PozNAN UNIVERSITY OF TECHNOLOGY
INSTITUTE OF COMPUTING SCIENCE

COMBINATORIAL
OPTIMIZATION
PROBLEMS

IN INTERNET
APPLICATIONS

Doctoral thesis

Jakub Marszatkowski

Supervisor:
prof. dr hab. inz. Maciej Drozdowski

Poznan, 2017

CONTENTS

1 Introduction 4
1.1 Motivation 4
1.2 Scope and Puropose 5
1.3 Methodology 6
1.4 Common webpage-related factors 10
1.5 Outline of the Thesis 11

2 Layout Partitioning for Advertisements Fit 13
2.1 Website’s Layouts and Ad Placement 13
2.2 Problem Formulation 16
2.3 Objective Functions L. 19

2.3.1 Max Ad Number Function 20
2.3.2 Max Most Difficult to Pack Ad Unit Function 20
2.3.3 Min Single Ad Waste 20
2.4 Solution Method 21
2.4.1 Combining Ad Units 22
2.4.2 Valid Column Widths List 23
2.4.3 Browsing Layouts 24
2.4.4 Selecting Final Results 25
2.4.5 Example For a Small Instance. 25
2.5 Benchmarks 27
2.5.1 DataSets 27
2.5.2 Webmaster Survey 27
2.6 Computational Experiments, 29
2.6.1 Input Parameters., 29
2.6.2 Execution Times 31
2.6.3 Layout Partitioning Results and Discussion 31

2.7 Conclusions e 35

3 Tag Cloud Construction

3.1
3.2

3.3
34

3.5

3.6

Tag Clouds

Problem Analysis and Related Work Survey
3.2.1 Tagcloud taxonomy
3.22 Related work oo
3.2.3 Tag Cloud Usability Studies
3.2.4 Tag Clouds for the Web
3.25 Client Side
3.2.6 Analysis of Packing Problem Properties

Problem Formulation

Algorithms for Tag Cloud Optimization
3.4.1 Branchand Bound, ..
3.4.2 Greedy Algorithms
3.4.3 Tabu Search
Computational Experiments
3.5.1 Test Instances
3.5.2 Selection of the Objective Function
3.5.3 Super-Fit Algorithm
3.5.4 Tuning Tabu Search
3.5.5 Branchand Bound
3.5.6 Comparison of the Algorithms

Conclusions and Future Work

4 CSS-sprite Packing

4.1
4.2

4.3

44
4.5

4.6

4.7

CSS-Sprites and Loading of Web Pages

Practical Challenges and Problem Formulation
4.2.1 Geometric Challenges
4.2.2 Image Compression Properties
4.2.3 Computational Complexity
4.2.4 Communication Performance
4.2.5 Problem Formulation

Preliminary Tests oL
4.3.1 Packing Model
4.3.2 Communication Performance

State of the Art

Spritepack
4.5.1 Tile Classification
4.5.2 Geometric Packing o000
4.5.3 Merging with Image Compression
4.5.4 Postprocessing oo
Spritepack Evaluation
4.6.1 Test Instances
4.6.2 Initial Experiments L.
4.6.3 Spritepack Performance Comparison
4.6.4 End-to-End Evaluation

Conclusions

5 Summary and Final Remarks

37
37

38
38
40
42
43
44
47
48
50
o1
92
o4
99
55
56
o7
58
61
62
65

66
66

68
68
70
72
76
79

79
79
82
86
91
91
92
95
96
97
97
100
106
108

110

112

1 INTRODUCTION

1.1 MOTIVATION

The Internet has become a key element of human civilization. It is a cornerstone
of communication, trade, science, social life, entertainment, etc. To realize
how much Internet changed our life’s one should refer to pre-internet works SF
writers and futurologist. They, in general, failed to foresee the global net and
are drawing our times or even further future without the common functionalities
that we have already.

Over the last two decades, World Wide Web has become a new branch
of industry. The subject of engineering in designing, constructing, maintaining,
improving and optimizing various web services or Internet applications and their
components is an art and craft, business, scientific and engineering challenge.
Engineering endeavors related to the Internet are often referred to as web en-
gineering. However, it is hard to refrain from observing that some components
of the web are constructed in an ad-hoc way. Web engineering should not be
exempted from the analysis and optimization of its processes. Hence, web en-
gineering should profit from many decades of scientific experience, including,
combinatorial optimization and operations research heritage analyzing and op-
timizing industrial processes. And vice versa, the combinatorial optimization
society should not omit this new and emerging field of applications.

This leads to this thesis motivation of conducting research in the area of web
engineering and combinatorial optimization. In the next section three problems
which are subject of this thesis/work/manuscript, will be outlined.

However, it should be also noted that the author conducted more research in
the fields of web applications, web services and Internet advertising that went
beyond the scope of the thesis. Instead, conclusions and results from these
papers will be referred to as needed. This includes the paper on effectiveness

of ads server [84], the paper on advertisement exchange [83], two papers on

database optimization for web services [88, 97], the paper on the role of website
speed [87], the paper on Internet shopping optimization [85] and the paper on

building a web platform for gamification of education [123].

1.2 SCOPE AND PUROPOSE

The recent astounding growth of the Internet and its applications is bringing
new interesting research field to combinatorial optimization. Although Internet-
related optimization problems are very novel, several elements remain the same:
there is maximization of the revenue or capability, minimization of costs or
resource used, etc. Often similar approaches, after specific adjustments, can be
used. The challenges of computational complexity are the same. Problems are
computationally hard in their nature and often requiring super fast algorithms
for online results. Three specific problems have been chosen as the subject of
the thesis:

I Layout Partitioning for Advertisement Fit (LPfAF) where a website is
partitioned into columns to obtain layout capable of fitting advertisements

well.

IT Tag Cloud Construction Problem (TCCP) which consists in optimizing tag

clouds for web pages to provide good readability.

IIT CSS-sprite Packing Problem (CSS-SPP) where, by bundling web page im-

ages into packages called sprites, shorter load time of web pages is achieved.

The intersection of these research problems is twofold. Firstly, all three
problems are real-world challenges taken by author from his practical experi-
ence with the Internet applications. Thus, solving them can lead to improving
the quality of the web pages. LPfAF can improve ads revenues but also usabil-
ity of web pages. TCCP can improve readability and thus ergonomics of web
applications. CSS-SPP can offload servers and network, speed up page loading
and reduce the memory usage by browsers, which already is a good justification
for the research.

Secondly, all three problems relay heavily on two-dimensional rectangle pack-
ing. Note that all elements of a website are actually rectangles. Regardless of
their visible shapes the placement done by the browser in Document Object
Model (DOM) is putting rectangular elements into rectangular space. Adver-
tisements and slots to insert the ads are rectangular. Images might use opacity
to hide from users sight parts of the rectangle, but are placed the same way. Any

part of the text, would be it a single keyword or three paragraphs, are placed

with respect to their rectangular envelope. With that, several new approaches
the old 2-dimensional packing problems and algorithms are developed, which is

another good justification for the research.

1.3 METHODOLOGY

In this section methodologies shared in the analysis of the above three prob-
lems will be outlined. It is assumed that the reader has basic knowledge of
computational complexity theory, combinatorial optimization, scheduling the-
ory, 2-dimensional packing. In order to avoid repeating basic facts of computer
science, we do not elaborate on these theories here. An interested reader may
find introduction to these fields in [13, 14, 15, 36, 47, 64, 77]. Instead, we give
here only a short informal outline and explanation of the guidelines used in the
three problems. The guidelines define a pattern of the chapters dealing with
the particular problems.

As all the three problems are real-world problems, requiring the same steps

in the work with them. The common analysis procedure/pattern is as follows:
1. Literature study for state of the art in this or similar problems.
2. Mathematical modeling of the problem.
3. Analysis of the computational complexity of the problem.
4. Development of algorithms to solve the problem.
5. Validation of the algorithms.

The actual research work in these steps may vary with different problems, es-
pecially with the respect to the algorithmic approaches. However, their common
factors can be discussed here.

As the research consists of three separate problems, the literature search
(step 1) was performed for them separately, and the results will be presented
further in the text, with only short outline here. Tag cloud construction, op-
timization or visualization have met some interest of researchers. To the best
of the author’s knowledge, the first research paper on that topic was [65]. This
was continued and extended leading to many other interesting solutions, with
probably Wordle [119] being the most recognized. Sadly Wordle does not offer
any optimization for use on web pages motivating the author to research in this
field. A survey of publications on tag clouds construction is provided in Section
3.2.1.

Although CSS-sprite optimization is a kind of popular topic, was up to date
aimed rather at projects using engineering approach than scientific methods.
Thus, rarely was there any optimization problem considered, and even if, then
it was not going further than application of 2-dimensional packing algorithms
to reduce dimensions of the sprite. Survey of projects building CSS-sprites is
provided in Section 4.4.

The idea for research on LPfAF comes from the literature on ad placement
optimization. Many of such problems have already been considered in the con-
text of ad display placement, optimization or scheduling. This area of research
was first proposed in [3] and [39] and up to now proliferated in so many di-
rections, that it definitely deserves a separate review paper. However, all this
research usually is considering optimization of revenues from ads that are placed
in static ad spaces or slots that are given a priori. This leads to the conclusion
that optimization of space for ads might be worth consideration. As the orig-
inal problem of ad placement optimization for revenue maximization is mainly
a motivation for the authors own project no wider survey on the original area
was conducted as it was lying out of scope of this work.

All three problems considered in this thesis are to some point novel and re-
quired providing a mathematical model built from scratch (step 2). Even for the
TCCP dealing with tag clouds that were tackled in numerous research papers,
the author has taken completely different novel approach. In all cases, this re-
quired modeling objective functions to represent realities of the problem. This
is a difficult task. In two of the problems, LPfAF and TCCP, the difficulty was
catching some perception of aesthetics with mathematical equations. Whether
the objective functions were modeled properly can be verified not earlier than
by studying the results of the designed algorithms. While the obtained results
seem to confirm a successful outcome, it will be further discussed in the following
chapters.

Problems considered in this thesis, are combinatorial optimization problems
and consideration of their computational complexity had to be performed (step
3). Problems of combinatorial optimization are defined on sets of discrete ob-
jects rather than on continuous domains. Problems of this nature are very often
hard to solve. The only approach to give optimal solution, or often any solution
is by verifying a number of solutions, which grows exponentially with the prob-
lem size (unless P = N'P). Problems of this nature are called N'P-hard (see
[47, 64] for precise definition). 2-dimensional packing problems are AP-hard
in general. Because all the considered problems are generalizations of known
2-dimensional packing problems, or have 2-dimensional packing as one of the
sub problems, all the three problems are A'P-hard too. It is practically im-

possible to solve such problems by full enumeration of possible solutions. Such

approaches are called exact and are effective only for small instances of prob-
lems. Algorithms that are effective in the greater range of instances are the
ones which execution times can be bounded by polynomials in the input size.
These are called polynomial-time algorithms. Unfortunately, unless P = NP we
must expect that for hard combinatorial problems no effective polynomial-time
algorithms can be given.

The theory of computational complexity provides a methodology of dealing
with hard combinatorial problems. Several groups of algorithms have been

developed to solve them (step 3):

1. Full enumeration algorithms, with main feature being searching the space
of possible solutions exhaustively. It means that in the worst case all
possible solutions may be visited. Their complexity may not go below
exponential and execution times are prohibitively high, which limits their
applicability.

2. Algorithms providing efficient search for exponential solution space can
be constructed with the use of methods for pruning the solutions that are
not promising. In two of three research problems such approach was used.
Branch&Bound (B&B) algorithms [76] represent the space of solutions as
a search tree, pruned by bounds on values of the solutions that a given
branch might lead to. Still the size of the instance that can be solved
to optimality even by best exact algorithms is limited because B&B al-
gorithms are also worst-case exponential running time algorithms. Thus,
dedicated B&B algorithm that was developed in one of the research prob-
lems was used only to solve small instances of the problems. For another
of the problem, dedicated for the specific problem exact algorithm known
from literature was adapted, while it solves instances of required size in

acceptable time.

3. Dedicated (or tailored) heuristics are the methods, created to solve just
one given combinatorial optimization problem. These run in polynomial
time (making them effective) and provide correct solutions, yet without
any guarantee of optimality. This can mean that, e.g., the solution given
by a heuristic will be just the first feasible solution found or a local op-
timum of the objective function closing or even sometimes reaching the
global optimum. Dedicated heuristic algorithms are using some specific
characteristic of the problems they are solving, and thus it is not possible
to apply them to different problems. Still, many such heuristics exist or
can be designed, making them very commonly applied in solving combi-
natorial optimization problems [13, 36, 47]. This approach was used in all

three researched problems.

4. Metaheuristics are general-purpose methods that can be adapted to many
different combinatorial optimization problems. Metaheuristics provide a
general framework on how the space of combinatorial problems can be
searched. As they are general in their nature, they must be adapted to
every actual combinatorial optimization problem. Metaheuristics include,
for example tabu search, simulated annealing, genetic algorithms, a family
of swarm systems and many others [1, 23, 42, 49, 50, 93, 95]. Two of the

three research problems were approached with metaheuristics.aheuristics.

For all the discussed algorithms a trade-off between time complexity and
quality of results must be considered in general. Usually the better results an
algorithm offers, the more time it consumes. In an online environment like in
TCCP the execution time is absolutely a crucial factor. For problems that are
solved infrequently like in LPfAF, and in most uses of CSS-SPP, the quality of
solutions would be far more important than run time. Algorithm execution time
may be studied in various ways starting with the analytical approaches. For this
purpose, the order of the computational complexity of the algorithm is analyzed.
Informally, computational complexity function of an algorithm is the execution
time in the size of the input [47]. For the majority of the algorithms developed
in this thesis, the computational complexity function is analyzed and given. For
more complex algorithms execution time is often verified experimentally, where
the specificity of the solved problem defines a threshold of runtimes bearable
for the user.

The quality of the results provided by the algorithms can be assessed in
many different ways (step 5). Simpler heuristics are often analyzed to find
and prove guarantees of solution quality, e.g., the ratio or the distance between
the solution provided by the heuristic and the optimum objective value. This
rarely is possible for algorithms solving practical problems due to their to the
problem complication. It can be also observed, that quality of results that the
algorithm offers typically is more important than the guarantees of quality in
the worst case that almost never happens. In many cases the average distance
of the solution from the optimum can be measured experimentally. For this
purpose the algorithm is tested on benchmark instances that are solved also
by other algorithms. This might be a comparison with exact solutions, where
such solutions are known. However, due to the nature of computationally hard
problems this will often require considering benchmark instances being smaller
than the practical ones. Another option is to compare algorithms to other

algorithms solving the same problem. Still, algorithms often may be better on

certain test cases while worse on many others. In the result, such experimental
analysis may be inconclusive when the criteria of the comparison are not strictly
defined.

1.4 COMMON WEBPAGE-RELATED FACTORS

As it was mentioned web engineering and development of web applications is
a new branch of industry offering a host of operational research and optimiza-
tion problems. A short summary of the fields of research other than the ones
considered in this thesis will be given here. One of the first considered areas
were Internet advertisements. Optimization of ad networks choosing ads on the
basis of price, web page content, keywords related to the web page, behavioral
and demographic targeting was analyzed in [75]. The first model of revenue
maximization, named “side banners” was proposed in [3, 73], and extended
in [5, 39, 40, 72]. Website layout or content optimization was considered in
[107, 127], content analysis and fast delivery in [71, 90], while techniques for
content interpretation and exploitation [113]. Finally, novel e-business applica-
tions are developed, like Internet shopping with optimization were proposed in
[126] and then extended in [10, 12, 11, 80]. This by no means is a complete
list of problems, rather exaples to show variety of the research on optimization
problems related with Internet deserve a separate survey.

Numerous factors are common for many research problems from the area of
web applications. Three examples that were shared between research problems
in this thesis will be analyzed here.

Websites all over the Internet use vertical scroll layout [57], also known as
column or grid layout. This means that there is no height limitation for content
as the page can be scrolled down. Contrarily, width of the website is usually
limited by the design to display well on most of the clients (browsers). More so,
websites are divided into columns that are supposed to fit the content. Hence,
the web pages or columns can be considered infinite stripes of given width. This
will affect the research on LPfAF and TCCP where assumption of limited and
exactly given width and unlimited, stretchable or scrollable height will be used.

Great deal of factors on web application design and operations depends on
the client side. Thus, another problem with the research targeting web pages
optimization is high fragmentation of the parameters of the client devices. It
is possible to predict these parameters, at least some ranges of them, but only
to some resolution. This was in a way affecting all three problems. A web
designer willing to design a layout for the website, no matter whether using the

solution proposed as LPfAF-solving algorithms or doing it manually with an

10

ad hoc approach, must consider different screen resolutions at client browsers
limiting width of the layout. The optimization done by CSS-SPP must consider
parameters of the Internet connections of the website user base of the website.
The basic parameters of communication performance: latency, bandwidth and
speedup in parallel communication will vary from website to website but also
among users of the same website. This is requiring averaging or maybe clustering
the groups of users into separate optimized solutions. Then, TCCP goes further
with respect to the client side dependability. The sizes of tags will differ in client
browsers, thus can be measured only there and thus the optimization must be
performed with the use of that data.

The time a web page uses to load plays an important role. Research from
2006 [24] suggested that there is a four seconds rule, i.e. if the page loads
longer than 4 seconds, then there is a good chance that a customer will direct
his/her browser elsewhere. In a newer research by the Amazon experiments,
every 100ms delay in page load time decreases the sales by 1 percent [103]. Sim-
ilar measurements at Google showed that 500ms delay in search result display
reduces revenue by 20 percent [20]. Author’s own research presented in [87] was
suggesting that as for 2014 Google was treating only times below 1.5 second as
acceptable. More direct results of paper [87] showed that web page speed affects
position in search engine results and thus also traffic and income. This speed
is the factor that CSS-SPP is trying to improve, while TCCP must consider in
the algorithm design process.

The list of such factors is far greater and more specific ones will be discussed

further in the sections dedicated to the three research problems.

1.5 OUTLINE OF THE THESIS

The rest of this thesis is organized in three chapters dedicated to each of the
research problems and closed with Chapter 5 containing final summary and
remarks. As the problems are different and have disjointed formulations three
dedicated sets of notations will be used, that are summarized in Table 2.1 for
LPfAF, Table 3.3 for TCCP and Table 4.1 for CSS-SPP.

Chapter 2 is dedicated to the problem of Layout Partitioning for Advertise-
ment Fit. First, in Section 2.2 the LPfAF problem is formulated. Optimization
criteria are discussed in Section 2.3 . Section 2.4 contains the algorithms de-
signed for solving the problem. Benchmark datasets are presented and explained
in Section 2.5. Outlines of the solutions obtained by presented method are given
in Section 2.6. The last section comprises conclusions and discussion of possible

future research, extensions of the model and similar problems.

11

Chapter 3 presents research on Tag Cloud Construction Problem. Tags
and tag clouds are discussed in Section 3.2 including a survey of approaches,
algorithms, design options and the choices taken in the past. This is followed by
a discussion of requirements for tag clouds in the web usage. Section 3.3 provides
a mathematical formulation of the Tag Cloud Construction Problem (TCCP).
Algorithms solving the problem are presented in Section 3.4. In Section 3.5
results of the computational experiments are outlined. Finally, the last section
summarizes the achievements in tag cloud construction.

