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Abstract

In this thesis scheduling and performance of data-parallel computations are

studied. Data-parallel computations consist in processing data objects of simi-

lar nature in distributed computing systems. Important features of data-parallel

applications are that the data objects are small in relation to the whole size of

processed information and can be processed independently. Since the volumes of

data objects are great usually, the time of distributing them for remote process-

ing must be taken into account. Furthermore, memory sizes of computer systems

are too small to process significant parts of load in core (RAM) and this limita-

tion should be also taken into account when planning a schedule for distributed

data-parallel computation. The schedule must be effective in two key criteria:

time and energy. Divisible load theory is used as a general framework for the

analysis of the considered parallel processing problems. Two key assumptions of

divisible load theory are that parts of the load can be processed independently in

parallel and that these parts can be flexibly sized as if the load were arbitrarily

divisible. These two assumptions suit well data-parallel computations. Further-

more, the two assumptions allowed to formulate scheduling models which can

be solved by computationally tractable methods, in some cases to optimality.

The scheduling algorithms optimizing time and energy performance are used

not only to effectively arrange communications and computations in time and
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space, but also to predict the performance. Since the performance of paral-

lel computation is ruled by many mutually dependent factors, isoefficiency and

isoenergy maps were applied as visual aids supporting performance analysis and

building understanding of the phenomena determining the performance. Isoeffi-

ciency and isoenergy maps are two-dimensional depictions of system parameter

values giving constant time- and energy-performance, respectively. The impact

of memory hierarchy and system heterogenity is studied. The trade-off between

solution quality and computational cost of scheduling algorithms is also exam-

ined.
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1 Introduction

1.1 Motivation

Processing big volumes of data is a challenge resting at the core of contemporary

science and industry. For the purpose of dealing with the challenges of big

data processing many new technologies have been developed: data-processing

platforms and frameworks [8, 12, 27], programming libraries [10, 11], database

management systems [7, 9, 65]. Another concern is energy consumption of the

computing equipment. It was established quite early [41, 49, 51] that powering

the data centers driving the Internet economy is very costly and energy is an

important component of the cost of ownership. Moreover, huge data centers

strain power grids. Thus, energy supply and cost impose limits on further

growth of data centers and supercomputers. Available energy limitations are

an important issue also in the sensor networks, aerospace, Internet of things

applications. This thesis is dedicated to the analysis and optimization of time-

and energy-performance in processing big data volumes. Effective scheduling of

parallel application execution will be the way of optimizing its performance.

Computing platforms, especially in the context of big data volumes, impose

a number of limitations. For example, distributing data for remote process-

ing is not instantaneous and communication delays are significant part of the

application execution time. Hence, communication delays must be taken into ac-

count when planning execution of a parallel application. Present-day computers
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Scheduling divisible computations with energy constraints

have hierarchical memory structure ranging from CPU registers, through CPU

caches, core memory a.k.a. RAM, to the external storage (networked caches,

SDDs, HDDs). The size of memory is growing, but access speed is decreasing

when going to lower memory levels. Also energy intensity of applications oper-

ating on different memory levels differs extensively. Data volumes which must

be processed in the current applications easily exceed core memory size of con-

temporary computers. Therefore, using out-of-core memory should be avoided

or the drop in processing speed resulting from using lower memory levels must

be accounted for. Computer energy consumption is reduced by applying various

energy saving modes accessible, e.g., by ACPI [92] standard. A practical plan

for parallel application execution should exploit this option of energy saving,

e.g., by switching on a necessary computer when needed only. Finally, hetero-

geneity of computing platforms, be it in the form of mixing CPU with GPU

computing, applying various compute instances like Amazon EC2 [1], or central

processing servers with remote sensors, is one more reality of the current ap-

plications which should represented in the scheduling methods for the present

computing. In this thesis we intend to propose methods for scheduling paral-

lel applications taking into account communication delays, hierarchical memory

levels, existence of energy saving modes and system heterogeneity.

1.2 Goals and Scope

A high-level goal of this thesis is to advance energy efficiency by better man-

agement of the parallel application execution and system resources. Another

high-level goal is to foster understanding of time and energy performance rela-

tionships and limitations in parallel processing. A lower level goal of this thesis

is to represent distributed computing platforms and applications in scheduling

and performance models. The next goal is to propose algorithms solving these

models, and as a result to be able to construct effective schedules for parallel
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CHAPTER 1. INTRODUCTION

applications and to predict their performance. By virtue of analyzing quality

criteria of the constructed schedules, understanding of the performance deter-

minants and relationships will be built.

In order to accomplish the above goals, models of computation runtime and

energy consumption on a single computer vs size of the processed data for data-

parallel applications will be developed and validated. On the basis of the indi-

vidual computer runtime and energy models, problems of constructing schedules

for parallel application on systems of distributed machines will be expressed as

optimization problems with the criteria of time and energy. The optimization

formulations will cover systems with unlimited memory, homogeneous systems

with hierarchical memory, and heterogeneous systems with hierarchical memory.

Since the formulated optimization problems must be solved, algorithms for this

purpose will be developed and their computational costs will be also assessed.

Finally, the impact of the computing platform and application parameters on

the time and energy criteria will be examined to depict performance phenom-

ena. That is to say that visual tools will be used to uncover time and energy

performance phenomena.

1.3 Methodology

Data-parallel computations consist in processing objects of similar nature in

distributed computing systems. The data objects are usually small in rela-

tion to the whole size of processed information and can be processed indepen-

dently. Data-parallel computations are quite common in processing big volumes

of data. Divisible load theory (DLT) is a general framework for scheduling

and performance analysis of parallel applications. DLT conventionally refers

to the processed data as to load. Two key assumptions of divisible load the-

ory are that parts of the load can be processed independently in parallel and

that these parts can be flexibly sized as if the load were arbitrarily divisible.

These two assumptions suit well data-parallel computations, or computations
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on large volumes of data. Furthermore, the two assumptions allowed in the

past to formulate scheduling models for various parallel processing problems,

and these formulations could be solved by computationally tractable methods.

Scheduling data-parallel computations is the subject of this thesis and divisible

load theory will provide the analysis framework. Divisible load theory assumes

linear dependence of computation time on the size of processed data. This as-

sumption will be validated experimentally both for the computation time and

for the consumed energy.

Going further into the technical details of the applied methodologies, math-

ematical scheduling problems will be formulated as optimization problems in

the framework mathematical programming, and in particular, of mixed integer

linear programming. These formulations need solving algorithms, while algo-

rithms may differ in the sense of computational cost and solution quality. The

algorithms will be assessed analytically according to the methodology of compu-

tational complexity theory [42] and experimentally in a series of computational

experiments, hence data analysis methods will be used.

Performance of parallel computation is ruled by many mutually dependent

factors. Though mathematical formulations of scheduling problems as opti-

mization problems provide analytical models of performance, understanding

the performance sensitivities and their relationships with the platform is not

easy. Therefore, isoefficiency and isoenergy maps will be applied as visual aids

supporting performance analysis and building understanding of the phenom-

ena determining the performance. Isoefficiency maps and isoenergy maps, re-

spectively, are two-dimensional depictions of system parameter values giving

constant time- and energy-performance.
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CHAPTER 1. INTRODUCTION

1.4 Outline of the thesis

Further organization of the thesis is the following. In the next section a short

outline of the state-of-the-art on the approaches to energy optimization in com-

puter systems and on divisible load theory aspects related to this thesis will be

given. In Chapter 3 results of the measurements validating the model of time

and energy dependence on the size of processed load are presented. Chapter 4

is dedicated to performance visualization by use of isoenergy maps. Energy

consumption in homogeneous systems with hierarchical memory is studied in

Chapter 5. Chapter 6 introduces the most general problem of scheduling di-

visible computations on heterogeneous systems with hierarchical memory and

multi-installment load distribution. The last section is dedicated to conclusions.

Key notations used throughout the thesis are summarized in Appendix A. How-

ever, each chapter will use also its own local notation for the sake of simplifying

the notations where possible.

5



Scheduling divisible computations with energy constraints

6



2 Related Work

In this section we provide a short introduction to the fields related to the thesis.

In particular a short outline of the studies on energy consumption in parallel

systems will be given. Divisible load theory with its basic assumptions, and

its classic scheduling formulations for star network with and without memory

limitations will be given. Finally, the idea of performance visualization by maps

comprising isolines will be introduced.

2.1 Energy Consumption in Computer Systems

Time and energy efficiency in parallel processing is intensively studied and a

wealth of results on this subject exists, see the surveys [50, 62, 68, 72, 80, 88, 101].

The problem of attaining time-energy efficiency has been attacked on several,

not mutually exclusive, levels of abstraction: (i) on hardware of computing

platform level [13, 59, 70, 77], (ii) algorithm level [23, 53, 97], (iii) runtime

environment level [20, 54, 60, 99], (iv) scheduling and management at a data

center level [14, 39, 40].

For example, progresses in CPU hardware can be illustrated by the results

from [66]. In [66] authors evaluated 64 CPUs with respect to their speed in

specpower ssj2008 benchmark [83] transactional workload processing and energy

consumption when all the processor cores are used. We arranged these results

in Fig. 2.1 and added years of releasing certain processor models as color shades.
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Figure 2.1: CPU Power vs Speed. On the basis of [66]. Shades of color indicate
year of introducing the CPU.

The lower-right corner in Fig. 2.1 is the ideal position with the highest speed and

the lowest power consumption. It can be observed that recent CPU generations

align along a kind of a Pareto-front because higher speed requires higher power

usage. Conversely, the older CPU generations (on the left side of Fig2.1 expose

both lower speed and higher power consumption. The progresses in CPU time

and energy efficiency are even better illustrated in Fig. 2.2 which is showing

operations per second and operations per Watt. It can be seen that newer

generation CPUs are closer to the ideal point with low energy consumption and

short processing time, than the older CPU generations.

Construction of efficient interconnections for big datacenters is studied in

[4, 38]. It appears that not only computers, but also networking consumes

considerable power. It is observed that communication equipment can easily

consume power in the range of hundreds of kW.

The problem of effective algorithms, hardware, and their co-design (level

(ii)) has been studied, e.g., in [4, 15, 18, 24, 38, 52]. The issue of energy-

efficient algorithms can be illustrated with the example of data compression.

It is believed that compression may provide performance benefits, and energy
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Figure 2.2: CPU operations per Watt vs operations per second. On the basis
of [66]. Color shade indicates year of introducing the CPU.

savings when transferring data between remote computers or different levels of

memory hierarchy. However, it is demonstrated in [15, 52] that the real picture

is much more complicated. Only some compression algorithms, for some types

of data give any gain in energy.

Publications [69, 82, 84, 85, 95] serve as examples of the application-level

energy usage optimization. The energy cost and performance loss of parallel

applications executed at different energy gears are empirically studied in [69].

An energy gear is voltage-frequency combination of a CPU. In [85] multi-variable

linear regression is used to model execution time and energy consumption of the

high-performance Linpack benchmark. In [84] a problem of constructing the

shortest schedule for multiphase parallel computation, meeting energy limit is

considered. The energy use model distinguishes energy used in communication

and in computation. The model is experimentally validated. An index of iso-

energy-efficiency is introduced in [82], as the ratio of the energy consumed in

sequential computation to the energy consumed in parallel computation. Let us

observe, that despite similarity of the name the iso-energy-efficiency of [82] is

conceptually different than the isoefficiency in [33, 44, 45] and isoenergy maps
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in this work. Analogously to [33, 44, 45], we consider isolines as relations (in the

mathematical sense) linking system and application parameters such that energy

needed for the computation is constant. In [95] Amdahl’s law is used to construct

general analytical model of energy consumption in multicore processors.

Energy use in DLT applications has been considered, e.g., in [78] to assign

measurement workload in a wireless sensor network. The residual battery en-

ergies were used to determine workload partition, resulting in longer lifetime of

the whole network.

Publications [5, 96] serve as examples of dynamic voltage and frequency

scaling (DVFS) which can be applied at the runtime environment, or oper-

ating system levels, to optimize energy usage and respect application timing

constraints (deadlines).

The dedicated cluster level management of distributed application was stud-

ied, e.g., in [84, 91]. Energy usage optimization as an issue of scheduling and

management at the data center level has been analyzed, e.g., in [24]. In [24] rec-

ommendations for energy optimization in datacenters are given: proportionality

between energy and computation, frugal use of resources, robust components

which can tolerate mutual dis-synchronizations and delays caused by energy-

saving modes. Managing data centers for energy efficiency and profit, even at

global scale, was considered in [43, 71].

Now let us locate the contribution of this thesis in the relation to the above

literature. In this work we assume application level scheduling by the runtime

environment in a close cooperation with the computing platform. On the one

hand, our results give hints to the platform on the set of active machines and on

applying energy-saving modes. On the other hand, the algorithms in runtime

environment do their best with the provided heterogeneous computing platform.

In [18] techniques of energy-efficient hardware and software design are re-

viewed. Authors distinguish three phases of system design: 1) modeling and

conceptualization, 2) design and implementation, 3) runtime operation. Ac-

10
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cording to the distinction made in [18] we introduce a modeling and concep-

tualization method which can be applied at the design phase of a datacenter

development. As in [4, 38] we consider networking as an important component

of the overall power consumption. Many of the above papers introduce mod-

els of energy consumption. Some of the models are very detailed and tailored

to a single algorithm. Also in this thesis energy consumption models will be

proposed, validated and used.

2.2 Divisible Load Theory

Energy consumption models considered in this work are built on the divisible

load theory (DLT). DLT assumes that computation consists in processing big

amounts of data (the load) on remote computers. The data granularity is suffi-

ciently small to assume that the load is arbitrarily divisible. There are no prece-

dence constraints such that parts of the load can be processed independently of

each other. Hence, DLT represents well-structured highly parallelizable data-

intensive computations. DLT originated in the late 1980s, when computations

on clusters of workstations [2], and on chains of intelligent sensors [26] were

analyzed. Though the divisible load model is based on simple assumptions, this

can be considered its strength because its input data can be easily obtained.

The accuracy of DLT has been tested in many publications, e.g. [2, 34, 56].

The difference between the model and reality was in the range of 1% and bet-

ter. Furthermore, basic DLT models are tractable where many other scheduling

models for parallel applications are NP-hard. Thus, DLT is a good compro-

mise between model accuracy and cost. Not surprisingly, DLT proliferated in

many ways. Due to space limitations we direct interested readers to the surveys

[22, 28, 74, 75] on DLT.

In the divisible load scheduling problems considered in the thesis three as-

pects must be particularly considered: 1) load scattering algorithm, 2) gener-

ally the representation of the energy cost of the computation and in particular,
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3) non-linearity of time and energy dependencies on the size of processed load

in systems with hierarchical memory. The load can be distributed to processors

in single or in multiple installments scattering. In the former case each pro-

cessor may received a chunk of load for processing at most once. In the latter

case each processor may receive more than one load chunk for processing. In

the single-installment communications load chunks tend to be large which delays

start of the computations and results in larger memory footprint. Conversely, in

the multi-installment communications messages are shorter, computations start

earlier and memory footprint is smaller. However, scheduling multi-installment

communications is harder. Divisible load processing problems of similar nature

have been studied, e.g., in [16, 25, 32, 36, 55, 76, 79, 81]. Multi-installment

scattering of the load to heterogeneous processors was studied in [79]. Two

heuristics were proposed assuming that the sequence of communications with

the machines is a known repetitive pattern. Here we allow for any sequence of

communications, and what is more, the sequence need not be repetitive.

Almost all contemporary computer systems use hierarchical memory systems.

Memory hierarchy may include the following levels:

1. CPU registers,

2. CPU cache levels L1, L2, L3 and even L4,

3. Random Access Memory (RAM) a.k.a. core memory (often acting as a

cache for lower memory levels),

4. Solid State Drives (also acting as a cache of HDD [48]),

5. Hard Disk Drives (also acting as a cache for remote storage),

6. network storage (e.g. NAS using AoE, FCoE, NFS, SMB, and similar

protocols),

7. tape, optical devices and other forms of long-term storage.
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When going down the hierarchy, from CPU registers to the external storage,

several things change. Capacity increases while time performance decreases.

Usually time performance deteriorates both in terms of latency and through-

put. The size per storage device increases and price per storage unit (e.g. GB)

decreases while moving down the hierarchy. The last two issues play role in

designing data centers rather than in scheduling parallel applications. Things

get more complicated if one includes in this scheme memory of modern graphics

cards [63]. Introducing new forms of fast storage, such as SSD, between RAM

and HDD shifts the balance in time and energy costs between the I/O software

stack and hardware. Since the intermediate SSD storage is faster, the I/O oper-

ations are called more often thus exposing computational costs of I/O software

stack [87]. Such complex interactions lead to counterintuitive conclusions (cf.

”Software Considered Harmful” in [87]). It demonstrates that the more a study

of the impact of changing system parameters on time and energy performance is

needed. Memory architecture is a broad research and engineering field certainly

exceeding scope of this thesis. Interested readers might find further details,

e.g., in [48, 73, 86]. An important consequence of memory hierarchy existence

is nonlinear dependence of the computation time and used energy on the size of

processed data. In [36] hierarchical memory systems have been analyzed with

respect to time performance. Non-linear complexity divisible load scheduling

was studied in [16]. It was demonstrated that the classic DLT approach based

on load equipartition is not well suited for non-linear complexity algorithms un-

less clever data partitioning methods are applied. How this can be achieved was

demonstrated for vector outer-product and for matrix multiplication. Our case

is slightly different because the nonlinear execution time is a result of memory

hierarchy and not the data processing algorithm itself. Consequently, simple

load partitioning algorithms are applicable in our case.

In the cases when the memory system can be perceived as non-hierarchical, we

will be calling it flat memory system.
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Energy may be considered a special type of cost. Scheduling divisible com-

putations for minimum cost has been analyzed in [25, 29, 30, 64, 81]. Scheduling

with monetary cost has been considered in [25, 81]. In [76] a polynomial-time

algorithm has been proposed to build time-cost trade-off when communication,

computation times, and costs are proportional to the size of the load and all

communication links have the same speed. [55] is the first work studying a flat

(non-hierarchical) memory model. A heuristic has been proposed for the case

with communication times proportional to the size of the load. Let us note

that memory use model in [55] is different than it this thesis. If total load size

exceeds size of memory then a feasible solution does not exist in [55]. However,

in this thesis memory limits are soft: a feasible solution always exists, though

possibly with bad performance. Energy in processing divisible loads on homoge-

neous flat memory systems were subject of [32]. Interrelations between system

parameters were represented by maps of equal energy consumption similar to

weather maps. In [30, 81] only costs of computation were studied. In [29, 64],

the cost of communication and energy consumption have been also included.

Methods of designing effective communication have been proposed in [64]. In

[30] scheduling divisible loads has been formulated as a linear program minimiz-

ing schedule length with cost, memory, and processor availability constraints.

Thus, it has been demonstrated in [30, 81] that scheduling divisible loads for

minimum schedule length and cost is effectively a bicriterial problem.

The timing model of parallel computation here is different than in the earlier

publications assuming general type of computation cost. The costs of compu-

tation initiation (startup costs) will be taken into account. We assume that

computing system can be in two states: active state or idle state with reduced

power usage. The idle state represents various techniques, such as DVFS, ACPI,

used to achieve energy-proportional computing. Moreover, in this work we set

further goals than in [29, 30, 64, 81]. The methods of load partitioning and

computation/communication cost calculation will be components of a generic

performance analysis method.
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Figure 2.3: Start interconnection and a schedule without returning results.

2.2.1 Reference Star Model

In this section a classic single-installment divisible load scheduling in a star

topology (single level network) method is introduced for further reference. We

assume that initially all load V is stored by the originator P0 (root, master). It

is then divided into parts α1, ..., αm and sent to processors P1, ..., Pm for pro-

cessing. The originator is only dividing and sending the load. There are no

computations on P0. Computations on each processor Pi are started after re-

ceiving whole load chunk αi for i = 1, . . . ,m. P1, ..., Pm are not communicating

between each other. Star network can model many parallel systems where com-

puting master-worker paradigm is used, such as: CPUs in SMP system sharing

a bus, network workstations connected to the same Ethernet segment, comput-

ing clusters connected to a master controller via Internet. Parameters ai, Ci,

Si depend on both, the computing environment and the application.

Starting computation on a remote computer involves waking it up. Hence,

startup time Si elapses before Pi (i = 1, . . . ,m) can start receiving the load.

Startup time Si is an important element in modeling DLT applications. Without

the startup, arbitrary number of processors may be activated which is unrealistic

[22, 28]. Load of size αi is transmitted in time Si + αiC. On the receipt of the

load Pi immediately starts computations which last αiai units of time. When

the communication with Pi is finished, the originator activates processor Pi+1

and sends to it load αi+1. The procedure is repeated until starting computations

on all m processors. Let us assume that the time of returning results is negligibly
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short. The requirement of negligibly short result return time can be relaxed,

and the process of result collection can be represented in DLT. It can be shown

[22, 26, 74] that for the optimality of the schedule length all the processors must

finish computations simultaneously. This is often called an optimality criterion

in DLT. The problem is to find load partitions α1, ..., αm such that the whole

schedule is the shortest possible. We can solve this using a system of linear

equations:

αiai = Si+1 + αi+1(ai+1 + Ci+1) for i = 1, ...,m− 1 (2.1)

m∑
i=1

αi = V (2.2)

The above linear equations system can be solved in O(m) time because

of its special structure. We can express αi (for i = m, . . . , 1) as a linear

function kiαm + li of αm, where km = 1, lm = 0, ki = ki+1
ai+1+Ci+1

ai
, li =

Si+1

ai
+ li+1

ai+1+Ci+1

ai
. Then we will have

αm =
V −

∑m
i=1 li∑m

i=1 ki
(2.3)

Load distribution is simpler to calculate if ∀i, Si = 0, so even closed-form

solutions exist. Note that ki =
∏m−1
j=i

aj+1+Cj+1

aj
, for i < m, and li = 0. Then,

the load sizes can be calculated from equation

αi = V

∏m−1
j=1

aj+1+Cj+1

aj∑m
h=1

∏m−1
j=h

aj+1+Cj+1

aj

(2.4)

For homogeneous processors ∀i, ai = a,Ci = C the above equations reduces to

αi = V κm−1(κ−1)
κm−1 , where κ = a+C

a . Closed-form solutions can be derived when

system is homogeneous or when startup times are negligible.
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In the solution (2.3) of equation system (2.1)-(2.2), αm could be negative. If

so, the system is infeasible and load size V is too small to activate all processors.

In the heterogeneous systems two questions arise: (1) which processors subset

should be used, (2) what is the optimum sequence for sending load to processors.

These questions are answered in the thesis albeit in a more general setting.

It has been shown in [98] that the problem of selecting optimum set of

processors is NP-hard even if all communication rates Ci are equal zero.

2.2.2 Star with Flat Memory

In this section a simple model of single-installment divisible load processing

in star network with limited flat memory is introduced. In single installment

model a processor receives only one load chunk and the memory must be able

to fit the incoming amount of load. This may cause load size limitations. In

the case of flat memory model access time to all memory cells is constant. In

such a way we can approximate a more complex hierarchical memory system by

restricting it to just one memory level (which may be realistic representation

of the architecture of some mobile or embedded devices). Computing speed is

independent here of the size of used memory block. Yet, memory is a limited

resource, and only some amount can be accessed in constant speed. Let Bi

denote the size of memory available for processor Pi. A linear programming

approach finding load partitioning α1, . . . , αm has been proposed in [35]:

minimize Cmax (2.5)

subject to:

αiai +

i∑
j=1

(Sj + αjCj) ≤ Cmax for i = 1, ..,m (2.6)

αi ≤ Bi for i = 1, ..,m (2.7)

m∑
i=1

αi = V (2.8)
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αi, Cmax ≥ 0 (2.9)

In the above formulation schedule length is minimized by (2.5). A completion

time of computation on processor Pi cannot exceed schedule length by (2.6).

According to (2.7), load assignments do not exceed sizes of memory buffers.

Constraint (2.8) guarantee that whole load is processed. Let us observe that

the above formulation becomes infeasible if load size is larger than the total

memory size, i.e., when V >
∑m
i=1Bi. Note that the linear program assumes

that all processors take part in the computations and the sequence of starting

computations is given. However in general, when start-up times Si are nonzero

and size V of the load is too small some processors may be dropped from the

computation. The problem of selecting optimal sequence, subset of processors

and load part sizes will be subject of this thesis in the energy optimization

context.

The problem of scheduling divisible loads with nonzero communication start-

up times and limited memory buffers has been shown to be NP-hard in [37]

and sNPh in [17]. Various methods of solving the above problem have been

compared experimentally in [21, 37].

2.3 Isolines and isoline maps

In this section we present the concept and origins of isoline maps, which will

be used as visual aids in showing time and energy performance phenomena and

relationships.

The concept of graphical representation of points of equal value of certain

parameter as lines in two-dimensional pictures is widely used in science and

technology. Such lines are often referred to as isolines or contour lines. Examples

of two-dimensional depictions of complex physical object include [93] elevation

contour maps in cartography, isobar, isotherm, isohyet maps in meteorology,

enthalpy-entropy chart in thermodynamics [94]. The reason for such a wide
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use of isoline maps is that such visualizations proved very effective in building

understanding of sensitivities and relationships of complex phenomena in other

areas of science and technology.

