problems
in Engineering, 2012 (2012).

A. SHOKRIPOUR, M. OTHMAN, H. IBRAHIM, AND S. SUBRAMANIAM,
New method for scheduling heterogeneous multi-installment systems, Fu-
ture Generation Computer Systems, 28 (2012), pp. 1205-1216.

S. SINGH AND I. CHANA, A survey on resource scheduling in cloud com-
puting: Issues and challenges, Journal of Grid Computing, 14 (2016),
pp. 217-264.

J. SonN, T. ROBERTAZZI, AND S. LURYI, Optimizing computing costs us-
ing divisible load analysis, IEEE Transactions on Parallel and Distributed
Systems, 9 (1998), pp. 225-234.

158

BIBLIOGRAPHY

[82]

[83]

[84]

[85]

[89)]

[90]

[91]

S. Song, C. Su, R. GE, A. VisauNU, AND K. CAMERON, Iso-energy-
efficiency: an approach to power-constrained parallel computation, in Pro-
ceedings of International Parallel & Distributed Processing Symposium

(IPDPS), IEEE, 2011, pp. 128-139.

SPEC, SPEC: Standard performance evaluation corporation. [on-line
http://www.spec.org/power_ssj2008, 2009.

R. SPRINGER, D. LOWENTHAL, B. ROUNTREE, AND V. FREEH, Mini-
mizing execution time in MPI programs on an energy-constrained, power-
scalable cluster, in Proceedings of the 11th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), ACM, 2006,
pp- 230-238.

B. SUBRAMANIAM AND W. FENG, Statistical power and performance
modeling for optimizing the energy efficiency of scientific computing, in
2010 IEEE/ACM International Conference on Green Computing and
Communications (GreenCom) & 2010 IEEE/ACM International Confer-
ence on Cyber, Physical and Social Computing (CPSCom), IEEE, 2010,
pp. 139-146.

G. SuN, Exploring Memory Hierarchy Design with Emerging Memory
Technologies, vol. 267 of Lecture Notes in Electrical Engineering, Springer
International Publishing, 2014.

S. SWANSON AND A. CAULFIELD, Refactor, reduce, recycle: Restructuring
the I/0 stack for the future of storage, Computer, 46 (2013), pp. 52-59.

A. TCHERNYKH, J. E. PECERO, A. BARRONDO, AND E. SCHAEFFER,
Adaptive energy efficient scheduling in peer-to-peer desktop grids, Future
Generation Computer Systems, 36 (2014), pp. 209-220.

V. T'KINDT AND J.-C. BILLAUT, Multicriteria scheduling: theory, models
and algorithms, Springer Science & Business Media, 2006.

R. VAN DER WIINGAART AND M. FRUMKIN, NAS grid benchmarks
version 1.0, Tech. Rep. NAS-02-005, NASA Advanced Supercomput-
ing Division, 2002. [on-line] http://www.nas.nasa.gov/assets/pdf/
techreports/2002/nas-02-005. pdf.

L. WANG, G. VON LASZEWSKI, J. DAYAL, AND F. WANG, Towards en-
ergy aware scheduling for precedence constrained parallel tasks in a cluster
with DVFS, in Proceedings of 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid), IEEE, 2010, pp. 368—
377.

WIKIPEDIA CONTRIBUTORS, Advanced configuration and power interface,
wikipedia, the free encyclopedia. [on-line] https://en.wikipedia.org/
wiki/Advanced_Configuration_and_Power_Interface, 2019.

, Contour line. [on-line] https://en.wikipedia.org/wiki/
Contour_line, 2019.

159

Scheduling divisible computations with energy constraints

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

———, Enthalpy-entropy chart. [on-line] https://en.wikipedia.org/
wiki/Enthalpy’%E2%80%93entropy_chart, 2019.

D. Woo anND H. LEE, Extending Amdahl’s law for energy-efficient com-
puting in the many-core era, Computer, 41 (2008), pp. 24-31.

R. Xu, D. MoSSE, AND R. MELHEM, Minimizing expected energy con-
sumption in real-time systems through dynamic voltage scaling, ACM
Transactions on Computer Systems, 25 (Article No.9, 2007), p. 40.

G. D. Y ALvARgz, F. FAvARO, F. LECUMBERRY, A. MARTIN, J. P.
OLIVER, J. OREGGIONI, I. RAMIREZ, G. SEROUSSI, AND L. STEIN-
FELD, Wireless eeqg system achieving high throughput and reduced energy
consumption through lossless and near-lossless compression, IKEE Trans-
actions on Biomedical Circuits and Systems, 12 (2018), pp. 231-241.

Y. YaNG, H. Casanova, M. DRrROzZDOWSKI, M. LAWENDA, AND
A. LEGRAND, On the complexity of multi-round divisible load scheduling,
(2007).

M. H. N. YOUSEFI AND M. GOUDARZI, A task-based greedy schedul-
ing algorithm for minimizing energy of mapreduce jobs, Journal of Grid
Computing, 16 (2018), pp. 535-551.

E. ZitzZLER, L. THIELE, M. LAUMANNS, C. M. FONSECA, AND V. G.
DA FONSECA, Performance assessment of multiobjective optimizers: An
analysis and review, IEEE Transactions on Evolutionary Computation, 7
(2003), pp. 117-132.

A. Y. Zomavya AND Y. C. LEE, Energy-efficient distributed computing
systems, vol. 88, John Wiley & Sons, 2012.

160