Chapter 4 contains considerations on CSS-sprite Packing Problem. The
first section, was dedicated to discussion on the realities and the challenges in
sprite packing, followed by formulation of CSS-sprite Packing Problem (CSS-
SPP). Results of preliminary empirical studies on properties of the problem
are presented in Section 4.3. An extensive survey of the current advances in
CSS-Sprite construction is given in Section 4.4. Holistic new method of sprite
packing is given in Section 4.5 and evaluated in Section 4.6. The last section is

dedicated to conclusions.

12

2 LAYOUT PARTITIONING

FOR ADVERTISEMENTS FIT

2.1 WEBSITE’S LAYOUTS AND AD PLACEMENT

In this section a problem of dividing a websites visual area into columns for
future placement of advertisements will be analyzed. Internet advertising is a
basic source of income on the web [32]. According to the Interactive Advertising
Bureau (IAB), Internet advertising is worth €14.7 billion a year in Europe only
[60]. Internet advertising is usually divided into three markets: search advertis-
ing, display advertising, and classifieds & directories. Display advertising, also
called banner advertising, is the second largest online advertising market. Its
European share was worth €4.4 billion in 2009 despite the economic crisis at
that time [60]. Optimizing page layouts for this important part of the current
industry is considered here.

In the contemporary display advertising, publishers, i.e., owners of the web
sites, do not contact advertisers directly. Publishers usually join advertising
networks which serve as middlemen between the advertisers and the publishers.
A publisher has to prepare place on the website for fitting the ads provided by
the ad networks. With each new exposition of a web page, ads are fetched from
the ad network and displayed in the place provided by the publisher. The ad
network chooses ads on the basis of price, web page content, keywords related to
the web page, behavioral and demographic targeting [75]. An ad unit is a form
of an agreement on the ad format between the advertiser, the publisher, and the
ad network. Definition of an ad unit consists of its width and height measured
in pixels. Advertisers contribute ads of the given size to the ad networks. Ad
networks provide servers and code for fetching the ads. Publishers place ad

units, i.e. prepare free space of the ad unit size on their web pages, and include

13

b)

Leaderboard 728x90‘

Full Banner 468x60‘

[]

—]
° — —
3 =
X — —
s g = —
5| X — —
g & —
gl = L] —
® § Medium —
g & o050 —

Figure 2.1: a) Five popular ad units. b) Three column layout, and ad combina-
tions.

there the ad fetching code. Five example ad units are visualized in Fig. 2.1a.
Display advertising uses many different ad units. Despite obvious advantages
of unification, hundreds of ad units are in use. Benchmark ad unit datasets will
be introduced in Section 2.5.

A publisher faces a problem of preparing a website such that it is com-
modious for diverse ad units, and aesthetically pleasing. As it was mentioned
in Section 1 websites use vertical scroll layout with given width but scrollable
down without limit. Currently, layouts comprise two, three (cf. Fig. 2.1b), or
four columns. Because height for packing ads and other content is not limited
as it was explained earlier, columns will be treated here as virtually infinite
stripes. Layout partitioning, i.e. dividing a website into columns, is a critical
decision with long-term consequences, because all graphical elements are ad-
justed to column sizes. After deciding on the number of columns, a publisher
has to select column widths. The state of the art recommendations for choosing
column widths are basic rules of art adapted to websites: golden ratio, rule of
thirds, symmetrical or asymmetrical balance [9]. In practice websites often end
up with the so-called “bread and butter design”. “Bread” is a wide column for
content, and “butter” a narrow column for navigation [9]. The results that are
usually achieved can be described as layouts without obvious errors (LWOE)
[57]. The fact that a layman at first glance cannot suggest easy improvement
is considered a sign of satisfactory layout. The above methods do not consider
ad placement. In practice, layout partitioning is performed ad hoc with lim-
ited consideration of fitting ads. The widest column is chosen to fit the widest
expected advertisement, while the remaining space is divided arbitrarily. This
meets LWOE criteria, but is probably far from what could be achieved, and

causes problems with three and four column layouts. If the remaining space

14

were again divided to fit the widest possible ad unit, then the other columns
would be too narrow for anything. Alternatively, dividing the remaining space
to fit the narrowest ad unit would result in a column for nothing else but that
unit. The recommendations mentioned above are a few quite arbitrary choices
from a wide spectrum of possibilities offering layouts of diverse quality. Hence,
layout partitioning for fitting ads requires a more rudimentary study.

In this section layout partitioning for advertisement fit (LPfAF) will be
formulated as a combinatorial optimization problem. This requires formulat-
ing constraints, and optimization criteria. Constructing a good ad placement
requires grasping aesthetic aspects in a formal way, which is always difficult.
However, an attempt to optimize ad placement, and limit bad-looking ad com-
binations will be made. Ad placement optimization has already been considered
in the context of ad display scheduling. A model of “side banners” was proposed
n [3, 73], and extended in [5, 39, 40, 72]. This model assumes that advertise-
ments are packed in a side column, while column sizes are given. When this
model is generalized to multicolumn ad placement, column sizes must be care-
fully selected, because ads may be put in any column, and ad scheduling is
affected by layout partitioning. Though LPfAF problem is related to ad dis-
play scheduling, it is not per se a scheduling problem because there is no time
dimension here. By a far analogy, LPfAF can be compared to factory layout
optimization. To the author’s best knowledge, column width selection for ad-
vertisement fit has never been considered before. Advertisement placement will
be assumed in a way which is similar to guillotine cutting. Though it is pos-
sible to position ads in a different way, guillotine-cut space partition is easier
for the page-building scripts. The operation of cutting a rectangle into two can
be mimicked either with <TABLE> tag, or with <DIV> tag. There is a slight dif-
ference between ad placement and the guillotine cutting. For aesthetic reasons
ads are not supposed to touch each other. Hence, spacing is added around the
advertisements. It is achieved with the padding parameter, both in <TABLE>
and <DIV> tags.

The rest of this chapter is organized as follows. In Section 2.2 the LPfAF
problem is formulated. In Section 2.3 optimization criteria are taken into con-
sideration. Section 2.4 is dedicated to the algorithms solving the problem. In
Section 2.5 benchmark datasets are introduced. Outlines of the solutions ob-
tained by presented method are given in Section 2.6. The last section comprises

conclusions. Table 2.1 summarizes the notation.

15

Symbol Definition

parameters
a number of columns in a layout
be how many times ad unit r. can be used in any combination
mp minimal width of column ¢,, p € {1,...,a}
n number of ad units in the dataset
R={r1,...,rn} set of rectangular advertising units
t,t limits on the number of ads units, resp. ads, in any combi-
nation
page width
We X he dimensions of ad unit r.,e € {1,...,n}
X set of ad units to be used separately
8 amount of space waste acceptable for a combination
decision variables
¢p width of column p, p € {1,...,a}
intermediate variables
d number of admissible ad combinations
F set of all possible layouts
G. = (ciz ,Caz) z-th layout is a vector of a column widths, G, € F
J(ep) set of ad combinations fitting in a column of width ¢p, ¢, € Y
K ={Ki,...,Kq} set of ad combinations
kge the number of times ad unit r. appears in the combination
K,
Ky = (kg1,...,kgn) vector of ad unit multiplicities in a combination, g €
{1,...,d}
s number of column widths worth evaluation
U maximum column width
Vi, Vo, V3 objective functions
wy X My dimensions of combination Ky,g € {1,...,d}
Y ={y1,...,ys} set of feasible column widths

Table 2.1: Summary of notation for the Layout Partitioning for Advertisement
Fit problem.

2.2 PROBLEM FORMULATION

In this section formulation of the LPfAF problem is presented. Let R =
{r1,...,mn} be a set of rectangular ad units. Ad unit r, has dimensions we X he.
All dimensions are natural numbers as they represent screen pixels. We will
denote by W the width of a website. As websites use vertical scroll layouts, the
height is not a constraint here because advertisements can be placed one above
another (cf. Fig. 2.2b). A website is divided into a € {2,3,4,...} columns of
widths ¢1...,¢q. A layout is constituted by the vector G, = (c12z,...,Caz) Of
column widths. Column widths are the decision variables. Each column p can
have a minimum width m, imposed by the webmaster. If not provided, the
narrowest ad unit width minj<.<,{we} should be used. Column widths are

subject to the constraints:

16

a) unit 1 unit 1 b) C) unit 5 unit 4 unit 3 d)

unit 1 unit 1

unit 2 unit 1
unit 2

unit 2
unit 6

unit 2

unit 2

unit 2 unit 2

space
waste

unit 2 unit 2

EEEEE
EEEEE

unit 2 unit 2

Figure 2.2: Example ad units combinations.

Constraint 1: The sum of column widths cannot extend the page width:

> o<W (2.1)
p=1

Constraint 2: To leave enough space for each column, the widest column

cannot be wider than:

u=W — Z my + 1rélz?%<a{mp}. (2.2)

p=1

By joining rectangular ad units vertically or horizontally ad combinations
K = {Ky,Ks,...,K4} are created. Examples of good and bad combinations
are shown in Fig. 2.2. The combinations in Fig. 2.2a,b are advantageous be-
cause they are easily implemented. The combination in Fig. 2.2¢ is difficult to
implement, and aesthetically hard to accept because it looks like a patchwork.
The combination in Fig.2.2d wastes space. Each combination is represented by
vector Ky = (kg1, kg2, ..., kgn) where component k4o denotes how many times
ad unit 7. appears in combination K. The rectangular envelope of ad combina-
tion K4 has dimensions w; X h;. Since set K of ad unit combinations is limited,
it implicitly follows that also the set of column widths worth consideration is
limited.

Ad combinations are subject to constraints mostly of aesthetic nature:

Constraint 3: No combination wider than the maximum column width could
be ever placed, so for each combination K,: w;, < u.
Constraint 4: As mentioned earlier, two combinations can always be placed
one under the other (cf. Fig. 2.2b). However, this does not change fitting
capability. To avoid redundancy in combinations, the height of each combination
K, is limited to the highest ad unit: hj < maxi<e<n{he}.

17

Constraint 5: All ad units have limits by, ..., b, on the number of occurrences
in a combination, i.e. kge < b, for combination K, and ad unit r.. A lack of
such limits, or too large limits, would lead to over-representation of the tiniest
well combining ad units in the results. Such a situation will be discussed in
Section 2.6.1.

Constraint 6: Certain ad units are designed for separate use, e.g., in headers,
footers, or pop up windows. Such ad units can appear only as a singleton ad
unit combination. Let X be a set of ad units designed for the sole use. This
requests that Vr. € X, a combination K, = (kg1,...,kgn) exists such that
kg1 = =kge—1 = kget1 =" =kgn =0,kge = 1.

Constraint 7: No combination can have more than ¢ different ad units:

n
> min{l, kg } <t (2.7)
e=1

This constraint is supposed to eliminate patchwork-like combinations as the
one in Fig. 2.2¢. It has only 7 ads, but 6 different ad units. Conversely, combi-
nation in Fig. 2.2a has 14 ads but only 2 ad units. It looks better and can be
used in a narrow column.

Constraint 8: The number of ads cannot be excessive. This leads to the limit

on the total number of ads in the entire combination Kg:

. ’
Z; kge < min{t',¢ 11;13;(71{196}}, (2.8)

where t’ is an independent constraint value imposing stricter limit on the num-
ber of ads than it results from the earlier b. and ¢ parameters.

Constraint 9: To exclude patchwork-like combinations, a limit of no more
than either one vertical or one horizontal join is imposed. This allows for
combinations that consist of up to two columns of ads (e.g. Fig. 2.2a) or
two rows of ads, and eliminates combinations like the one in Fig. 2.2c with
two horizontal and four vertical joins. Let very, hory be the number of verti-
cal and horizontal joins performed to obtain combination K,. Let K, be ob-
tained by joining combinations K7, K. For horizontal join of K, K, ver, =
max{very,verg: },hory = hory + horgs + 1. For vertical join of K[, K,
hory = max{horg , horg:},ver, = very + vergys + 1. Mathematically, this con-
straint can be expressed as: min{very, hory} < 1.

Constraint 10: Combinations wasting space, like the one in Fig. 2.2d, should

be avoided. Hence, parameter 5, 0 < § < 1 is introduced to limit space waste.

18

Discarded are combinations satisfying:

n
B<1= (> kgewehe)/(whh). (2.10)
e=1
Additionally, when creating combinations, ad units are subject to padding.
Empty space of size o is created around each ad unit. This can be achieved by

adding ¢ to w, and h, at the beginning of the solution process.

Combinations of ads are placed in columns of a layout as shown in Fig. 2.1b.
For each admissible column width ¢, a set of ad combinations J(c,) that fit in
width ¢, can be calculated. Column widths ¢,, and combinations K, € J(cp),
must meet the following requirements:

Constraint 11: By definition, an ad combination fits a column if it is not wider
than the column width: w; < ¢p.

Constraint 12: The ad combination should be wider than half of the column
width, ie. w) > %cp. Otherwise, a larger combination created by joining
horizontally two such combinations should fit the column to avoid space waste.
See the combinations in the left and right columns in Fig. 2.1b.

Constraint 13: Every ad unit r1,...,r, must fit in at least one column of a

website, i.e., maxj<p<q{cp} > we, fore=1,...,n.

2.3 OBJECTIVE FUNCTIONS

In this section objective functions are discussed. LPfAF problem is inherently
multicriterial. There are no standard measures of page layout quality. However,
in the discussions with webmasters three main aspects of layout partitioning

quality for advertisement fit were introduced (cf. Section 2.5.2):

1. A layout should be flexible to accommodate different ad units and their

display organizations.
2. Ad units that are unwieldy should not be discriminated against.
3. Avoid space waste.

These qualitative recommendations need quantitative formulation for optimiza-

tion purposes. Hence, three objective functions are proposed in the following.

19

2.3.1 Max Abp NuMBER FuUNCTION

This function follows a simple logic that a layout capable of comprising many
combinations with lots of advertisements is commodious and flexible. Thus, the

first objective is the number of possible ad units in the layout:

male(cl,...,ca):Z Z ije (2.14)

p=1 K;€J(cp) e=1

2.3.2 MAX MosT DirricuLT TO PAcKk AD UNIT FUNCTION

High value of V; can be built on small advertising units that are easily packable.
On the contrary, units that are wide can be very difficult to fit. But still it
is necessary to place them. This objective can be captured by the minimum
number of fitting possibilities for any ad unit in the solution. Thus, the second

objective is:

max Va(cy,...,¢q) = 1r<nel£1n{z Z kje} (2.15)
= b1 K e (ey)

This function is used for checking constraint 13. Layouts with Va(cq,...,¢,) =0

are invalid.

2.3.3 MIN SINGLE AD WASTE

Due to the lack of ads, some columns may be filled only partially. In the worst
case, only a single ad may be available to put in a column. The waste of space
for a single ad placement can be defined as the remaining free horizontal space.
The inner waste is the space around a sole ad unit in a column of a website.
Thus, it is ¢, — we for ad unit r. and column p. There is also outer waste that
should be taken into account. This is the difference between page width and the
sum of column widths W — ZZ:1 ¢p, multiplied by the number of advertising
units, n, as the waste is calculated for every ad unit. Ignoring outer waste would
lead to a false conclusion that narrowing the layout below W reduces wasted
space. In a multicolumn layout a single advertisement can be put in any of the
columns. By the common sense, it should be placed in the column where the

waste will be the lowest. This leads to the third objective function:
min Vz(c1,...,¢q) = Z min {¢, — we : ¢p > we} +n(W — Zcp) (2.16)
p=1

1<p<a
e=1

The quality of layouts can be compared on the basis of the above three functions.

20

Let F be a set of all feasible layouts. The goal of layout optimization can be

stated as follows:

én%}é{’}/lvl (Czla N ;Cza) + 72‘/2(6217 R cza) - 73V3(Cz17 R cza)} (217)

where c,1,...,c,, are the column widths in the layout G, and 71, 72,73 are
the weights of the objective functions (cf. Section 2.5.2). As the third function
should be minimized, it is subtracted from the sum of the first two functions
that are maximized. The first two functions sum their values over all columns
in a layout. Consequently, their partial scores can be calculated for all possible
column widths once, and then added to evaluate any feasible layout.

Since representing multicriteria problem solution with a single value is as
tempting as it is deceptive, it was decided to construct also Pareto frontiers for
each instance of the LPfAF problem. Thus, the solution algorithm developed in
the following section will give a chance of choosing from a spectrum of nondom-
inated solutions, e.g., the solutions embodying the previously mentioned rules
of art applied to layout partitioning. LPfAF problem is obviously NP-hard
because it comprises, e.g., subset sum and knapsack problems as special cases
[47]. However, in the context of web pages with relatively limited widths and
highly constrained solution set, it is not a key computational constraint. This

will be analyzed in Section 2.6.

2.4 SOLUTION METHOD

In this section methods of finding the best layout partitioning are introduced.

The algorithm works in four stages:
1. Ad units are joined together to create all feasible combinations.

2. A list of valid combination widths is created and the partial scores of the

first two objective functions are calculated.

3. All feasible layout partitions are enumerated. The third objective function,

and the total scores are calculated.

4. The best solution and/or the member of the Pareto frontier are selected

from the list of layouts.

21

2.4.1 CoOMBINING AD UNITS

As described earlier, ad placement is similar to guillotine cutting problem.
Therefore, Wang two-dimensional constrained cutting stock algorithm [122] is
used for finding all feasible combinations. Note that constraints similar to 3, 4,
5 and 10 already existed in the original Wang algorithm. The algorithm uses
the following steps [122]:

1. Set the initial variables L(® = F(O) = R and x = 1.

2. a. Let F*) be a set of all combinations made by joining together com-
binations from L1 vertically or horizontally with respect to con-
straints 4, 3, 8, 7, 10 and 5 (the order is important here).

b. Set L") = L(+=1) y F(®) Remove duplicates from L),

3. If F®) is nonempty, set k = x + 1 and repeat step 2. Otherwise M =

L*==1 ig a complete set of feasible ad combinations.

This algorithm is clearly exponential. In each iteration each pair of combi-
nations can be joined vertically and horizontally. Thus, |L(*)| < 2|L#=D 2 4
|L=D|. Since F(O = R, |FO| = n, and ¢ is the limit on the number of ad
units in a combination, the complexity of the algorithm can be bounded from
above by 0(22#,1“2#)' However, the number of combinations d is in practice
greatly limited by the imposed constraints (cf. Section 2.6).

The main computational disadvantage of this algorithm are combination
duplicates. Duplicates are combinations built of the same advertising units
aligned in various orders in the same direction. Ads order makes no difference
for packability of a layout. Thus, the combinations that differ exclusively in the
ad unit sequence are duplicates (in other words are isomorphic). Checking as
fast as possible for duplicates is a key requirement for usability of the algorithm.

To avoid creating and checking for unnecessary duplicates, few improvements
were introduced. When constructing F*) in step 2a by joining elements from
L= where L+=1) = L(+=2) g F(5=1) " the results will comprise:

I. elements from L*~2) joined with themselves,

II. elements from L(**~2) joined with elements from F(+~1)
III. elements from F*~1 joined with elements from L(*~2),
IV. elements from F*~1 joined with themselves.

Observe that construction I was done in the preceding iteration. Results of
IT and IIT are duplicates. To get only results IIT and IV, F**~1) should be
joined with L(*~1) where L+=1 = L(:=2) y (=1 This gives F*) without

22

duplicates built by the original Wang algorithm. For better performance, con-
straints should be evaluated in the order that prunes the combinations as fast
as possible.