Performance of parallel computations is measured by two classic metrics:

speedup S and efficiency E :

S(m) =
T (1)

T (m)
E(m) =

S
m

=
T (1)

mT (m)
, (2.10)

where T (i) is execution time on i machines. Speedup and efficiency measure

scalability of the parallel application. E is often interpreted as the fraction of

the processor set which really computes. In a well-designed application S should

grow (preferably linearly) with the number of processors m and E should be as

close to 1 as possible. However, in most cases speedup saturates at certain num-

ber of machines and efficiency decreases with m. The location of the maximum

speedup depends on the size of the solved problem. Usually bigger problems

allow to exploit more processors while preserving certain efficiency level. In

order to grasp this relationship a concept of isoefficiency function has been in-

troduced [45]. Isoefficiency function I(e,m) is size of the problem required to

maintain efficiency E(m) = e. Consider an example of finding a minimum span-

ning tree in a graph with n vertices. A straightforward parallel version of Prim’s

algorithm for this problem, has complexity T (m) = c1n
2/m+ c2n logm, where

c1, c2 are constants (see e.g. [3], Section 10.6). Efficiency of this algorithm is

E(m) = c1n
2/(c1n

2+c2nm logm). Hence, isoefficiency function for m machines

and efficiency level e < 1 is I(e,m) = c2em logm/(c1(1− e)). For a fixed value

of e, function I(e,m) can be viewed as a line of equal efficiency in the m × n

space. Such a line of equal efficiency will be called an isoefficiency line. Thus,

performance of parallel computations can be visualized as a set of isoefficiency

lines in m× problemsize space [33]. Such a visualization will be called an iso-
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efficiency map of a parallel computation. Isoefficiency maps will be used in this

thesis. Furthermore, this concept is extended to the isoenergy maps, i.e., maps

of points of equal energy consumption in the space system parameters.
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3 Computation Time and

Energy Consumption Models

In this chapter we report on the results of experiments conducted to validate

computation time and consumed energy models used in the following sections.

3.1 Testbed

In order to establish compute time energy models measurements were made

on different computers with exemplary applications: quicksort, searching for a

string in text, md5 hash calculation (rainbow tables), edge detection in bitmap

pictures and matrix transposition. These applications were implemented in gcc

and run under FreeBSD 8.1 and Ubuntu 14.04 LTS. The wattmeter (Lutron DW-

6090) with power resolution 1W, and time resolution 1s was used. The measured

computer was connected via the wattmeter to record energy consumption. Some

of measured computers had cooling fan speeds dependent on CPU and system

temperature. Changing fan speed caused a few Watts difference in measurement.

In order to make the results independent of ambient temperature, or thermal

results of the earlier experiments we decided to power the fans from outside

power source (Fig. 3.1 and Fig. 3.2). Lutron wattmeter is connected to another

computer/laptop which is logging data. Schematics of the testbed are shown on

Fig. 3.3.
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Figure 3.1: Measuring station.

Figure 3.2: Measuring station - cooling fans powered from external power supply.
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Figure 3.3: Scheme of measurement testbed.

3.2 Flat Memory Model

Practical viability of the DLT linear timing model for distributed computation

has been demonstrated, e.g., in [2, 34, 56]. In the flat memory model whole

memory is considered a uniform resource with the same performance indepen-

dently of the size of used data structures. A key assumption of energy use model

in flat memory systems is that for the given application and platform power con-

sumption is constant and independent of the amount of processed load αi. In

other words, the application on the given platform achieves a point of stable

power usage. This assumption was verified experimentally. Power usage has

been measured on three different computers, with five exemplary applications:

quicksort, searching for a string in a text, md5 hash calculation (rainbow tables),

edge extraction in bitmap pictures and matrix transposition. The applications

were implemented in gcc and run under FreeBSD 8.1. All the applications run
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Table 3.1: Power versus problem size.

Size αi 50MB 100MB 200MB 400MB 800MB
App. µ cv µ cv µ cv µ cv µ cv
Intel Pentium IV 2.8GHz, 1GB RAM DDR 400MHz CL2.5
quicksort 127.1 1.4 127.6 1.1 127.8 1.0 128.1 1.0 128.7 1.7
string search 133.9 0.8 134.2 1.0 134.1 1.2 133.8 0.8 134.7 1.3
md5 127.6 0.7 128.3 1.3 128.5 1.3 128.3 1.3 128.3 1.2
edge detection 127.4 1.2 127.0 0.6 127.6 1.1 127.2 0.9 128.2 1.3
matrix transpose 130.1 1.0 130.9 1.6 129.6 0.9 130.2 1.3 130.2 1.6
idle µ = 72.7, cv = 2.2, k ≈ 1.8
hibernation µ = 10.0, cv = 2.2, k ≈ 13.0
AMD Athlon 64 X2 4800 2.5GHz, 4GB RAM DDR2 667MHz CL3
quicksort 115.8 0.9 116.6 1.0 117.4 1.4 117.5 2.0 117.9 2.5
string search 126.7 1.1 125.9 0.5 125.4 0.7 126.0 0.4 125.7 0.7
md5 111.7 0.4 111.4 0.6 111.7 0.5 111.8 0.9 111.6 0.5
edge detection 128.4 0.4 128.4 0.4 128.3 0.4 128.5 0.4 127.8 1.1
matrix transpose 128.6 0.4 128.5 0.5 128.9 0.5 128.7 0.4 129.0 0.5
idle µ = 76.8, cv = 1.6, k ≈ 1.6
hibernation µ = 6.3, cv = 8.7, k ≈ 19.4
AMD Phenom II X4 945 3.00GHz, 8GB RAM DDR2 800MHz CL5
quicksort 126.8 0.6 127.4 1.0 127.1 0.9 126.8 0.6 127.4 1.2
string search 125.7 0.7 126.3 1.0 126.0 0.5 126.1 0.7 125.6 0.5
md5 127.4 0.4 126.2 0.4 126.2 0.6 126.5 0.8 126.2 0.7
edge detection 131.9 0.5 131.2 0.7 131.2 0.7 129.8 0.8 130.7 0.6
matrix transpose 128.9 0.7 129.6 0.9 128.8 0.6 129.0 0.8 128.9 0.7
idle µ = 73.0, cv = 2.7, k ≈ 1.8
hibernation µ = 6.3, cv = 8.4, k ≈ 20.2

Table 3.2: Power versus problem size and computational intensity I in POLY
benchmark. Intel Pentium IV 2.8GHz, 1GB RAM DDR 400MHz CL2.5.

Size αi 50MB 100MB 200MB 400MB 800MB
I µ cv µ cv µ cv µ cv µ cv
0 130.8 0.6 131.0 0.3 131.2 0.4 131.4 0.4 132.0 1.4
1 133.4 0.4 133.8 0.9 132.9 0.4 133.2 0.4 133.7 0.8
2 106.8 1.5 106.2 0.4 107.1 1.6 107.1 1.7 106.9 1.4
4 130.4 0.4 130.9 1.0 126.4 0.4 126.1 0.3 126.7 0.9
8 122.7 0.4 122.7 0.5 125.9 1.3 125.6 0.5 126.2 1.1
16 115.6 0.4 115.6 0.5 116.3 0.4 116.5 1.0 116.4 0.4
32 115.6 1.1 116.5 0.4 115.1 0.5 115.5 0.9 115.0 0.5
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for at least 1 min. The experiments were repeated 3 times. The results are

collected in Tab. 3.1. The power ratings are in Watts. The applications are

reported in lines, and different load sizes in columns. Each entry consists of two

numbers: average power usage µ in Watts and its coefficient of variation cv in

percents (%). The ’idle’ entry gives power usage of the computer switched on,

with operating system loaded, and waiting for the code to be executed. The

value of k given in this line is the ratio of average power consumption of all

active state measurements, and the average idle state power usage. Analogous

values are given for the hibernation state. Parameter k will be further used in

Chapter 4. In the active state the variation in power usage is of the order of 1%.

Thus, it is low. No spikes in power usage were observed. No apparent correlation

between problem size αi and power usage could be found. Only for quicksort

there is hardly any correlation observable, but the changes are on the order of

noise (represented by the coefficient of variation), and were observed on two of

the three computers. The applications involve substantial CPU to core memory

communication. Quicksort, string search, matrix transpose are strictly memory-

bounded. In order to further verify the impact of CPU-memory communication

on power usage we applied POLY benchmark [47] measuring performance vs

different computational intensities I. Computational intensity I is the number

of floating point operations per memory reference. POLY consists in evalu-

ating polynomials by Horner’s rule. For example, a third-degree polynomial

Y[j]=S0+X[j]*(S1+X[j]*(S2+X[j]*S3)) has I = 3 because two memory ref-

erences Y[j], X[j] are made per 6 floating-point calculations. Computational

intensity I can be adjusted by changing the degree of a polynomial. In Tab. 3.2

we report power usage and its variability for different computational intensities

and problem sizes. It can be seen that frequent memory references (smaller I)

incur higher power usage. For changing problem sizes αi power usage remains

nearly the same. Similar results were obtained for Strassen matrix multipli-

cation, merge-sort, radix-sort, even if virtual memory was partially used. The

lack of the impact of hierarchical memory usage is a result of strong locality of
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memory references in these algorithms. Though memory interaction plays an

important role in determining power consumption, for computations with fixed

resource requirement profile, determined by computational intensity I, power

usage is constant. We conclude that there are applications for which power

consumption is independent of the size of solved problem αi. Furthermore, dis-

persion of used electric power is on the order of 1% and often smaller, which

is acceptable for modeling purposes. Thus, linear model of energy vs size of

processed data can be considered as confirmed for flat memory systems.

3.3 Hierarchical Memory Model

The time and the energy required for the computations on a load chunk depend

on the chunk size α. An important determinant is how big α is compared to the

size of the main memory. In order to verify the relationship between computing

time, consumed energy, and the size of the load chunk a number of computa-

tional tests have been conducted. Example results are collected in Fig. 3.4 and

Tab. 3.3. Three example platforms and three applications (image edge detec-

tion, quicksort, search for a string in a text block) are reported upon. In Fig. 3.4

dependence of computing time and energy on load size α is shown. The dashed

lines represent best linear regression fit into the measured data. The values

in Tab. 3.3 have been obtained using linear regression fit to the measurements

shown in Fig. 3.4. Note that the vertical axes in Fig. 3.4 are logarithmic, and

hence, in this coordinate system the linear functions are not straight lines. It

can be verified that both runtime and energy consumption increase significantly

faster with problem size when out-of-core memory is used. Interestingly, usu-

ally power consumption of the out-of-core computations is lower than on-core.

However, the speed is by far lower, and hence, the overall energy consumption

increases much faster with work size α. The point of switching from one de-

pendence to the other is smaller than the hardware RAM size because some

memory is reserved by the operating system and runtime environments.
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Figure 3.4: Time and energy dependence on load size. Edge detection: a) time,
b) energy; quicksort : c) time, d) energy; string search, system 3 in Tab 3.3:
e) time, f) energy; string search, system 4 in Tab 3.3: g) time, h) energy, vs
problem sizes. Logarithmic vertical axes. Continuous lines are fit using linear
regression.
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It can be observed that the dependence of computing time and consumed

energy on chunk size can be represented by piecewise-linear functions. For

example, the time of processing load of size α on machine Mi is

τi(α) = max{a1iα, a2iα+ b2i}. (3.1)

Component a1iα corresponds with computations in core with rate a1i (re-

ciprocal of speed). The second component represents out-of-core computations.

Functions τi have two properties: τi(0) = 0 and τi(ρi) = a1iρi = a2iρi + b2i, for

i = 1, . . . ,m, where ρi is the size of the main memory on machine Mi available

to the application (not necessarily the whole hardware RAM). Beyond ρi the

machine starts using out-of-core memory. The energy consumed in the compu-

tations is determined by an analogous function:

εi(α) = max{k1iα, k2iα+ l2i} (3.2)

satisfying conditions εi(0) = 0, εi(ρi) = k1iρi = k2iρi + l2i. For memory size ρi,

both τi and εi satisfy:

ρi = b2i/(a1i − a2i) = l2i/(k1i − k2i). (3.3)

Let us observe that since out-of-core processing time and energy increase

much faster than on-core, we have: a1i < a2i, b2i < 0 k1i < k2i, l2i < 0, for

all machines Mi. Values of these coefficients can be obtained by use of linear

regression on intervals of load sizes α as shown in Tab. 3.3. Only b2is are

given in Tab. 3.3, because l2is can be calculated via the available RAM formula

(3.3) presented above: l2i = b2i(k1i − k2i)/(a1i − a2i). Note that coefficients

a1i, a2i, b2i, k1i, k2i, l2i depend both on the machine and the application.

Let us compare our scheduling model with the existing approaches. There

are papers, e.g. [55], assuming hard memory limits. It means that instances

with V >
∑m
i=1 ρi are infeasible. A border between on-core and out-of-core
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Table 3.4: Difference between hierarchical memory and proportional cost mod-
els.

V [MB] 10000 12000 14000 16000 18000
α1 =

V (a12+C)
a11+a12+C [MB] 5714 6857 8000 9143 10286

α2 =
V a11

a11+a12+C [MB] 4286 5143 6000 6857 7714
Eprop = (α1k11 + α2k12) [J] 4000 4800 5600 6400 7200
ER = ε1(α1) + ε2(α2) [J] 4000 4800 16400 41886 72000
m = 2, a11 = a12 = 0.006s/MB, a21 = a22 = 0.4s/MB, b21 = b22 = −2955s, k11 = k12 =
0.4J/MB, k21 = k22 = 22J/MB, l21 = l22 = −162000J/MB, ρ = 7500MB, C = 0.002s/MB,
S = O = 0, P I = PS = 0.

memory cannot be incontrovertibly inserted in such a model. In our case, by

equations (3.1), (3.2), a feasible solution always exists, albeit possibly with bad

performance. It is still possible to apply the very basic DLT approach [22]

assuming that computing time, and energy as a kind of cost, are proportional

to the assigned load size. Unfortunately, in this model energy can be very far

from reality in a hierarchical memory system. Tab. 3.4 gives an example of the

disparity of these two approaches. In Tab. 3.4 Eprop is the energy consumed in

the computations according to the proportional cost model, ER is the same type

of energy calculated according to equation (3.2). System parameters and the

formulae used to calculate Eprop, ER are given in Tab. 3.4. It can be concluded

that the existing approaches cannot be easily adjusted to our situation, or are

significantly inconsistent with reality.
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4 Isoenergy Maps with

Unlimited Memory

In this chapter performance of data-parallel applications is analyzed by use of

equal energy maps. As already mentioned, the reason for recursing to relations

of equal effectiveness, is that they facilitate building understanding of complex

relationships. For example, in [57] the influence of supply voltage (Vdd) and

threshold voltage (Vth) on performance and power consumption of CMOS VLSI

chips is studied. In the realm of parallel processing, it has been observed that

with growing number of used processors the size of the problem must grow to

keep computation efficiency constant [44, 45]. It can be expected that even

more complicated relationships exist in the DLT models. Let us note that in

this chapter we assume flat memory model of non-restricting size.

4.1 Isoenergy Maps for Amdahl’s and

Gustafson’s Laws

We will introduce here two models of energy consumption related to SMP sys-

tems such as multicore CPUs. The models are derived from the laws of parallel

processing performance: Amdahl’s law [6], and Gustafson’s law [46]. Both laws

divide a parallel application into two parts: a sequential part, and a perfectly

parallelizable parallel part. Let 1 be the total size of the computation, and
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f ≤ 1 the size of the parallel part. We assume a system of m processors (cores)

which can be either idle or active. When idle, the cores use k times less electric

power than if running in the active state.

According to the Amdlahl’s law, the sequential part is executed in time 1−f ,

and the parallel part is executed in time f/m on m processors. It was proposed

in [95] that during the sequential part only one core is used, while the remaining

m−1 cores are idle using k times less power. In the parallel part all m cores are

active. Hence, the energy used by a parallel application executed on m cores is

[95]:

E = (1− f)
(
1 +

m− 1

k

)
+
f

m
m = 1 + (m− 1)(1− f)/k. (4.1)

In the Gustafson’s law the parallel part takes time f on m cores, and the se-

quential part time 1−f on one core. Analogously to (4.1) during the sequential

part m − 1 cores are idle and each core consumes k times less power than if

active. Hence, the energy used up is:

E = (1− f)
(
1 +

m− 1

k

)
+mf. (4.2)

Note that energy in (4.1), (4.2) is expressed in relative units, where 1 is the

energy consumed by one core executing the whole application.

Both (4.1), and (4.2) allow to represent one of the parameters, as a function

of energy E and the remaining parameters. For example, for Amdahl’s law from

(4.1) k is:

k =
(1− f)(m− 1)

E − 1
(4.3)

and for Gustafson’s law, we obtain from (4.2):

k =
m− 1

(E −mf)/(1− f)− 1
. (4.4)

Isoenergy maps (m, k) for f = 0.8 are shown in Fig. 4.1a for Amdahl’s

law (eq. (4.3)), and in Fig. 4.1b for Gustafson’s law (eq. (4.4)). Increasing

processor numberm is the main way of reducing the computation time in parallel
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Figure 4.1: Isoenergy map for processor number m, and idle power reduction
factor k. a) Amdahl’s law, b) Gustafson’s law. Arrows show direction of de-
creasing energy E.
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processing. Hence, map (m, k) demonstrates if energy consumption incurred by

increasing parallelism can be compensated by effective application of low-energy

modes embodied by k. In Fig. 4.1a (Amdahl’s law) coefficient k cutting power

usage grows nearly linearly with m. Moreover, k must increase with decreasing

energy E. In Fig. 4.1b (Gustafson’s law) k grows rapidly with m, and not for

all m a feasible k exists. Note that m is a discrete parameter. Therefore, the

lines have step-wise form, and the isolines of k finish in certain point rather than

approaching a vertical asymptote. Since the isolines are roughly parallel to k

axis, the dependence of energy use on k is weak, and strong on m. The apparent

difference of the isoline shapes can be explained as follows. In Amdahl’s law

(4.1) the energy cost of parallel processing is constant because f
mm reduces to f .

Energy savings can be done only in the sequential part of the application. Since

the sequential part is not dominating in well designed parallel applications, the

energy saving coefficient k has any influence only if (m−1)(1−f) is very big. On

the contrary, in equation (4.2) parallel processing costs mf in energy. Since f is

big in a well designed parallel application, it is hard to compensate energy use

by aggressively clamping power down in the sequential part. Application of the

isoenergy maps in Fig. 4.1 in a practical scenario could look as follows: A parallel

application programmer, or a user, wants to use more processors m, but keep

energy constant. Thus, it is necessary to reduce energy use in the idle state, i.e.

increase parameter k. It can be achieved by modifying CPU and/or memory,

designing a subsystem in the operating system such that the application can

request CPU and memory suspension, incorporating in the operating system

algorithms discovering idle cores, better determining sequential parts in the

application at the development stage. The two pictures in Fig. 4.1 differ in

assessing scalability of this approach. In Fig. 4.1a it is linearly scalable. In

Fig. 4.1b increasing k gives only diminishing returns.

Fig. 4.2 depicts isoenergy map of k, and the size of the parallel part f , at

m = 1000. Let us note that for m = 1000 energy levels E ≥ 1000 do not repre-

sent any savings because the energy used by m = 1000 processors in the schedule
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Figure 4.2: Isoenergy map for parallel fraction f , and idle power reduction factor
k, for m = 1000. a) Amdahl’s law, b) Gustafson’s law. Arrows show direction
of decreasing energy E.
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of the length equal to the sequential one is just E = 1000. Hence, only E < 1000

are shown in Fig. 4.2. The map in Fig. 4.2 shows how low-energy modes (rep-

resented by k) interact with the potential application parallelism (represented

by f). The isolines are quite similar when f is very small, which is rare in well

designed parallel applications. When f is close to 1, the isolines become rad-

ically different. In Fig. 4.2a (Amdahl’s law) the power reduction coefficient k

decreases which means that it is becoming less and less needed in energy saving

because the sequential part in the parallel application is disappearing and the

parallel part consumes constant energy f . On contrary, in Fig. 4.2b (Gustafson’s

law) k must rapidly grow to compensate increasing contribution of the energy

consumed by the cores working in parallel. It follows, that compensating en-

ergy consumption incurred by parallel processing of computationally intensive

applications (represented by high f) using processor suspension modes is ulti-

mately futile. It is an indication for a decision-maker that for such applications

energy optimization must be achieved in other ways. Fig. 4.1 and Fig. 4.2 show

that Amdahl’s and Gustafson’s laws represent essentially different perceptions

of parallel application performance. In the Amdahl’s law parallel processing in

the energetic sense is essentially for free. In the Gustafson’s law the size of the

problem grows with the number of cores m, and hence, parallelism incurs costs.

It can be concluded that from the energy point of view Amdahl’s law misses an

important component of the cost of parallel computation.

4.2 Isoenergy Maps for Divisible

Computations

The models introduced in the previous section lack such important details as

costs of communication and starting additional processors. In this section an

energy use model addressing such deficiencies is introduced. It represents pro-

cessing divisible loads. Optimum schedules for divisible computations provide

timings necessary to calculate energy consumption. Though the schedules are
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constructed in the standard way for DLT [22, 26, 28, 29, 74] we report neces-

sary details to make the presentation self-contained. Given the timings of the

schedule we can multiply it by electric power to derive formulae for energy con-

sumption. In this step we partially use results from [29]. Empirical evidence

supporting our electric power use model was provided in Chapter 3.

4.2.1 The Energy Usage Model

We assume that at the beginning of the computation load of size V resides at

originator (initiator, file server) P0. The originator is in a star interconnec-

tion with homogeneous worker computers (processors) P1, . . . , Pm. The star

interconnection may represent multiple CPUs sharing a bus, a cluster of work-

stations, or a set of machines in a global grid. The sole role of the originator

is to control the computation, and distribute the load. Communications are

performed between the originator and the worker processors only (cf. Fig. 4.3).

Volume V of load is partitioned into chunks of size α1, . . . , αm, and sent to

P1, . . . , Pm, respectively. Starting computation on a remote computer involves

waking it up, loading virtual machines, application code and its libraries. Hence,

startup time S elapses before Pi (i = 1, . . . ,m) can start receiving the load.

Startup time S is an important element in modeling DLT applications. Without

the startup, arbitrary number of processors may be activated which is unreal-

istic [22, 28]. Load of size αi is transmitted in time αiC. On the receipt of the

load, Pi immediately starts computations which last αia units of time. When

the communication with Pi is finished, the originator activates processor Pi+1

and sends to it load αi+1. The procedure is repeated until starting computations

on all m processors. Now the goal is to partition load V into chunks α1, . . . , αm

such that schedule is as short as possible. Let us assume that the time of return-

ing results is negligible. It can be shown [22, 26, 74] that for the optimality of

the schedule length all the processors must finish computations simultaneously.

Though we assumed that the result collection time is negligible and that commu-

nication with the worker processors is executed only once, the result collection
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Figure 4.3: Communication, computation and power use schedule.

time, parallel communication, concurrent communication and computation can

be comprised in DLT models when necessary [22, 26, 28, 29, 74]. Most of these

options for processing the load will be subject of Chapter 5. We assume that

load chunks αi fit in the core memory such that parameters a,C are not affected

by the load sizes. Since all processors finish computations simultaneously (see

Fig. 4.3) processor Pi (i = 1, . . . ,m−1) computes as long as it takes to activate

Pi+1, send and process its load αi+1. Moreover, all load must be processed.

Hence, we have a system of linear equations:

aαi = S + (C + a)αi+1 for i = 1, . . . ,m− 1 (4.5)
m∑
i=1

αi = V. (4.6)
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Denoting κ = 1 + C/a it can be derived from (4.5):

αi =
S(1− κm−i)
a(1− κ)

+ κm−iαm for i = 1, . . .m, (4.7)

where αm from (4.6), and (4.7) is

αm =
V (1− κ)
1− κm

− S(m(1− κ)− 1 + κm)

a(1− κm)(1− κ)
. (4.8)

Note that only αm ≥ 0 has practical sense, yet negative values can be obtained

from equation (4.8). Such a situation may arise if the volume of load V is too

small to employ all m processors. In the further discussion the combinations

of parameters a,C,m, S, V such that αm < 0 will be called infeasible. From α1

schedule length T can be calculated:

T = S + (C + a)α1 = Sz1 + V z2 (4.9)

where from (4.7), (4.8)

z1 = 1 +
κ

1− κ

[
1− κm−1 − κm−1(m(1− κ)− 1 + κm)

1− κm

]
(4.10)

z2 = (C + a)
(1− κ)κm−1

1− κm
. (4.11)

Practical viability of the above model of distributed computation has been con-

firmed, e.g., in publications [2, 34, 56]. Parameters a,C, S are platform- and

application-dependent and can be measured as shown in Chapter 3.

The energy consumption can be split into three components: EI – the energy

consumed in the idle state, ERN – energy beyond the idle state consumed

in communication, and ERC – the energy beyond the idle state consumed in

computation. Hence, the total energy consumed by the system is

E = EI + ERN + ERC . (4.12)
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Let PC denote the power consumed by the active processors, and PN the power

consumed in the network equipment when communicating. We assume, that the

energy costs brought by components of a computer, such as CPU, RAM, HDD,

NIC, power supply unit, fans, cooling equipment are specific for the platform

and the application, and are all comprised in PC . This value is constant in

the performed computation, as shown in Section 3.2. A more detailed model of

energy consumption in computers will be used in Chapter 6. We assume that

in the idle state both the network, and the computers use k times less energy,

than in the active state. Parameter k represents in a synthetic way the degree

of proportionality in energy use. For example, recently introduced FVER index

of datacenter energy performance [67] is equal to 1 + 1/(k − 1) = k/(k − 1). If

the system were idle all the schedule length T, the energy consumed would be:

EI = T ((m+ 1)PC + PN )/k. (4.13)

The network is active when performing communications, after finishing load

distribution it switches back to the idle state. Hence, energy ERN consumed in

the network beyond the idle state energy is:

ERN = PN
k − 1

k
(mS + CV ). (4.14)

Processor Pi, consumes energy PC k−1k (S+αi(C+a)) above the idle state. The

energy consumed by all processors beyond the idle state by (4.6) is:

ERC = PC
k − 1

k

(
mS + CV +

m∑
i=1

(S + (C + a)αi)

)

= PC
k − 1

k
(2mS + 2CV + aV ). (4.15)
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Thus, from (4.12)-(4.15) we obtain:

E = T ((m+ 1)PC + PN )/k + PN
k − 1

k
(mS + CV ) +

PC
k − 1

k
(2mS + 2CV + aV ). (4.16)

The energy use model presented above is fairly generic and can be extended

to accommodate more details. This will be subject, at least to some extent, of

the following chapters.

4.2.2 Isoenergy Lines Calculations

Now we proceed to the method of plotting the isoenergy lines. In some cases it

is possible to derive analytically value of one parameter as a function of all other

parameters and the energy. For example, it is possible to derive k from (4.16)

to obtain equation (4.17). Then all two-dimensional isoenergy maps involving

k can be obtained by sweeping a range of some parameter X and calculating k

for the given X, at certain energy level E and other parameters fixed. Below

we list parameters obtained analytically as functions.

k =
T [(m+ 1)PC + PN ]− (PN + 2PC)(mS + CV )− PCaV

E − (PN + 2PC)(mS + CV )− PCaV
(4.17)

PC =
Ek − PN [(k − 1)(mS + CV ) + T ]

(m+ 1)T + (k − 1)(2mS + (2C + a)V )
(4.18)

PN =
Ek − PC [(m+ 1)T + (k − 1)(2mS + (2C + a)V )]

T + (k − 1)(mS + CV )
(4.19)

V =
Ek − Sz1[(m+ 1)PC + PN ]− (k − 1)mS(PN + 2PC)

z2[(m+ 1)PC + PN ] + (k − 1)(PNC + (2C + a)PC)
(4.20)

S =
Ek − V z2[(m+ 1)PC + PN ]− (k − 1)V [PNC + PC(2C + a)]

z1[(m+ 1)PC + PN ] +m(k − 1)[PN + 2PC ]
(4.21)

where T, z1, z2 were given in equations (4.9), (4.10), (4.11).
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Unfortunately, for parameters a,C,m no explicit function representation is

known. Furthermore m is discrete. In these cases the isoenergy line can be

found numerically for a given energy level E. Let (X,Y ) denote an isoenergy

map for parameters X and Y . For example, in the isoenergy map (a,C) let

parameter a be an independent variable. We set certain value of a, while the

remaining system parameters are fixed. Using equation (4.16) the value of C at

which energy is E can be found numerically, e.g., by binary search over C. This

procedure is repeated for a range of a values. The isoenergy maps involving any

pair of parameters a,C,m were constructed numerically.

4.3 Isoenergy Maps Examples

In this section we give examples of typical isoenergy map forms for divisible com-

putations. Let us first make some general observations. Note that some amount

of energy inevitably must be used. For example, at least energy PCaV must

be consumed in the computations. Furthermore, some parameter combinations

may be infeasible, as observed in Section 4.2. Consequently, some isoenergy

lines (e.g. for E < PCV a) or some parts of the line may be inaccessible.

Since our model has 8 parameters, there are
(
8
2

)
= 28 two-dimensional

isoenergy maps. Due to limited space only a subset will be presented. A bigger

collection of isoenergy maps can be found at [31]. Rather than studying obvious

candidates for energy saving like a, V, PC , we analyze the less obvious ones

and the relation between the cost of communication and computation. Unless

stated otherwise, the isoenergy maps were constructed for reference parameters:

m = 1000, a = 1E-3, C =1E-8, S = 100, V =1E11, k = 3, PC = 200, PN = 50.

The above values can be interpreted as follows. There are m = 1000 processors.

A load unit is processed in 1 ms (a = 1E-3), and communicated in 10ns (C =1E-

8). If the load units were 10 bytes, then processing speed of a processor would

be 10kB/s, communication speed 1GB/s, and the size of load would be 1TB. A

processor uses PC = 200W, and the network PN=50W. In the idle state power
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usage is k = 3 times smaller. In such a configuration the load is processed

in T ≈ 1.51E5s using E ≈ 2.34E10J (6500kWh). In the isoenergy maps we

explore wide ranges of the parameters. For example, values up to 1E4W for

PC , or 1E9W for PN are shown in Fig. 4.5. It may be disputable if such values

make sense, especially if we assume a single chip point of view. The rationale

for such wide range of values are the following: A processor in our model might

range from a single shader in a graphics card to an entire datacenter, hence

wide range of PC . If we intend to analyze a datacenter with many processors

then PN may be indeed big [4, 38]. Our principal objective is to uncover shapes

of the isoenergy lines to observe mutual interactions between the platform and

application parameters. If we discover some phenomenon in the extreme range

of parameters, we can safely exclude such phenomena in practice. Hence, the

investigated parameter ranges should not preclude exposing the shapes of the

isoenergy lines.

4.3.1 Problem Size vs Communication Rate

The map (V,C) for the reference parameters is shown in Fig. 4.4. The con-

figurations in the upper-left corner, where communication is slow and problem

size small, are infeasible as explained in Section 4.2. With the progress in high

performance computing sizes V of the solved problems inevitably grow. Fig. 4.4

determines whether the energy consumption induced by growing problem size

can be compensated by faster communication. Map (V,C) shows that energy

consumption grows mainly with V . Only for C greater than certain threshold

does the energy use depends also on C. The threshold value of C is determined

by the relation between the energy consumed in the computation V aPC and

the energy used up by processors waiting in the idle state to start computations,

which is roughly V C(PCm + PN )/k. Hence, for PCm � PN and C greater

than approx. ak/m =3E-6 can the two parameters compensate each other. It

means that communication must be faster to keep with growing V and maintain

constant energy use. Alternatively, it can be said that for C > ak/m communi-
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Figure 4.4: Isoenergy map for load size V , and communication rate C. The
arrow shows direction of decreasing energy E.
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cation is too slow and incurs unnecessary energy cost by holding the processors

idle. Application of isoenergy map (V,C) in a real-world scenario could look

like this: It is planned to process increasing problem sizes V using the existing

application and datacenter. What should be done to prepare for such change

and curb energy use? The energy consumption will inevitably increase with V .

The main component is computation, product V aPC must be minimized. This

can be achieved by better algorithms and programming (a), better hardware

(PC). Further changes depend on the interaction between a,C,m, k, PC , PN .

If PCm� PN and C < ak/m no changes in networking subsystem are needed.

For the example application parameters introduced at the beginning of this

section PCm � PN condition holds, C=1E-8< ak/m = 3E-6 and changes in

the communication subsystem are ineffective. Assume however, that by more

advanced algorithm and better programming speed of the application increases

ten-fold, i.e. a is reduced to a=1E-4. Then, at roughly m = 3E4 processors it

will be necessary to increase communication speed (1/C), roughly proportion-

ally to the increase of V , to curb energy costs.

The shape of the isolines on map (V, PN ) is quite similar, and for very big

values of PN , the network power influences energy usage on the scale comparable

with V . The isolines on map (V, S) have similar shape as in Fig. 4.4, but

the lines are parallel to S axis in nearly whole feasible range of parameters.

Hence, reducing startup time S is in general insufficient to compensate energy

consumption incurred by growing problem size V .

4.3.2 Processor Power vs Network Power

The isoenergy map (PC , PN ) is shown in Fig. 4.5. Processor power PC and the

network power PN are two main parameters determining overall energy con-

sumption. This map shows whether growing network power PN can be com-

pensated by reducing processor power PC , or vice versa. The isoenergy lines

have knee-like shape with energy decreasing toward lower-left corner, i.e. when

PN and PC are decreasing. In the upper part of the map the isoenergy line is
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Figure 4.5: Isoenergy map for network power PN , and processor power PC .
Arrows show direction of decreasing energy E.
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parallel to PC axis, and PN is determining energy consumption. The energy

use is dominated here by component TPN/k from EI (see equation (4.13)). On

the lower part (parallel to PN axis) energy consumption is determined by the

energy aV PC needed to compute the whole load. The two parameters can com-

pensate each other only in a narrow range of values. The shapes of the isolines

on (PC , PN ) map remain the same for wide range of system parameters [31].

In the areas where either PC , or PN play role, their reductions correspond with

roughly proportional reductions in energy consumption. A real world use of

map (PC , PN ) could be as follows. A system designer reduces computer power

PC , by using better hardware: CPUs, memory, power supplies and cooling,

but ignores energy in the communication subsystem. Isoenergy map (PC , PN )

demonstrates that it will ultimately lead to exposing energy used in network-

ing, and then PN will have to be reduced, too. Though PC , PN hardly ever

can compensate for one another, they have to be minimized in unison because

minimizing one exposes the second power type.

4.3.3 Processor Number vs Network Power

Isoenergy map (m,PN ) is shown in Fig. 4.6. Users increase processor numbers

m to take advantage of concurrency, and reduce the computation time. Thus,

map (m,PN ) shows whether energy costs resulting from greater processor num-

ber m can be compensated by reducing network power PN . The isolines have

step-wise form because processor numbers m are discrete. For the assumed pa-

rameters, configurations with more than m = 1411 are infeasible. It can be seen

that for big load sizes and sufficient energy budget (Fig. 4.6 upper part), PN

on the isoenergy line increases roughly linearly with m. This means that the

energy use decreases with decreasing PN and increasing m. The former could be

intuitively expected, the latter can be explained as follows. Load size V is suf-

ficient to effectively exploit many processors, and computations scale well with

m. With each new processor schedule gets shorter which spares energy because

load chunks are smaller, computations start earlier, and we pay less for keep-
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PN

Figure 4.6: Isoenergy map for processor number m, and network power PN .
Arrows show direction of decreasing energy E.
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ing idle (waiting) processors. Hence, certain inefficiencies in the communication

can be compensated by concurrency of computations. This applies to quite big

values of PN and E, or small m. However, even the topmost lines in Fig. 4.6

bent down at the right ends, showing that this way of energy savings is limited.

On the other hand, when the energy budget is tighter (Fig. 4.6 the lower part)

the situation changes radically. By a tight energy budget we mean here that

the energy level is at the minimum attainable by changing the two parameters

m,PN only. Both ends of the isoline are almost parallel to axis PN , and energy

use has a minimum for some small m. This shape emerges in the following way.

On the left end certain isolines are inaccessible because other components incur

high energy consumption which cannot be compensated by PN alone. On the

right end increasing processor number brings higher activation costs which hit

against tight energy budget, and again PN alone becomes insufficient to keep

energy use constant. On the one hand, it is hard to expect that users will resign

from increasing processor numbers m since it is an essential idea of parallel pro-

cessing. On the other hand, there is a limit to energy savings by reducing PN

when m is growing. Consequently, reducing the overall energy consumption by

limiting PN does not scale well with m.

4.3.4 Processor Number vs Startup Time

Isoenergy map for processor number m and startup time S is shown in Fig. 4.7.

The upper-right corner of the map contains infeasible configurations. Map

(m,S) shows how startup times S should change with growing processor num-

ber m to avoid using additional energy, and to what extent such compensation

is possible. Observe that for a fixed S the energy E has minimum at certain

m. The shape of the isoenergy lines can be explained as follows. When the

number of processors is small, the contribution of the startup to the overall

energy consumption is also small, and S alone cannot compensate for energy

usage incurred by other parameters. Hence, some isolines cannot be seen for

arbitrarily small m. When the number of processors increases two factors come
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Figure 4.7: Isoenergy map for processor number m, and startup time S. Arrows
show direction of decreasing energy E.
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into play: Schedule length decreases, and the cost of processor activations in-

creases. Initially, adding a few processors reduces schedule length. This spares

some energy because the system is used for a shorter time. These savings can

be ”wasted” in longer startups. Therefore, the isoenergy lines are bent down

for small m. If the processor number increases even further the reduction of the

schedule length is insufficient to compensate the energy needed for the startups,

and S must decrease to keep energy constant. The form of the right end of the

isoline depends on the energy budget. Again, a tight budget means here that

the energy level approaches minimum achievable by changing the two param-

eters m,S. If energy budget is tight then the relative contribution of startups

quickly increases with m. Consequently, startup times must radically decrease

which ultimately becomes unattainable. Thus, in the areas where the isolines

are parallel to axis S, no further reduction of S will provide any energy sav-

ings. This signifies lack of scalability of energy optimizations based on S only.

Note that energy range is narrower in Fig. 4.7 than in the earlier figures. It is

approximately 60% of the highest isoline. Moreover, values of S in Fig. 4.7 are

in range from moderate to exceptionally big. This means that energy savings

here are shallower than by changing values PC , PN and product aV discussed

earlier.

4.3.5 Processor Number vs Power Reduction Factor

In Fig. 4.8 isoenergy map (m, k) is shown. The shapes of the isolines can be

explained as follows. For small m schedule length decreases with each new

processor. This reduces the idle part of energy (EI in equation (4.13)), and a

bit more energy can be ”wasted” by decreasing k. When the effect of shortening

schedule length T with growing m slows down, and still energy use increases

with each added processor, then constant energy use can be maintained by

aggressively cutting of power from the idle equipment, and k ascends with m.

Consequently, for fixed k energy use has a minimum at certain processor number

m. The increase of k is particularly sharp for tight energy budgets. In effect,
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Figure 4.8: Isoenergy map for processor number m, and idle power reduction
factor k. Arrows show direction of decreasing energy E.
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using low power modes is inefficient when m is big. A similar conclusion was

drawn for (m, k) and Gustafson’s speedup law (cf. Fig. 4.1b). The lowest

isoenergy line energy level is more than 67% of the highest one. Thus, savings

by cutting off power from the idle equipment may have smaller effect than

reducing PC , PN , aV .

4.3.6 Processor Number vs Communication Rate

Isoenergy map for processor number m and communication rate C is shown in

Fig. 4.9. Map (m,C) shows how communication rates C should change with

growing processor number m to avoid using additional energy, and to what

extent such compensation is possible. Note that the isolines have step-wise form

because processor numbers m are discrete. The top-right corner of the chart

contains infeasible configurations. As observed in Section 4.2.1 it is not possible

to run computations on large number of processors m when communication

speed is very low (i.e C is large) because the whole load can be processed on

a subset of processors. Closer examination of formula (4.8) reveals that in the

numerator of the second part of the sum term 1−κm becomes dominant and with

m tending to infinity the second part of the sum tends to S/C. Consequently,

component V (1 − κ)/(1 − κm) ≈ V (C/a)1−m is the biggest in (4.8). Thus,

with growing m, communication rate C must quickly decrease to guarantee

feasibility of the load partitioning. It can be observed that in general in the

isolines C decreases with m which is intuitively expected because adding each

new machine increases activation energy costs which must be compensated by

shorter communication. Only in a narrow interval of small processor number

and low energy budgets are the isolines are lightly concave. It is because some

initial increase in the processor number reduces schedule length and hence also

idle waiting which allows for slightly slower communication (C can grow a bit).

Note that communication rate values are extremely large in Fig. 4.9 for small

m. This means that communication rate C – processor number m interaction

plays important role only if processor numbers are large.
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Figure 4.9: Isoenergy map for processor number m, and communication rate C
for a = 1E-2.
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4.3.7 Processor Number vs Processor Power

Isoenergy map (m,PC) is shown in Fig. 4.10. It can be observed that for large

energy budgets, PC can be large and since the energy, firstly, depends on the

computation time V a, and secondly, it dominates the whole energy consump-

tion, the isolines are nearly parallel to m axis. This means that there is no

compensation between m and PC in this area. The situation is different for

tight energy budgets. On the one hand, some energy will be consumed anyway,

e.g. PNCV in distributing the load. This cannot be compensated by reducing

PC or m. Hence, the isolines for small energy budgets turn down (toward small

PC) and end abruptly. On the other hand, increasing m requires energy in

activating new machines. This cost can be compensated by reducing PC . Con-

sequently, also for large m the isolines turn down. It means that with respect

to energy costs and for tight energy budgets, there is an optimum number of

processors which balances energy costs and gains of parallelism.

4.3.8 Processor Power vs Load Size

In Fig. 4.11 isoenergy map for processor power PC and load size V is shown. In-

feasible solutions are located at the bottom of the isoenergy map where problem

sizes are too small to run computations on all processors. It can be seen that

with growing processor power load sizes have to decrease to keep energy at con-

stant level. This is an expected behavior because energy V aPC consumed in the

computations has to be kept constant. The isolines are very regularly spaced in

the map and almost parallel to each other. The (PC , V ) isoenergy map confirms

a quite natural conclusion that bigger problems need more efficient processors

to keep the same energy levels.
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Figure 4.10: Isoenergy map for processor number m, and processor power PC

for C = 1E-2.
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Figure 4.11: Isoenergy map for processor power PC , and load size V for m = 10.
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4.3.9 Network Power vs Startup Time

Isoenergy map for network power PN and startup time S is shown in Fig. 4.12.

The top of the map contains infeasible configurations where startup times are too

large to activate all processors. For E = 201E13 the map has knee-like shape.

For bigger energy levels we can see only part of the knee shape. This shape of

isoenergy line means that with respect to keeping energy usage stable in very

wide ranges of its values S remains unrelated to growing network power PN . At

some extreme values of PN , startup S can compensate growing network power

because power PN is used in the network when a machine starts. However, the

range of PN and S must be large for this compensation effect to emerge. Let

us also note that most of the (PN , S) is covered by a plateau with little energy

changes. This means that in practical ranges of system parameters S and PN

are secondary factors determining energy consumption.

4.3.10 Network Power vs Computation Rate

Isoenergy map for network power PN and computation rate a is shown in

Fig. 4.13. The bottom of the map contains infeasible configurations where low

computation rate a (computation is too fast) results in computation time too

short in relation to the communication time to allow starting all the processors.

In a wide area of a and PN pairs isoenergy lines are parallel to the PN axis.

It means that energy consumption V aPC in computation is a key component

of the total energy consumption and the changes in a cannot be compensated

by changes in networking power PN . Conversely, for tighter energy budget

and fast computations, like E = 1E14 and a ≈ 1E-4, the isoline has knee-like

shape. This means that for very large network power PN and fast computation

(low a) the energy consumed in the network becomes dominant. Then, decreas-

ing computation rate a (faster computations) can compensate growing network
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Figure 4.12: n Isoenergy map for network power PN , and startup time S for
k = 100.
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power PN . It can be observed that such an effect is limited by feasibility of

system configurations because small a required for the compensation to emerge

also restricts the feasibility area where the effect appears.

4.3.11 Communication Rate vs Startup Time

A (C, S) isoenergy map is shown in Fig. 4.14. The top-right area of the map is

infeasible. It means that both too large startup times and too slow communi-

cations (C is large) prevent activating the required number of processors. We

can see knee-like shape of the isolines in Fig. 4.14. Again, such knee-like shapes

signify that two effects can dominate the energy consumption and they compen-

sate each other only in a narrow area of system configurations. For very large

S and small C the machine activation cost mS(PC + PN ) dominates energy

V CPN consumed in communications. Consequently, energy is determined by S

and independent of C (top of the picture). Conversely, for large C and small S

(the right side of the picture) energy consumption in communications is larger

than the machine startup energy, and total energy consumed does not depend

on S. The two parameters can compensate one another only is a relatively nar-

row area when mS(PC + PN ) ≈ V CPN . Note similarity of the isoenergy map

to the map (PN , PC) in Fig. 4.5.

4.4 Conclusions

In this section we proposed a new concept of isoenergy map. Such maps show

relationships between parameters determining energy use in processing divisible

loads. They indicate how changes in one parameter of the system must be

matched by changes in other parameters, to achieve the energy savings. The

maps can be also used to identify conditions when some parameters have no

influence on the overall energy use.
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Figure 4.13: Isoenergy map for network power PN , and communication rate a.
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Figure 4.14: Isoenergy map for communication rate C, and startup time S at
a = 10.
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The idea of isoenergy maps has been applied to analyze performance for

three energy use models. It has been observed that Amdahl’s and Gustafson’s

perceptions of parallel application are essentially different, and consequently

give opposing indications. For divisible loads we expected that increasing pro-

cessor number m may bring only costs. But it appears that increasing m reduces

schedule length and subsequently minimizes the consumed energy. Our anal-

ysis confirms that that intuitively obvious parameters of processor power PC ,

network infrastructure power PN or the time of computation aV are the most

influential and hence most scalable determinants in energy saving. Parameters

like idle state power consumption factor k and startup time S allow for shallower

energy reductions. There are pairs of parameters, e.g. the number of processors

and startup time (m,S) or network power consumption (m,PN ), which can

compensate each other to keep energy use constant. On the other hand, in cer-

tain conditions some pairs, e.g. processor power and network power (PC , PN )

or communication rate and startup time (C, S), are mutually independent and

changing one parameter may be counterproductive because the other one should

be optimized. Our study revealed more intricate relationships which manifest

in local minima on the isoenergy maps. The minima imply that inefficiencies

in one parameter (e.g. PN , PC , S, k) can be, but only to a limited extent, com-

pensated by some other parameter (e.g. increasing processor number m). This

means that scalability of such optimizations is again restricted.

Isoenergy maps provide a generic method of analyzing energy performance

trade-offs. Any scheduling model, or energy use model may take advantage of

isoenergy maps as a visualization front-end. In the complex relationships ruled

by many factors isoenergy maps give holistic view and sense of direction for

optimization efforts.

The models presented here fit well structured, intensive computations. There-

fore, future work should be targeted at other types of applications, e.g., with

multiple phases of computation and communication like NAS Grid Benchmarks

[90] or Map-Reduce applications [19, 58]. Transaction-based loads typical of
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OLTP or web-servers expose far greater variety of resource use profiles. More-

over, perception of the computing platform is very basic and further details

should be incorporated. For example, systems with limited and hierarchical

memory imposing limits on the workload sizes will be subject of the following

chapters.
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5 Homogeneous Systems with

Hierarchical Memory

In this chapter a homogeneous computer system with hierarchical memory is

considered. Two types of load distribution are introduced. Firstly, single install-

ment load distribution and MIP methods used to solve the problem. Secondly,

methods using multi installment distribution are presented. Simple heuristics

and optimal MIP methods are used for solving the problem.

5.1 Single-installment Processing

In this section single installment load distribution and MIP methods are used

to portion of the load sent to the machines.

5.1.1 Mathematical Model and Solution Procedure

In this section we formulate a problem of time- and energy-efficient scheduling

of divisible loads in systems with hierarchical memory. We assume that there

is a load of size V to be processed on m homogeneous machines. We will be

looking for the lowest possible energy E subject to a limited processing time T .

The time schedule of communications and computations is shown in Fig. 5.1a.

The process starts with the load held by the originator (initiator, resource allo-

cator, etc.), computer further denoted as M0. The originator is connected with
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Figure 5.1: Schedule of the DLT computation a) timing b) energy usage.

all worker machines (computers, processors) M1, . . . ,Mm, by means of some

network with communication rate C. The originator is dividing and distribut-

ing the load. Communications are performed only between M0 and the workers,

one at a time. The load of volume V is sent in chunks of size α1, . . . , αm to

machines M1, . . . ,Mm, respectively. Machines take nonzero startup time S be-

fore they become capable of performing communication. This might represent

a simple waking up time, as well as more complicated processes like loading

appropriate VMs or platforms in dynamically scalable clouds. When the trans-

fer of a chunk of load to machine Mi is finished, Mi starts processing it, while

the originator activates machine Mi+1 in order to send to it load αi+1. The

procedure is repeated until starting computations on all m processors.

It is often assumed in DLT that the time of returning results is negligible.

Discussion on extensions of the DLT networking model including results collec-

tion time, parallel communications or communications concurrent with compu-

tations can be found in [22, 26, 28, 74]. For intelligibility of the further analysis

such alternative communication and computation strategies are not considered

in this section.

It is assumed that a machine can be in one of four states: idle (I), starting

up (S), networking (N) or running, i.e. performing computations (R). With

these states power consumption rates P I , PS , PN , PR and durations tIi , S, t
N
i , t

R
i
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are connected, respectively. As these states might be of complicated nature, we

assume that the powers are averages representing the on-going processes. The

product of power consumption and time gives overall energy usage. Startup time

S is the time a machine needs to wake up from idle and become operational,

i.e. start networking or computations. The value of S is equal for all machines.

The idle state can represent various situations in reality. Firstly, the machine

can be turned off or hibernated to HDD and waiting for a signal to boot up.

The corresponding P I value will be the lowest, possibly a few Watts, but the

startup time will be the longest one, even up to dozens of seconds depending on

the software to be loaded. Secondly, the machine can be suspended to RAM,

then the startup time will be at the level of seconds, but the power consumption

will be around several dozens of Watts. Finally, the machine can be on and

waiting to start executing a new task within a second, but the idle power rate

will be up to 100W.