Duplicates can be recognized by comparing vectors of ad unit frequencies
Ky = (kg1,...,kgn) and dimensions hj xwj. To implement it efficiently, numeric
signatures are calculated from K, where each component kg; is represented as a
digit. Number of bits z for such a digit should be selected to represent the largest
expected value b.. For example for b, = 2 two bits per digit are required. The
signatures can be stored as int variables. Then, depending on the size of integer
in the programming environment used, for each 32/x or 64/ ad units (digits) in
the input dataset only one fast int comparison is necessary to check them. This,
plus comparison of the combination envelope sizes suffice for efficient duplicate
recognition.

Another performance improvement for Wang algorithm is checking con-
straints in the order that prunes the combinations as fast as possible. The
algorithm uses the following sequence of checking the constraints: 4, 3, 8, 7, 10,
5. The first three are the easiest to check. These constraints can be quickly
checked for excluding a combination from further joining (e.g. when the width
will not allow to add even the narrowest ad without exceeding page width:
w; > W —mini<e<n{we}). Such combination can be omitted without trying to
join it with all other combinations from L(**~1). Furthermore, if constraints 8,
7 or 5 are not satisfied on horizontal joining, then there is no need to check for
vertical alignment.

The value of ¢’ for constraint 8 can sometimes be set so high that ' =
tmaxi<e<n{be}. In such a case it will not exclude any of the solutions which
would not be otherwise eliminated by constraints 7 or 5. Still, the constraints
should be checked in the presented order. It helps to avoid testing whole
branches of combinations, that would be finally discarded by constraints 7 or 5.
This order provided 12.5% gain in the execution time for the largest dataset.

Finally, constraints 7 and 5 are computationally most demanding and should
be checked as late as possible. The first requires enumeration by the ad units,

and the second needs comparisons for each ad unit.

2.4.2 VALID COLUMN WIDTHS LIST

As a result of the previous step a set of combination widths is obtained. In this
step algorithm constructs set Y = {y1,...,ys} of feasible column widths on the
basis of the combination widths and constraints 11, 12. Violation of constraints
11, 12 effectively eliminates a combination. Objectives V7, V5 change values

only at widths wj and 2wy, for each distinct width wj for some combination

23

Ky, g € {1,...,d}, as below w; and above 2w; combination K, cannot be
placed. Objective function V3 is monotone. By constraint 2 no column can be
wider than w < W. Thus, number s of widths in ¥ is s < min{2d, W}. In
practice s < W because ad unit widths are divisible by 5 and 2. This step can
be done in O(ds) time, including precalculation of partial values of the objective

functions for all the feasible widths.

2.4.3 BROWSING LAYOUTS

In this step the algorithm creates all feasible layouts using set Y of feasible
column widths. As column ordering does not affect packability of the layout,
column widths can be ordered non-decreasingly, i.e., ¢ < ... < ¢, to avoid
browsing duplicate solutions. Note that minimum column widths must also
follow the non-decreasing order, i.e., m; < ... < mg, and thus they determine
the lower bounds on the ordered column widths. Thanks to the column width
order, all acceptable layouts can be enumerated by the following algorithm. For
simplicity of presentation, superscript old is used to refer to values of variables

obtained in the preceding iteration. Remember, that all y,. € Y.

1. Set ¢y =mp foreachp=1,...,a — 1.

Set ¢, = maxy<,<s{yr : yr <W — EZ;} cp}. Set g =a—1.

2. If ¢q—1 < ¢4 record (cq,...,¢,) as a proper layout and calculate values of
the three component objective functions.
Select new ¢, = max;<,<s{¥, : ¥r < c2'?} and repeat step 2.

If such ¢, does not exist, proceed to 3.

3. Set new ¢, = miny<,<s{y, : yr > cgld}.
For each p > ¢ set ¢, = max{my,cp_1}.
Set cq = maxi<p<s{yr 1 yr < W — Z;;i Cp}-
If cg < cqt1 5t ¢ =a—1 and go to step 2.

4. Decrease q by one.
If ¢ > 0 go to step 3.

For s different column widths and a columns there are at most O(s*) possible
layouts. Hence, this step can be executed in time O(ads®), including calculation
of partial scores of the objective functions, involving at most d combinations.
Since in practice a < 4, this algorithm is basically polynomial in s.

Yet, a method of fast browsing column widths worth checking is needed
because the most time-consuming part of the proposed algorithm is searching

in Y for the next greater or smaller value of column width.

24

This can be done by ordering Y by column widths, and then building a vector
of references from any current width y, to the next greater/smaller width. This
vector can be built with a single pass of Y, and will not be memory-consuming
as in practice its cardinality will be much smaller than page width W, where
usually W < 1600 (see Section 6.1).

2.4.4 SELECTING FINAL RESULTS

In the preceding step the algorithm constructed a list of feasible layouts and
calculated their scores in all three objective functions. For the weighted ob-
jective function (2.17), the three objectives were scaled to the common range
[0,1]. Now, selecting the best weighted solution can be done by scanning the list
of solutions. Constructing Pareto frontier is not much more complicated than
this. Each solution has to be compared with the solutions already included in
the Pareto frontier. If one of them is dominated, then it should be removed and
the current solution should be added to the frontier. This procedure can be run

in quadratic time of the number of feasible layouts.

2.4.5 EXAMPLE FOR A SMALL INSTANCE

For better understanding of how the algorithm works here a sample run on an
instance small enough to make it traceable is presented here.

The instance consists of ad units Skyscraper (120x600), Medium Rectangle
(300x250), page width is W = 990, there are a = 2 columns. Input parameters
are set as described in Section 2.5.2 and Section 2.6.1, with the exception of
padding set for clarity to o = 0.

In step 1 of the algorithm (cf. Section 2.4.1) ad units are combined into six
feasible ad combinations shown in Fig. 2.3. Combinations higher than 600px,
e.g. two Skyscrapers joined vertically, are discarded by constraint 4. Constraint
10 excludes combinations with space waste above 10%. For example, Skyscraper
joined horizontally with Medium Rectangle have 41.7% of waste. Combinations
with more than two ad units of the same type are excluded by constraint 5.

In step 2 (cf. Section 2.4.2) combinations widths wj, and double widths 2wy,
serve to build the set of feasible column widths Y = {120, 240, 300, 480, 540, 600}.
By Constraint 2 widths greater than 870px are excluded.

Let vz = >k, (2)es(z) 2ot Kje Tepresent partial score for function Vi and
column width z. Calculation of function V5 is facilitated by vector ¢, rep-
resenting ad unit multiplicity for column width z. Component e of ¢, is
Ore = ZKJ_EJ(@ kje. Data of combination g of width wy is aggregated into

partial scores of v;, ¢, for column widths = in [wj, 2wy). For instance, com-

25

T
1)|w;=120| 2) w;=240 3) w;=300 4) w,;=300
Medium
Rectangle
300x250
o
o
©
x
o
N
5]
Q.
o
&
<
»
T T
5) w;=540 6) w,=600

9% of space
waste

Figure 2.3: Ad combinations for the example instance.

bination g = 2 in Fig.2.3, has ad unit multiplicity vector Ky = (2,0) and can
be placed in columns 240px and 300px wide. Thus, values of vy and vzgg are
increased by the total number of ad units in this combination Y ._, kse = 2.
Furthermore, Ky = (2,0) is added to vectors ¢o49 and ¢3p9. No other combina-
tion fits in width 240 so the partial scores remain voqg = 2 and ¢ag0 = (2,0).
Combinations g = 2, 3,4 in Fig.2.3 fit in column width 300. The partial scores
for width 300 become v3gp = 5 and ¢390 = (2,3). Other combinations and
widths are evaluated in the analogous way.

In step 3 (cf. Section 2.4.3) feasible layouts are created by browsing combi-
nations of the widths from set Y: 120+600=720, 120+-540=660, 120+480=600,
120+-300=420, 240+-600=840, 240+540="780, 240+480="720, 240+300=>540,
3004+600=900, 300+-540=840, 300+480="780, 300+300=600. Layouts not able
to accommodate some ad unit are eliminated by constraint 13. For example,
layout 1204-240=360 has no column for Medium Rectangle (300x250). Layout
objectives V7 and V5 are calculated from the partial scores of the column widths.
For example, for layout 2404+-300=540: V;(240, 300) = Zzzl Ve, = V240 +V300 =
7, and V5(240,300) = mini<c<n{¢240,c + ¢300,e} = min{2+ 2,0 + 3} = 3. To
calculate V3 ad units are tested for fit in the layout columns. In the 2404300

26

layout the Skyscraper (120x600) leaves less waste, i.e. 120px, when placed in
the narrower column. The Medium Rectangle (300x250) fits with waste 0 in the
wider column. This layout is very narrow and leaves 2(990 — 540) = 900px of
outer waste. Thus, V3(240,300) = —120 — 0 — 900 = —1020.

In step 4 (cf. Section 2.4.4) the layouts are compared on the basis of
Vi, Vs, V3. Solution 3004+540=840 is both Pareto optimal and best on the
weighted objective function. It allows for placing ads in V3 = 12 ways, each
ad unit can be placed in at least Vo = 4 ways. There are V3 = —180 — 0 —
2(990 — 840) = —480 pixels of horizontal waste when placing single ads.

2.5 BENCHMARKS

In this section benchmark datasets are introduced. The datasets are of vital
importance for practical solvability of LPfAF problem. A good column layout

can be determined only with proper data on advertisements.

2.5.1 DATA SETS

Ad units of three ad networks were chosen as benchmarks (see Tab. 2.2). The
first network is Google AdSense [51], further referred to as Google. It offers text
ads, graphical banners, and some video ads. They are automatically selected
from a large database on the basis of the keywords. The second is Clicksor [33],
offering an almost equally wide set of ad units, also including text ads, graphical
banners and rich media banners. For most of them Clicksor is using contextual
targeting. Finally, AdBrite [2] is providing the narrowest set of ad units, mostly
graphical and rich media, adding to the contextual targeting some behavioral
and demographic targeting. There are also other advertising methods offered
by the three companies, but studying them is beyond the scope of this thesis.
When it is hard to choose a single ad network, the 18 standard ad units from
the TAB Unit Guidelines [61], seem to be a good choice. A subset and a superset

of the above ad sets will be also used in the following discussion.

2.5.2 WEBMASTER SURVEY

To evaluate website layouts using function (2.17), it is necessary to weight the
component objective functions. Instead of choosing the weights ad hoc, a sur-
vey among the webmasters maintaining websites profiting from advertising was
conducted. The experts were asked to order the three objectives as important,
neutral, or unimportant. Totally 21 replies were obtained. The results are as
follows (cf. Fig. 2.4):

27

g | 8125

n |2 E|alz

. < o = < =
Ad unit wpx) | h(px) | = | O | O | < | @ | b
Micro Bar 88 31 | vV 2
Button 2 120 60 | Vv 2
Button 1 120 90 | vV 2
Vertical Banner 120 240 | V| V| V 2
Skyscraper 120 600 | v | VvV |V |V |V | 2
Square Button 125 125 | v | vV | V 2
Wide Skyscraper 160 600 | v | vV |V |V |V | 2
Rectangle 180 150 | v | V 2
Small Square 200 200 v 2
Half Banner 234 60 | v | V 2
Vertical Rectangle 240 400 | vV 2
Square Pop-Up 250 250 | vV | V| VY 2
3:1 Rectangle 300 100 | v 2
Medium Rectangle 300 20 | vV |V |V |V V| 2
Half Page Ad 300 600 | v v 2
Large Rectangle 336 2800 | vV | V| V 2
Full Banner 468 60 | v | vV | V |V |V | 2
Full page ad 550 350 v *
Pop-Under 720 300 | v *
Leaderboard 728 | v |V |V 2

| Ttems, n \ \ [18]12]10]6 [5] |

Table 2.2: Data sets. Ad unit names come from IAB where possible.
* Ads designed not to be used in groups and thus by constraint 6 excluded from
being combined.

1. General packability V; - was favored by 11 respondents and only 6 pointed

it as not important.

2. Quality of fitting the most difficult ad units V5 - found the least interest,

only 5 webmasters pointed it out as important while 10 as unimportant.

3. Waste of space resulting from placing single ad units V3 - was in the
middle, it got 5 accepts and 5 rejects.

To represent the results in weights, an assumption was made that weights
should start with an equal score, and should be increased or decreased accord-
ingly for the favoring or disfavoring answers. The initial equal score was 100/3.
There were 63 answers for all objective functions. Therefore, the weights were
decreased, or increased, by 100/63 for each positive or negative recommenda-
tion. The results were rounded down to vy; = 42, v, = 25,v3 = 33, for objectives

V1, Vi, V3 respectively.

28

times disfavored times favored

Vi,
11
Vo
5

Figure 2.4: Webmaster survey results.

2.6 COMPUTATIONAL EXPERIMENTS

In this section the results of computational experiments with the above intro-

duced algorithms and datasets are presented and discussed.

2.6.1 INPUT PARAMETERS

Before starting the experiments, it was necessary to choose the input parame-
ters: W - page width, b, - limits to repetitions of ad units r. in combinations,
t - the limit to different ad units in a combination, 8 - acceptable space waste
ratio, o - ad unit padding size, and minimal column widths m,. Such choices
can be very subjective, and probably every webmaster would set them a bit
differently.

For selecting page width W information about web browsers resolutions
is instrumental. As of January 2011 [105] building layouts looking good in
the 1024x768 resolution could be almost abandoned because less than 14% of
Internet users use such resolution. Over 82% of browsers can display properly
websites prepared for width of 1280px, while those capable of displaying 1440px
or more, were still a minority. Let us remind, that browser elements like frames
and a vertical scroll bar take at least 20-30px. Thus, W = 990px was chosen
for two column, and W = 1250pz for three and four column layouts.

The most difficult choice was the value of b.. For some ad units b, cannot
be set to more than 2. The skyscraper ad units (see Tab. 2.2) can be joined
only horizontally due to constraint 4, and putting more than two in such a way
would be neither acceptable nor aesthetic. The same applies to Banner and

Leaderboard, only with respect to vertical joining and constraint 3. After the

29

analysis of the preliminary results, it has been concluded that large changes in
the results follow from small changes of b.. Using b, > 2 for some ad units ends
with overflow of combinations constructed of these units, and their great over-
representation in the results. An easy way to get a flood of such poor results
is to set larger b. values for the smallest ad units, e.g. the first three in Tab.
2.2. These ad units are too small to violate the combination size constraints 3
and 4, which results in production of an enormous number of combinations. Up
to extra 400% of such combinations were observed in the preliminary tests. It
should be noted that the three smallest ad units are not very important because
they appear in IAB standard only, and are marked as obsolete. Nowadays they
are used mostly for advertising exchange [83], logos, and are rarely seen in
practical advertising. Thus, b, = 2 was set for all ad units.

Limit ¢ = 4 of different ad units in a combination was used. Several other
values from 2 to 8 were tested. For values greater than 4 the algorithm produced
many patchwork combinations like the one shown in Fig. 2.2¢, without notice-
able improvement in results quality. Space waste limit was set experimentally
to 8 = 10%. This was a difficult choice, as most webmasters would probably
accept displaying ad combinations with far more waste. However, such small
0 reflects good quality layout partitioning. The value of 8 not only limits the
waste in the final combinations, but also eliminates combinations from further
joining, greatly affecting the search space, as will be shown further. The choice
of padding size o is purely aesthetic. It does not affect computational complex-
ity, if kept reasonably small compared to ad unit sizes. Value of o = 2 pixels
was used. Minimum column widths m, were set to the width of the narrowest
ad unit in each used set. Two largest ad units, Pop-Under and Full page ad,
(marked with “*” in Tab. 2.2) are included in set X. By constraint 6 they are
excluded from being combined. This reflects their purpose of working outside
any combinations or even outside column layout, as their names suggest.

Figure 2.5 shows the effect of parameters W,t,b., 3 on the execution time
of the algorithm and the number of feasible ad combinations for the Google
dataset. Parameters b, and (heavily influence both these factors. With the
increasing number of feasible combinations, also the number of layouts in the
Pareto frontier is increasing. Selecting input parameters inadequately, as dis-
cussed above, can lead to very dense Pareto frontiers with solutions differing by

single pixels, usually in the widest column.

30

740 . o 740
637 <o o) S
524 34 11,6 ra o o
* o 9,8 10
O 8,8 <o o
O 7 2
o s w0 g
34 3,7
00,38
W=1050 W=1150 W=1250 W=1350 W=1450 t=2 t=3 t=4 t=5 t=6
[
¢ feasible combinations 4094 o
O~ execution time 183,5
2543
2254 o
PN 1931
1567 P
<o
740 O 44,9 740 O 43,7
4 O39,1 ’ 203 4 ’
93 07222 63
— 60307 601808 07
be=1 be=2 be=3 be=4 be=5 B=1 B=5 B=10 B=15 B=20

Figure 2.5: Impact of input parameters on the execution time (seconds) and the
number of feasible ad unit combinations (Google dataset was used).

2.6.2 EXECUTION TIMES

The algorithm presented in Section 2.4 was tested on a computer with Athlon
64 2.4Ghz processor and with RAM limited to 512MB. PHP programming lan-
guage was used to allow future transforming this work into an online decision
support tool. The tool was created later is available here [41]. Table 2.3 presents
execution times for the most difficult case - three columns layout with W = 1250
for all data sets. As it can be seen, despite using exponential algorithms, the
execution times are not particularly long and can be accepted in practice, es-
pecially if one takes into account that computations are performed once at the
website design stage. Table 2.3 also shows the number of feasible combinations

and the number of combinations that were examined.

2.6.3 LAYouT PARTITIONING RESULTS AND DISCUSSION

Basic results for the given problem, that will be discussed here are presented in
Table 2.4 and Table 2.5. Full results are attached as Appendix A, at the end of
this dissertation. For each dataset and number of columns, there is a separate
set of results consisting of the objective functions ranges, the best weighted

result and selected results from Pareto frontier. Due to the size of most Pareto

31

Stage I | Stage IT | Stage III | Stage IV S:g;i}; combf:;ifrllz
subset 0.004 0.009 0.002 0.001 562 23
Adbrite 0.004 0.010 0.002 0.001 612 24
Clicksor 1.476 0.577 0.108 0.086 144 610 386
Google 5.016 1.663 0.200 0.166 530 922 740
IAB 92.200 13.661 0.510 0.383 9 340 506 3120
Superset | 140.158 20.444 0.677 0.520 | 14 120 750 3 836

Table 2.3: Algorithm execution times in seconds, search space size and the
number of feasible combinations found.

frontiers, only the layouts with the best scores for one of the three objective
functions are shown in Table 2.4. Each entry consists of column widths with
the total layout width, values of the three objective functions and the value
of the weighted linear function. For example, consider the results of Google
dataset for three columns layout and W = 1250. Ranges of the three objective
functions were respectively [1663,2571], [16,28], [-7539,-1723], making the range
of the values 55%, 756%, 438% of the lower end (in the terms of absolute values).
Thus, the objective functions are sensitive to the layout construction. Full
results can be found in Appendix A.

Table 2.6 shows the cardinality of Pareto frontiers for all the datasets. The
number of solutions in the Pareto frontier can be an indicator of flexibility in
constructing good layouts. An interesting observation can be made on Adbrite
dataset (it applies to the subset as well). Adbrite contains the fewest ad units.
It has two wide units, two tall units and only one rectangle. Hence, making
good combinations is very difficult. For example, there were only five feasible
solutions for Adbrite, two columns, and W=990px. This resulted in only one
solution in the Pareto frontier, for all Adbrite instances. Clicksor ad units offer
far greater flexibility in use, while Google flexibility is even better. Observe
that for two column instances, which were the least packable because of the
small width, the Pareto frontier cardinality grows slower from Clicksor to the
superset than the number of ad units in the datasets. Furthermore, the number
of feasible combinations and the cardinality of Pareto frontiers of IAB and the
superset may be a sign that these sets are too large. In effect they are difficult
to use. Their subset should be more manageable in practice.