The energy consumed by machine Mi can be calculated as:

Ei = ESi + EIi + ENi + ERi

The running energy ERi depends on the size of assigned load αi as determined

by equation (3.2). As the communication rate is C, the total communication

time is calculated as tNi = Cαi and energy as ENi = PNCαi for machine Mi. If

some machines are not used in the schedule, their loads are αi = 0 so in effect

ENi = 0 and ERi = 0. However, we need a binary decision variable xi indicating

whether machine i is used in the schedule. Thus, the energy consumed in the

startup is ESi = xiSP
S . The idle time can be calculated from the length of the

schedule T and the remaining three times tIi = T − Sxi −Cαi − tRi . Hence, we

get:

Ei = xiSP
S + tIiP

I + CαiP
N +max{k1αi, k2αi + l2} (5.1)
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Energy E0 consumed by the originator M0 is calculated differently. It uses

power PN when other machines are starting up or during communication and

the originator goes idle when all the load is distributed. Originator does not go

idle when some other machine is waking up, because this would require some

wake up time from him too. Including suspension of the originator into the

model would complicate the model beyond reasonable need. Thus, we get:

E0 = PN (

m∑
i=1

xiS +

m∑
i=1

tNi ) + P I(T −
m∑
i=1

tNi −
m∑
i=1

xiS) (5.2)

Considering that
m∑
i=1

tNi = C
m∑
i=1

αi = CV

equation (5.2) can be transformed to a more convenient form:

E0 = PN (

m∑
i=1

xiS + CV )− P I(
m∑
i=1

xiS + CV ) + P IT =

= P IT + (

m∑
i=1

xiS + CV )(PN − P I) (5.3)

Total consumed energy is:

E =

m∑
i=1

Ei + E0 (5.4)

The problem of time- and energy-efficient scheduling can be formulated as

an integer linear program for minimizing schedule length:

minT, subject to E ≤ E′, (5.5)

where E′ is energy limit, or as an integer linear program for the minimization

of energy consumed:

minE, subject to T ≤ T ′, (5.6)

where T ′ is some limit on makespan. In both cases, it is further required that:
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m∑
i=1

αi = V (5.7)

j∑
i=1

xiS + C

j∑
i=i

αi + tRj ≤ T ∀j = 1, . . . ,m (5.8)

tIi + Sxi + Cαi + tRi = T ∀i = 1, . . . ,m (5.9)

αi ≤ V xi ∀i = 1, . . . ,m (5.10)

xi ∈ {0, 1} ∀i = 1, . . . ,m (5.11)

In the above formulations, the sum of all load chunk sizes must be equal to

the whole load (5.7). Inequality (5.8) ensures the proper timing: the startups

and communications of machines M1, . . . ,Mj−1 have to elapse before machine

Mj starts up. The startups, communication and computation of machine Mj

must end before the end of schedule T . Note that constraint (5.8) is an implicit

equivalent of optimality criterion used in DLT. Equation (5.9) allows to calculate

the value of idle time tIi . Inequality (5.10) sets xi to 1 if machine Mi is used in

the schedule. When minimizing schedule length with the objective function (5.5)

and constraints (5.7)-(5.11) energy E necessary for that schedule is calculated

from (5.4). When minimizing the energy usage with the objective function

(5.6), and constraints (5.7)-(5.11) schedule length T has to be given, as we do

not perform direct bicriterial optimization with the above formulation.

5.1.2 Time-Energy Trade-off in Close-up

In our model we have a set of 12 parameters: V,C, S, PS , P I , PN , k1, k2, a1, a2,

size of the RAM indirectly represented by l2 and b2, and machine number m.

Testing all relationships between all possible values of these parameters is not

doable in the limited space of this thesis. Thus, we decided to stick to the

analysis of the relationships between schedule length and energy consumption.

In the following charts all parameters have fixed values except for m and one
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Table 5.1: Index of the analyzed parameter ranges.

Parameter Unit Default Range Studied
value Min Max in Fig.

V [MB] 10000 200 100000 5.2 - 5.6
C [s/MB] 0.006 0.00001 0.1 5.7
S [s] 70 0.1 100 5.8
PS [W] 101 101 112 -
P I [W] 6 6 79 -
PN [W] 91 91 116 -
k1 [J/MB] 13.00 9.03 18.72 5.9
k [J/MB] 294.43 150 500 5.10
a1 [s/MB] 0.08 0.025 0.4 5.9
a [s/MB] 2.37 0.53 2.37 -
ρ [MB] 996 100 100000 5.11

parameter the impact of which will be analyzed. With that setting we generate

a series of (T,E) values using increasing number of available machines. A guide

to the analyzed parameter ranges is given in Tab. 5.1.

Now let us discuss shortly the default values we used in our analysis. The

units used in Tab. 5.1 are seconds, MegaBytes, Watts. The size of the load

V = 10000 is 10GB. The value of C = 0.006 means that 1MB of data will be

transfered in 0.006s and represents network with bandwidth ca. 1300Mbit/s.

Power consumption values P I = 6, PS = 101, PN = 91 are chosen from the

range of values observed on real machines in experiments described in Section

3.3. The power rate at the startup P I = 6 and the startup time S = 70s

represent computers waking up from hibernation to HDD, and then loading

system or other necessary software. This is again a real measured value and time

of 70s is acceptable in schedules of lengths usually between 1000s and 10000s.

Unless stated otherwise the above values were used for all charts. Parameters

describing processing rate and energy cost of computations a1 = 0.08, a2 =

2.37, k1 = 13.00, k2 = 294.43 were chosen from the range of measured values

presented in Tab. 3.3. The machine represented in this analysis had 996MB of

RAM available for the data. This may represent a 1GB machine with lightweight
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Figure 5.2: Minimum time and minimum energy points for different load sizes
(log scale).

operating system and software, or for example 1.5GB VM or even 2GB machine

with much heavier environment. Values of l2 = −280303.72 and b2 = −2274.89

where calculated to represent RAM of 996MB.

To obtain data for the charts presented in this study, the ILP model pro-

posed in the previous section was programmed in CPLEX 12.6 software. Time

minimization (5.5) was performed first with changing the number of machines

available for the computations: every point in a chart is a result of solving one

minimization problem. Usually values of m up to 20 or 30 were tested, because

larger values increase solution time beyond a few minutes. Since changes of m

are of discrete nature, the corresponding points in the charts are connected with

dashed lines to guide the eye and help analyzing the results. When an energy-

makespan relationship for fixed machine number is represented by more than

just points, we proceed differently. For the selected numbers of machines we

examined minimum energy derived from (5.6) with schedule length increasing

with the resolution of 1s. As this change is continuous in nature (any arbitrary

time value can be used) we marked these schedules with solid lines.
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In Fig. 5.2 energy and makespan for two different problem sizes V are de-

picted. This figure will suit us to discuss some phenomena, but also to explain

how to read the following charts, as they contain many different curve shapes.

The diagonal dashed lines for V = 5000 and V = 10000 mean that allowing

more machines for computations was both decreasing schedule length and en-

ergy used. However, the curves have pipe-like shape, i.e. the set of points on the

left end of the curve forms a vertical line. This means that allowing more com-

puters than in the point at the bottom of the pipe did not shorten the schedule

while it increased energy usage. The reason is that it is impossible to use more

machines. Machines start in sequence; machine Mj can start computations at

time
∑j
i=1 xiS+C

∑j
i=i αi and at some number of machines j this time exceeds

T (here the optimum schedule length). Thus, the machines that were available,

but not used, were only wasting power P I in the entire time T . Note that the

maximum number of usable computers changes with V and should be set prior

to computations to avoid wasting energy EI . Due to single installment load

distribution the loads αi are uneven. Consequently, for both data series (the

dashed lines of the shortest schedules) virtually all machines performed out-of-

core computations. For example, for V = 10000 only the last two machines

are computing on-core. If we increase schedule length, more machines can get

a load equal to 996MB of RAM and compute on-core which is energetically

cheaper. For V = 10000 it is possible to give 996MB to at most nine machines

and 1036MB to the remaining one, in this way obtaining the schedule with the

lowest energy marked on the chart by a triangle. Between the point of the

shortest time (bottom of the pipe) and the point of the lowest energy (triangle)

we have a line of the minimal energy for a given schedule length. This line can

be understood as a trade-off line where we can reduce computation time at the

cost of increased energy consumption. And vice versa, we can reduce energy

intake, but at the cost of longer processing.
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Figure 5.3: Minimum energy line close-up for 7 to 10 machines.

Now let us zoom on the area of points representing the shortest schedules

with 7 to 10 machines and follow the analysis in Fig. 5.3. We extended the line

representing the minimum energy schedules from the point of the lowest energy

to the right. It is visible that the energy grows with time; this is due to the idle

time of machines in the schedule. Actually with every second (m + 1) ∗ P I of

energy is added. This line also separates the region of infeasible solutions which

is located below the line. Similar lines have been observed for smaller machine

numbers. For m = 9 energy savings which can be achieved by the time-energy

trade-off are more limited. Due to single-installment load distribution it is not

possible to build a schedule with more than only two machines operating on-core.

Similarly, for m = 8 and m = 7 no energy savings below the level achieved at

the shortest schedule are possible by lengthening the schedules. Here the longer

schedules with some machines operating on-core still use more energy (than the

minimum) because of overloading the machines computing out-of-core.

Fig. 5.4 shows these phenomena for schedules on 9 to 15 machines with

even higher resolution. It is visible now that the time-energy trade-off line for

m = 10 has two knees. Let us trace the line rightward from the point of the

shortest makespan. We start in the steepest descent area, where only the last
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Figure 5.4: Time-energy trade-off close-up for 9 to 15 machines.

two machines are receiving loads αi smaller than their RAM size. This limited

use of the on-core processing is again due to single-installment load distribution.

Lengthening the schedule allows to shift the load processed out-of-core in the

eight first machines to the last two machines. When the schedule is long enough,

the penultimate machine receives load of the RAM size and only the last machine

can receive a load smaller than the RAM size, then the minimum energy line

reaches its first knee around T = 770. The process of shifting the load to the last

machine, still working on-core, continues with increasing schedule length until

arriving at the second knee (being the point of the lowest energy of T ≈ 840).

Here the last machine receives a load equal to its RAM size. The line is steeper

in the area where the RAM of the two last machines is being progressively filled

with load, than in the area where this happens only to last machine. Another

interesting effect can be observed with the minimum energy line for m = 11.

The machines can finally conduct all the computations on-core, but the schedule

must be long enough to start m = 11 processors. When such length is reached,

the line gets another bend (T ≈ 835), and in a small area computations on 11

machines are more energy-efficient than on 10. For machine numbers m > 11,

we portrayed here only a line for m = 15 because all these lines have the same
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Figure 5.5: Time-energy trade-off for systems with shorter startup S = 7.

shape as it is not effective to include more than 11 machines in the schedule.

The lines differ only by an offset of the startup and idle energy used by the

excessive idle machines.

Fig. 5.5 presents a system where machines start quicker, i.e. in S = 7. The

rest of the parameters remain unchanged. The figure shows minimum energy

lines for m = 10 to m = 15 machines. The (dashed) line of the shortest schedules

is slightly smoother than before which will be discussed in the next section (see

Fig. 5.8). As the startup is shorter, it is possible to use more machines in the

schedules and thus reduce the makespan. As previously, the (solid) lines of the

time-energy trade-off start at the points of the shortest schedule. The shapes of

the minimum energy lines for m = 10 and m = 11 are similar as in the previous

examples; however for m > 11 new phenomena emerge. Previously, straight

lines run from the knee of the lowest energy to the rightmost part of the chart.

Now they have segments where the minimum energy is stair-casing down. Note

that the steps of the ”stairs” and points of minimum energy always appear at

the same schedule lengths. Each such step represents excluding one machine

from the schedule. The size of the energy drop is S ∗ (PN + PS)− 2SP I which

is the energy consumed by a starting machine and the originator waiting for
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Figure 5.6: Energy vs time for different load sizes V .

the machine to start minus the energy used by the two machines remaining idle.

The number of steps depends on the number of machines which can be switched

off to reach the lowest energy schedule. Here, the lowest energy is achieved at

m = 11, with all machines operating on-core. Thus, e.g. the schedule with

m = 12 can switch off one machine, giving it one drop, and so on.

5.1.3 Impact of Other Parameters on Time-Energy

Trade-off

In this section we will examine the relationships between time and energy con-

sumption in a broader scene. Therefore, we will analyze mainly the shortest

schedules, skipping in some charts the whiskers of the time-energy trade-off

for clarity. The time-energy trade-off will be still present in the discussion.

However, we will focus on the impact of the system parameter changes on the

performance of the computations.

In Fig. 5.6 we analyze the impact of the problem size V . For V = 200 we

observe a straight vertical line, perpendicular to the time axis. This means

that the time of the computations could not be improved by applying more

76



CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

m=9

m=1

m=8

m=9

3E+05

3E+06

5E+02 5E+03

E
n

e
rg

y
 [

J]

Time [s]

C
=
0
.0
1

C
=
1
E
-5

Figure 5.7: Energy vs time for different communication rates C.

machines while the energy cost was still growing. The reason is that there was

not enough load to exploit more than one computer and all machines beyond

M1 were merely wasting energy in the idle state for the entire time T . The lines

for V = 5000 and V = 10000 were discussed previously (section 5.1.2). For

V = 50000 and especially for V = 100000 the curves become nearly horizontal,

i.e. almost perpendicular to energy axis. In this area it is possible to significantly

shorten computations by adding more machines, but savings in the energy will

be very limited because for V > 1000 virtually all machines perform out-of-core

computations, which is a result of single-installment load distribution.

In Fig. 5.7 we can observe how different values of communication rate C affect

the computations. For the slowest communication at C = 0.1, the number of

machines that can receive load is the smallest (m = 8) and the schedules are

longer and more energy-consuming than for faster communications. We get

better results with C = 0.01 and C=1E-5. However, the difference between

them seems small considering the range of change in the network speed. The

curves for communication rate C <1E-5 are not visible in the chart because they

overlap the curve of C =1E-5. This shows that there are limitations of speeding
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Figure 5.8: Energy vs time for different startup times S.

the computations up and reducing the energy usage by means of improving only

the networking capabilities. This observation is in line with the isoenergy map

(C,m) in Fig. 4.9 showing that parameter C alone has limited capability of

reducing energy usage.

Startup time S is a parameter limiting the number of machines that can be

included in the schedule. In the previous charts the significant value of S was one

of the main bottlenecks preventing the increase of machine number. In Fig. 5.8

we study the effect of changing S on the performance of the computations. For

S = 100 it is possible to use only 8 machines and we can see a very clear pipe-

like shape in Fig. 5.8. For S ≥ 50 the shortest schedule is also the one with

the minimum energy. However, for S ≤ 10 the minimum energy is reached

before arriving at the shortest schedule and hitting the limit of the number of

machines that can be used in the schedule. Although it could be expected that

the minimum energy is achieved when all, or as many as possible, machines

receive a load small enough to process it in RAM, it is not the case. For S = 10

half of the machines still perform out-of-core computations in the minimum

energy schedule. In the case of S = 1 the number of machines at minimum

energy schedule grows to 28, and the pipe shape is more outstretched. With
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Figure 5.9: Energy vs time for different on-core computation rates a1.

decreasing S the share of machines computing out-of-core shrinks, but actually

never disappears. For really small startups, such as S = 0.5 and S = 0.1, the

impact of the startup time on the number of usable machines is milder as we

see no sharp upright pipe shape. Since the curves noticeably bend upward at

their leftmost ends it means that the shorter computation time is gained at the

cost of increased energy consumption. Yet, the shape of this line depends also

on the load size V (see Fig. 5.6).

The impact of computation rate a1 is shown in Fig. 5.9. Let us observe

that computation rate a1 and energy cost k1 are mutually related. Decreasing

a1 means shorter computation and consequently smaller energy consumed per

load unit. Yet, as observed in Section 3.3 this relationship is not linear because

computer systems are not energy-proportional. For example, power consump-

tion of the computing equipment does not halve with dividing CPU speed by

two. Therefore, with halving a1 (i.e. doubling the speed) we divided k1 by 1.2,

starting with a1 = 0.1, k1 = 13 as reference values. Fig. 5.9 zooms in on the

area where the most interesting observations can be made. The processing rate

here affects the number of machines that can be used in a schedule. For the
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fastest processing at a1 = 0.025 and a1 = 0.05 it is m = 9, and m increases for

the cases of slower processing, up to m = 12 at a1 = 0.1. For slower processing

there are visible schedules with lower energy which may seem to be a paradox.

The explanation is as follows. For m = 9 (marked on chart) all processing is still

done out-of-core, and with slower computations more machines can be included

into the schedule and the load is divided into smaller chunks. Thus, on some

machines the load is fitting into memory, in effect allowing more energy-efficient

on-core computations. Now let us discuss whiskers marking the lines of mini-

mum energy. For clarity of the chart, whiskers are shown only for the border

values a1 = 0.4 and a1 = 0.025, and are drawn only partially in the area of

the linear growth. Note that the shapes of the whiskers for a1 = 0.4 resemble

the ones discussed earlier. The minimum energy curve for m = 9 has the same

shape as in Fig. 5.4 and for the cases of m = 11,m = 12 there are staircase

patterns as in Fig. 5.5. The curve for m = 10 has one more bending point.

The curve is changing its slope three times, because in the shortest schedule

there were three machines with load αi smaller than the RAM size. This al-

lowed to off-load the out-of-core computations and fill the three machines up

to the RAM size in three stages of increasing the makespan. A different shape

of minimum energy line can be observed for a1 = 0.025 and m = 10. Within

the minimum length schedule it is not possible to include the tenth machine

into computations. Still, for its minimum energy line two steps can be seen.

Firstly it obtains energy minimum using only 9 machines. The line is slightly

higher than the one for m = 9 because of the idle energy of the tenth machine.

Then after adding some more time to the makespan the tenth machine can be

included in the computation, reaching the energy-optimal energy point for the

computation rate a1 = 0.025.

In Fig. 5.10 the impact of changing the energy cost of out-of-core computa-

tions k2 on total energy consumption is depicted. Out-of-core computations are

the costliest part of the analyzed the schedules. The startup time was shortened

to S = 7 to allow better insight into the discussed phenomena. At a given value

80



CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

Figure 5.10: Energy vs time for different energy factors k2 in out-of-core com-
putations.

of m the points on all the curves align to vertical lines (see the line marked for

m = 9). There are the same minimum schedule lengths for the same number of

machines, as k2 has no impact on the schedule length. If we treat the k2 = 300

curve as a reference, then we have systems with costlier out-of-core computa-

tions k2 = 400 and k2 = 500, as well as less less costly systems at k2 = 200 and

k2 = 150. Yet, all of the curves converge to a much smaller difference in en-

ergy consumption with an increasing number of machines. Part of this happens

before loads αi start to fit into RAM; even on m = 9 all machines still work

out-of-core. The savings in energy usage are a sheer result of the parallelism

shortening the schedule. For bigger values of m the convergence is even more

apparent because more machines operate on-core. This shows that, the reduc-

tions of the energy intake of the equipment have limits. Conversely, energy costs

of worse hardware can be often compensated with better parallelism.

Fig. 5.11 represents an example of a slightly different configuration. Param-

eters a1 = 0.066, a2 = 0.53 represent a faster machine with an SSD drive. This

results in higher energy demand k1 = 9.03, k2 = 82.66, PS = 112, PN = 116.

Machines are waiting almost ready to start processing with S = 5 and P I = 79.
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Figure 5.11: Energy vs time for different RAM sizes ρ.

Also communication is faster C = 0.002, which represents effective connection

speed of ca 4000 Mbit/s. The parameter changed in Fig. 5.11 is RAM size ρ on

the machines. Parameters b2 and l2 were changing accordingly. For ρ =10GB

all the data fit into RAM, and the curve here has quite wide area of time-energy

trade-off. For ρ =5GB and ρ =2GB with increasing number of computers the

chunks of load start fitting into memory, and the curves are overlaying with

the one for ρ =10GB. For the remaining four sizes of RAM, we observe pipe

shapes similar to the previous charts. Still, there are differences: the number of

machines which can be included into the schedule before the curve upright turn

greatly increases because the system is generally faster. This also broadens the

area near the optimum energy, from a few machines up to 20 machines even for

RAM=100MB.

5.2 Multi-installment processing

In this section divisible load processing methods using multi installment distri-

bution are presented. Simple heuristics algorithms and optimal MIP methods

will be used for solving the scheduling problem.
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Figure 5.12: a) Single-installment schedule. b) Multi-installment schedule.

5.2.1 Simple Multi-installment Scheduling Methods

Let us remind that processing time in load size α is τ(α) = maxa1α, a2 + b2

and energy is ε(α) = maxk1α, k2 + l2 (see equations (3.1), (3.2)). Let us assume

that M0 sends load chunks of equal size α. Actual methods of calculating

α for each specific algorithm will be given in the following. The sequence of

communications to M1, . . . ,Mm is repeated iteratively until exhausting the load.

The number of communications may be indivisible by m and the size αf of the

last sent chunk may be smaller than α. It is assumed that computations on each

of the machines M1, . . . ,Mm last longer than sending the load to the remaining

m − 1 machines. This imposes a requirement that (m − 1)Cα ≤ τ(α) which

can be reformulated as m ≤ a1/C + 1 for α ≤ ρ and m ≤ a2/C + 1 + b2/(Cα)

for α > ρ. Thus, the number of processors which can be effectively exploited is

limited and it is bigger when slower out-of-core processing takes place. Now we

derive schedule length T and energy E used when chunks of size α are applied.

For simplicity of exposition let m > 1.

The number of iterations in which all m machines obtain load α is No =

b Vαmc. The number of chunks of size α in the last iteration is Nf = b(V −

Nomα)/αc. Size of the last chunk is αf = V − (mNo + Nf )α. Then, the

schedule length is (cf. Fig. 5.12b):

T = S +No(Cα+ τ(α)) +

 NfCα+max{αfC + τ(αf ), τ(α)} Nf > 0

max{(m− 1)Cα,αfC + τ(αf )} Nf = 0

(5.12)
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Deriving energy consumption requires calculating idle times on M1, . . . ,Mm, as

well as computing and communication durations. At the start of the scheduleMi

is idle until time C(i− 1)α. Thus, total energy used before machines activation

is EIA = P I
∑m
i=1(i−1)Cα = P I(m−1)m/2Cα. Starting m machines consumes

ES = PSmS units of energy. Energy consumed on M1, . . . ,Mm in the computa-

tions and communications is ER = (Nom+Nf )(P
NCα+ε(α))+PNCαf+ε(αf ).

Let us assume that αfC + τ(αf ) < τ(α), i.e., the schedule ends on the

last machine receiving a chunk of size α (see Fig. 5.12b). The idle time at

the end of the schedule on Mi ∈ {M1, . . . ,MNf
} is (Nf − i)Cα, on MNf+1 it is

τ(α)−Cαf−τ(αf ), and on Mi ∈ {MNf+2, . . . ,Mm} it is τ(α)−(i−Nf−1)Cα.

Thus, total idle time on M1, . . . ,Mm at the end of the schedule is

I =

Nf∑
i=1

(Nf − i)Cα+ τ(α)− Cαf − τ(αf ) +
m∑

i=Nf+2

(τ(α)− (i−Nf − 1)Cα) =

(m−Nf )τ(α) +
1

2
(m− 1)(2Nf −m)Cα− Cαf − τ(αf ). (5.13)

Suppose that αfC + τ(αf ) ≥ τ(α), which means that MNf+1 has no idle time

at the end of the schedule. Idle time on machines Mi ∈ {M1, . . . ,MNf
} is

(Nf − i)Cα+ τ(αf )+Cαf − τ(α) and on Mi ∈ {MNf+2, . . . ,Mm} it is τ(αf )+

Cαf − (i−Nf − 1)Cα. Hence, total idle time on M1, . . . ,Mm at the end of the

schedule is

I =

Nf∑
i=1

((Nf−i)Cα+τ(αf )+Cαf−τ(α))+
m∑

i=Nf+2

(τ(αf )+Cαf−(i−Nf−1)Cα) =

(m− 1)(τ(αf ) + Cαf )−Nfτ(α) +
1

2
(m− 1)(2Nf −m)Cα. (5.14)

Energy wasted in idle waiting at the end of the schedule is EIB = P II.

It remains to calculate the energy consumed by the originator. M0 starts

in networking state and then it is continuously communicating or busy waiting

until distributing the last piece of work. The idle time on M0 is max{τ(α) −

C(αf ), τ(αf )}. Hence, the energy consumed on M0 is E0 = PNT + (P I −
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PN )max{τ(α)−C(αf ), τ(αf )}. Finally, total energy consumed by the methods

using load chunks of fixed size α is

E = EIA + ES + ER + EIB + E0. (5.15)

Now we will propose methods of choosing load chunk α.

Simple static chunk (SSC) algorithm assumes that load chunk sizes are

equal to the size of RAM memory, i.e. αSSC = ρ. Thus, SSC avoids using out-

of-core memory. A disadvantage of simple static chunk algorithm are the final

outstanding load chunks. It means that if q1 = dV/(ρm)e 6= bV/(ρm)c = q2

then in the last iteration of load distribution some processors may remain idle.

Static chunk with underload (SCU) algorithm assumes αSCU = V/(q1m).

Thus, algorithm SSU sends load chunks of size at most ρ and avoids out-of-core

processing at the cost of one more iteration.

Static chunk with overload (SCO) attempts to round the number of com-

munication iterations down, at the cost of possibly using out-of-core processing.

Hence, in SCO size of the load chunk is αSCO = V/(mmax{1, q2}). In this

formula value 1 means that at least one load distribution iteration will be done.

Guided Self-Scheduling Adaptation (GSS) algorithm uses the idea of

the classic loop scheduling algorithm [28]. Let V ′ be the size of load re-

maining on M0 to be distributed. Chunk sizes are calculated as αGSS =

min{V ′,max{1,min{V ′/m, ρ}}}. Thus, otherwise than in the three previous al-

gorithms, load chunk sizes decrease in the course of the schedule. Assuming that

V > ρ, the algorithm starts with load chunk sizes of RAM size. When V ′ < ρ,

GSS gradually decreases chunk sizes and thus also minimizes the spread of ma-

chine completion times. GSS does not send load chunk sizes smaller than some

fixed size which is denoted here as 1 by convention. This can be a result of data
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Figure 5.13: Time-energy diagram for the default system.

structures representing processed load or some size which sufficiently amortizes

the fixed overheads in processing one load chunk. In the further considerations

we assume that it is 1MB. For V � mρ the maximum number of usable pro-

cessors in GSS is the same as in the previous algorithms because initial load

chunks have size ρ. However, if V/ρ > m GSS immediately uses chunks smaller

than ρ, chunk sizes decrease and communications are getting shorter. In such

a situation GSS is able to start more machines than SSC, SSU, SCO without

entailing idle time on M1, . . . ,Mm

5.2.2 Performance Comparison

In this section we compare performance of the above introduced scheduling al-

gorithms. Unless stated to be otherwise, the system and application param-

eters were the following: V = 10GB, a1 = 0.082s/MB, a2 = 2.366s/MB,

b2 = −2274.9s, k1=13J/MB, k2 = 294J/MB, l2 = −280kJ, C =7.8ms/MB,
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S = 10s, P I = 14W, PN = 91W, PS = 101W, ρ=996MB. It can be verified

that processing out-of-core is roughly 28 times slower per MB than processing

on-core. The energy consumption per MB is roughly 23 times higher out-of-

core. Communication rate C corresponds with communication speed of≈1Gb/s.