The Adbrite results for two columns are the same as for the ad hoc “bread
and butter design” approach described earlier. “Bread” is set to the widest
add plus padding, the “butter” is given the rest. For three and four column
layouts, the Adbrite results differ from the ad hoc approach solutions, but still
are close to it. The results for the richest sets: IAB in the two column instance
and the superset for two and three columns are of similar nature. Clicksor and

Google best weighted results show less similarity to the results of the ad hoc

32

subset, W=990, 2 columns

Vi € [42,47), Vo € [7,7], V3 € [—2534, —1914]
248+732=980; 47, 7 , -1914; 100.0

subset, W=1250, 3 columns

Vi € [39,55], Va € [5,7], V3 € [—2606, —858]
164+3284-732=1224; 55, 7 , -858; 100.0
subset, W=1250, 4 columns

Vi € [44,50], Vo € [7,7], V3 € [—1986, —858]
164+1644164+732=1224; 50, 7 , -858; 100.0
AdBrite, W=990, 2 columns

Vi € [43,48], Vo € [7,7], V3 € [—2846, —2102]
2484-732=980; 48, 7 , -2102; 100.0
AdBrite, W=1250, 3 columns

Vi € [40,56], Va € [5,7], V3 € [—3054, —1062]
164+3284-732=1224; 56, 7 , -1062; 100.0
AdBrite, W=1250, 4 columns

Vi € [45,51], Vo € [7,7], V5 € [—2310, —1062]
164+1644164+732=1224; 51, 7 , -1062; 100.0
Clicksor, W=990, 2 columns

Vi € [735,1123], V2 € [16,20],

Vs € [—5833, —4493]

164+816=980; 1012, 20 , -5433; 64.8

Clicksor, W=1250, 3 columns

Vi € [739,1386], V> € [15,25],

V3 € [-5977, —1655]

1844-254+4-812=1250; 1044, 24 , -2153; 71.5

Clicksor, W=1250, 4 columns

Vi € [743,1147], V2 € [16,22],

Vs € [—4737, —1280]

124+1244184+-816=1248; 1026, 22 , -2073; 79.9

Google Ads, W=990, 2 columns
Vi € [1659,2181], V, € [18, 25],

V3 € [—7123, —5515]

248+742=990; 1769, 25 , -5635; 64.4

Google Ads, W=1250, 3 columns

V1 € [1663,2571], V, € [16, 28],

Vs € [—7539, —1723]

184+4-254+812=1250; 2150, 26 , -3335; 67.2

Google Ads, W=1250, 4 columns

Vi € [1667,2205], Vo € [20, 25],

V3 € [-6051, —1344]

1244-129+4-254+742=1249; 1834, 25 , -1358; 70.9

IAB, W=990, 2 columns

V1 € [7033,10453], Va € [37,51],

Vs € [—11183, —8195]

258+732=990; 10441, 37 , -8195; 74.9

IAB, W=1250, 3 columns

Vi € [6495,13601], Va € [37,72],

V3 € [—13567, —2990]

164+4-258+828=1250; 10301, 69 , -5275; 71.2

IAB, W=1250, 4 columns

V1 € [6600,11477], V2 € [37,53],

Vs € [—11911, —2125]
924-92+4-254+812=1250; 9715, 50 , -3335; 76.1

superset, W=990, 2 columns

Vi € [8979,12475], V, € [39,51],

V3 € [—12221, —8901]

258+732=990; 12467, 39 , -8901; 74.9

superset, W=1250, 3 columns

Vi € [7904,16708], V2 € [39,72],

Vs € [—14941, —3225]

129+3884-732=1249; 16708, 39 , -5303; 69.1

superset, W=1250, 4 columns

Vi € [8308,14280], Va € [39,57],

V3 € [—13101, —2419]

92+4-92+4-254+812=1250; 11804, 55 , -3643; 76.0

Pareto frontier:
248+4732=980; 47, 7 , -1914; 100.0

Pareto frontier:

164+328+732=1224; 55, 7 , -858; 100.0

Pareto frontier:
164+164+164+732=1224; 50, 7 , -858; 100.0

Pareto frontier:
248+732=980; 48, 7 , -2102; 100.0

Pareto frontier:
164+4-328+732=1224; 56, 7 , -1062; 100.0

Pareto frontier:
1644-1644164+4-732=1224; 51, 7 , -1062; 100.0

Pareto frontier (selected results):
124+864=988; 1123, 17 , -5833; 48.2
164+816=980; 1012, 20 , -5433; 64.8
258++732=990: 783, 16 , -4493; 38.2

Pareto frontier (selected results):
129+4-1294991=1249; 1386, 15 , -4507; 53.2
129+4-304+-816=1249; 1082, 25 , -3282; 67.8
254+258+737=1249; 836, 17 , -1655; 44.3

Pareto frontier (selected results):
124+1294-1294-864=1246; 1147, 19 , -3638; 65.0
1244-1244-1844-816=1248; 1026, 22 , -2073; 79.9
129+1204-254+4737=1249: 813, 17 , -1280; 44.4

Pareto frontier (selected results):

1244-864=988; 2181, 18 , -7123; 42.0
2484742=990; 1769, 25 , -5635; 64.4
258+732=990; 1807, 23 , -5515; 62.8

Pareto frontier (selected results):

129+1294-991=1249; 2571, 16 , -6049; 50.5
1294-3404-762=1231; 2049, 28 , -4204; 61.8
2544258+737=1249; 1926, 24 , -1723: 61.8

Pareto frontier (selected results):

124+129+129+864=1246; 2205, 20 , -4932; 49.8
124+4124+258+4-742=1248; 1846, 25 , -1519; 70.7
1294-129+4-258+734=1250; 1824, 23 , -1344; 60.3

Pareto frontier (selected results):

254+732=986; 10453, 37 , -8267; 74.2
164+820=984; 8339, 51 , -9887; 55.4
258++732=990; 10441, 37 , -8195; 74.9

Pareto frontier (selected results):
1294-3834-732=1244; 13601, 37 , -4685; 69.7
924-3134-842=1247; 10714, 72 , -9479; 62.7
254+258+737=1249; 12013, 38 , -2990; 66.3

Pareto frontier (selected results):
129+1294-2544-732=1244; 11477, 37 , -2295; 74.4
129+129+129+852=1239; 9536, 53 , -6215; 69.5
02+02+304+761=1249; 9887, 41 , -2125; 67.6

Pareto frontier (selected results):
254+732=986; 12475, 39 , -8981; 74.2
1644+-820=984; 10277, 51 , -10781; 54.9
258+-732=990; 12467, 39 , -8901; 74.9

Pareto frontier (selected results):

129-+3884-732=1249; 16708, 39 , -5303; 69.1
924-333+824=1249; 13636, 72 , -10029; 66.2
254258+737=1249; 14104, 40 , -3225; 63.3

Pareto frontier (selected results):

924924-333+4-732=1249; 14280, 39 , -2695; 74.1
92+4-92+4-248+4-816=1248; 10761, 57 , -4217; 69.7
924-924-3044-762=1250; 11943, 45 , -2419; 66.9

Table 2.4: Layouts for selected test cases

33

AdBrite, W=990, 2 columns Pareto frontier:

Vi € [22,46], Va2 € [3,6], V3 € [—2712, —1272] 328+-632=960; 46, 6 , -1692; 90.4
3284-632=960; 46, 6 , -1692; 90.4 4124576=988; 35, 3 , -1272; 55.8
AdBrite, W=1250, 3 columns Pareto frontier:

Vi € [23,56], V2 € [3,9], V3 € [—2962, —508] 124+4724+632=1228; 56, 9 , -1144; 91.4
164+4724+608=1244; 53, 9 , -564; 95.4 164+4524+632=1248; 54, 6 , -616; 83.5

164+472+608=1244; 53, 9 , -564; 95.4
164+496+576=1236; 41, 6 , -508; 68.4
304+4328-+608=1240; 50, 6 , -560; 79.2

AdBrite, W=1250, 4 columns Pareto frontier:
Vi € [24,49], V5 € [3,6], V3 € [—2342, —232] 1244164+328+632=1248; 49, 6 , -272; 99.4
1244164+328+632=1248; 49, 6 , -272; 99.4 164+164+328+592=1248; 40, 3 , -232; 59.9

Table 2.5: Results without Leaderboard ad unit

No. of Feasible layouts \ Pareto frontier
Dataset | ad units | 2 col. [3 col. [4 col. | 2 col. | 3 col. | 4 col.
subset 5 5 23 7 1 1 1
AdBrite 6 5 23 7 1 1 1
Clicksor 10 102 1296 356 7 21 11
Google 12 146 | 2123 537 9 39 11
IAB 18 225 | 4069 1905 10 53 26
superset 20 264 | 5066 | 2329 12 72 21

Table 2.6: Datasets flexibility comparison - cardinality of feasible layouts and
Pareto solutions.

approach. There are also many good alternative solutions in Pareto frontiers of
all sets except Adbrite. The similarity to the ad hoc results is caused by the
Leaderboard, the widest ad unit (728px wide). With padding o = 2 it requires
columns at least 732px wide. The subset and the AdBrite results are all built
on this width, and it appears quite often in other solutions. The Leaderboard is
known among webmasters as difficult to fit, but it is very popular and cannot be
removed by the ad networks. However, if a webmaster choses to use it outside
the column layout (e.g. in a page header or footer) then different solutions
are obtained. Example results for Adbrite without the Leaderboard are shown
in Table 2.5. Now column widths are completely different than for the entire
dataset. Also Pareto frontiers give more options by offering 2, 5, and 2 elements

for two, three, and four columns, respectively.

34

2.7 CONCLUSIONS

In this chapter web page layout optimization for advertisement fit has been
studied. A big part of the study was dedicated to mathematical modeling of
the problem including its aesthetic consideration and then providing algorithms
able of solving it. Though the solution method is exponential in general, in
practice it runs in acceptable time of several minutes.

As it could be expected different sets of layouts result from different page
widths and datasets. Moreover, every webmaster would configure input param-
eters differently. Thus, it would not be valid to provide here a set of universal
web page layouts. Rather, there is a need for automated tool constructing the
layouts for practical use. Example of such application was implemented on basis
on this research by students as their engineering thesis under supervision of the
author [41].

Another direction of further research on web page partitioning might be in-
clusion of statistical data on real-world usage of particular ad types into similar
research project. Analysis of the layouts produced with the use of such data
could be a starting point to constructing some new general rules on optimized
layout partitioning. Conversely, it could result in the conclusion that general-
ization here is not possible, and tailored optimization should be always used.

Not only layouts can be evaluated, but also the sets ad units from advertising
networks. It follows from the results that AdBrite’s ad unit set should be
extended, while IAB ad unit set does not seem to provide additional flexibility
matching its size, and thus can be cumbersome in use. A reversed research on
the ad unit sets could suggest what kind of element should be added to a set,
to provide the biggest improvement in usability, or what kind of element should
be removed from a set without loss of flexibility. Ultimately, such algorithms
could be used to construct from scratch a set of ad units that would be highly
optimized for ease of fitting into web pages.

An important remark here is, that web page layout optimization can be seen
as partitioning of two-dimensional space, but in one dimension only. This leads
to a conclusion that problems of similar nature can be solved along the lines
developed for LPfAF problem. For example, paper rolls are stripes produced by
paper mills with big width dictated by the width of the production machinery.
The wide rolls are cut into standardized width rolls for transportation and
distribution. The standardized rolls are some kind of legacy. Instead, the widths
could be optimized according to distribution of page formats cut from rolls. The
roll width optimization could be done in a similar way with roll (column) widths

adjusted to page formats used for printing (ad formats). Consider port container

35

terminals as another example. Assigning berthing space to ships would mean
partitioning terminal space in the dimension perpendicular to the quay. Here
quay partitioning optimization could consider parameters of the ships like width,
capacity, importance, but also a time factor of arrivals or processing.

Hence, time can be also the second dimension if one would like to consider
optimization of partitioning quay into berths. Berths are sections of quay used
to host single ships. Both berths and ships can be considered as one-dimensional
objects having only lengths. However, time of using the berth would add the
second dimension typical of scheduling problem. Then, the problem of selecting
berths widths can be considered as optimization problem similar to the one
presented in this chapter.

In this research layout partitioning which is only one element in the process
of constructing web pages was addressed. Thus, further research should be
conducted into the other aspects of web page layout optimization. For example,
graphical content selection, processing, and geometric positioning are interesting
research topics. It can be concluded that e-commerce and web applications offer

new fields of study in operations research, sometimes involving aesthetic aspects.

36

3 TaAc CLouD CONSTRUCTION

3.1 Tac CLOUDS

In this chapter methods for building aesthetic tag clouds for use on websites
will be proposed.

Basically, tags are phrases representing textually some set of objects. Tags
can be, e.g., words and phrases summarizing content of a web page. These can be
also the most frequent tags in social media, labels for best-sellers in marketing,
keywords in news or in scientific publications. Each tag (a word or a phrase) has
certain importance which is expressed in relation to other tags. Typically, tag
importance is given as a number. A tag cloud is a graphical depicting of the tags
projected onto a plane. A key requirement is that tags with high importance
should be prominently visible in the tag cloud. Commonly, important tags are
simply bigger. An example tag cloud from Flickr website is shown in Figure 3.1.
There are various forms of tags and tag clouds. For instance, there are hashtags,
data clouds, text clouds. A hashtag does not have to be a proper word or a
phrase in some language. It can be an abbreviated word, an acronym, or any
sequence of characters. Hashtags originated from tags and tagging popularized
by Twitter. Hashtag was even chosen a ”Word of the year 2012” by American
Dialect Society [4]. Tag clouds can be built from hashtags as well. Data clouds
or text clouds are specialized forms of tag clouds visualizing numerical data
or word frequencies. In the further discussion, generic terms of a tag and tag
clouds will be used.

The aim of this reasearch is to solve the problem of constructing visually
acceptable tag clouds for web pages. The first step in tag cloud creation is
preparation of tags themselves: tag/phrase selection and weighting (e.g.[46, 78]),
clustering (cf. [82]), etc. Here it is assumed that the set of tags is given and
their rendering in two dimensions is studied. Methods of digesting the text and

extracting the tags rest in text mining area and are beyond the scope of this

37

research. The problem of rendering the tags into a tag cloud is formulated here
as a combinatorial problem with specific objectives and constraints. Further
organization of this chapter is the following. In Section 3.2 tag clouds in gen-
eral and tag clouds for websites are discussed. Approaches, algorithms, design
options and the choices taken in the past are surveyed. Requirements for tag
clouds in the web usage are discussed. Section 3.3 provides a mathematical for-
mulation of the Tag Cloud Construction Problem (TCCP). Algorithms solving
the problem are introduced in Section 3.4. Results of the computational exper-
iments are outlined in Section 3.5. The notation used throughout this chapter

is summarized in Table 3.3.

3.2 PROBLEM ANALYSIS AND RELATED WORK
SURVEY

Although tag clouds seem to be a modern invention, their origins can be traced
back at least to 1976 [94]. Early tag clouds history is outlined in [118]. Around
2003 they gained a wide usage over the Internet. In 2006-2009 they became
bloated, overused by many web-designers without considering whether they fit
the purpose. Consequently, they were criticized and their application declined.
Currently, a new generation of tag cloud approaches and applications is proposed
and tag clouds can be seen where they fit well. Thus, tag clouds seem to
follow the hype cycle [45] and they slowly reach the productivity stage. Many
approaches to the tag cloud construction have been used in the past. In this
section tag clouds are classified, as well as, the results of the studies on tag cloud
formation and usability are outlined. Then, requirements for tag clouds to be
used over the Internet are discussed. Finally, the requirements and status quo

in web browsers as a platform for rendering tag clouds are studied.

3.2.1 TAG CLOUD TAXONOMY

There are several design choices determining appearance and usability of tag

clouds. In particular, these are:

1. How tags are sorted. The options are: alphabetically, by importance, by
context, randomly, packing-decided. The last means that tags may be
reordered for better packing quality. Sorting by context means that tags
are placed in groups connected, e.g., semantically, lexically, or in some
other way specific to the field of application.

38

animais architecture @It asia australia auumn baby band barceiona DEACH beriin bike bird birds

birthday black blackandwhite blue bw california canada CanNON car cat chicago
china christmas church City clouds color cONCert dance day de dog england europe fai

family fashion festival film florida flower flowers food footan france friends fun
garden geotagged germany girl graffiti green nhaiioween hawaii holiday house india

instagramapp inone iphoneography e e italy japan s
lake landscape light live [ONAON e macro me mexico model museum MUSIC Nature

new Newyork newoiciy Night NIKON nyc ocean oa paris park party people
photo photography photos portrait raw red river rock san sanfrancisco scotland sea

seatie show Sky snow spain spring SQUAre squareformat street
SUMMEr sun SUNSet taiwan texas thailand tokyo LFAVE! tree trees trip UK unitedstates
urban USA vacation vintage washington Water Wedd|ng white Winter woman yelow zoo

Figure 3.1: Tag cloud from Flickr instance in Table 3.4.

c
o
li nyc 2,
] Ve Z%m =e
< >‘seatt|e f?ﬁf\/nw-c —fazhion old JV:18--9ber|in gu
O Shthiny = S £gérmany gse5trees 8@
oc o uIititay 9.9 -ty Wsun e = SNOW SE island
iy (qv] «© E artf ncqu_c-cca_lta‘llju Ueurope gar dentexascar
hawaiias (O ;_sanfranusco k=5 S0 <8 ahewg Wi nterC|ty -
2= D hiteH KON PE S<0: 02 U = oz, £5OR S3EE 2
8‘0.)30.) ow Itenul Onuu— SEQ.%E‘_‘SQ = L%'J:OLJ-—C%’ O%E’; 5,
=253 SfAPantiphoneographySice=s5 b5t
23w gjapanip rapnNysi.sc 5ot Youss
e gt SRR oS g andey 558 0.8 5 2 2
) O 7
instagramapp raiwangWyork spaini sg o g> =
feSthlvarll?‘saa)rtyL blackandwhltesq ua efo rmatg ablac
selllé:v%; Uﬂig «E iphone = >‘ £ waters¥ Fo) fam|ly9raff,; idog
fall¥ 5= g Ounitedstatesrs £ bandmr:s tOkYO-Dstreet =
7 SE&ssshows &5 AWEQT 2
glalgem 5 Siovescotiand & asia’e Cb"ds ’—; =
“museum® O £

Figure 3.2: Flickr instance in Table 3.4 rendered by Wordle.

2. Shape of the entire cloud. Possible options: rectangular, other regular
(e.g. circular), irregular, given (e.g. given polygons, map borders used for
visualization). Regular shapes may also have a ragged margin, which is

often considered a typographical defect resulting from bad text justifying.

3. Shape of tag bounds. Options: rectangle, or character body. The former
means that bounding boxes of the tags rendered in some given font are
used. The latter means using the shapes of the characters in the given
font. This allows for tighter tag alignment using free space around the
letter bodies.