P I , S, PS represent a system which quite effectively switches from idle to run-

ning state, e.g. from hibernation to an SSD disk. The size of RAM accessible

for storing data is ρ = 996MB. Values in similar range were found experimen-

tally in real systems (Chapter 3). Since our problem is bicriterial, we will show

performance as consumed energy E vs schedule length T for changing number

of machines m.

We start with a time-energy chart in Fig. 5.13 for the above reference param-

eters to introduce the phenomena guiding performance. The dependencies are

shown only partially for better visibility (but will be shown for a wider range

of time and energy in the next figure). Since schedule length T (in general)

decreases with growing number of used machines m, the smallest m is shown

on the right-hand-side of the chart and the dependencies progress leftward with

growing m. It can be observed that with growing m not only T decreases but

so does used energy E. Energy performance is ruled by the following effects.

On the one hand, growing number of machines shortens the schedule and the

root M0 is using less energy. On the other hand, adding machines incurs energy

cost. As a result, it can be observed that energy first decreases with shortening

of the schedule, but then is starts to increase. This phenomenon can be seen

also in the following figures and was already observed in the previous section

(cf. the pipe shapes). The shortest schedules are built by the single installment

method (SI, in the upper-left corner), but using m = 24 and more machines has

big cost in energy needed to start them. At these values of m it is possible to

fit the whole load V in core memories. Note that SI has apparent energy use

minimum at m ≈ 28. Big irregularities in time and energy can be observed in

SCO. Since V is not always divisible by mρ and rounding chunk sizes up results

in various values of the difference between α and ρ, therefore even small excesses
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of chunk sizes above ρ are escalated to big increases in time and energy con-

sumption. Consequently, SCO has big irregularity in performance and should

be avoided. Results for the simple static chunk (SSC) algorithm are shown for

three chunk sizes: 680MB, 996MB, 998MB, where ρ=996MB. It can be seen that

even small increase of the chunk size beyond ρ has bad impact on the energy

use. Chunks smaller than ρ have advantage of shorter waiting time at the start

of the schedule and better load balance at its end. Hence, a small dominance

of SSC with α < ρ for the maximum usable number of machines. For the given

parameters the maximum number of processors which can be applied without

idle time is m = 11. Static chunk with underload (SCU), SSC with α < ρ and

guided-self-scheduling (GSS) have very similar performance. Still, SCU suffers

from minor irregularities in performance (T,E for m = 11 are bigger than for

m = 10) which are results of uneven rounding of V/(mρ). Moreover, GSS is

able to construct slightly shorter schedule due to decreasing chunk sizes and

consequently a better load balancing.

In Fig. 5.14a time-energy chart is shown for V = 10G and V = 100G.

The static chunk with overload (SCO) manifests great irregularities because

T,E are not monotonic with growing m. Due to this adverse feature SCO

will be omitted in the further discussion. The single installment method (SI)

greatly improves its performance with growing m because it is becoming able

to shift the load from the out-of-core to the on-core processing for sufficiently

big m as discussed in section 5.1.2. Finally, at V = 10G and m > 11 its

performance becomes comparable with multi-installment methods. In Fig. 5.14b

time-energy chart is shown for ρ = 100MB and ρ = 10GB. For SI dependencies

for ρ = 1GB, 10GB are shown because SI’s results for ρ = 100MB are out of the

range shown in Fig. 5.14b. It can be seen that SI method is competitive with the

remaining algorithms only if the load is stored in core. What is more, under such

circumstances SI is able to build the best energy schedules (bottom-left part of

the chart). SI is capable of constructing such shorter schedules, but it activates

new machines which brings energy costs bigger than in the other methods. SSC

88



CHAPTER 5. HOMOGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

a)

b)

m=1

m=1

m=1

m=1

1.E+05

1.E+06

1.E+07

1.E+08

5.E+01 5.E+02 5.E+03 5.E+04 5.E+05

E
n

e
rg

y
 [

J]

Time [s]

SI, V=100G

SI, V=10G

SSC, V=100G

SSC, V=10G

SCU, V=100G

SCU, V=10G

SCO, V=100G

SCO, V=10G

GSS, V=100G

GSS, V=10G

m=1

m=10

1.5E+05

1.7E+05

1.9E+05

2.1E+05

2.3E+05

2.5E+05

2.7E+05

2.9E+05

8.0E+01 1.6E+02 3.2E+02 6.4E+02 1.3E+03

E
n

e
rg

y
 [

J]

Time [s]

SI, RAM=1G

SI, RAM=10G

SSC, RAM=100M

SSC, RAM=10G

SCU, RAM=100M

SCU, RAM=10G

GSS, RAM=100M

GSS, RAM=10G

Figure 5.14: Time-energy dependence a) for V = 10G and V = 100G, b) for
varying ρ.
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method for ρ = 10G uses just one load chunk, schedule length T is constant,

and adding each new machine only increases energy costs. Surprisingly, energy

performance of the multi-installment methods for small ρ = 100MB is better

than for ρ = 10GB because small load chunks reduce initial and final idle times.

It can be also observed that GSS for ρ = 10GB is capable of constructing

shorter schedules than other multi-installment methods because by shrinking

chunk sizes it is able to avoid idle times on processors and still activate more

of them. Yet, GSS uses more energy in this case. Both GSS and SI approach

the minimum schedule length determined by communication time: S + CV .

However, GSS is more energy-efficient.

In Fig. 5.15a time-energy relation is shown for two values of the startup time

S = 0.1s and S = 10s. Two effects of reducing startup time can be observed.

The schedules get shorter roughly by the startup time of the first processor,

and energy consumption is decreased by the amount of energy saved in the

startup of the machines. In Fig. 5.15b impact of changing processing rate a1

is analyzed. The value of a1 can be changed by designing a faster algorithm

to solve the considered problem. Assuming, that this new application runs

on the same computer, also k1 must decrease proportionally. Three values of

a1 are shown: a1 = 0.1, 0.05, 0.02 which corresponds with an algorithm twice

and five time faster. The number of processors which can be activated by

algorithms SSC, SCU decreases with increasing processing speed (a1 decreases).

Hence, this number decreases from m = 13 machines for a1 = 0.1 to m = 3

for a1 = 0.02. Though time- and energy-performance of all multi-installment

heuristics is similar, GSS algorithm has an advantage of using more machines

than SSC, SCU and consequently is able to build shorter schedules though at

higher energy costs. The single installment method is able to construct schedules

of comparable length but by using more machines and energy. The advantage

in energy of multi-installment methods over SI grows with decreasing a1 (i.e.

speeds increases).
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changing a1.
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5.2.3 Optimum Multi-installment Methods

In the following we propose an algorithm constructing the shortest multi-

installment load distribution in a homogeneous system. Then, the performance

of such load processing method will be studied by use of isoefficiency maps.

Thus, by referring to isoefficiency maps we focus on time performance only.

The time-energy performance in multi-installment processing will be examined

in Chapter 6.

Mathematical Model of Parallel Application

Again, we will be assuming that execution of the data-parallel application is ini-

tiated by a root processor M0, which schedules communications and distributes

the load. Computing environment is homogeneous and comprises m identi-

cal machines M1, . . . ,Mm. The system interconnect is equivalent to a single

level tree and M0 communicates directly with worker processors. The machine

starting process lasts for S time units. Load of total size V is distributed to

the worker processors in installments (messages, load chunks). Sending a load

chunk of size α takes time O+Cα, where O is a fixed delay required to start the

communication and C is communication rate (in seconds per byte). Note that

by introducing overhead O we apply more precise communication time model.

Only after receiving the whole load chunk can the worker machine start pro-

cessing the load. A machine may receive more than one load chunk, but only

after finishing computations on the previous one. Let n be the total number of

load chunks distributed by the originator.

Let us remind that dependence of the computing time on load of size α in a

system with two memory levels is represented by function

τ(α) = max {a1α, a2α+ b2} (5.16)
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The process of collecting results is not explicitly scheduled because, e.g., the

size of results is small and their transfer time is very short, or the results are

stored on the worker machines for further processing. The optimum schedule

of the computations requires determining: (i) where to send the load (i.e. the

sequence of load distributions to the processors), (ii) when to send the load, (iii)

sizes of the sent load chunks.

Let xij be a binary variable equal to 1 if load chunk j is sent to machine

Mi and equal to 0 otherwise. We will denote by αij the size of load chunk j

sent to processor i. If the chunk is sent to some other processor, then αij = 0.

The moment when sending chunk j begins will by denoted by tj . Let T be the

length of the schedule. We will use auxiliary variables qij = tjxij and τij =

max{a1αij , a2αij + b2}. The problem of constructing the shortest computation

schedule can be formulated as a mixed integer linear program (MIP):

minimize T (5.17)

subject to:

tj + C

m∑
i=1

αij +O

m∑
i=1

xij ≤ tj+1 j = 1, . . . , n (5.18)

qij + Cαij +Oxij + τij ≤ T

j = 1, . . . , n i = 1, . . . ,m

(5.19)

qij + Cαij +Oxij + τij ≤ qil + (1− xil)Z

i = 1, . . . ,m j = 1, . . . , n− 1 l = j + 1, . . . , n

(5.20)

S

m∑
i=1

xij ≤ tj j = 1, . . . , n (5.21)

m∑
i=1

n∑
j=1

αij ≥ V (5.22)

αij ≤ V xij i = 1, . . . ,m j = 1, . . . , n (5.23)
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m∑
i=1

xij = 1 j = 1, . . . , n (5.24)

Zxij ≥ qij ≥ 0

tj ≥ qij ≥ tj − Z(1− xij)

i = 1, . . . ,m j = 1, . . . , n

(5.25)

a1αij + Zuij ≥ τij ≥ a1αij

a2αij + b2 + Z(1− uij) ≥ τij ≥ a2αij + b2

i = 1, . . . ,m j = 1, . . . , n

(5.26)

In the above formulation xij , αij , qij , tj , T, τij , uij are decision variables. C,O, S,

V, a1, a2, b2,m, n are constants defined by the parallel application and comput-

ing platform, while Z is a large number. Decision variables xij determine the

sequence of communications and any n-message sequence to the m processors

can be constructed. The purpose of constraint (5.18) is to guarantee that the

jth message fits in interval [tj , tj+1] and messages do not overlap in the com-

munication channel. Inequalities (5.19) ensure that computations finish before

the end of the schedule. Constraints (5.20) establish that if load chunks j, l

are sent to processor i, then there is enough time to receive the jth chunk and

process it before receiving the lth chunk starts. By (5.21) the processor which

is receiving the jth load chunk is already started when sending the jth chunk

begins. Inequality (5.22) guarantees that the whole load is processed. Con-

straint (5.23) ensures that a processor that is not receiving the jth load chunk

receives load of zero size in the jth communication. By (5.24) only one machine

can receive the jth load chunk. Inequalities (5.25) ensure that the auxiliary

variable qij is equal to tjxij . Using product tjxij directly is not possible in

a linear program. It is possible to obtain the same value by linearizing con-

straints (5.25) and an additional variable qij . Inequalities (5.26) guarantee that
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τij = max{a1αij , a2αij + b2}. The trigger binary variable uij = 0 determines

whether the first (a1αij) or the second component (a2αij + b2) in the max is

active.

5.2.4 Isoefficiency Maps

Isoefficiency Map Construction

Schedule length T calculated by solving (5.17)-(5.26) can be used in performance

evaluation of data-parallel applications. Let T (m,n, V ) denote the value of

T obtained for a particular number of machines m, communications n, and

problem size V . The time of processing the same amount of load on a single

machine is T (1, 1, V ) = S + O + CV + max{a1V, a2V + b2}. Thus, efficiency

of the computation is E(m,n, V ) = T (1, 1, V )/(mT (1, 1, V )). The isoefficiency

function for a given value of efficiency e can be defined as I(e,m, n) = {V :

E(m,n, V ) = e}. Function I(e,m, n) allows to draw one isoefficiency line, i.e. a

line of efficiency e in the m×V space. The isoefficiency line depicts how problem

size V should grow in order to maintain equal efficiency e with changing number

of machines m. A collection of isoefficiency lines drawn in some area of m× V

space is an isoefficiency map.

Due to the complex nature of the formulation (5.17)-(5.26) it is not possible

to derive a closed-form formula of I(e,m, n). Therefore, I(e,m, n) has been

found numerically, using the following approach: It has been established that

for fixed m,n, efficiency function E(m,n, V ) has a single maximum Emax(m,n)

at load size Vmax(m,n) and is monotonous on both sides of Vmax(m,n). A

bisection search method has been used to find load sizes V < Vmax(m,n) for

which certain efficiency level e < Emax(m,n) is achieved. Precisely, for a probe

value V times T (1, 1, V ) and T (m,n, V ) were calculated and if the resulting

efficiency satisfied T (1, 1, V )/(mT (m,n, V )) < e then the probe load size was

increased, respectively decreased in the opposite case. Analogous method has

been applied to calculate I(e,m, n) for load sizes greater than Vmax(m,n). The
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values of Vmax(m,n) and Emax(m,n) have been found by a modification of the

bisection method: Efficiency has been calculated for two probe values V1, V2 in

some tested interval. Then the load size interval has been narrowed to V1 or V2,

whichever resulted in the smaller efficiency. Both in the bisection search and in

the search for the maximum efficiency the procedures have been stopped if the

width of the searched V intervals dropped below 1MB.

As the MIP solver Gurobi 7.5.2 has been used. Observe that MIP is an

NP-hard problem, and in the worst-case MIP solvers run in exponential time

in the number of variables. In order to obtain solutions in acceptable time,

the MIP solver run times have been limited to 300s on 6 CPU threads on Intel

i7@2GHz, the MIP optimality gap was set to 0.5%. Consequently, the obtained

solutions mostly were not guaranteed optimum. Still, the solutions are always

feasible and can be considered as good approximations of the optimum solutions

of (5.17)-(5.26).

Performance Modeling

In this section we present isoefficiency maps and discuss the performance phe-

nomena they show. Unless stated to be otherwise the reference instance pa-

rameters were: for the computing time function τ(α) : a1 = 0.109s/MB, a2 =

4.132s/MB, b2 = −27109s, for the communication delays C = 5ms/MB, O =

75ms, machine startup time S = 25.4s, and a limit of n = 20 load chunks.

The a1, a2, b2 parameters correspond with usable RAM size ρ = 6739MB. Since

these parameters are machine- and application-dependent and can vary widely

(cf. Section 3.3), we will concentrate on the frequent phenomena rather than

on particular performance numbers.

In Fig. 5.16 isoefficiency map for the load sizes smaller than Vmax(m,n) is

shown, and in Fig. 5.17 for the loads above Vmax(m,n). For better clarity,

maximum values of efficiency Emax(m,n, V ), and the corresponding load sizes

Vmax(m,n) are shown in Tab. 5.2. The line of maximum efficiency Emax(m,n)

is denoted as max in Figs 5.16, 5.17 and the isolines are labeled with their ef-
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Table 5.2: Maximum efficiency and corresponding load sizes vs m at n = 20
installments.

m 2 3 4 5 6 7 8
Emax(m,n, V ) 34.2 34.0 33.7 33.4 33.2 32.8 32.4
Vmax(m,n) 134485 120827 123329 105097 119663 95748 115514
m 9 10 11 12 13 14 15
Emax(m,n, V ) 31.5 30.9 30.4 29.6 28.7 27.7 26.7
Vmax(m,n) 115514 75048 81394 86545 90457 94532 98591
m 16 17 18 19 20
Emax(m,n, V ) 25.7 24.8 23.8 22.9 22.1
Vmax(m,n) 99460 100506 100354 99708 102240

ficiency levels. The efficiency for m = 1 is always 1, so no isolines for m = 1

are shown. Note that m, shown along the horizontal axis, is a discrete variable

and consequently the isolines are step functions. It can be observed in both

figures that efficiencies greater than 1 (consequently also super-linear speedups)

are possible. Though such situation is rare in typical parallel applications, it is

not unusual in the context of memory hierarchies. If only one machine is used

(as in the calculation of T (1, 1, V )) then for V > ρ the processing rate tends

asymptotically to a2. Conversely, if the load is distributed between many pro-

cessors then it can be processed on-core with rate a1. In our case a2/a1 ≈ 37.9

and efficiency levels close to 37 can be expected. The values in Tab. 5.2 are

slightly smaller than a2/a1 which is a result of communication delays and ma-

chine startup times. The Emax(m,n) line shows problem sizes V which achieve

the best balance between the advantage of processing load on-core over out-of-

core processing, the costs of starting the machines, communicating and avoiding

idle time. MIP (5.17)-(5.26) is a discrete optimization problem and, e.g., there

are fixed overheads S,O which can be switched on and off by the choice of the

communication sequence. Furthermore, the best communication sequences are

not always repetitive patterns. Consequently the Emax(m,n) is neither smooth

nor does it show an obvious trend.
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Figure 5.16: Isoefficiency map for the load sizes V below maximum efficiency.
Logarithmic vertical axis.

Let us consider the part of the isoefficiency map for problem sizes smaller

than Vmax(m,n) as shown in Fig. 5.16. For such load sizes machines in set

M1, . . . ,Mm compute on-core, but if the same load were processed on just one

machine then the load may spill to out-of-core. As it is not possible to derive

a closed-form formula of the (5.17)-(5.26) solution, we will analyze range of

E(m,n, V ). The efficiency in this part of the isoefficiency map can be bounded

in the ensuing range:

S +O + CV + a′V

mS + nmO +mCV + a1V
≤ E(m,n, V ) ≤ S +O + CV + a′V

mS +mO + a1V
. (5.27)

In the numerator of (5.27) a1 ≤ a′ ≤ a2 is an equivalent rate of processing on

one machine. Product mT (m,n, V ) in denominator of (2.10) can be interpreted

as area in time × m space which is easier to assess than the schedule length

T (m,n, V ). The area of mT (m,n, V ) in (5.27) is bounded from below by mS+

mO + a1V which is total machine startup time mS, minimum fixed overhead
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of communications mO and total work of the computations in core a1V . For

the upper bound of the area, mnO + mCV is an upper bound of machine

waiting during the communications. It can be verified that both bounds of

E(m,n, V ) in (5.27) are increasing with V , and value of V derived from the

bound formulas increases with m for fixed efficiency e. Indeed, it can be seen

in Fig. 5.16 that problem sizes V must grow with the number of machines

m to maintain some fixed level of efficiency. The isolines grow slightly faster

than linearly with m because the total processor waiting time in the actual

solutions increases faster than linearly with m. One more peculiarity can be

seen in Fig. 5.16 around V = ρ = 6739MB where a bunch of isolines coalesce.

This is a result of using out-of-core memory while calculating T (1, 1, V ) used

in the efficiency formula. At V ≈ ρ the single reference machine starts to use

out-of-core memory which extremely expands T (1, 1, V ) and I(e,m, n) has to

increase only marginally to attain the required efficiency level. Consider, e.g.,

the upper bound of (5.27). The size of the load required to attain efficiency e

is V = (S + O)(em − 1)/(C + a′ − a1). When m grows also V grows, but the

single machine must use out-of-core memory and a′ tends to a2 � a1. As a

result, the increase in the numerator (S +O)(em− 1) is intensively suppressed

by a′ growing in the denominator (C + a′ − a1). Hence, V grows very slowly in

the isolines near V ≈ ρ.

In the part of the isoefficiency map above Vmax(m,n) (see Fig. 5.17) the

single reference machine considered in T (1, 1, V ) uses out-of-core memory while

machines M1, . . . ,Mm use out-of-core memory at least partially. In the dom-

inating pattern of load distribution some part of the load is processed in load

chunks of RAM ρ size while the remaining load is distributed to the machines

in roughly equal sizes and processed out-of-core. Thus, for n installments and

m machines, n−m ≥ 0 load chunks have nearly RAM size, and the remaining

m chunks have size roughly [V − (n −m)ρ]/m. This load partitioning is intu-

itively effective because load as big as possible is processed in RAM, while the

remaining load processed out-of-core is as small on each machine as possible.
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Figure 5.17: Isoefficiency map for the load sizes V above maximum efficiency.

This load partitioning pattern results in the following efficiency formula

E(m,n, V ) ≈ S +O + V (C + a2) + b2
mS+nO+CV +(n−m)ρa1+m[(V −(n−m)ρ)a2/m+b2]

. (5.28)

In the denominator of (5.28) area mT (m,n, V ) is calculated. It is assumed

that data transfers to one machine overlap with other machines computations

(latency hiding), and consequently, only CV area is used on communications

in all machines. Furthermore, (n − m)ρa1 is the area of computing in core,

and m[(V − (n − m)ρ)a2/m +b2] out-of-core. From (5.28) estimation of the

isoefficiency function can be derived:

I(e,m, n) ≈ b2(en− 1) + S(em− 1) +O(en− 1)

(C + a2)(1− e)
. (5.29)

In the derivation of (5.29) property ρ = b2/(a1 − a2) of (5.16) has been used.

Note that b2 < 0, e > 1, n > m, |b2| � S � O, and I(e,m, n) > 0. Moreover,

load size necessary for certain efficiency e is almost independent of the number
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of machines m in (5.29). Thus, (5.29) represents well the bottom-right part of

Fig. 5.17 where isoefficiency lines are nearly parallel to the horizontal axis. The

top-left part of Fig. 5.17 can be considered an artifact. Note that with growing

V the time of processing load out-of-core dominates in the computation time.

As a result efficiency tends to (V a2 + b2)/(m[V a2/m + b2]) ≈ 1 with growing

V and it is not possible to obtain schedules with efficiency significantly smaller

than 1 without introducing artificial idle time. In other words, to construct

a schedule with low efficiency, overheads are ’necessary’ in the denominator

of the efficiency equation like in (5.28). Yet, with decreasing m the amount

of the overheads decreases and it is becoming impossible to build a schedule

with some low efficiency level unless some idle time is added. Since introducing

artificial idle time is counterproductive, we do not show isoefficiency lines for

e < 1 in Fig. 5.17. The isoefficiency lines coalesced along top-right to bottom-

left diagonal all represent schedules approaching the situation when (unneeded)

idle times are kept in the schedule for efficiency e close to 1.

5.3 Conclusions

In this section the problem of scheduling divisible loads for the criteria of energy

and makespan in homogeneous systems with memory hierarchy has been consid-

ered. The performance evaluation has shown that there is a trade-off between

the two criteria. The time- and energy-performance is ruled by: i) sizes of load

chunks which determine on-/out-of-core processing, ii) number of effectively

usable processors which imposes lower bound on schedule length, iii) amount

of idle time which affect wasted energy. The trade-off as well as the overall

performance is ruled by a complex interplay between the speed and power of

computing on-core vs out-of-core, costs of activating new machines, communi-

cation delays, and the size of the solved problem. It can be observed that in

the wide ranges of system parameters parallel processing has a synergistic effect

on energy and makespan: it is possible to economize on both criteria by adding
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new machines. However, this phenomenon is limited to big size computations

and short startup times. Bigger startup times quickly cut off chances for time

and energy savings. Thus, parameters affecting the parallelism will also influ-

ence optimality of the schedules length. Moreover, it could be observed that the

energy savings obtained by the change of one parameter, or one part of the sys-

tem, are usually limited. Progress in all areas is needed for a steady reduction

of power consumption required to fuel high performance computations and big

data centers.

In Section 5.2.4 the performance has been visualized in the isoefficiency

maps. It has been established that efficiency greater than 1 is possible as a

result of memory hierarchy: parallel machines and multi-installment processing

allow for computations on-core which is faster than if the same load was put

on one machine, necessarily out-of-core. For problem sizes smaller than the

maximum efficiency size Vmax(m,n), the efficiency decreases with increasing

machine number. For problem sizes larger than the maximum efficiency size,

the efficiency is almost independent of machine number. The idea of isoefficiency

maps for systems with hierarchical memory can be extended to other pairs of

system parameters than m and V as a future research subject.

Although almost all contemporary computer systems have hierarchical mem-

ory, representing this hierarchy seems a novel idea in scheduling and performance

models of parallel computations. Thus, the scheduling model proposed here is a

valuable instrument in analytical performance modeling of distributed systems.

Since homogeneous systems were examined in this section, heterogeneous sys-

tems are the next and tempting research subject. These will be examined in

Chapter 6.
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6 Heterogeneous Systems with

Hierarchical Memory

In this chapter load distribution strategies in heterogeneous systems with hier-

archical memory are analyzed. The impact of system heterogenity is the key

interest of this chapter. Firstly, simple heuristic algorithms using processor sort-

ing rules are introduced. Secondly, Mixed Integer Linear Programming solutions

using multi-installment distribution are presented. Then the effect of hetero-

genity on system performance is studied. Algorithms performance is compared

in Section 6.4.