4. Tag rotation: none, free to rotate, allowed with limited degrees of freedom.

39

1. Tag 2. Cloud 3. Tag 4. Tag 5. Vertical

Source ordering shape shape rotation alignment
Flickr (2004) alphabetical ragged rectangle rectangle none baseline
65]Kaser (2007) packing rectangle rectangle none free
65]Kaser (2007) context ragged rectangle rectangle none limited
74]Kuo (2007) alphabetical ragged rectangle rectangle none baseline
46]Fujimura (2008) context irregular rectangle none limited
108]Seifert (2008) packing ragged polygon rectangle none free
119]Wordle (2009) random or irregular font body from none free

alphabetical to free
37]Cui (2010) context irregular rectangle none free
98]Nguyen (2010) alphabetical given borders rectangle none background
66]Kim (2011) packing irregular rectangle none baseline
21]Burch (2013) context ragged regular rectangle none limited
27]Cheng (2014) context irregular rectangle none limited
78]Lohmann (2015) context elipsoid rectangle none free
28]Chi (2015) random given borders rectangle from none free

to free

This research packing rectangle rectangle none baseline

Table 3.1: Summary of packing choices in tag clouds (See Section 3.2 for details)

5. Vertical tag alignment. Options: sticking to the typographical baselines,
limited by the algorithm properties (e.g. some tags are grouped), free -
possibly leading to 2-dimensional packing, forced by the tag cloud back-

ground (e.g. a given heat map).

The consequences of the design decisions can be compared in Figures 3.1
and 3.2 (cf. the design decisions outlined in Table 3.2.1). There are still further
design-choices possible. For instance, it is possible to use differing colors or
fonts (typefaces, sizes, weights and styles). Here it will be assumed that fonts
are determined in the tag preparation step (for example, chosen by the web
designer), and hence given as input. Note that use of colors to distinguish tags
may be a bad idea for users with color-impaired sight. Thus,it can be assumed
that tags are essentially monochromatic on a contrasting background (e.g. black

on white).

3.2.2 RELATED WORK

Since the very start tag clouds construction attracted interest of researchers.
Kaser and Lemiere [65] experimented with two types of tag clouds. Firstly,
they considered building baseline tag clouds with the criteria of height and bad-
ness. The badness was similar to the measure developed for TeX [67] which is a
sum of the free space at end of the line but also above the tags of smaller height.
They were testing variants of Next Fit Decreasing and First Fit Decreasing [128]
against random and alphabetical placement. Secondly, they proposed an idea of
adapting min-cut placement floor planning algorithm minimizing cloud height
for fixed width. They used nested tables for slicing floor plans, with grouping

of strongly related tags. The criteria were area of bounding box and distance of

40

related tags. Kuo et al. [74] presented application of a tag cloud to summarize
results of a query over a database. Their tag placement algorithm is very simple,
tags are placed alphabetically and automatic line breaking shapes it into ragged
rectangle. Fujimura et al. [46] proposed a metaphor of generating a topograph-
ical map to visualize large tag clouds (5000 tags, 10000x10000 pixels), where
height on the map reflected tag importance. They used a genetic algorithm
while the rank of each tag defines equivalent of its repulsion force. Seifert et al.
[108] worked on fitting tag clouds into convex polygons, allowing limited font
changes and tag truncation. Their algorithm partitioned the polygon area on
every tag placement, and a technique of prioritization was used to keep these
regions compact. Four versions of the algorithm were tested for best usability
and aesthetic effects. Wordle [119] is a well-known web-based text visualizing
tool. Wordle allows to choose several parameters like rotation or sorting, but
always justifies tags to shapes of characters and outputs irregular tag clouds.
Wordle uses randomized greedy algorithm that starts with tags placement at
positions determined by its internal rules and user input settings. Then, start-
ing from the tags in the middle of the cloud it iterates by colliding tags and
searching for feasible positions on a spiral path around the cloud. To speed up
the collision detection it uses hierarchical bounding boxes for tags, spatial index
for tags already placed and ordered checking of collisions starting with tags that
collided in the previous check. Cui et al.[37] used tag clouds to illustrate tempo-
ral evolution of tags and their contexts (e.g. semantic relations such as common
word roots). They proposed tag clouds keeping the tags linked by the context
together and coloring tags to visualize trends in time (such as tag appearing
and disappearing over time). Their algorithm uses Delaunay Triangulation to
build a graph for the initial tag placement and adaptation of force-directed al-
gorithm to compact the cloud while preserving contextual links. Nguyen and
Schumann [98] applied tag clouds fitting into map shapes to support exposition
and exploration of geo-tagged data. They placed median tag in a calculated
center of the shape, and the remaining tags in rows to fit the silhouette of the
shape vertically. They allowed scaling and flexible adaptation of tag sizes, with
limitations, to improve fitting. Kim et al. [66] applied graphs, where both
nodes and edges were tag clouds, to show relationships between entities of text
corpora. Their algorithm places tags in the free space as close as possible to
the centers of nodes for node clouds, and as close as possible to centers of edges
for edge clouds, respectively. While positioning tags the algorithm partitioned
the remaining space into up to four rectangles which were later used for placing
the following tags. Burch et al. [21] introduced the idea of prefix tag clouds.
They built prefix trees to group words that share roots. The prefix trees were

first visualized as tag clouds stretching to the right from the root prefix. Then

41

prefix tree clouds were positioned along a spiral path and moved as far as needed
from the spiral center to avoid overlapping the previously placed tags. Cheng
et al. [27] applied tag clouds with a similar goal of grouping synonyms. Their
algorithm placed synonyms as a column around the most popular word from
the group. The most popular synonym was visualized as the largest. Then,
the groups were bundled into the cloud. Lohmann et al. [78] proposed word
clouds on concentric circles where appearance of words in sections visualizes re-
lationships between documents. Tag placement is done along concentric circles
starting from the center with words ordered by decreasing frequencies. It was
allowed to omit words that cannot be placed well. Chi et al. [28] are placing
sets of tags into evolving or morphing silhouettes to present how text or data
is changing in time. Tags are placed by use of rigid body dynamics with a
set of constraints to obey the required bonduaries, orientation, position, unifor-
mity, etc. Tag design choices made in the above papers are summarized in the
Table 3.2.1.

3.2.3 Tac CLouD USABILITY STUDIES

Results of the studies on the effect of tag clouds on the user experience and pro-
ductivity have been reported in [8, 54, 79, 106, 108, 120]. According to [106], the
tasks supported by tag clouds are: searching, browsing, impression formation,
and recognition/matching. The last one means verifying whether the tag cloud
is representing a particular subject. Note that only searching is a goal-oriented
task, while the remaining ones are rather free browsing tasks. Outcomes from
an experiment measuring time necessary to find a certain tag, are reported in
[54]. It has been found that alphabetically ordered lists are actually faster to
search than tag clouds. The authors also concluded that users scan rather than
read tag clouds. A different approach has been used in [108]. The users have
been asked to point out three most important tags and the coincidence of their
decisions with the actual tag ranking has been measured. Although the results
were partially inconclusive because they depended on the variant of their algo-
rithm, it can be judged that simple visualization methods, few tags, and pruning
less important tags help in shortening reaction time. Yet, the resulting clouds
are not necessarily considered beautiful. In [106] it has been concluded that font
size and tag location affect low-level memory processes, while layout impacts
the high-level ones, such as impression formation. In the study described in [8]
font-related parameters were tested, leading to the conclusion that larger and
stronger fonts draw more users attention. Font color, though well recognized,
incurs difficulties in assessing importance. Authors of [79] conducted a study

on the performance of executing certain tasks on various cloud layouts. They

42

confirm the earlier findings of [54] that locating a specific tag is fastest with
alphabetical sorting and that users are scanning rather than reading. Yet, their
other experiments show that for finding the most important tags, recalling tags,
etc. cloud layout plays an important role. Walhout et al. [120] compared navi-
gation on tag clouds with hierarchical menus by capturing eye movements and
logging task performance. They found that tag clouds lead to more focused
search without impairing task performance, resulting in fewer page revisits.
The above presented research was focused on goal-orientated tasks, which
are easier to measure, as opposed to free browsing. Browsing is an important

application of tag clouds in the web.

3.2.4 TaG CLOUDS FOR THE WEB

In the above account on the state of the art only two papers consider factors
important for website use. Tag clouds for websites have to meet a set of addi-
tional requirements. Website space is always rectangular and scarce so it should
be used wisely. All tag clouds in the web, even the irregular ones, are finally
displayed on a rectangular space of some computer interface. Thus, fancy non-
rectangular shapes waste space around the cloud. This gives a preference to
tag clouds filling a rectangular envelope well. As websites usually use column
layout [86], horizontal size of a tag cloud (i.e. width) is usually fixed, while the
vertical size can be changed by moving website components below the tag cloud
a little up or down.

A tag cloud for a website should use standard technologies, making a rea-
sonable trade-off between fancy looks and the simplicity of the code. This has
two reasons: Firstly, it is a matter of the ease of implementation. Secondly,
not only humans read websites and making website content accessible to the
robots is of great importance in search engine ranking [87]. Thus, tags must be
robot-readable. Consequently, tag clouds must be available as text on the web
page. Using HTML, CSS and JavaScript (JS) for coding tag clouds is a natural
decision here, because these are the technologies commonly used in web page
development. This implies some of the further choices: Though the use of exact
tag shapes or tag rotation are possible in most modern browsers, they are not
standard and cannot be guaranteed to work well and look in the same way for
every client, especially mobile one. Wordle which is using exact font shapes and
rotated tags can output tag clouds only as images. Making such tags clickable
(i.e. assigning links to tag areas) on a website would be a real challenge. Hence,
the use of exact font shapes and tag rotation should be discouraged. The same
argument can be applied in preferring the alignment to the baselines over the

freedom of arbitrary 2-dimensional packing. Tags on a baseline will be consid-

43

1E3

[
m
N

No.of appearances
H
m
=

1EO0
T
0 20 40 60 80 100

Figure 3.3: Tag sizes distribution measured on Internet users.

ered just as a line of text by the robots. Considering the results of the studies
demonstrating that users scan lines of the clouds (see Section 3.2.1), the use of
baselines will make reading tags easier and faster.

The next issue is the choice of tag ordering. It was already mentioned
that clouds with alphabetically ordered tags perform worse in terms of search
time than simple lists of phrases. Moreover, alphabetical ordering significantly
restricts flexibility of packing: Firstly, as tags cannot be reordered the only
remaining option is to choose where to put a line break. Secondly, use of different
font sizes incurs big waste spaces because tags in the smallest font cannot be
moved away from the very tall tags in the biggest font size. To achieve any
reasonable visual quality tags have to be rearranged, i.e. the sequence of tags

should follow from the packing algorithm.

3.2.5 CLIENT SIDE

A number of challenges is posed by the target platform of tag cloud exposition.
In times of more and more personalized web content each user can get a different
set of tags. But there is more than that to significantly affect packing of the
tags. Namely, clients may have different sizes (in pixels) of the same tag de-
pending on the browser, system and fonts installed. A study was conducted into
browser font rendering consistency to verify this expectations. A tailored set of
6 benchmark tag sets testing different methods defining look of text with CSS
properties: fonts, font stacks, sizes and weights has been constructed (cf. Table
3.2). A script measuring tag sizes was installed on a production website and in

the course of two days responses from 4201 different clients were registered.

44

<a href="#" style="
font—family: sans—serif;
font—weight: bold;
font—style: italic;
font—size: medium; 7>

shorts

<a href="#" style="
font—family: Cambria; ’Hoefler Text’; Utopia;
"Liberation Serif ’; ’'Nimbus Roman No9 L Regular ’; Times;
"Times New Roman’; serif;
font—weight: normal;
font—style: italic;
font—size: 1l4dpt; 7>
Neutral space

<a href="#" style="
font—family: monospaced;
font—weight: 800;
font—style: normal;
font—size: large; 7>

aero—moon . com

<a href="#" style="
font—family: Helvetica; Verdana; sans—serif;
font—weight: 400;

font—style: ’7;
font—size: x—large; 7>
waffle filling

<a href="#" style="
font—family: Frutiger;’ Frutiger Linotype’; Univers;

Calibri; ’Gill Sans’; ’'Gill Sans MT’; ’Myriad Pro’;
Myriad; ’DejaVu Sans Condensed’; ’Liberation Sans’;
"Nimbus Sans L’; Tahoma; Geneva; ’'Helvetica Neue’;

Helvetica; Arial; sans—serif;
’

font —weight: ;

font—style: ’7;
font—size: 16pt; 7>
Long Tail Marketing

<a href="#" style="
font—family: serif;
font—weight: 900;
font—style: ’7;
font—size: small; 7>

CREAM

Table 3.2: Tags set used to test distribution of tag sizes on client side.

45

In the gathered data it was possible to identify 112 distinct combinations of
sizes for the benchmark tags. The results are shown in the Figure 3.3. As could
be expected it was found that the distribution of tag sizes follow the power law:
popularity =~ 1532 x pos~ 1297 where pos is the rank of a position, with fit
quality R? = 0.984. On the one end, the three most popular font combinations
are found in, respectively, 36.61%, 12.21% and 11.19% of client platforms. Most
of users use browser/system platforms that render the tags in less than a dozen
of popular sizes. On the opposite end, sizes with popularity smaller than 1%
form a long tail of 101 different values. Tag sizes on mobile devices differ much
more than on desktop/laptop computers (even two-three times). These results
lead to the conclusion that tag cloud construction must be adjusted to the tag
sizes measured at the client side. Furthermore, it means that building tag clouds
must be moved to the client side.

Algorithmic building of tag clouds on the client side has to meet a few
further requirements. The algorithm must be deterministic because the tag
cloud must look the same way for the given user. Thus, randomized algorithms,
or algorithms linking their stopping criteria with the runtime must be excluded.
The implementation has to use JavaScript (JS). Although other choices are
possible, only JS has sufficient market penetration. Moreover, JS works on
the elements of the Document Object Model (DOM) structure, thus supporting
readability of the tag cloud for the robots. A disadvantage is that the algorithm
constructing a tag cloud must run in very limited time, i.e. in the order of tenths
of a second. There is plenty of research showing that users do not want to wait
for downloading web page content and rendering it, because they quickly lose
interest. An up-to-date survey given in [87] suggests time below 1.5 second for
the whole page. Since the performance of the client browser is unknown, the
algorithm must be fast and simple enough to give a valid solution in tight time
limits even on slow browsers.

Before proceeding to the final problem formulation, let us summarize the
design requirements: 1) Cloud shape is rectangular, 2) tags are rectangular
boxes, 3) tags are reordered with packing, 4) rotation is not allowed, 5) tags
are packed on shelves and aligned to the baselines, 6) minimum waste of the
rectangular area is desired, 7) tonal weight distribution should be as even as
possible, 8) a tag cloud must be text, not graphics, 10) constructed on the
client side, 11) in tenths of of a seconds, 12) using fonts available on the client
side, 13) by a deterministic algorithm, 14) implemented in JavaScript.

Although it may seem that in most cases simplifying choices were made, we
still end up with a perplexing NP-hard combinatorial problem. Thus, it can
be expected that optimum solutions (e.g. in the sense of used area) can be

delivered only by exponential-time algorithms. Solving a problem formulated

46

w

colum in the web page

4

A

tags

Shelf 1 {tag <—baseline B A
Shelf 2 [[Web page «baseline O g vyi
b .o < Xi >

Shelf M{[Document analysis: P li
'\tags baseline tags

Figure 3.4: The relationship between tags and shelves.

according to the above recommendations encompasses Bin Packing or Strip
Packing problems which can be practically solved by use of, e.g., shelf algorithms

or metaheuristics[22].

3.2.6 ANALYSIS OF PACKING PROBLEM PROPERTIES

Let’s start with determining the type of packing problem we are dealing with. As
discussed in Section 3.2.4: 1) cloud shape is rectangular, 2) tags are rectangular
boxes, 3) tags are reordered with packing, 4) rotation is disallowed, 5) tags are
aligned to baselines. Fulfilling the first two requirements requires solving a 2-
dimensional packing problem [13, 56, 77, 99]. However, not all 2-dimensional
packing formulations are applicable here. For example, in the 2-dimensional Bin
Packing (2BP) formulation [77] both dimensions of the cloud should be fixed.
A difficulty is that it is an NP-complete problem to decide whether certain
cloud dimensions are feasible to accommodate set 7, i.e. if the tags fit in the
given box on the web page. Contrarily, in the rectangle packing formulation it is
required to determine the smallest area bounding box enclosing the tags [56]. A
disadvantage is that this formulation makes cloud dimensions variable and the
web-designer would not be able to safely position the cloud on the web page. In
the 2-dimensional Strip Packing (2SP) formulation, tags are put on an infinite
strip with one dimension fixed. This formulation is more practical because it
is always possible to fit tags on such a strip if its length is floating. Thus, in
the presented formulation it is conventionally assumed that tags are put in a
column of width W and flexible height H. All three presented approaches to
2-dimensional packing are N"P-hard which implies that according to the current
state of knowledge they can be solved either to optimality by an exponential

running time algorithm or by a polynomial-time heuristic.

47

Let us now return to the canons of typography for typesetting beautiful
text. One of such rules is the use of the baselines. This rule has already been
introduced as the requirement 5. A conjunction of the strip packing and the
requirement of baselines situates the analyzed problem as the so-called level or
shelf packing [7, 77, 99].

Shelf packing means that algorithm packs the tiles as if on shelves cut from
the strip: The bottom lines of the tiles are aligned to the bottom of the shelf. In
each row, rectangles are aligned and the highest rectangle determines the bottom
line of the next row (see Fig.3.4, compare also Fig.3.1). It is required that total
width of the rectangles on no shelf exceeds the width of the strip. Thus, shelf
algorithms are 2-dimensional renditions of 1-dimensional Bin Packing methods.
By convention we will be referring to the rows as to shelves.

Other recommendation from typography is balancing tonal weight distribu-
tion on the page (also called the typographic color distribution). This means
an even distribution of the mass of gray in the case of black letters on white
background [19, 43]. A human typographer usually has to squint to asses tonal
weight distribution. An advantage of this idea is that color can be measured
in HTML/JavaScript by reading pixels using canvas. Then, tonal weights of
the entire cloud, or its sections, can be calculated from the weights and sizes
of the tags. Dispersion of the tonal weight will be the objective guiding the
construction of a tag cloud.

3.3 PROBLEM FORMULATION

In this section Tag Cloud Construction Problem (TCCP) is formulated. What
is novel in presented approach, is resorting to the canons of typography used
to typeset readable and aesthetic text. Unfortunately, mathematical models for
the canons of beauty are rare. Still, tag clouds construction will be modelled as
a discrete optimization problem with a particular objective function.

Let’s assume that set of tags T = {t1,...,t,} is given. Tag ¢; is defined
by the advertised phrase, font (i.e. font-family, style, size, weight, etc.), and
hyperlink url address. This research abstracts away from how the importance
of the phrase is transformed into the font attributes. They are assumed to
be given. Phrase and font determine sizes x; and y; of tag t; as well as its
tonal weight a;. In practice, sizes z;,y; and tonal weight a; can be read with
JavaScript, or its extensions. Tags are basically monochromatic which means

that colors are not used to distinguish the tags.

48

Symbol Definition Role

a; tonal weight of tag t; input parameter
o tonal weight of shelf j

d; density of tag t; input parameter
H height of the tag cloud

m number of shelves

m; mass of tag t; input parameter
n number of tags in T input parameter
(@) dispersion in tonal weights between shelves objective function
Si shelf of tag ¢; (can be expressed as Z;) decision variable
T set of tags input parameter
w width of the tag cloud input parameter
Ti, Yi sizes of tag t; input parameter
Zj set of tags on shelf j (can be expressed as s;) decision variable

Table 3.3: Summary of the notation for the Tag Cloud Construction Problem.
Variables a;j, O derived from tonal weight a; are real numbers, but coming from
a finite set. Remaining variables are discrete.

In more detail, for the pixel at coordinates x,y weight is calculated from:

R[z,y] + G[z,y] + Blz, y]

blz.y =1—
[9] 3% 255

(3.1)

where R[z,y|, G|z, y], Blz,y] are values of the pixel color components in bytes.
For the sake of simplicity the above equation is used as an averaging method
of producing grayscale from RGB. Other methods like lightness or luminosity
can be used easily where desired. For the time being, two ways of defining
contribution of the tag to the tonal weight will be considered. Let mass of tag
t; be

m; = Z blz,y], (3.2)

1<z<z;,1<y<y;

and let density of tag be
m;

TilYi

d; = (3.3)

Let’s denote by s; the index of the shelf where tag ¢; is placed and Z; the
set of tags placed on shelf j, i.e.: Z; = {t; : s, = j}. It is required that tags
assigned to shelf j do not exceed width of the tag cloud W:

o<W Vji=1,...,m (3.4)
t,€Z;

Given set Z; of the tags, the tonal weight of shelf j can be calculated as:

_ ZtiEZj a;

49

where h; = max{y;|t; € Z;} is the height of shelf j and a; is tonal weight of tag
t; equal either to its density d; or to its mass m;. For the time being two ways of
defining the tonal weight will be allowed: either as mass m; (3.2), or as density
d; (3.3). The final choice will be made in Section 3.5.2. Note that free space
in the shelf will impact value of a;. For example, if tags have large differences
in their heights or the shelf is hardly filled, then large empty areas shall result
in small a;. A solution, i.e. a tag cloud, is the set ¢ = {Z,...,Z,} of tag
assignments to shelves 1,...,m. The objective function guiding the dispersion

of tonal weights between shelves will be:

0&) =S (1—a) =3 (1 Liez, O k 3.6
(c) = ;< —) = g ey) - 69
where exponent &k > 0 is constant and ¢ is a tag cloud. Function O(c) will be
minimized by changing decision variables:

m — the number of shelves, and Z; — the tag-to-shelf assignment, subject
to constraints (3.4). It can be intuitively expected that objective (3.6) favors
solutions with fewer shelves m and bigger values of a;, hence, more densely
packed shelves.

Note that in this formulation neither shelves ordering nor tags ordering on
the shelves is assumed. These can be rearranged after the packing, in the post-
process step. Basically there will be three options of sorting shelves that are
highest, top to bottom, bottom to top or middle to borders. With that, shelves
with bigger (i.e. more important) tags can be moved to the areas more frequently
scanned by users. Let us also observe that the goal of obtaining a good tonal
weight embodied by irregular objective (3.6) makes or TCCP different from the

classic 2-dimensional Bin Packing problems.

3.4 ALGORITHMS FOR TAG CLOUD OPTIMIZATION

This section outlines algorithms proposed for constructing tag clouds. All these
algorithms must meet the requirement of very light computational demands
imposed by the browser platform. Before proceeding to the details of the algo-
rithms let us explain their position in the tag preparation workflow (see Fig.3.5).
The tags and their weights are obtained by periodically analyzing the docu-
ments, or other data sources for the considered field of application. A web
designer composes a web page, and in particular, chooses font attributes of the
tags in the tag cloud. The font attributes have the form of the CSS classes for

the tags of certain weight. The tags and the CSS classes are merged in a web

50

Document| weighted Merging E Extracting tags) Renderin
analysis Taglst P i Bsq Foadleteth_y| = with ot 2D packing the visible DIV
(periodically) nsces (dqwﬁlgsg)es attributes (pt. 1) (pt-3) in browser (pt.4)
CSS classes for tags ina :
in a Web page \Web page Render¢ing tags ‘ Dijplay
T, vowsen| RIUOE] | Foormongeod | 0%
: SERVER :CLIENT measuring tag DR visiH] 9
(offline) SIDE :SIDE attributes (pt.2). visible (pt.4) GUI

Figure 3.5: Tag preparation and exposition workflow.

page to be downloaded by the client browsers. The above steps are conducted
on the server side in the web page preparation process. On the client side, a

generic method constructing a tag cloud progresses in the following steps:
1. reading set of tags T;
2. measuring tags sizes, masses, densities to obtain tonal weights;
3. optimizing the assignment of the tags to shelves;
4. delivering tag cloud c¢ in the target format.

As explained in the previous section attributes of the tags rendered in a browser
(sizes, mass, tonal weight) are read by use of JavaScript and canvas element in
HTML. The output format of the tag cloud c is a sequence of HTML elements
representing shelves, e.g. <div> elements, comprising tags as text elements
most often with <a> hyper-reference (url address). Output must also include
proper CSS formatting. In the following alternative algorithms are introduced
for solving TCCP.

3.4.1 BRANCH AND BounD

Branch and bound (B&B) is an exhaustive search method. Unfortunately, for
N'P-hard problems (as ours) exhaustive search algorithms run in time exponen-
tial in the size of the problem. Consequently, a B&B algorithm can be applied
only for instances of limited number of tags n, as a reference allowing to mea-
sure optimality gap of other algorithms. A B&B algorithm is defined by the
branching and bounding schemes. The branching scheme determines the way
of enumerating possible solutions. It can be envisaged as construction of and
search in a tree. In this case a tag cloud, i.e. a solution, is defined by an assign-
ment of tags t; to shelves. Consider some node 7; of the B&B tree representing
a partial solution with 0 < ¢ < n tags already assigned to p; shelves, where
1o = 0. Tag t;+1 can be assigned to one of the u; shelves (if it fits in the remain-
ing widths) or a new (u; +1)th shelf may be opened for ¢;. Thus, there are p; +1
offspring nodes of 7; representing the assignments of ¢;,1 to the shelves. There

are at most |7| = n shelves and at most n! solutions may be visited. Since size

51

of the B&B search tree grows very quickly with n, various bounding methods
are applied to prune the tree. In this case offspring of node n; were pruned if
1; exceeded the number of shelves m for some complete solution. Values of m
and O were obtained, and updated, whenever the search reached leaves of the

tree, i.e. all n tags have been assigned to some shelf.

3.4.2 GREEDY ALGORITHMS

A generic greedy shelf algorithm is formulated as follows:

GENERIC GREEDY SHELF PACKING
INPUT: tag sorting rule T'S R, shelf choice rule SCR, set T of tags;
OUTPUT: tag to shelf assignment c;

1: ¢=NEW shelf assignment; // initialize tag cloud
2: [=tags in T sorted according to T'SR; // order tags
3: WHILE [# // 0 means here an empty list

3.1: t = first tag from [; remove ¢ from [;
3.2: s = shelf for ¢ from c according to SCR; // find best shelf for ¢
3.3: IF s=NIL

3.3.1: s=NEW shelf; // open a new shelf for ¢

332 c=c+s; // append the new shelf to assignment ¢
3.4: ENDIF;

3.5:s=s5+1; // put tag t on shelf s

4: ENDWHILE

5: RETURN c.

Particular implementations of the greedy shelf packing are defined by the tag
sorting and shelf selection rules T'SR, SCR. These are presented in the follow-

ing.

Tag Sorting Rules T'SR Tags can be sorted according to one of the following

orders:

e increasing or decreasing masses m; of the tags (denoted im, dm, respec-
tively),

e increasing or decreasing densities d; of the tags (id, dd),

e increasing or decreasing widths x; of the tags (iw, dw),

e increasing or decreasing heights y; of the tags (ih,dh).

The above tag sorting rules generalize ordering by decreasing item height con-

sidered, e.g., in [22, 34]. All tag sorting rules have complexity O(nlogn).

52

Shelf Choice Rules SCR One of the following rules to choose shelves for
tags was applied:

e use the shelf with the smallest remaining horizontal space after inserting
the tag (Best Fit, BF);

e use the shelf with the biggest remaining horizontal space after inserting
the tag (Worst Fit, WF);

e use the shelf with the smallest tonal weight (3.5) after inserting the tag
(Smallest Tonal Weight, STW);

e use the shelf with the largest tonal weight (3.5) after inserting the tag
(Largest Tonal Weight, LTW);

There are two additional options for assigning a tag which, if chosen to act,
override the above rule.

Fit Zero (f0). If there is such a shelf j that after inserting the tag, the shelf
will have at most ¢ free horizontal space, then choose j. If such a shelf is found,
then shelf selection is finished. Here it was applied € = 0 in pixels. fO can be
run in O(logm) < O(logn) time per tag, which does not increase the overall
order of complexity of the packing algorithms.

Fit Two (f2) rule is applied after choosing shelf s; for tag ¢; according to one
of the above BF, ..., LTW methods. Let § be the horizontal space remaining
on s; after inserting ¢;. If § < ming,¢;{x;} then check for a pair of tags t,, 1
such that x; < x, + zp < z; + 6. In other words, if putting ¢; on s; would leave
less horizontal space than required by the narrowest remaining tag, then check
if there are two tags t,,t, which both fit on s; but leave less free space than t;.
If t,,tp are found, then they are placed on s;, and tag t; is returned to the list
of tags I. f2 rule, if applied exhaustively, would require complexity O(n?) for
checking all pairs of tags. In order to reduce the complexity of f2 a simplified
search for t,,t, was implemented. The tags are sorted according to their widths
x;. We look for two tags t,,t, in the list of unassigned tags [such that x, is
the biggest width not greater than §/2 and z; is the smallest width not smaller
than 6/2. If z; < xq, + 2 < z; + 0 satisfy the above conditions, then we are
done. If not, then the rule fails to find t,,t,. In this way t,,t, are searched in
O(logn) time and the additional sorting tags according to their widths is done
once in time O(nlogn).

Altogether there are 8 x 4 x 22 implementations possible of the greedy shelf
packing algorithm. It is feasible to run all the above implementations of the
greedy algorithms and choose the best result. Such a combination of greedy
shelf packing algorithms will be referred to as to Super-Fit (SF) algorithm. An
advantage of SF is that it lessens the impact of the worst-case instances existing

for the component algorithms.

53

3.4.3 TABU SEARCH

Tabu Search (TS) [49] is a local search method. Local search algorithms improve
solutions by searching their neighborhoods. A neighborhood of a solution is
defined by moves which can be applied on the current solution to obtain a new,
hopefully better, solution. Tabu Search allows to escape local optima by using a
so-called tabu list (actually a queue) of forbidden solutions. Our implementation
of the TS is outlined below:

TABU SEARCH
INPUT: tag cloud cy;
OUTPUT: tag cloud co;

1: i=0; c2 = c1, tabu = 0; // initialize data structures
2: WHILE ¢ < IterLimit // is iteration number exceeded?
2.1: r=Dbest move for ci; // the best move r must not be tabu

2.2: IF r=NIL

2.2.1: RETURN cg; // no feasible move in ¢z
2.3: ENDIF;
2.4: execute move r on ci; // ¢y is updated

2.5: 1F |tabu| = T'abuSizeLimit // is tabu list size exceeded?
2.5.1: remove the oldest element from tabu;

2.6: ENDIF;

2.7: append ¢ to tabu;

2.8: 1F O(c1) < O(c2)

2.8.1: c2 = c1; // record the best solution found so far
2.9: ENDIF;
210: i =14+ 1; // increase iteration counter

3: ENDWHILE;

4: RETURN ca3.

The algorithm starts from the best solution ¢; obtained by some other algorithm.
In this case ¢; is a solution constructed by the Super-Fit algorithm, i.e. the best
from the 8 x 4 x 22 greedy shelf packing algorithms. According to the above
description TS method has control parameters: IterLimit — the limit on the
number of iterations, TabuSizeLimit — the limit on the length of the tabu list.
Tuning these parameters is subject of Section 3.5. Two types of moves are
evaluated in line 2.1: simple move, and swap move. In the simple move each tag
ti,i = 1,...,n is tested for a relocation from its current shelf s; to a different
shelf. In the swap move, all pairs of tags ¢;,t;,% # j are exchanged on their
shelves. A move which was not tabu and offering the smallest value of the
objective function of the new solution is applied. In order to reduce the time

of verifying whether some solution is tabu, a dedicated hash function has been

54

Short Reference Date No.of | No.of
name accessed tags styles
Collection A (training set)

Amazon http://amazon.com Jun 13, 2015 100 100
Chir.ag http://chir.ag/tags/ Sep 15, 2015 100 95
Flickr https://www.flickr.com/photos/tags/ Sep 15, 2015 142 131
WeDeWa http://webdesignerwall.com/ Jun 13, 2015 | 25 25
Wykop http://www.wykop.pl/ Jun 13, 2015 | 35 31
Collection B (test set)
NatDir http://nationaldirectory.co.uk/mod/ Mar 10, 2016 | 70 5
tagcloud/

VecMe http://pl.vector.me/tags Mar 9, 2016 100 18
WordPress | https://en.wordpress.com/tags/ Mar 9, 2016 188 178
ProfOWeb | http://www.professionalontheweb.com/ | Feb 29, 2016 | 55 6
Metafilter http://www.metafilter.com/tags/ Feb 29, 2016 150 13

Table 3.4: Test instances.

designed. Thus, when verifying tabu status of a potential new solution only hash
values of the old solutions stored in tabu list and of the new one are checked.

Computational complexity of one TS iteration is O(n? + TabuSizeLimit).

3.5 COMPUTATIONAL EXPERIMENTS

This section reports on the experiments in solving TCCP. Test instances are
introduced first. The desirable objective function is elected. Tuning of the tabu
method is outlined next. Finally, the performance of the heuristics in quality
and runtime is compared. Unless stated to be otherwise, all tests were performed
on a PC with Intel i7-3840@2.8GHz CPU, 32GB of RAM, Windows 7.0, Chrome
48.0.2564.116 browser. Greedy algorithms and Tabu Search were implemented
in JavaScript. B&B algorithm has been implemented in Java 1.8.0_.45 SE.

3.5.1 TEST INSTANCES

The experiments were performed on two collections, A and B, of test instances.
Each collection comprises 5 sets T of tags gathered in Internet sources. Short
names and characteristics of the instances are given in Table 3.4. For each set
of tags 7, 11 test instances were created by setting tag cloud widths W from
Tmaz t0 2 % Tymae with 10% progresses, where X;q; = maxy,e7{Tmaz} 1S the
width of the widest tag in 7. Examples of the sets of tags are shown in Fig.3.6.
Collection A has been used in tuning of the Tabu Search, while collection B has
been applied in the final tests of all the algorithms. In this way training and

testing algorithms on the same data was avoided.

95

hardware humor internet technologia coding c¢ss design design

rozrywka nauka programowanie software process design trends
sztuka ClekawostKi ekonomia downloads €vent flash free
europa fim gospodarka gry heheszki freebies guest posts

illustrator inspiration iterview
javascript jobs photoshop

historia islam Kultura mojkrajtakipiekny b)
motoryzacja muzyka pieniadze pOlltyka

hotoshop tutorials responsive
pOISka prawo rosja samochody Sport g : p. p
. _ €sign review seo software
swiat usa wydarzenia wykop talented people updates
zainteresowania zdrowie wordpress

america app arthur AWESOIME backyard birthday blOg bombay brain brian buddy bunker cable cage calculus

caleutta CAMPUS celiphone Chill chime chirag chore chris client Com pute r coolest cough coworker
cute cuzin dad database demo €conomics email exam fark florida funny giga google graphics

homework honesty honors hurricane hurts 1 nd 1a internet ipad january jersey] uliet kayak keval

kitties ktype lab laundry tawn lazy learnt love marathon math michele mom monitor mortgage

nightmare ON line pet petersburg phd photo pizza professor programmer quote random
relax rutgers screwed semester server shower sleepy sneh SOftWare suds tampa taylor tera tickets

university VldeO walmart WebSi te weird whenever C)

Figure 3.6: Examples of tag cloud instances. a) Wykop (resized, the biggest tag
is 25pt, the smallest is 11pt), b) WeDeWa (the biggest tag is twice bigger than
the smallest), ¢) Chir.ag (the biggest tag is 46pt, the smallest is 11pt).

3.5.2 SELECTION OF THE OBJECTIVE FUNCTION

In Section 3.3 objective function (3.6) has been introduced which in its generality
allows for two methods of defining tonal weights (either by tag mass (3.2) or by
tag density (3.3)) and alternative ways of directing the tonal weight dispersion
between the tags by different exponents k. Unfortunately, the above defining
features of the objective function cannot be chosen by an analytical study of
function (3.6) because human perception of tag cloud quality comes into play
here. In order to omit this difficulty and select a sensible form of function (3.6)
we decided that human experts will choose the most desirable objective function.
Five experts evaluated all different tag clouds obtained by the B&B algorithm
for a subset of n = 16 tags, for all 55 instances defined in collection A, two ways
of defining tag tonal weight (equation (3.2) vs (3.3)), for exponents k = 0.5, 1,2
in (3.6). Thus, each expert had to evaluate 55 x 6 tag clouds. The size of tag
set T has been limited to n = 16 due to the computational complexity of the
B&B constructing optimum solutions. For each instance in collection A tag
clouds were constructed using 6 alternative objective functions and the 6 tag
clouds were shown together to the experts. Experts voted for combinations of
k and tonal weight quantifying method by choosing from the 6 clouds the one

which was most aesthetically pleasing. The results of the voting are collected

56

’ Tonal weight \ Exponent \ El \ E2 \ E3 \ E4 \ Eb5 \ Sum ‘

density k=05 33 |22 |23 | 18| 29 | 125
density k=1 31 | 22 | 28 | 16 | 28 | 125
density k=2 31 23 | 22 | 19 | 26 121
mass k=2 8 17 | 16 | 22 | 16 79
mass k=05 13] 19 | 13 | 20 9 74
mass k=1 12 | 18 | 13 | 21 9 73

Table 3.5: Goal function selection: votes awarded to goal functions by five
experts.

in Table 3.5.2. Not in all cases were the tag clouds different. If tag clouds
were the same for some combinations of k£ and tonal weight calculation method,
and some expert chose one of such clouds, then each of the combinations of k
and tonal weight calculation methods that built the identical cloud, received
a vote. Consequently, the number of votes in Table 3.5.2 does not sum to 55
times the number of experts. It can be seen that experts clearly chose tag
density (3.3) as the base of calculating tonal weights. This strong support
may seem surprising because all tag clouds had the same number of shelves
for the considered instance (combination of 7, W) and correlation between the
number of shelves and values of the objective O is very strong (coefficient of
correlation over 0.99 in all cases). And still, experts apparently chose density
over mass. This has at least two consequences. Firstly, density seems more
sensitive than mass to big vs small gradients of tonal weight present in high
vs small tags. Secondly, the distinction between density and mass proves that
the objective function grasps more than just the number of shelves. For the
density as a measure of tonal weight, k = 0.5, 1 were preferred a bit over k = 2.
Different values of k result in various pressure on uniformity set of «; values.
For k < 1, minimization of «; dispersion between the shelves can be expected

by minimizing (3.6). Hence, k = 0.5 has been chosen.

3.5.3 SUPER-FIT ALGORITHM

Performance of the SF algorithm is reported in Table 3.5.3. Due to high compu-
tational complexity of the B&B algorithm the relative distance to the optimum
has been calculated only for the instances comprising the first n = 16 tags. It
can be observed that objective O is numerically very close to the optimum if the
same number of shelves is used by the SF and in the optimum solution. Only
for instances Chir.ag at W = 1.5 X 4. and WordPress at W = 1.2 X xp02
was SF not able to construct minimum number of shelves. In the first case SF
used 6 shelves instead of 5 and in the second — 8 instead of 7. It increased the

relative distance from the optimum to ~ 20% and ~14%, respectively. This

o7

Relative Time [ms]
Test distance Average | Std.dev.
set to optimum | Median | Max | per tag | per tag
A 0.3639362% 17 30 0.25 0.16
A+B | 0.3119139% 17 57 0.24 0.10

Table 3.6: Performance of the Super-Fit Algorithm.

situation happened twice in all tests A and B. The longest registered runtime
57ms appeared for Flickr instance (n = 142), where the average for this instance
was 19ms. The biggest instance WordPress with n = 188 has been solved in at
most 51ms (40ms on average). Thus, execution times of SF are low which allows
to use it as a constructor of a starting solution for Tabu Search. SF execution
times and solution quality will be discussed in more detail in Section 3.5.6.