6.1 Mathematical Model

We assume that computations are performed in a single-level tree system with

root M0 and worker machines M1, . . . ,Mm in the leaves. The machines Mi can

be in one of four states:

1. idle - consuming power P Ii ,

2. starting - which takes time Si and power PSi ,

3. networking - busy-waiting or receiving the load, using power PNi ,

4. computing - when the received load is processed.
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Figure 6.1: Multi-installment schedule. ni denotes the last chunk sent to ma-
chine Mi.

Communications and computations proceed according to the following scheme

(see Fig. 6.1). Initially volume V of load is held by the originator M0 which is

in the networking state, while machines M1, . . . ,Mm are idle. M0 is not pro-

cessing the load. M0 is scheduling of the computations by sending load chunks

to the chosen processors. If M0 is capable of processing some load in parallel

with communications, then this capability may be represented as an additional

worker processor. M0 activates the machines which takes energy

ESi = SiP
S
i (6.1)

on machine Mi. Note that not all machines have to be used. For example, some

computer which is too slow, or is consuming too much power, may be kept

idle. Let us observe that idle state energy should not be ignored because, unless

completely disconnected from electric network, idle machines still contribute to

the costs that the system owner must bear. The originator activates machines

just-in-time which means that completion of the starting operation coincides

with the beginning of receiving the load to process. The duration and energy

cost of sending a wake up signal is negligible and starting some machine Mj can

be performed in parallel with some other machine Mi communicating with M0.

Transferring α units of load to Mi takes time

tcommi (α) = Oi + αCi, (6.2)
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where Oi (e.g. in seconds) is a fixed overhead also called communication startup

time, Ci is communication rate (in seconds per byte). In the whole communica-

tion time machine Mi draws power PNi . Then, the energy cost of communication

is

ENi = (Oi + αCi)P
N
i . (6.3)

The computation starts after the entire load chunk is received. The load is dis-

tributed in a multi-installment manner and a processor may receive more than

one load chunk. M0 sends the load to the worker processors one at the time,

i.e. the load is distributed sequentially. Let σ = (σ1, . . . , σn) be the sequence

of the communications, where σi is the index of the machine receiving the load

in the ith communication from M0 and n is the number of communications. As

discussed in Section 3.3, time τi(α) and energy εi(α) required for the computa-

tions on load chunk of size α on machine Mi are given by equations (3.1) and

(3.2), respectively. We assume that the size of produced results is small and the

time of returning the results to M0 is very short compared to the whole schedule

length. Hence, the result return operation need not be explicitly scheduled (re-

sult return can be easily tackled in DLT, see [22, 28, 74]). After processing the

received load chunk a machine is busy-waiting to receive another load chunk.

The busy-waiting is energetically equivalent with networking and Mi consumes

power PNi in this state.

The problem considered here consists in constructing a schedule of minimum

length T and energy E. LetM = {M1, . . . ,Mm} be the set of worker processors.

A scheduling algorithm for our problem must determine:

• subset M′ ⊆M of machines participating in the computation,

• sequence σ of load distribution communications between M0 and worker

machines in M′,

• the load chunk sizes.
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This problem is effectively bicriterial. Multiple criteria problems can be handled

in various ways [89]. In order to deliver the relationship between E and T , we

will minimize one criterion – energy E, for a constrained value of the other

criterion – schedule length T .

6.2 Solution Methods

In this section we introduce two types of strategies for load distribution. Firstly,

we introduce two groups of fast heuristics which distribute load iteratively,

choose the sequence of communications and regulate load chunk sizes according

to some simple rules. These heuristics extend algorithms from Section 5.2.1

to the heterogeneous case. Secondly, a method of constructing an optimum

multi-installment schedule is presented which sequences communications and

sizes load chunks using mixed integer linear programming (MIP).

6.2.1 Fast Heuristics

Our heuristic algorithms are defined by the processor sorting rule (PSR) and

the load chunk sizing algorithm. Beyond these two components, the mode of

operation is similar as described in Subsection 5.2.1.

Initially all processors are idle. The originator starts the first idle machine

on the PSR list and sends it a load chunk. The processors are activated until

exhausting idle machines or until receiving a request for new load from some

ready processor. Then, the originator sends load chunks to the ready processors

first. A processor is ready at some moment t if it has already been started,

received and processed its load chunk by t. Let MR(t) be the set of processors

ready at t. The originator ranks online processors in MR(t) according to PSR

and sends a load chunk to the processor on the topmost position. Consequently,

processor Mi preferred by PSR may receive a new load chunk earlier than some

other processor Mj which joined MR before Mi. Let us also note that further
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idle processors will be started when no processors are ready (because they are

computing and the originator is not communicating with them). This procedure

is repeated until exhausting load V .

Processor Sorting Rules (PSR). The considered processor priority rules

order the processors according to: k1 – non-decreasing k1i, k2 – non-decreasing

k2i, l2 – non-decreasing l2i, a1 – non-decreasing a1i, a2 – non-decreasing a2i,

b2 – non-decreasing b2i, C – non-decreasing Ci, S – non-decreasing Si, PI

– non-decreasing P Ii , PN – non-decreasing PNi , PS – non-decreasing PSi , O

– non-decreasing Oi, RAM – non-increasing ρi, Rnd – order the processors

randomly. The Rnd rule is introduced as reference method, to verify the utility

of the other rules.

From the four load chunk sizing methods introduced in Section 5.2.1 we will

use here only GSS and SSC. The former had performance (see Section 5.2.2)

similar or better than SCU. The SCO method exposed strong performance ir-

regularities. Hence, we omit SCO and SCU here. Let us shortly remind the

idea of SSC and GSS.

Simple Static Chunk (SSC). This algorithm assumes that load chunk

sizes are equal to the size of available RAM of the machine, i.e. αi = ρσi
. Thus,

SSC avoids using out-of-core memory. A disadvantage of SSC algorithm is lack

of balancing the load in the final stage of computation. It means that in the

last iteration many processors may be idle while a few processors strive with

unnecessarily big load chunks. However, predicting which processors will be

used in the last iteration is hard because the algorithm is running online in a

heterogeneous system.

Guided Self-Scheduling Adaptation (GSS). Let V ′ be the size of the

load remaining to be distributed and Mσi be the processor about to receive the

ith load chunk. The size of the chunk is calculated as

αi = min{V ′,max{1,min{V ′/m, ρσi
}}}.
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By referring to the remaining load V ′, load chunk sizes decrease in the course of

the schedule. Assuming that the initial size of the load is greater than memory

size (V ′ = V > ρσ1), the algorithm starts with load chunk sizes of RAM size.

When V ′ < ρi, GSS gradually decreases chunk sizes and in this way equalizes

the spread of machine completion times. GSS does not use chunk sizes smaller

than some fixed size, by convention denoted as 1 in the above equation. In the

further considerations we assume that it is 1MB.

Computational complexity of the heuristics is O(V/min{ρi} logm) and

O(V logm) for SSC and GSS, respectively. The logm component is a result

of applying, e.g., processor priority queue and enforcing some PSR. Terms

V/min{ρi}, V are upper bounds on the number of load chunks. Though com-

plexity of the algorithms depends on V , they are very fast in practice as will be

shown in Section 6.4.

It is possible to apply all the above PSRs and choose the best result. Some

studies demonstrate [61] that combining many simple methods is a lightweight

method of improving solution quality. Such heuristics will be referred to as

super-SSC, or super-GSS, in the following text.

Let us now proceed to the technical matters of time and energy calculation.

Since values of σ, αi, T cannot be determined in the analytical way for a hetero-

geneous system, they are found a posteriori for some schedule S, e.g., obtained

by simulation or from runtime logs. Given schedule S, the consumed energy is:

E = E0 +

m∑
i=1

(EIi + ESi + ERi + ENi ), (6.4)

where: E0 is the energy consumed by the originator, EIi is the energy consumed

by Mi in the initial idle state, ESi is the energy consumed by machine Mi while

starting, ERi is the energy consumed by Mi while processing the assigned load,

ENi is the energy consumed by Mi in networking and busy-waiting. Since the

originator can only communicate or busy-wait, E0 = PN0 T . The Mi energy

in the idle state is EIi = P Ii idleStarti, where idleStarti is the time before Mi
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begins waking up (see Fig. 6.1). If some machine is not used in the computation,

then idleStarti = T . The energy consumed in starting this machine is ESi =

SiP
S
i yi, where yi = 1 if Mi participates in the computation, yi = 0 otherwise.

The energy consumed in computations on Mi can be calculated as:

ERi =
∑
j:σj=i

max{k1iαj , k2iαj + l2i}.

In the busy-waiting and communications Mi draws power PNi . Hence,

ENi = PNi (T − idleStarti − Siyi−∑
j:σj=i

max{a1iαj , a2iα + b2i}).
(6.5)

6.2.2 Mixed Integer Linear Program

In this section we formulate the problem as a mixed integer linear program

(MIP). Both divisible load scheduling [98], and mixed integer linear program-

ming in general, are NP-hard. This means that according to the current state

of knowledge (unless P=NP), to solve these problems to optimality exponen-

tial runtime algorithms are required. In our case, the worst-case computational

complexity grows exponentially in the number of processors m and the number

of installments n. However, for reasonable problem sizes MIPs can be solved

fairly well by modern solvers. Thus, utility of MIPs must be assessed on the

practical basis rather than by the worst-case pessimistic estimation. This will

be subject of Section 6.4. The notations used in the following linear program

are collected in Tab. A.3.

Given schedule length limit T , the minimum-energy schedule can be calcu-

lated by solving the following mixed integer linear program:

minE = E0 + ER + EI + ES + EN (6.6)
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subject to:

E0 = PN0 T (6.7)

ER =

m∑
i=1

n∑
j=1

Eij (6.8)

Eij ≥ k1iαij Eij ≥ k2iαij + l2ixij

i = 1, . . . ,m j = 1, . . . , n

(6.9)

EI =

m∑
i=1

(idleStartiP
I
i + idleiP

N
i ) (6.10)

ES =

m∑
i=1

SiP
S
i yin (6.11)

EN =

m∑
i=1

n∑
j=1

(Oixij + αijCi)P
N
i (6.12)

m∑
i=1

xij = 1 j = 1, . . . , n (6.13)

αij ≤ V xij i = 1, . . . ,m j = 1, . . . , n (6.14)

m∑
i=1

Sixij ≤ tj j = 1, . . . , n (6.15)

tj +

m∑
i=1

αijCi +

m∑
i=1

Oixij ≤ tj+1 j = 1, . . . , n (6.16)

qij + Ciαij +Oixij + τij ≤ qil + (1− xil)Z

i = 1, . . . ,m j = 1, . . . , n− 1 l = j + 1, . . . , n

(6.17)

qij ≤ Zxij qij ≥ 0

qij ≤ tj qij ≥ tj − Z(1− xij)

i = 1, . . . ,m j = 1, . . . , n

(6.18)
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a1iαij + Z ′uij ≥ τij τij ≥ a1iαij

a2iαij + b2ixij + Z ′′(1− uij) ≥ τij

τij ≥ a2iαij + b2ixij

i = 1, . . . ,m j = 1, . . . , n

(6.19)

qij + Ciαij +Oixij + τij ≤ T

j = 1, . . . , n i = 1, . . . ,m

(6.20)

m∑
i=1

n∑
j=1

αij ≥ V (6.21)

idleStarti ≥ tj − (1− (yij − yi,j−1))Z − Siyij

idleStarti ≤ tj + (1− (yij − yi,j−1))Z − Siyij

j = 2, . . . , n i = 1, . . . ,m

(6.22)

idleStarti ≥ t1 − (1− yi1)Z − Siyi1 i = 1, . . . ,m

idleStarti ≤ t1 + (1− yi1)Z − Siyi1 i = 1, . . . ,m

idleStarti ≥ T − yinZ i = 1, . . . ,m

idleStarti ≤ T + yinZ i = 1, . . . ,m

(6.23)

xij ≤ yij i = 1, . . . ,m j = 1, . . . , n (6.24)

yij ≤ yi,j+1 i = 1, . . . ,m j = 1, . . . , n−1 (6.25)

yij ≤ yi,j−1 + xij i = 1, . . . ,m j = 2, . . . , n (6.26)

yi1 = xi1 i = 1, . . . ,m (6.27)

idlei = T − (idleStarti +

n∑
j=1

Ciαij + Siyin+

+

n∑
j=1

Oixij +

n∑
j=1

τij)i = 1, . . . ,m

(6.28)

111



Scheduling divisible computations with energy constraints

Let us note that by use of binary decision variables xij , yij any subset of the

m machines and any communication sequence of length n can be achieved. In

the above MIP total energy usage is minimized by equation (6.6). Equations

(6.7)-(6.12) define components of the energy consumption. In particular, by

(6.8) energy spent in the computations is a sum of the energy parts Eij spent

on computing on load chunks j on machines Mi. The dependence of energy

parts Eij on load chunk sizes αij is defined by inequalities (6.9). Since ER is

minimized, (6.9) guarantees that Eij = max{k1iαij , k2iαij + l2i}. Since l2i < 0,

term l2ixij in (6.9) makes the constraint more restrictive when xij = 0, αij =

0 and helps easier solving the MIP. In (6.10) energy EI is the sum of the

energy idleStartiP Ii used while waiting before starting the processors and energy

idleiP
N
i consumed later in the busy-waiting. In (6.11), yin = 1 only if processor

Mi is used in some installment. Consequently, energy cost SiPSi of starting Mi

is paid once, and only if Mi is indeed activated. Energy cost of networking is

calculated in (6.12). By equation (6.13) only one machine may receive some load

from the originator in installment j. Inequality (6.14) guarantees that a machine

is not receiving any load if it is not chosen to take part in the jth communication.

If a machine is chosen to take part in the computation, then by inequality (6.15)

there is always enough time for starting the machine. The jth communication

fits in time interval [tj , tj+1] by (6.16). Let us remind that qij = tjxij . Hence,

constraints (6.17) ensure that if some machine Mi receives the jth and lth load

chunks, then there is enough time between tj and tl to transfer the load to Mi

and process it. Constraints in (6.18) serve the purpose of linearizing product

tjxij , that is, they guarantee that qij = tjxij . Such a product cannot be

directly used in a MIP because it would change the formulation into a quadratic

programming problem. However, it is possible to substitute tjxij with additional

variable qij and constraints (6.18). Constraints (6.19) guarantee that processing

load chunk j on Mi lasts for time τij = max{a1iαij , a2iαij + b2i}. Let us

observe that for uij = 0 (6.19) guarantee that a2iαij + b2i ≤ τij = a1iαij

which implies αij ≤ ρi, and vice versa, for uij = 1, a1iαij ≤ τij = a2iαij + b2i
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and αij ≥ ρi. The two big constants Z ′, Z ′′ in (6.19) have been chosen to

avoid using arbitrarily large numbers, which are hard to operate upon for MIP

solvers, and still make the formulation as tight as possible. Since for any feasible

solution τij ≤ a2iV , the first big constant has been set to Z ′ = (a2i − a1i)V

which guarantees that the first inequality in (6.19) is not binding if uij = 1.

The Z ′′ constant, has been set to Z ′′ = −b2i which guarantees that a2iαij +

b2ixij + Z ′′(1 − uij) for uij = 0 is not binding because a2iαij + b2ixij − b2i ≥

a1iαij = τij because 0 > b2i, a2i > a1i. Inequalities (6.20) guarantee that

computations on each machine finish before the end of the schedule. By (6.21)

all work is executed. Inequalities (6.22), (6.23) serve the purpose of calculating

time idleStarti which is the idle time before activating machine Mi (Fig. 6.1).

Note that (yij − yi,j−1) = 1 and the inequalities in (6.22) are binding only if

yij 6= yi,j−1 which happens if the jth communication is the first message sent

to Mi. Thus, idleStarti = tj − Si where j is the first load chunk sent to Mi.

Inequalities (6.23) are a boundary case of (6.22). The constraints in (6.24)-

(6.27) define the trigger variables yij , used in (6.11), (6.22), (6.23), (6.28) such

that yijs are equal to 0 before the first message sent to Mi and equal to 1 from

the first message sent to Mi on. Equations (6.28) allow to calculate the length

of busy-waiting intervals on machines Mi (used in (6.10)).

For practical matters, let us note that the big constant Z, used in constraints

(6.17), (6.18), (6.22), (6.23) can be substituted with T if (6.6)-(6.28) is solved

for some known value of T . MIP (6.6)-(6.28) can be reformulated to calculate

minimum schedule length T , or to minimize T subject to a limit on the usage

of energy E. In the former case (T is minimized), constraints (6.7)-(6.12) are

removed, while the big constant Z can be set to some upper bound on the sched-

ule length. For example, Z = 2(maxmi=1{Si}+V maxmi=1{Ci}+nmaxmi=1{Oi}+

maxmi=1{max{a1iV, a2iV + b2i}}). In the latter case (minimization of T subject

to E), T is again minimized while equation (6.6) becomes a constraint.
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Figure 6.2: Energy vs time for changing number of installments n. Logarithmic
axes.

6.3 System Performance Modeling

Parameters of heterogeneous systems on various divisible applications may differ

significantly (cf. Tab. 3.3). Therefore, rather than discussing particular numbers

we will analyze tendencies which appear in many test instances. The behavior

of optimum problem solutions will be demonstrated on the example data shown

in Tab. 6.1. The values in Tab. 6.1 have been generated pseudo-randomly.

Generating test instances is described in more detail in the next section. Unless

said to be otherwise V = 24GB. The time-energy trade-offs presented in this

section were obtained by first finding the minimum schedule length T ∗ for the

given m,n limits as described at the end of Section 6.2.2, and then MIP (6.6)-

(6.28) has been applied to calculate minimum energy consumption for test values

of T starting with T ∗ and increasing with a step of 1s. Gurobi version 7.5.2

with at most 0.2% optimality gap has been applied as the MIP solver.
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Figure 6.3: Closeup on energy vs time for changing number of installments n.

In Fig. 6.2 and Fig. 6.3 dependence of total energy usage on schedule length T

for different numbers of load chunks n is shown. In Fig. 6.2 two lower bounds are

also shown: a diagonal line representing energy usage if all processors remained

idle (denoted ”idle”), and a horizontal line of energy usage if all work were done

in RAM on an ideal processor with all the best parameters of the given proces-

sors and no other processors were present (denoted ”ideal 1”). The following

phenomena can be observed in Fig. 6.2 and Fig. 6.3: Time–energy functions are

not convex and may have many local optima, ”cliffs” in energy usage separate

intervals of monotonous time-energy dependencies. The existence of many local

optima and non-monotonic nature of the relationships make optimization efforts

hard. The ”cliffs” appear when schedule length T is sufficiently large to switch

off some machine (this will be discussed in the following text, see Fig. 6.5). The

intervals of decreasing E with increasing T , e.g. at T = 300 for n = 10, 11, 12

in Fig. 6.3, represent the opportunity of shifting the load from faster but more

energy-intensive machines to the slower but more energy-economic ones. The
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fact that energy consumption increases with schedule length is a result of busy-

waiting and idle processors. We will return to the impact of idle processors

power in the following (Fig. 6.8). It can be observed in Fig. 6.2 and Fig. 6.3

that with increasing number of load chunks n performance of multi-installment

processing improves, however, the returns are diminishing. This is intuitively

expected because more installments mean smaller load chunks, shorter commu-

nications, earlier starting of the computations, and using less the out-of-core

memory. The minimum number of chunks which allow processing the whole

load in RAM is n = 4 here, but the processors with the biggest main memory

are not necessarily the fastest or best in the energy efficiency sense. Thus, if

schedule is long enough, it may be still profitable to use out-of-core memory even

if RAM size is sufficient (this will be discussed in the following, cf. Fig. 6.6). It

can be verified in Fig. 6.3 that using more than n = 8 installments does not give

substantial performance gains. Thus, a small multiple of the minimum number

of chunks which allow fitting the load in core memory should be sufficient in

typical cases.

In Fig. 6.4 distribution of the load between the processors is shown with

changing schedule length T for n = 10 installments. The total load size obtained

in many messages is shown. In Fig. 6.4 dependence of energy E on schedule

length T is also shown to allow coordinating the ”cliffs” in energy usage with

the changes of load distribution. Fig. 6.4 serves the purpose of illustrating how

complex processor load distribution interplay in heterogeneous systems can be.

It can be verified in Fig. 6.4 that steep reductions in energy usage coincide

with removing processors from computation (load assignments become zero).

The case of machines M1,M7,M9,M10 in Fig. 6.4 (shown as continuous lines)

is illustrative. At T = 318 M1 is switched-off and its load is taken over by

M9 which is needed as a faster machine. But then at T = 323 the schedule is

long enough to give up M9 and use a slower but more energy-efficient M1. As

longer schedules are allowed (T grows) machine M1 gives its load to the other,

more energy-efficient machines, and is switched off at T = 343. This situation
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E. Number of installments: n = 10.

Table 6.2: Processors omitted in the best schedules vs schedule length T , for
m = 10 machines.

end of T range 292 313 338 346 377 379
omitted none 2 2,9 1,2,9 2,9,10 1,2,7,9

end of T range 431 468 540 560 665 945
omitted 2,7,9,10 1,2,7,9,10 2,7-10 1,2,7-10 2,6-10 1,2,6-10

is repeated twice more: M1 is switched on again at T = 355 to take the load

of M7, switched off at T = 381, and switched on once more at T = 410 to

substitute M10, and off at T = 433. Thus, machine M1 which is comparatively

slow but more energy-efficient than the other machines acts as a substitute for

the faster M7,M9,M10.

In Fig. 6.5 changes of energy usage with schedule length are shown for

increasing sets of available machines. This means that from the machines

in Tab. 6.1, subset {M1, . . . ,Mm} were available for the computation, where

m = 6, . . . , 10. Labels added at the relationships are indices of the used proces-
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Figure 6.5: Energy vs time for changing number of machines m at the number
of installments n = 12.

sors. For better clarity indices of machines absent in the optimum working set

vs changing T are listed in Tab. 6.2 for {M1, . . . ,M10}. It can be observed that

adding machine M8 to the working set was profitable and the minimum energy

use point moved to shorter schedules (see Fig. 6.5, T ≈ 430). When schedules

get shorter (see Tab. 6.2), additional machines are switched on and energy usage

instantly increases as a direct result of the starting energy cost. Observe pivotal

role of M1 which joins and leaves the best processors (cf. Tab. 6.2). It is worth

observing that in this heterogeneous system the trajectory of increasing energy

E with shortening schedule length T can be different depending on the actual

set of available machines. For example, for the set of m = 10 machines the

energy used can be bigger than (because of the cost of holding more machines),

smaller than (because the schedule is shorter), or in-between (a subset of the

extra machines work) the energies consumed by smaller sets of m = 8, 9 ma-

chines (see Fig. 6.5 in T range [300,400]). Thus, a bigger set of machines gives
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Figure 6.6: Out-of-core memory usage vs time for changing number of install-
ments n.

an advantage of choosing more energy-efficient subset of processors, but also a

disadvantage of holding machines which are available but not engaged in the

computation.

Let us consider now the utility of using out-of-core memory. Even if the

number of load chunks n is sufficient to process the whole load in the core

(here n ≥ 4), it may be profitable to use some out-of-core memory. This may

allow for fewer communications or for starting fewer processors. In Fig. 6.6

usage of the out-of-core memory is shown for various schedule lengths T and

installment numbers n. The fraction maxi,j{αij/ρi − 1} is shown along the

vertical axis. In other words, the relative excess of load chunk sizes αij over

RAM size ρi is shown. For n = 4 installments and T > 1240 it is possible to

process three load chunks in main memory of one processor while the remaining

load is processed out of core in another processor, which allows to avoid starting

other machines. Thus, in this case out-of-core memory usage persists though

it seemed unnecessary. However, it can be seen in Fig. 6.6 that indeed with
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increasing number of installments n the use of the out-of-core memory ceases.

The above observations can be rephrased as confirming presence of a trade-off

between the cost of starting more processors or using the less efficient out-of-core

memory.

In Fig. 6.7 average sizes of installments are shown for different combinations

of processor set size m and the number of installments n. The averages have

been taken over schedule lengths T from the minimum schedule length T ∗ to

the minimum-energy E∗ schedule length (e.g. for m = 10, n = 12 for all the

points T = 278, . . . , 432 with a step of 1s, see Fig. 6.5). Each point in Fig. 6.7

represent an average from at least 110 samples. A common pattern in the

shape of the relationships can be observed in Fig. 6.7: Initial installments are

small, and they grow slowly until reaching a maximum in the second part of

communication sequence. The sizes of the final installments quickly fall. The
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small initial chunks allow to start the computations quickly by avoiding lengthy

data transfers. The trailing messages are shorter to allow balancing the load on

the machines which receive some work as the last one(s).

Let us return to the impact of idle processors power P Ii on the time–energy

trade-off. Even idle processors consume energy which is signified by the lower

bound ”idle” in Fig. 6.2. In Fig. 6.8 the time–energy trade-off is shown for the

previous instance with various P I , Si settings. The original instance is shown

as ”mixed”. The same instance with machines starting from hibernation to

disk are denoted ”HDD” (Si ∈ [40, 90]s, P Ii ∈ [1, 7]W, see the next section for

details of test instance generation). The setting corresponding to starting from

a suspension to RAM (Si ∈ [0.1, 6]s, P Ii ∈ [70, 100]W) are denoted ”RAM”.