An interesting aspect of SF method is verifying which component greedy
algorithms returned the best solutions most often. This is shown in Fig. 3.7
for test sets A and B together. If more than one algorithm returned the best
solution, then each of the algorithms won on a given instance. Only algorithms
which won at least twice are shown in Fig. 3.7. The names of the component
algorithms shown along the horizontal axis follow the short-hand notation in-
troduced in Section 3.4.2. For example, the algorithm with T'S R decreasing tag
height (dh) and shelf selection rule smallest tonal weight (STW) without fit 0
or fit 2 is used most often. It can be seen in Fig. 3.7 that the most frequently
chosen tag sorting rules are based on the tag height (in 53% of cases). The
next most frequently used tag sorting rules use tag mass (27%). The options
{0, 2, were applied in 16% and 8% of the winning algorithms. Out of the 128
possible algorithms only 52 have ever provided the best solution of the SF. The

algorithms with various combinations of f0, f2 mostly failed to win.

3.5.4 TUNING TABU SEARCH

Our implementation of TS has two control parameters: IterLimit — the itera-
tions number limit and TabuSizeLimit — the limit of the tabu list length. The
quality measures applied in TS tuning are runtime and objective function O.
Tuning of TS control parameters is intended to keep the runtime low, while
securing noticeable improvements in the objective function O.

Each instance from set A has been solved for I'terLimit = {10, 20,30, 40,
50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} and for tabu list
size limit TabuSizeLimit = Iter Limit x {0.1,0.2,0.5,0.8,0.9,1}. It means that
the tabu list held from 0.1 x I'ter Limit up to Iter Limit of the last moves. Thus,

each instance from collection A has been solved with 19 different iteration limits

58

N
o
i

=
(6]
T
I

=
o
T
i

No.of wins

Figure 3.7: Super-Fit: frequency of giving best results by the component algo-
rithms.

and 6 different tabu list lengths. Quality of the solutions generated by TS has
been compared against the quality of B&B solutions. Since the execution times
of the B&B are quite long, instances comprising the first n = 16 tags were used.
Still, execution times of TS are presented for complete instances. It may be
argued that time and quality performance were evaluated on different test sets,
but it was observed that on instances of size n = 16 even for IterLimit = 1000
the median runtime was below 17ms, and the longest execution time observed
(an outlier) was below 200ms. These times are too optimistic indication of the
runtime especially as T'S will be used on complete instances with up to hundreds
of tags. Therefore, it was concluded that runtime on complete instances is a
better indicator for TS tuning. Results of IterLimit evaluation are shown in
Fig.3.8 and TabuSizeLimit in Fig.3.9. In Fig. 3.8a quartiles of TS execution
times are shown. It can be seen in Fig. 3.8a that execution time of TS grows
linearly with the number of iterations and for Iter Limit = 300 median execution
time is below 170ms. Note that this time includes 30ms taken on average by SF
constructing the initial solution (see Table 3.5.3). Changes of solution quality
with the number of iterations are shown in Fig. 3.8b. The average distance from
the optimum solution obtained by the B&B method is shown on the vertical axis.
The range of values of the objective function is very narrow in the numerical

sense. For example, the distance from the optimum at the left end of Fig. 3.8b

59

1E4

o Lh
| I
RIS

a) Iter
1E-1

| \
0.8

T+

time [ms]
[=
m m
= N
1
T 1+
— T 1+—
T 3
———1 1
1+

10 100 1000

Quality
;o

0.4

0.2 RN

b) / Iter

0
0O 100 200 300 400 500 600 700 800 900 1000

Figure 3.8: Tuning Tabu Search. a) Runtime vs IterLimit, b) Changes of
objective O vs Iter Limit (distance from the optimum, scaled to range).

(at IterLimit = 10) is 0.363777% away from the optimum while the right end
(at TterLimit = 1000) is 0.363746% away from the optimum. Hence, for better
visibility, labels on the vertical axes of Fig. 3.8b, 3.9b are scaled to the range
of the observed values. It can be seen that the value of the objective function
is improved with increasing IterLimit, but around IterLimit = 300 the rate
of changes slows down. The impact of T'abuSizeLimit on TS execution time
is negligible on average (cf. Fig.3.9a). It can be concluded that the method of
verifying tabu status of a solution, using a hash function, performs effectively.
For the convergence of the objective TabuSizeLimit > 0.5 is sufficient (see
Fig.3.9b). In the following tests IterLimit = 300 and TabuSizeLimit = 0.5

were used as a compromise between solution quality and runtime.

60

1E4

1E3

T
11

time [ms]
=
m
N
—T
—
—
o

=
m
Ay

1E0

TabuSzeLimit
1E-1 ‘
0 0.2 0.4 0.6 0.8 1

0.8

0.6

Quality

0.4

0.2

TabuSzelimit

0

10 20 30 40 50 60 70 80 90 100

Figure 3.9: Tuning Tabu Search at IterLimit = 300. a) Runtime vs
TabuSizeLimit, b) Changes of objective O vs TabuSizeLimit (distance from
the optimum, scaled to range).

3.5.5 BRANCH AND BOUND

The B&B runtimes are reported here to give the reader impression on the com-
putational requirements of this algorithm. Time performance of the B&B is
depicted in Fig.3.10. As it can be seen in Fig.3.10, at n = 7 computational
costs related with enumeration of solutions outweigh the fixed overheads and
quickly grow with n. On average, the B&B algorithm was solving instances with
20 tags in 62s. Unfortunately, solving a few worst-case instances for n = 20 re-
quired time exceeding 4 hours. It can be concluded that B&B cannot be applied
to construct tag clouds in the client’s browser because it takes too much time.
Still, B&B can be applied as a provider of reference solutions for small-size

instances.

61

1E8

1E6

[EY
m
S

time [ms]

[EEY
m
N
—
—_—

1E0 [
:II:JH&H& T[l

1E-2

0 5 10 15 20

Figure 3.10: Running time of Branch&Bound algorithm.

3.5.6 COMPARISON OF THE ALGORITHMS

In this section the trade-off between quality and runtime made by the algorithms
are analyzed. In order to avoid giving advantage to the algorithms tuned on test
set A the performance of all algorithms has been evaluated on test set B. The
results of the comparison are depicted in Fig.3.11. Along the horizontal axis
execution time of the algorithms is shown. Quality is shown along the vertical
axis as the relative distance from the optimum solution for n = 16 (Fig.3.11a)
or from the best obtained solution for the complete set of instances (Fig.3.11b).
The range of the objective function is small in numerical sense if the minimum
number of shelves is used. Therefore, relative distance in quality is shown on
the vertical axis with 1E-10 as the unit of relative distance. Value 1 represents
the optimum, or the best solution. Each algorithm is represented by a box and
a median point (Q2) in timexquality space. Boxes represent ranges between
the first (Q1) and third (Q3) quartile of the execution time (horizontally) and
quality (vertically).

The runtimes and solution quality scores for every greedy algorithm run
separately on all instances have been recorded and the obtained population of
results is presented under label ”Greedy Algorithms”. It can be observed that
running all of the greedy algorithms together and choosing the best solution,
which is done in Super-Fit (SF) algorithm, on average increases the runtime
~ 60 times and decreases the distance from the best solution by two (n = 16)

to four orders of magnitude (complete instances). The upper end of the box

62

2

11

1.01

1.001

1.0001

1+1E-5

Greedy
1+1E-6| agorithms

1+1E-7]

quality

1+1E-8

1+1E-9 —

1+1E-10| time.[ms]
1

0.01 0.1 1 10 100 1000
2

=
)
us)
o
vs)

11

1.01] Gresdy
1.001

1.0001

1+1E-5]

1+1E-6] *

1+1E-7

quality

1+1E-8
b) 14E9

1+1E-10 time-[ms]
1 -
0.1 1 10 100 1000

—
»

Figure 3.11: Juxtaposition of all algorithm performance: quality vs runtime. a)
Instances limited to first n = 16 tags, b) complete instances. Log scales. 1E-10
is a unit of distance in quality.

for all greedy algorithms represents solutions with more than the minimum
number of shelves. As the objective function heavily penalizes using additional
shelves, the results of greedy algorithms are much worse with respect to the
objective function, than the for the other algorithms. In the instances of set B for
n = 16 more than 43% of solutions of greedy algorithms used more shelves than
the minimum. For complete instances over 60% of greedy solutions used more
shelves than the minimum observed. Contrarily, greedy algorithms are very
fast. Super-Fit algorithm delivers the best of the greedy solutions at acceptably
low runtime (Q2=11ms for complete instances, and the worst observed runtime
was 48ms). Tabu Search (TS) improves the results of SF on average by at
least two orders of magnitude. Execution time of TS is acceptable on average

(Q2=262ms for complete instances) though it has increased a bit compared to

63

zdrowie nauka humor prawo islam rosja usa film gry freebies CSS inspiration
programowanie mojkrajtakipiekny pieniadze historia event design updates review
a) ciekawostki polityka kultura wykop b)wordpress responsive design

rozrywka POlska europa swiat javascript design trends flash
zainteresowania technologia wydarzenia ~ photoshop tutorials coding = seo
ekonomia heheszki internet sztuka muzyka sport guest posts design process jobs

motoryzacja gospodarka samochody hardware software Falented people software downloads
illustrator photoshop interview free

computer website lOve india video

programmer software online florida exam kayak juliet funny email

awesome economics random kitties rutgers quote weird ktype relax dad
homework hurricane internet america jersey tampa sleepy taylor photo math chill blog
petersburg marathon professor database campus michele chirag chime buddy server hurts pet lab
mortgage screwed bunker laundry shower tickets client cough learnt cuzin brian cute pizza mom fark lazy

nightmare backyard university bombay wheneversemester calculus january google arthur chore keval brain app giga
coworker cellphone walmart birthday monitor calcutta honesty graphics coolest honors cable chris demo lawn sneh sucks cage ipad tera phd

¢)
Figure 3.12: Tag clouds built by the presented algorithms. a) Wykop by Super-
Fit, ordering of the highest rows from the middle. b) WeDeWa and ¢) Chir.ag
by Tabu Search the highest rows from the top.

test set A. This could be expected because test set B comprises instances with
more tags than the training set A. The worst-case observed runtime for TS was
1436ms which is hardly acceptable in practice. A partial solution may be re-
tuning of TS if instances bigger than considered here are encountered in practice.
Unfortunately, standard computer systems (i.e. non-real-time ones) give no
guarantees of the limits on the process/thread execution times and runtime
distributions have long-tails. Consequently, it is not possible to eliminate all
such worst-case runtimes altogether. On the other hand, TS is the second best
in delivering quality solutions after B&B.

The advantages and disadvantages of the proposed methods revolve around
the two dimensions of the runtime and the solution quality. Fig.3.11 is a good
illustration of the trade-off between them. It can be observed that proposed
algorithms form non-dominated groups of methods with respect to the quality-
runtime trade-off: Greedy algorithms are fastest but their solutions are the worst
on average. However, choosing the best of them (as in SF) already significantly
improves solution quality. TS provides still better solutions at increased cost.
Finally, B&B offers optimum solutions albeit at computational cost unaccept-

able for the applications considered here.

For the end of this section let us present visual examples of tag clouds con-
structed by the proposed algorithms. The tag clouds built from instances pre-
sented in Fig. 3.6 are shown in Fig. 3.12. Observe that apart from improving
aesthetics and readability of tag clouds their height is reduced as a beneficial

side effect.

64

3.6 CONCLUSIONS AND FUTURE WORK

In this chapter online construction of the tag clouds for the websites has been
considered. While other tag cloud building problems met some interest in the
past, the website application had only a few ad hoc approaches. The tag cloud
construction has been formulated here as a 2-dimensional Strip Packing problem
with irregular objective function embodying canons of typography to control
aesthetics of the generated clouds. Moreover, requirements and restrictions
of the field of application force building tag clouds on the client side which
introduced further restrictions of the computing platform (the browser) and
the runtime. Two algorithms developed here — Super-Fit and Tabu Search —
have practical applicability. They run in dozens of milliseconds (SF) or a few
hundreds of milliseconds (TS), hardly ever use more shelves for tags than the
minimum, and they build visually acceptable tag clouds.

It can be concluded that from the algorithmic point of view, tag cloud con-
struction problem is virtually solved. However, as stated earlier mathematical
models for the rules of beauty are rare and difficult. Hence, better represen-
tation of tag cloud aesthetics (even beauty) in closed-form expressions such
as objective functions should be recommended as the subject of the further
study. Devising such functions condensing in a low computational complexity
expression the connection between tag cloud features and human perception is
a challenge in itself. The methodologies developed here can be applied to solve
problems of similar nature, such as procedural web page layout and content
construction, infographics construction, game content generation, etc. These
can be guided by optimization processes using aesthetics models expressed as
objective functions. All this is doable online in the heterogeneous and volatile

medium of information delivery: the browser.

65

4 (CSS-SPRITE PACKING

4.1 CSS-SPRITES AND LOADING OF WEB PAGES

In this chapter novel methods for the generation of CSS-Sprites to offload web
servers and speed up web pages loading will be provided.

Short web page load time has a great importance for the Internet indus-
try [87, 125]. Contemporary web pages are heavily loaded with small images
(icons, buttons, backgrounds, infrastructure elements, etc.) and it is reported
in [63] that 61.3% of all HTTP requests to large scale blog servers are images.
Other static content constitutes only 10.5% of requests. Each image is a re-
source which must be downloaded from a web server. The interaction with a
web server has a relatively long constant delay (a.k.a. latency, startup time)
resulting from, e.g., traversing network stack by the messages carrying the re-
quest, request processing at the server, locating resources in server caches, etc.
Fetching many images separately multiplies such fixed overheads and results in
extensive web page loading time. CSS-sprite packing is a technique used in web
design to overcome disadvantageous repetition of web interactions and improve
performance of displaying web pages. The many small images, called tiles, are
bundled into a single picture called a tile set, a sprite sheet, or simply a sprite.
The sprite is loaded once and hence the constant delay elapses only once. An
additional advantage can be taken in preloading images used in the web page
interaction animations. In such animations appearance of a graphical element
can be changed in almost no time because there is no communication delay of
downloading a different view of the element. Sprites improve performance of
the web servers too. Each interaction with a browser requires an overhead at
the server. Reducing the number of the interactions by supplying a sprite once
lowers the server load. Consequently, CSS-sprite technique is widely used in

many web pages. An example of applying a CSS-sprite is shown in Fig.4.1. A

66

<style>
b) .imagel C)
{background: url("sprite.png")
0 0 no-repeat;

width:159px; height:188px

}

.image2

{background: url("sprite.png")
0 -188px no-repeat;
width:159px; height:188px

<body>

<span class="image2"

S Qo o)~

; alt="image2.gif">
< >
.image2:hover /span
‘ .) . .
{background: url("sprite.png") </body>

0 -376px no-repeat;
width:159px; height:188px

}

</style>

-
|
-J

r
.

Figure 4.1: Example of CSS-sprite. a) sprite.png image, b) part of the CSS file
locating images, ¢) example of use.

sprite is shown in Fig.4.1a. In order to extract tiles from a sprite Cascading
Style Sheets (CSS) are employed in Fig.4.1b. Example code using the tiles in
the sprite is shown in Fig.4.1c.

To the best of the author’s knowledge the first reference to CSS-sprite pack-
ing appeared in [114] and it has been later popularized in [109]. CSS-sprite
packing rests in the area of web development practice rather than in the sphere
of scientific research. It seems quite common situation in web engineering, as
discussed in the introduction and, e.g. in [16, 86]. Contemporary CSS-sprite
generators pack all tiles into a single sprite, optimizing geometric area, if any-
thing. This indeed reduces the number of server interactions, but at the risk of
increasing file size, transmission time and slowing web page rendering. One of
the main ideas behind this research is to allow to pack website tiles into mul-
tiple sprites for optimization of loading time. CSS-sprite packing is a practical
problem with multiple facets involving image compression, complex distributed
system modeling, solving combinatorial optimization problems. These prob-
lems are tackled in the following sections. In the next section realities and the
challenges in sprite packing are discussed, then the CSS-sprite Packing Problem
(CSS-SPP) is formulated. Results of preliminary empirical studies conducted to
define the solution algorithm are presented in Section 4.3. In Section 4.4 current
techniques for packing sprites are outlined. A new method of sprite packing is
given in Section 4.5 and evaluated in Section 4.6. The last section is dedicated
to conclusions. The notation used throughout this chapter is summarized in
Table 4.1.

67

4.2 PRACTICAL CHALLENGES AND PROBLEM
FORMULATION

Before formulating the CSS-sprite Packing Problem let us discuss our goals and
technical constraints. This analysis serves representing CSS-SPP as an opti-
mization problem. Given a set of images (tiles) in various file formats, the
intention is to combine them into a set of sprites for minimum browser down-
loading time. Factors determining the downloading time can be arranged into
groups of: (i) geometric packing, (ii) image compression, (iii) communication
performance. The three factors are tightly interrelated which will be shown in
the following discussion. There are certainly also other factors related to the
browser (e.g. rendering efficiency), server (e.g. cache performance), etc., but
constructing a comprehensive model of their works is beyond the scope of this

research and is taken into account only implicitly.

4.2.1 GEOMETRIC CHALLENGES

One of the factors affecting sprite size(s) is geometric layout of the tiles. The
layout means here mutual alignment of the tiles on the plane is meant here.
It determines shape, size and location of empty spaces, and consequently, the
total number of pixels in the sprite. The total number of sprite pixels will be
called sprite area. Sprite area (in px) strongly correlates with the size (in bytes)
of the sprite converted to a file or a message. When optimizing sprite area it
can bee seen as a class of regular 2-dimensional packing problems because tiles
and sprites are rectangles. Rotation of images is not allowed. Though it is
technically possible to rotate images using CSS, tile rotation has not been used
in CSS-sprite packing so far for the lack of compatibility with older browsers.
The problem of optimizing a layout of 2-dimensional objects for minimum
space waste has been tackled very early in glass/paper/metal sheet cutting, in
packaging, factory-floor planning, VLSI design, etc. [6, 31, 48, 77, 99]. Need-
less to say that 2-dimensional cutting/packing problem is computationally hard
(precisely N'P-hard). In practice, it is solved by heuristic algorithms. Unlike in
the above classic applications, in sprite packing one does not use any material
sheet which (i) should be conserved, (ii) would impose a bounding boz. Hence,
it may seem that arbitrary tile layout is as good as any other. For example, the
sprite in Fig.4.2a has a lot of waste space not encoding any tile. It may be argued
that the layout in Fig.4.2a is as good as the layouts in Figs 4.2b,c because al-
gorithms used in image compression are capable of dealing with such waste, i.e.

with repeating equal pixels. In reality it is more complicated because various

68

tile 1 Waste space
. I
tile 2 = o tile2] P
2 =
tile 6 Ttile 7
tile 1
Waste space
<
@
a
0 tile 6
2 < 2
= o tile 2 tile 7
2
tile 6 Waste space
tile 7]

Figure 4.2: Examples of CSS-sprite layouts. a) excessive waste space, b) vertical
layout, ¢) horizontal layout.

compression strategies used for this purpose have diverse efficiency. Encoding
equal pixels is not completely costless because the information about the pixels
must be stored to reconstruct them. Moreover, sprites must be decompressed to
a bitmap in the browser. Consequently, waste space drains memory. Excessive
memory usage affects browser performance. Hence, there are advantages in not
wasting space in the sprites.