The case for cold-starting (as if the machines were disconnected from electric

power, P Ii = 0, Si = 120s) is shown as ”cold”. Finally, the same instance with

all processors idle power changed to P Ii = 0, but retaining their original startup

times is an optimistic lower bound (LB) on possible idle power vs startup time
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cases. Hence, the LB line shows potential for possible improvements by modifi-

cations of energy-saving modes. It can be observed that the lower the idle power

P Ii is, the wider the range (both in time and in energy) between the shortest

and the lowest-energy schedules. The more realistic cases, where P Ii is bigger,

have narrower options for optimizing the energy usage. Suspending machines

to RAM allows for only marginally shorter schedules, but the energy cost only

increases with T as P Ii s are not significantly smaller than the power consumed

in communication or computation. The cold- and HDD- start do not dominate

the original case (mixed) because of long, and consequently, energy-costly star-

tups. Therefore, short schedules, even though compute- and power-intensive,

can be more effective than long schedules with many machines mostly in low

energy mode. Furthermore, using a mix of machines – some in shallower and

some in deeper suspension (mixed case) – is advantageous because it allows for

a quick start of computations using the machines in shallower suspension, while

simultaneously activating the machines in a deeper sleep mode. This conclusion

is supported by a statistically significant correlation between the position in

communication sequence and parameters Si, P Ii (e.g. machines with smaller Si

receive load earlier), and lack of strong correlation with other parameters. In

general, keeping machines in idle state should be avoided (which is the strategy

of many cloud infrastructure providers).

6.4 Algorithm Performance Comparison

In this section we compare performance of our algorithms. Quality of the sched-

ules and the time taken to find them will be evaluated. Quality of the schedules

is measured by schedule length T and energy usage E. In general, there is no

unique way to compare performance of two algorithms constructing solutions

as a trade-off between two criteria [100]. Moreover, it is not possible to reduce

such trade-offs to one dimension (i.e. a single numerical score) without loos-

ing some information [100]. In the case of MIPs, it would require considering
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three-dimensional trade-off: between the solving algorithm runtime, the ob-

tained schedule length T and the used energy E. Though conceptually possible,

it would be unwieldy. The fast heuristics introduced in Section 6.2.1, however,

construct only a single solution for a given instance, not a trade-off between T

and E. This restricts options for algorithm performance comparison. Hence, in

the further discussion we will reduce algorithm performance examination to just

two reference points of practical importance: the shortest schedules (minimum

schedule length T ∗) and the lowest energy schedules (minimum energy E∗). So-

lution quality will be measured either as a distance from the shortest known

schedule length T ∗, or as the distance from the lowest known energy usage E∗.

The algorithm runtime to construct the schedules, how this runtime is traded

for solution quality, and sources of solution inefficiency will be discussed in the

following.

To this end, a set of instances have been generated pseudorandomly. The

numbers of machines were m ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. For each

numberm a set of 30 test instances has been generated, with ρi ∝ U [256, 8048]MB,

ki1 ∝ U [9, 18]J/MB, ki2 ∝ U [45, 540]J/MB, ai1 ∝ U [0.05, 0.15]s/MB, a21 ∝

U [0.3, 4.4]s/MB, Ci ∝ U [0.001, 0.01]s/MB, Oi ∝ U [1E-6, 0.02]s, PSi , P
N
i ∝

U [90, 120]W, where ∝ U [a, b] means that the value was drawn from a uniform

distribution in range [a, b]. Values b2i, l2i were calculated so that the two linear

components of execution time and energy consumption, respectively, intersect at

ρi (cf. Section 3.3). With probability 0.5 a machine was chosen to have a short

startup (e.g. because it is suspended to RAM), otherwise it had a long startup

(as if starting from hibernation to HDD). In the former case, P Ii ∝ U [70, 100]W

and Si ∝ U [0.1, 6]s. In the latter case, P Ii ∝ U [1, 7]W and Si ∝ U [40, 90]s.

Hence, idle power P Ii and wakeup time Si have been correlated in this way

that machines with low P Ii need more time to wake up, and vice versa, short

wakeup time Si is possible in shallower suspension mode using higher power.

Unless stated to be otherwise n = 12 has been assumed for the MIP model

(6.6)-(6.28). Gurobi version 7.5.2 has been used as the MIP-solver using 6 par-

124



CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

1E-3

1E-2

1E-1

1E0

1E1

1E2

1E3

1E4

 1  10  100  1000

ru
n
 t

im
e
 [

s]

m

MIP T
MIP T10%

SuGSS
SuSSC

GSS
CSS

Figure 6.9: Algorithm runtimes vs number of machines m. Logarithmic axes.

allel threads and runtime limit of 1200s. Two versions of the model have been

solved: with MIP optimality gap set to 0.2% and with the gap set to 10%. The

experiments have been conducted on a PC computer with Intel i7@2.8GHz and

Windows 7.

Algorithm runtime quartiles Q1, Q2 (median), Q3 vs changing number of

machines m are shown in Fig. 6.9. For the algorithms based on MIP (6.6)-

(6.28) runtimes for finding minimum schedule lengths T ∗ with 0.2% MIP gap

(denoted as ”MIP T”) and 10% MIP gap (MIP T10%) are shown. The runtimes

for finding the lowest energy schedules are similar and have been omitted to

avoid cluttering the picture. As it can be seen the runtime cost of solving the

MIP model quickly increases and the median runtime reaches the 1200s limit

at m = 9, n = 12 for MIP gap 0.2%. Relaxing the optimality requirements

(MIP T10%) helps, but still median runtime reached the time limit around

m = 20 processors. Were it not for the limit of 1200s, it should be expected

the MIP solver runtime would continue exponential growth. Thus, the MIP

model can be used for moderate size instances. Conversely, the SSC and GSS
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Figure 6.10: Solution quality vs algorithm runtime for a) schedule length crite-
rion, b) energy criterion. Logarithmic runtime axes. m = 10 machines.

heuristics are by far faster and distribute the load to m = 1000 machines in less

than 10s. The super-SSC and super-GSS (denoted SuSSC, SuGSS, respectively)

are by an order of magnitude slower than SSC and GSS because they execute

the heuristics with all processor sorting rules (PSRs). The dispersion of the

heuristics’ runtime is also much smaller and Q1, Q2, Q3 overlap in the picture.

Now we should examine how these runtime costs are exchanged for the solution

quality.

126



CHAPTER 6. HETEROGENEOUS SYSTEMS WITH HIERARCHICAL
MEMORY

The trade-off between solution quality and algorithm runtime cost is shown

in Fig. 6.10. Computational complexity of solving the problem depends on m,n,

and in the case the heuristic algorithms also on V . In order to avoid concealing

the algorithm runtime vs solution quality relationship by this dependence of

computational complexity on m,n, V , these parameters have been set to m =

10, n = 12, V = 24000MB. In Fig. 6.10 boxes represent algorithm runtimes

(horizontally) and relative distance from the best obtained solution (vertically)

on a population of 30 test instances. The boxes span from quartile Q1 to Q3 in

time (horizontally). Quality span is represented analogously along the vertical

dimension. Medians (Q2) of runtime and quality are also marked. There are

14 PSRs of the fast heuristics SSC and GSS. Statistical analysis (ANOVA)

revealed that neither in the runtime nor in the solution quality has any sorting

rule a statistically sound advantage for the considered m,n, V . Thus, to avoid

cluttering the picture the results of all the sorting rules are put together in boxes

distinguishing only SSC and GSS methods (denoted ”All SSC”, ”All GSS”,

respectively). The results for the super-SSC and super-GSS methods, which

choose the best result among all processor sorting rules, are shown as SuSSC and

SuGSS, respectively. It can be seen in Fig. 6.10 that the solutions constructed

by solving the MIP model (6.6)-(6.28) are always the best with respect to the

solution quality. But this guarantee of quality comes at the cost of the runtime,

the highest among all the studied methods. Relaxing the MIP gap to 10%

(MIP 10%), helps with respect to the runtime with only minor loss in solution

quality. However, as shown in Fig. 6.9, this approach has limited scalability

because at m = 20 also the relaxed MIP model exceeds the 1200s time limit.

The heuristic solutions are on average 1.7 – 3 times worse in schedule length

T (Fig. 6.10a) and 1.5 – 2.3 times worse on energy E criterion (Fig. 6.10b).

Conversely, heuristic methods are by 4 – 5 orders of magnitude faster than

solving the MIP model. It can be observed that GSS algorithm is better than

SSC, but it is slightly slower (approx. 50% longer runtimes). The super-SSC

improves solution quality compared to the original SSC methods, but it is still
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Table 6.3: Idle time fraction in schedule length.

Quar- All machines Only active machines
tile MIP SSC GSS MIP SSC GSS
Q1 0.0001 0.4736 0.3530 0.0001 0.2507 0.3530
Q2 0.0326 1 0.5342 0.0313 0.4505 0.5342
Q3 0.1124 1 0.7177 0.1061 0.6825 0.7177

worse both in solution quality and runtime (when referring to time the medians)

than the original GSS methods. The super-GSS is only marginally better in

solution quality than the original GSS methods. It can be concluded that the

GSS methods dominate other heuristics.

Let us now analyze the sources of heuristic algorithm inefficiency with re-

spect to solution quality. In Tab. 6.3 quartiles Q1, Q2, Q3 of the fractions of

the schedule length spent in busy-waiting or idle are shown. The fractions were

collected over a population of 30 instances with m = 10 compared to the mini-

mum length reference solution. In the case of heuristic algorithms all processor

sorting rules were considered. This statistic has been collected for all available

machines (even if some of them were not used), and separately, only for the

machines which indeed took part in the computation. It can be seen that the

solutions from the MIP model have very little idle time. The results for all

machines and for the activated machines do not differ much. This signifies that

MIP schedules almost always use all available processors, idle times are short if

any, communications and computations are very well coordinated to avoid idle

times. These quality results come at twofold price: computational complexity

of solving the MIPs, and benchmarking the application and the platform to ob-

tain precise data used in the model. Conversely, SSC quite often has long idle

time. In particular, values 1 mean that some processors are not activated at all.

This is confirmed by the fact that overall amount of idle time in SSC schedules

decreases if only the active processors are considered. Thus, SSC has a potential
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Figure 6.11: Time and energy quality among the heuristics vs processor num-
ber m. a) SSC-heuristics schedule length, b) SSC-heuristics energy; c) GSS-
heuristics schedule length, d) GSS-heuristics energy. Continuous lines show
quality medians of the worst, Rnd, and the best heuristics. Logarithmic axes.

for improvement by tuning the set of used processors. GSS schedules involve

almost all processors which is signified by equal values both when all machines,

and if only the active ones are taken into consideration.

In Fig. 6.11 evaluation of heuristic solutions quality is extended to bigger

processor numbers m. Relative distance from the lower bound is shown along

the vertical axes. The lower bound of schedule length is

LB(T ) = Smin +Omin + ρmin ∗ Cmin + V/(

m∑
i=1

1/a1i), (6.29)

where Smin, Omin, ρmin, Cmin, are minimum machine startup time, minimum

communication overhead, minimum RAM size and communication rate in the

processor set, respectively. In (6.29) it is assumed that the shortest possible
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communication is done and then, whole load V is processed on all machines in

parallel. The energy lower bound is

LB(E) = SminP
S
min + (Omin + V Cmin)P

N
min + V k1min + PN0 LB(T ), (6.30)

where PSmin is minimum machine starting power, PNmin is minimum networking

power, and k1min is the minimum energy per load unit in the processor set. In

(6.30) it is assumed that the least energy-costly machine startup is executed,

all the load is transfered over the least energy-consuming communication link

and the load is processed on the most energy-efficient processor. In Fig. 6.11

quartiles Q1, Q2, Q3 for the population of all the method solutions are shown.

Moreover, the medians (Q2) of the best, the worst, and Rnd processor sort-

ing rules are shown as continuous lines. It can be seen that the median of

all method does not differ much from the performance of Rnd order. Some

methods slightly distinguish themselves both in positive and in the negative

sense. For example, the order of increasing on-core computing rates a1i (that

is decreasing computing speeds) allows for a bit shorter schedules (Fig. 6.11a,

Fig. 6.11c), and consequently more energy-efficient solutions among the SSC-

heuristics (Fig. 6.11b). For these cases sorting rule a1 improves schedule length

and energy quality measures by roughly 30% related to the Rnd median quality.

Depending on the number of processors, results of a1 are in the lowest 10-30%

of the results population of Rnd sorting rule. Similar observations can be done

for GSS algorithm with the k1 rule (Fig. 6.11d). It can be concluded that the

quality of solutions generated by the heuristics is similar, but PSRs a1, k1 have

some modest advantage.
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6.5 Conclusions

In this section time- and energy-performance of processing data-parallel com-

putations in heterogeneous systems with hierarchical memory has been studied.

Hierarchical memory subsystems incur complex dependence of the running time

and energy consumption on the size of solved problem. These dependencies have

been represented by piecewise-linear functions. The computation scheduling

problem has been rendered as an optimization problem consisting in selecting

the set of activated processors, the sequence of processor communications, and

sizing the load chunks. Two approaches have been proposed: solving a MIP for-

mulation, or applying fast heuristics. The results obtained indicate that due to

the existence of idle processors which still consume some power, there are sharp

local optima in the energy vs schedule length trade-offs. Hence, short sched-

ules, even though compute- and power-intensive, can be more effective than long

schedules with some machines in low-energy computing mode and some other in

the idle mode. Moreover, holding machines in a diverse set of energy modes is

advantageous because the machines in shallow suspension can quickly start the

computations, while simultaneously starting the machines in deeper suspension

modes. It has been also established that limited use of the out-of-core mem-

ory may be beneficial by limiting communications or activating fewer machines.

The performance of the scheduling algorithms is determined by various factors.

The schedules obtained by solving an MIP are almost always the best, but this

dominance comes at cost: MIP runtime and the need for information on the

model parameters. The fast heuristics proposed here build solutions approx. 3

times worse than the MIP’s with respect to solution quality, but in 4–5 orders

of magnitude shorter time. Among the fast heuristics, GSS methods offer good

trade-off between solution quality and runtime, sending the load to the fastest

or the least-energy consuming processors is moderately advantageous.
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7 Summary and Final Remarks

In this thesis problems of scheduling divisible computations in systems with

hierarchical memory, for the criteria of energy and time performance were ana-

lyzed. The computation time and energy models for machines with hierarchical

memory were not assumed but constructed on the basis of measurements on

practical algorithms in real computer systems. These models are piecewise-

linear functions of the size of load (data) to be processed. Divisible load pro-

cessing both in homogeneous and heterogeneous systems was considered. Two

types of scheduling algorithms for load processing were proposed: fast greedy

algorithms and mixed integer linear programming-based methods. Results of

the performance modeling confirm existence of a trade-off between time and en-

ergy criteria. However, it was also shown that in many cases both energy usage

and schedule length can be reduced by increasing parallelism of the computa-

tions. In heterogeneous systems frequent irregularities of schedules construction

were observed. The impact of various computing platform components on time

and energy performance in processing divisible loads was analyzed by use of

isoenergy and isoefficiency maps. These two-dimensional visualizations helped

to expose complex connections between seemingly independent computing sub-

systems and the parameters representing them. The two types of algorithms

solving divisible load scheduling problems, that is the greedy heuristics and the

MIP-based problems, also expose a trade-off between computational complex-

ity and solution quality (both in energy and in time performance). Thus, high

133



Scheduling divisible computations with energy constraints

quality solutions come at the cost of computational time, but also benchmarking

of the data-parallel application on a specific computing platform necessary to

obtain specific scheduling model parameters.

We believe that this thesis opens options for further studies on energy perfor-

mance in parallel processing. The reported above trade-off between the bench-

marking and complexity costs and quality of the solutions calls for further in-

vestigation of the algorithms that can possibly offer better quality solutions

and require less information on the scheduled computation. The concept of

isoline maps also can be extended to other performance models and scheduling

problems.
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Table A.1: Chapter 4 summary of notations.

αi load assigned to machine Mi (e.g. [bytes])
a computing rate (e.g. [s/byte])
C communication rate (e.g. [s/byte])
E sum of all forms of consumed energy (e.g. [J])
EI energy consumed in the idle state (e.g. [J])
ERN energy above the idle state consumed in communication
ERC energy above the idle state consumed in computation
f size of parallel part of the computation (Section 4.1)
k power reduction factor for the idle state
m number of processors
PC processor power in active state (e.g. [W])
PN network power in active state (e.g. [W])
S startup time (e.g. [s])
V size of load (e.g. [bytes])
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Table A.2: Chapter 5 summary of notations

αij the amount of load sent to Mi in the jth communication;
a1 processing rate on-core, e.g. [s/MB]
a2, b2 parameters of computation time out-of-core, e.g. [s/MB], [s]
C communication rate (1/bandwidth) [s/MB]
ε(α) = max{k1α, k2α + l2}, energy consumed in processing load of size α in

a hierarchical memory system, cf. Section 3.3
E schedule energy [J]
EIi idle state energy on machine Mi [J]
ENi networking energy on machine Mi [J]
ESi energy consumed by the starting machine Mi [J]
ERi running Mi machine energy [J]
k1 energy rate per data unit on-core [J/MB]
k2, l2 parameters of energy consumed out-of-core, per data unit, e.g. [J/MB],

[s]
m number of machines
O fixed communication overhead, Section 5.2.3 [s]
P I idle state power of the machines [W]
PN networking power [W]
PR running power [W] of the machines
ρ size of RAM available to store data
S startup time (e.g. [s])
τ(α) = max{aα, a2α+ b2}, time of processing load of size α in a hierarchical

memory system, cf. Section 3.3
T schedule length [s]
tIi idle time of machine Mi [s]
tNi networking time of machine Mi [s]
tRi running time of machine Mi [s]
xi decision variable =1 if computer i is activated; =0 otherwise
V size of load to process [MB]
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Table A.3: Chapter 6 summary of the main notations.

MIP variables
αij the amount of load sent to Mi in the jth communication;
E sum of all forms of the consumed energy;
E0 energy consumed by the originator;
EI total energy consumed in idle waiting before starting the processors and later

in busy-waiting;
Eij energy consumed by machine Mi in the computations on the jth load chunk;
EN total energy consumed in the networking;
ER total energy consumed in the computations;
ES total energy consumed in staring the processors;
idleStarti the time until starting machine Mi;
idlei the total time when machine Mi is busy-waiting;
qij a variable equal to the product tixij ;
tj the time when the jth communication begins;
τij the duration of computation on the jth load chunk on machine Mi;
uij a binary variable equal 1 if τij = a2iαij + b2i, 0 if τij = a1iαij ;
xij a binary variable equal 1 if machine Mi receives load in the jth communication,

0 otherwise;
yij a binary variable equal 1 if machine Mi received some load in the communi-

cation jth or earlier, 0 otherwise;
constants

a1i, a2i, b2i parameters of machine Mi piecewise-linear computing time function;
Ci communication rate of machine Mi (inverse of bandwidth);
k1i, k2i, l2i parameters of machine Mi piecewise-linear energy function;
m size of the set of available machines
n number of communications
Oi fixed communication overhead of machine Mi;
P I
i idle state power of machine Mi;
PN
i networking power of machine Mi;
PS
i starting state (power up) power of machine Mi;
Si startup time from idle of machine Mi;
ρ size of RAM on machine Mi available to store data
T schedule length;
V size of load to process;
Z,Z′, Z′′ big constants.
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B Streszczenie w języku

polskim

Wstęp

Przetwarzanie dużych ilości danych jest jednym z najważniejszych zastosowań

technologii informatycznych we współczesnych nauce i przemyśle. W celu spro-

stania wyzwaniom związanym z przetwarzaniem dużych ilości danych opraco-

wane zostało wiele nowych technologii: platformy i frameworki do przetwarzania

danych [8, 12, 27], biblioteki programistyczne [10, 11], systemy zarządzania ba-

zami danych [7, 9, 65]. Jednak ogromne centra danych służące przetwarzaniu

dużych ilości informacji obciążają sieci energetyczne. W związku z tym, dostawy

energii i jej koszty narzucają ograniczenia w dalszym rozwoju centrów danych i

superkomputerów. Ograniczenia energetyczne są ważnym zagadnieniem również

w przypadku sieci sensorów, lotnictwa i kosmonautyki czy aplikacji internetu

rzeczy. Praca ta jest poświęcona analizie i optymalizacji czasu oraz wydajności

energetycznej w przetwarzaniu dużych ilości danych. Efektywne zaplanowanie

przetwarzania równoległego będzie sposobem na optymalizację jego wydajności.

Platformy obliczeniowe, zwłaszcza w kontekście dużych ilości danych, nakładają

szereg ograniczeń. Na przykład, dystrybucja danych do zdalnego przetwarzania

nie jest natychmiastowa, a opóźnienia w komunikacji stanowią znaczącą część

czasu wykonania aplikacji. Dlatego opóźnienia w komunikacji muszą być brane
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pod uwagę przy planowaniu wykonania równoległych obliczeń. Współczesne

komputery mają hierarchiczną strukturę pamięci, począwszy od rejestrów CPU,

poprzez pamięci podręczne procesora, pamięć operacyjną, czyli tzw. RAM, aż

po zewnętrzne pamięci masowe (sieciowe, SDD, dyski twarde). Rozmiar pamięci

rośnie, ale prędkość dostępu maleje w miarę „oddalania” się od procesora. Także

energochłonność aplikacji pracujących na różnych poziomach pamięci znacznie

się różni. Wielkości danych, które muszą być przetwarzane w dzisiejszych apli-

kacjach, z łatwością przekraczają wielkości dostępnych pamięci operacyjnych

współczesnych komputerów. Dlatego należy unikać korzystania z pamięci ze-

wnętrznych lub liczyć się ze spadkiem szybkości przetwarzania wynikającym z

korzystania z niższych poziomów pamięci. Praktyczny plan równoległego wyko-

nywania aplikacji powinien wykorzystywać opcję oszczędzania energii poprzez

włączanie niezbędnego komputera tylko w razie potrzeby. Wreszcie, heteroge-

niczność platform obliczeniowych, czy to w postaci mieszania CPU z oblicze-

niami na GPU, stosowania różnych instancji obliczeniowych, takich jak Amazon

EC2 [1], czy też centralnych serwerów przetwarzania ze zdalnymi czujnikami,

jest jeszcze jedną rzeczywistością obecnych aplikacji, które powinny być repre-

zentowane w metodach szeregowania obliczeń. W pracy tej zamierzamy zapro-

ponować metody szeregowania zadań równoległych uwzględniające opóźnienia

komunikacyjne, hierarchiczne poziomy pamięci, istnienie trybów oszczędzania

energii oraz heterogeniczność systemu.

Cel i zakres pracy

Głównym celem tej pracy jest zwiększenie efektywności energetycznej przez lep-

sze zarządzanie przetwarzaniem równoległym i zasobami systemowymi. Ko-

lejnym istotnym celem jest zrozumienie ograniczeń przetwarzania równoległego

oraz zależności pomiędzy czasem i energią jako miarami wydajności. Celem niż-

szego poziomu jest stworzenie modeli szeregowania i wydajności dla platform i

aplikacji przetwarzania rozproszonego. Jako podstawowe narzędzie modelowa-

nia wykorzystana została idea obliczeń jednorodnie podzielnych (ang. divisible
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load theory). Zakłada ona, że obliczenia można dowolnie dzielić na części i

wykonywać w sposób równoległy. Odpowiada to równoległemu przetwarzaniu

dużych zbiorów danych. Następnym celem jest zaproponowanie algorytmów

rozwiązujących te modele, tak aby móc konstruować efektywne harmonogramy

dla aplikacji równoległych i przewidywać ich wydajność. Dzięki analizie jakości

skonstruowanych harmonogramów, poznane zostaną determinanty wydajności i

relacje między nimi. Zbadany zostanie wpływ platformy obliczeniowej i parame-

trów aplikacji na kryteria czasu i energii. Aby osiągnąć powyższe cele opraco-

wane zostaną, modele czasu wykonywania obliczeń i zużycia energii na jednym

komputerze w zależności od wielkości przetwarzanych danych. Modele opty-

malizacji obejmą systemy z nieograniczoną pamięcią, systemy homogeniczne z

pamięcią hierarchiczną i systemy heterogeniczne z pamięcią hierarchiczną. Dla

sformułowanych problemów optymalizacji opracowane zostaną algorytmy, a ich

koszty obliczeniowe zostaną również ocenione. Oznaczenia użyte w dalszej części

polskiego streszczenia objaśniono w załączniku A.

Modele matematyczne czasu obliczeń i

zużycia energii

W celu stworzenia modeli zużycia energii w czasie obliczeń, wykonano pomiary

na różnych komputerach z przykładowymi aplikacjami: quicksort, wyszukiwa-

nie ciągu w tekście, obliczanie wartości skrótu md5 (tablice tęczowe), wykry-

wanie krawędzi na obrazach bitmapowych i transpozycja macierzy. Aplikacje

te zostały zaimplementowane w gcc i uruchomione pod FreeBSD 8.1 i Ubuntu

14.04 LTS. Do pomiarów zużycia energii zastosowano watomierz Lutron DW-

6090 o rozdzielczości mocy 1W i rozdzielczości czasowej 1s. W niektórych z

mierzonych komputerów prędkości wentylatorów zależne były od temperatury

procesora i systemu. Natomiast zmiana prędkości wentylatora powodowała kilka

watów różnicy w pomiarze. Aby uniezależnić wyniki od temperatury otoczenia

lub wyników termicznych wcześniejszych eksperymentów, konieczne było zasile-
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Rysunek B.1: Zależność czasu i energii od wielkości obciążenia. quicksort: a)
czas, b) energia; Wyszukiwanie ciągów znaków: c) czas, d) energia, w zależności
od rozmiaru problemu. Osie pionowe są logarytmiczne. Linie ciągłe zostały
dopasowane za pomocą regresji liniowej.

nie tych wentylatorów z zewnętrznego źródła zasilania. Watomierz Lutron jest

podłączony złączem szeregowym do innego komputera, który rejestruje dane.

Schematy stanowiska pomiarowego pokazano na rys. 3.3.

Czas i energia potrzebne do obliczeń porcji danych (obciążenia) zależą od

wielkości porcji α. Ważnym wyznacznikiem jest to, jak duża jest paczka danych

α w porównywaniu z wielkością dostępnej dla procesu pamięci operacyjnej. Aby

zweryfikować związek między czasem obliczeń, zużytą energią i rozmiarem pro-

blemu, przeprowadzono szereg testów obliczeniowych. Na podstawie przepro-

wadzonych testów (Rys. B.1) zaobserwowaliśmy, że czas obliczeń można zapisać

jako funkcję maksimum dwóch funkcji liniowych:

τi(α) = max{a1iα, a2iα+ b2i}.
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Składnik a1iα odpowiada obliczeniom w pamięci operacyjnej ze współczynni-

kiem a1i (odwrotność prędkości). Drugi składnik reprezentuje obliczenia poza

pamięcią operacyjną. Funkcje τi mają dwie właściwości: τi(0) = 0 i τi(ρi) =

a1iρi = a2iρi + b2i, dla i = 1, . . . ,m, gdzie ρi to rozmiar pamięci dostępnej

dla aplikacji na maszynie Mi (niekoniecznie całej pamięci RAM sprzętu). Dla

rozmiarów problemu α większych od ρi maszyna zaczyna korzystać z pamięci

dyskowej. Energia zużywana w obliczeniach jest określana przez analogiczną

funkcję:

εi(α) = max{k1iα, k2iα+ l2i}

spełniającą również analogiczne wymagania: εi(0) = 0, εi(ρi) = k1iρi = k2iρi +

l2i. Dla rozmiaru dostępnej pamięci ρi, obie funkcje τi oraz εi spełniają:

ρi = b2i/(a1i − a2i) = l2i/(k1i − k2i).

Zauważmy, że ponieważ dla przetwarzania poza pamięcią operacyjną (ang. out-

of-core) czas i energia rosną znacznie szybciej niż przy przetwarzaniu on-core,

możemy założyć że: a1i < a2i, b2i < 0 k1i < k2i, l2i < 0, dla wszystkich ma-

szyn Mi. Zauważmy, że współczynniki a1i, a2i, b2i, k1i, k2i, l2i zależą zarówno

od parametrów maszyny, jak i od uruchomionej aplikacji. Przykłady zależności

τi(α), εi(α) przedstawiono na Rys. B.1

Izomapy

Przedstawiamy tu koncepcję map izolinii, które zostaną wykorzystane jako wi-

zualne pomoce w pokazaniu zjawisk i zależności czasowych i energetycznych.

Koncepcja graficznego przedstawiania punktów o równej wartości danego

kryterium na dwuwymiarowych obrazach jest szeroko stosowana w nauce i tech-

nice. Przykładami dwuwymiarowych przedstawień złożonych obiektów fizycz-

nych są mapy konturowe elewacji w kartografii, izobary, izotermy, mapy izo-

hietowe w meteorologii, mapy entalpii w termodynamice [94]. Powodem tak
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szerokiego wykorzystania izomap jest fakt, że takie wizualizacje okazały się bar-

dzo skuteczne w budowaniu zrozumienia związków i podatności na zmiany dla

złożonych zjawisk w wielu dziedzinach nauki i techniki. Pewnym rodzajem

mapy izolinii są mapy izoefektywności wprowadzone w [33], rozważane także

w rozdziale 5.2.4. Mapy izoenergetyczne stanowią ogólną metodę wizualizacji

przetargów w zakresie charakterystyki energetycznej. Każdy model szeregowa-

nia lub model wykorzystania energii może posługiwać się mapami izoenerge-

tycznymi jako metodą wizualnej prezentacji. W złożonych relacjach pomiędzy

wieloma czynnikami mapy izoenergetyczne dają holistyczny obraz i orientację

w kierunku działań optymalizacyjnych.

Izomapy w obliczeniach jednorodnie podzielnych

Przykładowa mapa (V,C) została pokazana na rys. 4.4. Taka izomapa pokazuje

jak powiązane ze sobą są parametry rozmiaru rozwiązywanego problemu V i

odwrotności prędkości C. Rys. 4.4 pokazuje, czy zużycie energii spowodowane

rosnącą wielkością problemu może być zrekompensowane przez szybszą komu-

nikację. Konfiguracje w lewym górnym rogu, gdzie komunikacja jest szybka,

a rozmiar problemu niewielki, są niemożliwe do zrealizowania, gdyż wykonanie

obliczeń w sposób równoległy na wszystkich procesorach założonej konfiguracji

wymagałoby nieplanowanego przestoju. Wraz z postępem w wysokowydajnych

obliczeniach rozmiary V rozwiązywanych problemów nieuchronnie rosną. Mapa

(V,C) pokazuje, że zużycie energii rośnie głównie z V . Tylko w przypadku C

większego niż określony próg, zużycie energii zależy również od C. Wartość

progowa C jest określona przez relację pomiędzy energią zużytą w obliczeniach

V aPC , a energią zużytą przez procesory czekające w stanie bezczynności na roz-

poczęcie obliczeń, która wynosi w przybliżeniu V C(PCm + PN )/k. Tak więc

dla PCm� PN i C większego niż około ak/m =3E-6 te dwa parametry mogą

wzajemnie się kompensować. Oznacza to, że komunikacja musi być szybsza, aby

równoważyć rosnące V i utrzymać stałe zużycie energii. Alternatywnie, można

powiedzieć, że dla C > ak/m komunikacja jest zbyt wolna i powoduje niepo-
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trzebne koszty energii poprzez utrzymywanie procesorów w stanie bezczynności.

Zastosowanie mapy izoenergetycznej (V,C) w realnym scenariuszu może wyglą-

dać następująco: Planowane jest przetwarzanie rosnących rozmiarów problemu

V przy użyciu istniejącej aplikacji i centrum danych. Co należy zrobić, aby

przygotować się do takiej zmiany i ograniczyć zużycie energii? Zużycie energii

nieuchronnie wzrośnie wraz z V . Głównym składnikiem są obliczenia, iloczyn

V aPC musi być zminimalizowany. Można to osiągnąć dzięki lepszym algoryt-

mom i programowaniu (minimalizacja a), lepszemu sprzętowi (PC). Dalsze

zmiany zależą od interakcji pomiędzy a,C,m, k, PC , PN . Jeśli PCm � PN i

C < ak/m nie są potrzebne żadne zmiany w podsystemie sieciowym.

Systemy homogeniczne z pamięcią

hierarchiczną

W celu uszeregowania obliczeń jednorodnie podzielnych w homogenicznych sys-

temach komputerowych (tj. składających się z takich samych komputerów)

zastosowano dwie metody dystrybucji pracy do wykonania. Pierwsza metoda

polega na jednorazowej komunikacji z komputerem. Rozwiązanie problemu dys-

trybucji obliczeń zostało zapisane jako zadanie mieszanego programowania li-

niowego (ang. mixed integer linear programming, MIP). Druga metoda zakłada

dystrybucję wieloetapową. Rozwiązanie uzyskano metodami heurystycznymi

oraz przez sprowadzenie do mieszanego programowania liniowego (MIP).

W przypadku przetwarzania jednoetapowego harmonogram komunikacji i

obliczeń przedstawiono na rys.5.1a. Na początku całość danych do obliczeń

znajduje się na inicjatorze czyli komputerze oznaczonym dalej jako M0. Inicja-

tor jest połączony ze wszystkimi maszynami podrzędnymi M1, . . . ,Mm, przy

pomocy pewnej sieci o wysokiej przepustowości 1/C. Inicjator jedynie dzieli

i rozsyła dane. Komunikacja jest wykonywana tylko pomiędzy M0 a maszy-

nami podrzędnymi, nie ma komunikacji pomiędzy M1, . . . ,Mm. Wolumen V

jest wysyłany w kawałkach o rozmiarze α1, . . . , αm odpowiednio do maszyn
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M1, . . . ,Mm. Maszyny potrzebują niezerowego czasu na rozruch S zanim będą

w stanie odebrać dane. Czas rozruchu S jest ważnym elementem modelu obli-

czeń, ponieważ bez niego może być aktywowana dowolna liczba procesorów, co

nie ma praktycznego sensu [22, 28]. Po zakończeniu odbierania danych przez

maszynę Mi, Mi zaczyna je przetwarzać, podczas gdy inicjator aktywuje ma-

szynę Mi+1 w celu wysłania do niej danych o rozmiarze αi+1. Procedura jest

powtarzana do momentu rozpoczęcia obliczeń na wszystkich procesorach m.

W teorii obliczeń jednorodnie podzielnych zazwyczaj zakłada się, że czas

zwracania danych z maszyn do inicjatora jest pomijalny. Przy takim założeniu

można wykazać [22, 26, 74], że optymalnym rozwiązaniem jest takie, w którym

obliczenia na wszystkich maszynach kończą się równocześnie. Rozwiązanie pro-

blemu uszeregowania obliczeń zapisano w zadaniu mieszanego programowania

liniowego (5.5)-(5.11).

W przypadku przetwarzania wieloetapowego paczki danych do maszyn roz-

syłane mogą być więcej niż raz. Do rozwiązania tego problemu proponujemy

proste algorytmy zachłanne oraz metody programowania liniowego dające roz-

wiązania optymalne. Przedstawione heurystyki to:

Simple static chunk (SSC) algorytm ten zakłada, że rozmiary paczek da-

nych są równe rozmiarowi dostępnej pamięci RAM, tj. αSSC = ρ. W ten sposób

SSC unika korzystania z pamięci zewnętrznej. Wadą takiego podejścia jest to, że

na końcu uszeregowania są „wystające” komputery, nierówno kończące oblicze-

nia. To znaczy, że w ostatniej iteracji dystrybucji obciążenia niektóre procesory

mogą pozostać bezczynne.

Static chunk with underload (SCU) algorytm ten przyjmuje αSCU =

V/(dV/ρmem) gdzie m to liczba homogenicznych maszyn z pamięcią o rozmia-

rze ρ. Tak więc, algorytm SSU zaokrągla w dół rozmiar paczki danych którą

uzyskuje każdy komputer tak, aby unikąć niezrównoważenia obciążeń kompute-

rów kosztem ewentualnej dodatkowej iteracji.
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Static chunk with overload (SCO) zaokrągla liczbę iteracji w dół, kosztem

ewentualnego wykorzystania przetwarzania w pamięci zewnętrznej.

Guided Self-Scheduling Adaptation (GSS) algorytm wyznacza rozmiary

paczek danych jako αGSS = min{V ′,max{1,min{V ′/m, ρ}}}, gdzie V ′ jest ilo-

ścią danych pozostającą do przetworzenia. Rozmiary paczek zmniejszają się

w trakcie realizacji uszeregowania. Zakładając, że V > ρ, algorytm począt-

kowo wysyła paczki o rozmiarach równych rozmiarowi dostępnej pamięci RAM.

Kiedy V ′ < ρ, GSS stopniowo zmniejsza rozmiary paczek, a tym samym mini-

malizuje różnice w czasach ukończenia poszczególnych maszyn. GSS nie wysyła

paczek o rozmiarze mniejszym niż pewien stały rozmiar, który jest tu ozna-

czony jako 1. Dla V � mρ liczba użytych procesorów w GSS jest taka sama

jak w poprzednich algorytmach, ponieważ początkowe kawałki obciążenia mają

rozmiar ρ. Jednakże, jeśli V/ρ > m GSS od razu wysyła paczki mniejsze niż

ρ, rozmiary paczek zmniejszają się, a komunikacja jest coraz krótsza. W ta-

kiej sytuacji GSS jest w stanie uruchomić więcej maszyn niż SSC, SSU, SCO,

jednocześnie nie zwiększając czasów bezczynności niektórych maszyn na końcu

uszeregowania.

Uzyskane wyniki symulacyjnych badań wydajności pokazały, że istnieje prze-

targ pomiędzy energią a czasem uszeregowania. Wydajność czasowa i ener-

getyczna są regulowane przez: i) wielkości wysyłanych paczek danych, które

determinują prowadzenie obliczeń w pamięci wewnętrznej lub zewnętrznej, ii)

liczbę procesorów możliwych do równoległego użycia , co daje obniżenie kosztów

dzięki skróceniu uszeregowania, iii) czas bezczynności, który ma wpływ na ilość

zmarnowanej energii. Mówiąc ogólniej, o wydajności decyduje złożona zależność

między szybkością i poborem mocy elektrycznej obliczeń w pamięci wewnętrznej

i zewnętrznej, kosztami uruchomienia nowych maszyn, opóźnieniami w komuni-

kacji oraz wielkością rozwiązanego problemu. Można zauważyć, że w szerokim

zakresie parametrów systemowych przetwarzanie równoległe ma wpływ na ener-

gię i czas uszeregowania: możliwe jest zaoszczędzenie na obu kryteriach poprzez
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dodanie nowych maszyn. Zjawisko to jest jednak ograniczone do obliczeń dużych

rozmiarów i krótkich czasów rozruchu maszyn. Większe czasy rozruchu szybko

zmniejszają szanse na skrócenie czasu uszeregowania i oszczędność energii przez

zastosowanie równoległości obliczeń. Tak więc wszystkie parametry wpływające

na możliwość uzyskania efektywnych obliczeń równoległych będą miały również

wpływ na optymalizację długości uszeregowań i zużycia energii. Co więcej,

można zaobserwować, że oszczędności energii uzyskane w wyniku zmiany jed-

nego parametru lub jednej części systemu są zazwyczaj ograniczone. Dlatego

do zmniejszania zużycia energii elektrycznej używanej do zasilania wysokowy-

dajnych obliczeń i dużych centrów danych niezbędny jest postęp we wszystkich

podsystemach tak platformy, jak i aplikacji równoległej.

Systemy heterogeniczne z pamięcią

hierarchiczną

Celem badań nad systemami heterogenicznymi była analiza wpływu różnorod-

ności komputerów na możliwe do uzyskania wyniki wydajnościowe. W przy-

padku systemów heterogenicznych ograniczono się do wieloetapowej metody

dystrybucji danych. Do konstrukcji uszeregowań użyte zostały proste algo-

rytmy heurystyczne wykorzystujące pewne zasady preferencji procesorów wg

ich parametrów wydajnościowych, a także zaprezentowano rozwiązania używa-

jąc mieszanego programowania liniowego. Algorytmy zachłanne zaproponowane

do szeregowania zdań w systemach heterogenicznych to adaptacje wcześniej wy-

korzystanych algorytmów Simple Static Chunk (SSC) i Guided Self-Scheduling

(GSS). Dla tych algorytmów rozważamy ustawianie kolejności użycia proceso-

rów, np. wg prędkości komunikacji, czasów rozruchu, mocy w stanach spo-

czynku, komunikacji, rozruchu, rozmiaru pamięci. Stosowano również uszere-

gowanie w losowej kolejności dystrybucji danych stosowane jako punkt odnie-

sienia. Możliwe jest zastosowanie wszystkich zasad sortowania równocześnie i

wybranie z nich najlepszego rozwiązania. Czas przeszukiwania rozwiązań dla
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wszystkich zasad sortowania nadal będzie dalece krótszy niż znalezienie rozwią-

zań metodą programowania liniowego, a dzięki różnorodności metod wyboru

kolejności dystrybucji danych unikamy powtarzania złych decyzji. Tą drogą

zwiększamy niezawodność metod zachłannych i osłabiamy znaczenie ich najgor-

szych przypadków. Taką metodę będziemy nazywać odpowiednio SuperSSC i

SuperGSS. Zarówno szeregowanie zadań jednorodnie podzielnych, jak i mieszane

programowanie liniowe w liczbach całkowitych w ogólności, są zagadnieniami

NP-trudnymi. Oznacza to, że zgodnie z aktualnym stanem wiedzy (chyba że

P=NP), do optymalnego rozwiązania tych problemów wymagane są wykładni-

cze czasy działania algorytmów. W naszym problemie, w najgorszym przypadku

złożoność obliczeniowa rośnie wykładniczo wraz z liczbą procesorów m i liczbą

paczek danych n. Jednak dla rozsądnych rozmiarów problemów sformułowania

mieszanego programowania liniowego (MIP) mogą być rozwiązane dość dobrze

przez współczesne solvery.

W pracy dokonano porównania jak różne typy algorytmów szeregowania

wymieniają czas swojego działania na jakość tworzonych rozwiązań. Przetarg

pomiędzy jakością rozwiązań a czasem działania algorytmu pokazany jest na

rys. 6.10. Złożoność obliczeniowa rozwiązania problemu zależy od m,n, a w

przypadku algorytmów heurystycznych również od V . W celu uniknięcia za-

mazania zależności jakości rozwiązania od czasu działania algorytmu przez za-

leżność złożoności obliczeniowej od m,n, V , parametry te zostały ustawione na

m = 10, n = 12, V = 24000MB. W prostokątach na wykresie 6.10 przedstawiono

czasy działania algorytmu (w poziomie) oraz względną odległość od najlepiej

uzyskanego rozwiązania (w pionie) na populacji 30 instancji testowych. Prosto-

kąty te rozciągają się od kwartyla Q1 do Q3 w czasie (poziomo). Rozpiętość

jakościowa jest reprezentowana analogicznie wzdłuż wymiaru pionowego. Na

rys. 6.10 zaznaczone są również mediany (Q2) czasu trwania i jakości. Chociaż

istnieje 14 zasad sortowania procesorów dla heurystyk SSC i GSS, to analiza

statystyczna (ANOVA) wykazała, że ani w czasach wykonania algorytmu, ani

w jakości rozwiązań nie ma żadnej reguły sortowania, która miałaby statystycz-
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nie uzasadnioną przewagę dla rozpatrywanego m,n, V . Tak więc, aby uniknąć

bałaganu na wykresie, wyniki wszystkich reguł sortowania są umieszczane w

ramkach z rozróżnieniem tylko na metody SSC i GSS (oznaczone odpowiednio

jako All SSC, All GSS). Wyniki dla metod SuperSSC i SuperGSS, które wy-

bierają najlepsze rozwiązanie spośród wszystkich reguł sortowania procesora,

są przedstawiane odpowiednio jako SuSSC i SuGSS. Jak widać na rys. 6.10,

rozwiązania skonstruowane poprzez użycie modelu MIP są zawsze najlepsze

w odniesieniu do jakości rozwiązania. Ale ta gwarancja jakości została uzy-

skana kosztem czasu obliczeń, najwyższego spośród wszystkich badanych metod.

Osłabienie zadanych gwarancji jakości rozwiązania, które tworzy solver MIP do

10% odległości od optimum poprawia czas wykonania z niewielką utratą jakości

rozwiązania. Podejście to ma jednak ograniczoną skalowalność, ponieważ przy

m = 20 również osłabiony model MIP przekracza limit czasowy 1200s co widać

na rys. 6.9. Rozwiązania heurystyczne są średnio 1,7 – 3 razy gorsze w długości

uszeregowania i 1,5 – 2,3 razy gorsze w kryterium energii. I odwrotnie, metody

heurystyczne są o 4 – 5 rzędów wielkości szybsze od rozwiązania modelu MIP.

Można zauważyć, że algorytm GSS jest lepszy niż SSC, ale jest nieco wolniejszy

(ok. 50% dłuższy czas działania). Super-SSC poprawia jakość rozwiązania w

porównaniu z oryginalnymi metodami SSC, ale jest i tak gorszy zarówno pod

względem jakości rozwiązania jak i czasu działania (w odniesieniu do mediany

czasu) niż oryginalne metody GSS. Super-GSS jest tylko nieznacznie lepszy w

jakości rozwiązania niż oryginalne metody GSS. Można stwierdzić, że metody

GSS dominują nad innymi heurystykami.

Podsumowanie i uwagi końcowe

W niniejszej pracy analizowano problemy związane z planowaniem obliczeń jed-

norodnie podzielnych w systemach z pamięcią hierarchiczną, dla kryteriów wy-

dajności energetycznej i czasowej. Nie założono modeli wydajności czasowych i

energetycznych, lecz skonstruowano je w oparciu o badania właściwości rzeczy-
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wistych algorytmów w rzeczywistych systemach komputerowych. Modele te są

funkcjami odcinkowo liniowymi dla wielkości obciążenia (danych) do przetwo-

rzenia. Rozważano przetwarzanie danych w układzie homogenicznym i hete-

rogenicznym. Zaproponowano dwa rodzaje algorytmów szeregowania dla prze-

twarzania obciążenia: szybkie algorytmy zachłanne i metody korzystające z

programowania liniowego. Wyniki modelowania wydajności aplikacji równo-

ległych potwierdzają istnienie przetargu pomiędzy kryteriami czasu i energii.

Wykazano jednak również, że w wielu przypadkach zarówno zużycie energii,

jak i długość uszeregowania można zredukować poprzez zrównoleglenie obli-

czeń. W systemach heterogenicznych zaobserwowano częste nieregularności w

budowie uszeregowań. Analiza wpływu różnych składników platformy oblicze-

niowej na czas i wydajność energetyczną w przetwarzaniu zadań jednorodnie

podzielnych została wsparta zastosowaniem map izoenergetycznych i izoefek-

tywności. Te dwuwymiarowe wizualizacje pozwoliły na wyeksponowanie złożo-

nych powiązań pomiędzy pozornie niezależnymi podsystemami obliczeniowymi.

Dwa rodzaje algorytmów konstruujących rozwiązania problemów szeregowania

obliczeń jednorodnie podzielnych, czyli heurystyki zachłanne i modele oparte

na MIP, również cechują się przetargiem pomiędzy złożonością obliczeniową a

jakością rozwiązania. Tak więc, wysokiej jakości rozwiązania powstają kosztem

czasu obliczeniowego, ale także benchmarkingu aplikacji na konkretnej platfor-

mie obliczeniowej, niezbędnego do uzyskania wymaganych parametrów modelu

uszeregowania. Wierzymy, że ta praca otwiera możliwości dla dalszych badań

nad wydajnością energetyczną w przetwarzaniu równoległym.
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[77] L. Sharifi, L. Cerdà Alabern, F. Freitag, and L. Veiga, En-
ergy efficient cloud service provisioning: keeping data center granularity
in perspective, Journal of Grid Computing, 14 (2016), pp. 299–325.

[78] H. Shi, W. Wang, and N. Kwok, Energy dependent divisible load theory
for wireless sensor network workload allocation, Mathematical Problems
in Engineering, 2012 (2012).

[79] A. Shokripour, M. Othman, H. Ibrahim, and S. Subramaniam,
New method for scheduling heterogeneous multi-installment systems, Fu-
ture Generation Computer Systems, 28 (2012), pp. 1205–1216.

[80] S. Singh and I. Chana, A survey on resource scheduling in cloud com-
puting: Issues and challenges, Journal of Grid Computing, 14 (2016),
pp. 217–264.

[81] J. Sohn, T. Robertazzi, and S. Luryi, Optimizing computing costs us-
ing divisible load analysis, IEEE Transactions on Parallel and Distributed
Systems, 9 (1998), pp. 225–234.

158



BIBLIOGRAPHY

[82] S. Song, C. Su, R. Ge, A. Vishnu, and K. Cameron, Iso-energy-
efficiency: an approach to power-constrained parallel computation, in Pro-
ceedings of International Parallel & Distributed Processing Symposium
(IPDPS), IEEE, 2011, pp. 128–139.

[83] SPEC, SPEC: Standard performance evaluation corporation. [on-line]
http://www.spec.org/power_ssj2008, 2009.

[84] R. Springer, D. Lowenthal, B. Rountree, and V. Freeh, Mini-
mizing execution time in MPI programs on an energy-constrained, power-
scalable cluster, in Proceedings of the 11th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), ACM, 2006,
pp. 230–238.

[85] B. Subramaniam and W. Feng, Statistical power and performance
modeling for optimizing the energy efficiency of scientific computing, in
2010 IEEE/ACM International Conference on Green Computing and
Communications (GreenCom) & 2010 IEEE/ACM International Confer-
ence on Cyber, Physical and Social Computing (CPSCom), IEEE, 2010,
pp. 139–146.

[86] G. Sun, Exploring Memory Hierarchy Design with Emerging Memory
Technologies, vol. 267 of Lecture Notes in Electrical Engineering, Springer
International Publishing, 2014.

[87] S. Swanson and A. Caulfield, Refactor, reduce, recycle: Restructuring
the I/O stack for the future of storage, Computer, 46 (2013), pp. 52–59.

[88] A. Tchernykh, J. E. Pecero, A. Barrondo, and E. Schaeffer,
Adaptive energy efficient scheduling in peer-to-peer desktop grids, Future
Generation Computer Systems, 36 (2014), pp. 209–220.

[89] V. T’kindt and J.-C. Billaut, Multicriteria scheduling: theory, models
and algorithms, Springer Science & Business Media, 2006.

[90] R. van der Wijngaart and M. Frumkin, NAS grid benchmarks
version 1.0, Tech. Rep. NAS-02-005, NASA Advanced Supercomput-
ing Division, 2002. [on-line] http://www.nas.nasa.gov/assets/pdf/
techreports/2002/nas-02-005.pdf.

[91] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, Towards en-
ergy aware scheduling for precedence constrained parallel tasks in a cluster
with DVFS, in Proceedings of 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid), IEEE, 2010, pp. 368–
377.

[92] Wikipedia contributors, Advanced configuration and power interface,
wikipedia, the free encyclopedia. [on-line] https://en.wikipedia.org/
wiki/Advanced_Configuration_and_Power_Interface, 2019.

[93] , Contour line. [on-line] https://en.wikipedia.org/wiki/
Contour_line, 2019.

159



Scheduling divisible computations with energy constraints

[94] , Enthalpy-entropy chart. [on-line] https://en.wikipedia.org/
wiki/Enthalpy%E2%80%93entropy_chart, 2019.

[95] D. Woo and H. Lee, Extending Amdahl’s law for energy-efficient com-
puting in the many-core era, Computer, 41 (2008), pp. 24–31.
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