Another geometric factor determining sprite area is its bounding boz. It is
possible to restrict sizes in both, in one, or none of the dimensions. Accord-
ingly, three variants of 2-dimensional packing are distinguished [77]. In the
2-dimensional Bin Packing problem (2BP) both sizes of the box (the bin) are
fixed and it is required to minimize the number of used bins. The 2BP is fur-
thest from CSS-SPP because arbitrary bin sizes can be chosen and using many
bins due to size restrictions has no practical sense here. In the 2-dimensional
strip packing problem (2SP) the 2-dimensional objects are put on an infinite
strip with one dimension fixed: either the width or the height [6, 77, 99, 116].
This representation is more attractive because numerous algorithms proposed
for 2SP can be used. Moreover, there are two intuitive ways of defining the
fixed dimension of the strip: either as the width of the widest tile, or as the
height of the highest tile. The former case will be called vertical layout (see
Fig.4.2a,b). Similarly, the the latter option will called a horizontal layout (see
Fig.4.2¢). In the rectangle packing problem (RP) the two dimensions are free to

69

change [56, 68, 70, 101]. It is required to find the smallest area bounding box
enclosing a set of rectangles. Rectangle packing seems to be closest to CSS-SPP.
A disadvantage is a smaller set of known algorithms for the RP problem.

The geometric challenges in sprite-packing can be summarized as follows:
e determining packing model (RP vs 2SP),

e determining bounding box, respectively, the strip fixed size,

e selecting packing algorithms,

e determining the assignment of tiles to sprites for good geometric packing.

4.2.2 IMAGE COMPRESSION PROPERTIES

Image compression techniques and standards (GIF, PNG, JPEG) are essential
elements of this study. However, introducing computer graphics compression
technology is beyond the scope of this research. An interested reader is recom-
mended to begin with, e.g., [35, 62, 104, 121]. Let us note that images can be
delivered to a browser as data URIs inlined in HTML or CSS text documents
[91]. This scheme is out of scope of this research and requires an independent
study.

Methods of image compression introduce complex interactions impacting
sprite size. Combining tiles for the best image compression is computationally
hard in general. There are two examples given: Firstly, PNG and GIF image
formats permit indexed colors. When the number of image colors is limited a
color palette can be used. Then, for each pixel an index of a color in a palette
is recorded. The number of bits per pixel can be smaller than if the colors were
encoded independently for each pixel, while keeping color depth of the image.
Consequently, images sharing a palette of colors, when combined into a sprite,
can be stored with fewer bits per pixel. This requires determining the set of
images sharing an indexed palette. Assume that set T of tiles is given and a
subset 7' C T which can share a palette of some fixed size [must be determined.
Determining maximum cardinality 7’ is AP-hard which will be shown in the
next Section 4.2.3. Secondly, compression algorithms in PNG and GIF formats
analyze images line by line. If two tiles aligned horizontally have the touching
border areas in the same colors then such pictures compress better than if the
colors were different. Aligning tiles for maximum length of constant color is
again N'P-hard as it will be shown in Section 4.2.3. Since selecting and aligning
tiles for good graphical compression is computationally hard, we are bound to

heuristics choosing the set of tiles and constructing the layout.

70

Lossy JPEG compression adds another dimension of difficulty: When a
JPEG tile is supplied for sprite-packing, it must be converted to a bitmap, and
then may be stored in a JPEG sprite. Such a transformation will be called JPEG
repacking. Repacking and any other conversions into a JPEG file inevitably re-
duce image quality. The change may remain unnoticeable for a nonprofessional
user if the compression ratio is small, but a high compression ratio results in
various discernible artifacts. There are methods of artifact-free decompression
[18], but still cartoon-like smoothing or staircasing effects are problems remain-
ing to be solved. Chroma subsampling allows to reduce image size by lowering
chromatic resolution. Thus, it is easy to build a JPEG sprite of small size by
trimming image quality. However, it has two undesirable consequences: (i) It
is hard to determine acceptable lossy compression settings, e.g. a threshold of
compression ratio. (ii) Fair comparison of various software for sprite-packing
is challenging because in most cases settings of lossy image compression are
undocumented (cf. Section 4.4). Therefore, it is hard to assess whether small
sprite sizes of some sprite-packing software are obtained at the cost of image
quality, or by effectively exploiting opportunities for good geometric packing
or for compression without quality loss. In JPEG compression pixels of touch-
ing tiles influence each other which may distort pictures reconstructed from a
sprite. Some solution may be putting side by side tiles with similar pixels, which
again is computationally hard (as discussed above for PNG/GIF), and its ef-
fects are unpredictable. Aligning tiles to JPEG block sizes can be only a partial
solution because filling the blocks with some dummy pixels may result in the
so-called ringing artifacts and eliminating them is a research subject [44, 102]
and a current engineering challenge [38, 96].

Given some images, their sizes quite often can be further reduced by use of
compression optimizers. Here it means that the sprites can be further processed
for minimum size. This procedure will be called postprocessing. Compression
optimizers reduce image headers, remove metadata, and most importantly, ex-
periment with compression settings. For example, in JPEG there is a choice
between the baseline and the progressive compression, for the latter different
image divisions can be used. For PNG one of five filters can be applied to each
pixel row, which gives numerous possible combinations. Both formats use Huff-
man compression which is impacted by the choices of frame size and methods of
searching for repetitions (PNG 1.2 offers four). Some tools for PNG use LZMA
or Zopfli algorithms as alternatives to Huffman coding. Since the settings result-
ing in the smallest file are data-dependent and hence a priori unknown, various
compression arrangements are checked by brute-force or by some heuristic. This
is an extensively experimental area and its chicanery is partially described in
sources like [29, 30, 58, 59, 81, 110].

71

Choosing the bounding box or the width of a strip in the geometric packing
may limit chances of putting some tiles together. Thus, the geometric packing
implicitly affects image compression efficiency. Observe two consequences: (i)
Building many sprites may be profitable because some pictures do not combine
well and putting them in one sprite gives worse results than keeping them sep-
arated. (ii) Tile to sprite distribution has effect both on geometric packing and
on image compression. Hence, the two aspects are mutually related: It may
be profitable to use worse geometric packing for the benefit of better image
compression or vice versa. However, the overall effect cannot be predicted.

The difficulties resulting from unpredictability of geometric packing and im-
age compression can be overcome by trying many alternative solutions and
choosing the best one. This may take several forms: trying various geometric
packing methods (cf. Section 4.2.1), verifying alternative tile to sprite distribu-
tions, experimenting with different image compression settings. However, the
process of image compression is time-consuming and limits the number of com-
pression attempts that can be made. For example, it seems barely acceptable to
verify a few hundred alternative ways of packing and compressing the tiles, but
it would be far better if only a few dozens of such attempts were made. Further-
more, there are many fast algorithms for geometric tile packing [99], but it seems
impractical to verify all possible sprites resulting from such geometric packings
due to the computational complexity of image compression. Thus, there is a
trade-off between achievable sprite size and the time needed to construct it.

The main challenges related to image compression can be summed up as

follows:
e determining the assignment of tiles to sprites for good image compression,
e choosing satisfactory compression settings for each compression standard,
e finding satisfactory trade-off between sprite construction time and solution
quality.
4.2.3 COMPUTATIONAL COMPLEXITY

Here complexity of two subproblems of the CSS-SPP will be analyzed. First Max
Pictures for Shared Palette problem and then Picture Alignment for Maximum
Length of Constant Color.

72

Max Pictures for Shared Palette.

Informally, the problem of the maximum set of pictures for a shared palette
consists in selecting as many pictures as possible from a given set such that their
colors are covered by the shared palette of a limited size. Here N'P-completeness
of this problem will be shown.

Consider set Z of n images. Image i has palette (i.e. set) of colors p; from
some spectrum U of size |U| = | Ul p;|. Thus, a palette of size at most |U]| is
needed to index all colors of Z. Given is a limit [< |U| on the shared palette

size. The problem is formulated as follows:

MAX PICTURES FOR SHARED PALETTE

Input: Set Z of images with palettes p1,...,p,, shared palette size [, positive
integer m.

Question: Is there a subset Z' C 7 such that | U;ez p;| <1, and |Z'| > m, i.e. is

it possible to cover at least m pictures from Z by palette of size [?

Theorem 1 Max Pictures for Shared Palette is N'P-complete.

Proof. Max Set of Pictures for Shared Palette is in NP because NDTM can
guess set Z' in time O(m) < O(|Z]), and verify whether |U;cz/p;| < 1in O(|Z||U|)
time.

Next, it will be shown that BALANCED COMPLETE BIPARTITE SUBGRAPH
(problem GT24 in [64]) polynomially transforms to our problem. The former
problem is defined as follows:

BALANCED COMPLETE BIPARTITE SUBGRAPH (BCBS)

Input: Bipartite graph (Vi, Vs, E), where Vi, Vo are disjoint sets of vertices, F
is set of the edges and positive integer k.

Question: Are there two disjoint sets X; C Vi, X5 C V5 such that | X;| = | X3| =
k and such that v € X;,v € Xy implies {u,v} € E.

Thus, the question in BCBS asks for a biclique Ky . Let n(i) denote neighbors
of node ¢ € V4. In the transformation from BCBS to Max Pictures for Shared
Palette nodes of V; correspond with the pictures of Z and nodes in V5 with colors
in U. Thus, we have: |Z| = |V4], [U| = |V2|. Let’s assume palette p; = V2 \ n(7)
consisting of colors not used by image i, i.e. palette p; is a complement of the
neighbors in n(7). The question is if it is possible to cover m = k pictures with
a palette of size | = |Va| — k. The transformation can be done in polynomial
time O(|E)).

Suppose the answer to BCBS is positive and the required sets X7, X5 exist.
We construct set Z’ using pictures corresponding to the nodes of X;. The palette

p’ has colors in V5 \ Xo and size | = |Va| — k. Note that picture ¢ € Z’ uses colors

73

in V5 \ n(i) and hence no colors from Xo. Since Vi € X;,5 € Xo,{i,j} € FE
the picture corresponding to 7 is using no colors from X5 and a palette of size
|[V2| — k =1 is sufficient to cover all pictures in Z’.

Suppose the answer to Max Pictures for Shared Palette is positive and set Z'
of m = k pictures covered by a palette of size | = |V5| — k exists. It means that
|[Va| — 1 = k colors are not used by any picture in Z’ and have been eliminated
from the palette. Since picture ¢ uses colors which are complement of n(7), the
instance of BCBS has an edge from each node corresponding to a picture in Z’
to each node corresponding to the colors absent from the palette. Hence, nodes
of X7 corresponding to Z’ and the nodes of X5 corresponding to unused colors

form biclique Kj j and the answer to BCBS is positive. O

Picture Alignment.

The problem of picture alignment may be formulated as follows: given a set
of pictures align them horizontally for maximum overlap of colors on neighbor-
ing sides. Picture alignment problem has practical motivation. When packing
pictures into a CSS-sprite some pictures will be in direct horizontal contact,
i.e. their vertical edges touch each other. If a pair of neighboring pictures
have edges of different colors then more data is stored to encode the different
neighboring colors, than if the colors were the same. The best alignment of
the pictures minimizes the number of color changes. It will be shown here that
picture alignment problem is N'P-complete.

More formally picture alignment problem may be formulated as follows.
Given is set Z of n rectangular images. For the sake of conciseness picture
features and graphical compression are very simple. Only pixels on the vertical
sides of a picture matter for packing efficiency. Therefore, picture 7 is defined by
the sequence of pixel colors [; on the left side and the sequence of pixel colors r;
on the right side as if the pictures were 2 pixels wide. Both [; and r; are arrays,
and color of z-th pixel, e.g., in I; can be referred to as [;[x]. We assume that all
pictures have the same height. If 7;[y] = [;[y], i.e. y-th right-edge pixel of some
picture y has the same color as the y-th left-edge pixel of picture j, then the
cost of encoding the pair is 1. Otherwise, r;[y] # {;[y] and the cost of encoding

them is equal 2.

PICTURE ALIGNMENT

Input: Set Z of n images of width 2 and height k with pixels I;,r;, for i =
1,...,n, on the left and the right side respectively, positive integer f.
Question: Is there a sequence of images such that their cost of packing is not

greater than f?

74

k=n
edge4 téenﬁﬁdng li T

nodes
Figure 4.3: Pictures in the picture alignment problem

Theorem 2 Picture alignment is N'P-complete.

Proof. The problem is in NP because NDTM can guess the sequence of length
n and calculate the cost of packing in time O(nk). Next, we give polynomial

time transformation from HAMILTIONIAN PATH problem [47, 64]:

HaMILTONIAN PATH (HP)
Input: Graph (V, E), where V is the set of vertices, E is the set of edges.
Question: Is there a Hamiltonian path in G, i.e. a path visiting each node of G

once?

In the transformation nodes of HP correspond with pictures. We will use three
colors: 0, 1, 2. The set of the right pixels r; serves for identifying nodes. Hence,
IZ| =n=1|V|, k=mn, ri| =1,Vj #i,7;[j] = 2, for pictures i = 1,...,n. Colors
in I; make for edges, V{3, j} € E,[;[i] = 1 and otherwise ;[i] = 0 (cf. Fig.4.3).
The question is whether it is possible to pack the pictures in Z with the cost not
greater than f = (n — 1)(2k — 1). If {i,j} € E then pictures 7 aligned on the
left of 7 have one neighboring equal pixel and cost of packing j after i is 2k — 1.
Otherwise {7, j} ¢ E and all k pixels are different and the cost of packing j after
iis 2k.

If a Hamiltionian path exists in HP, then the sequence of pictures correspond-
ing to the sequence of G nodes is used. The cost of packing is f = (n—1)(2k—1).
If a packing of cost not greater than (n — 1)(2k — 1) exists then it means that

the number of different colors in each aligned pair is £ — 1 because it is not

(0]

possible to have a smaller difference. This means that between each pair of
nodes corresponding to the pair of pictures in the sequence there is an edge in

(. Hence, Hamiltonian path also exists. (Il

4.2.4 COMMUNICATION PERFORMANCE

Since quality of a set of sprites should be measured as the downloading time,
sprite(s) can be constructed to take advantage of communication channel char-
acteristics. For example, a large constant delay in communication time encour-
ages packing tiles in one sprite. Hence, the primary rule of web performance
optimization has always been to minimize the number of HT'TP requests. Still,
if parallel communication is possible, then it may be advantageous to construct
a few sprites and send them in parallel [112]. As mentioned above, in the
ideal case downloading time measures sprite(s) quality. However, a number of
circumstances make it close to impossible. Let us consider limitations to the
perception of communication performance. Downloading time is determined
by a chain of components: the browser, network communication stacks, net-
work devices on the path from the client to the server, web-server queuing and
buffering. A variety of browser, communication, server platforms exist which
deal with messages in various ways. All these components are shared by activ-
ities with unknown arrival times and durations. Diverse scheduling strategies
are used to dispatch them. Consequently, communication time is unpredictable
and nondeterministic, which materializes in dispersion of performance parame-
ters (see Section 4.3.2). It is not possible to use detailed methods of packet-level
simulation to calculate sprite transfer time because such methods are too time-
consuming to be called hundreds of times in the optimization process. Hence,
in evaluating quality of a set of sprites it must be relied on performance models,
such as flow models [117], preferably an easy to calculate formula, representing
typical tendencies which can be reasonably traced. Thus, occurs a dilemma
how to represent essential determinants of the transfer time in the tractable
way. Our approach is detailed in the following.

Given a set of sprites sizes, three communication channel performance ele-
ments are considered to estimate transfer time: (i) communication latency, (ii)
available bandwidth, (iii) the number of concurrent communication channels.
It is assumed that one sprite is transferred over one communication channel
but the this abstracts away from the specific packet exchanges. Communication
latency (startup time) L is the constant overhead emerging in a sprite transfer
time. Bandwidth B(1) (e.g. in bytes per second) is the speed of transferring
data between the web-server and the browser using one communication chan-

nel. Thus, according to this model, transferring x bytes of data over one channel

76

takes L+x/B(1) seconds. Note that in this representation L implicitly covers all
constant overheads, both in the communication channel and in the web-server.
Similarly, bandwidth accounts for the speed of the communication channel and
the server. Consequently, this network performance model encompasses all com-
munication layers from the physical to the application layer. Browsers allow for
opening a few concurrent communication channels to the web-server (cf. Sec-
tion 4.3.2). This opens an opportunity to transfer sprites in parallel. It is
assumed that one channel may transfer several sprites sequentially. The perfor-
mance for parallel communications is ruled by sequencing them in the browser,
packet scheduling in the network, sharing the communication path and band-
width with other communications and with network protocols signaling. Hence,
the total bandwidth is not increasing linearly with the number of used channels.
Instead it is assumed that the total bandwidth B(c) is a function of the number
of simultaneously open channels ¢. Then, a single channel bandwidth share is
B(e)/c. A vector of aggregate bandwidths for different numbers of channels will
be denote by B = [B(1),..., B(Cmaz)] Suppose that size of sprite i is f;, for
i =1,...,m. The time of transferring the set of sprites S over ¢ concurrent

channels is modeled by the formula:

T(S,c) :max{iz;(ur B(J;3/C),g1:af<{L+ B(J;")/C)}}. (4.1)

In the above formula L + f;/(B(c)/c) is communication time of sprite i trans-
ferred via one of ¢ channels. The first part of (4.1) is total communication time
shared fairly over ¢ channels. The second part is a duration of the single longest
communication. Formula (4.1) represents communications like preemptive tasks
scheduled on a set of ¢ parallel processors in the scheduling theory [92]. Clearly
formula (4.1) is an approximation. A simple communication time is assumed
model because, as discussed above, the actual scheduling of communications is
unknown. More detailed models of the transfer time (e.g. accepting certain
sequencing of sprites in channels) are not justified without further disputable
assumptions. An advantage of formula (4.1) is that it can be easily calculated
in O(m) time from sprite sizes without a need for more complex algorithms or
simulations. Note that increasing the number of sprites m means increasing the
number of HTTP requests. This is represented by mL in the first part of for-
mula (4.1). Thus, (4.1) takes into account the trade-off between the opportunity
of transfer time reduction by parallel communication and the cost of issuing an
HTTP request for each sprite. Usually B(c) is a nondecreasing sublinear func-
tion (see Section 4.3.2). Consequently, B(c)/c is nonincreasing and (4.1) has

maximum in one of two trivial cases ¢ = 1 or ¢ = ¢;q,- Hence, to encourage

7

Symbol Definition

B(e) accumulated bandwidth of ¢ concurrent communication channels

B vector [B(1),..., B(¢maz)]

c number of concurrent communication channels

Crnaz maximum admissible number of concurrent communication chan-
nels

fi size of sprite ¢ in bytes

k number of intermediate tile groups (cf. Section 4.5.2)

L communication latency (startup time)

m number of sprites

n number of tiles

S set of sprites

T set of tiles

T(S,c) communication time as a function of the set of sprites S and num-

ber of used communication channels ¢

Table 4.1: Summary of notation for the CSS-sprite Packing Problem.

applying a mild number of parallel communication function

Cmax

T(S) = Wi {T(S,)} (4.2)

will be used as the objective function evaluating quality of a set of sprites. It is
not taken for granted that any aspect of the problem dominates download time,
but by optimizing (4.2) a balance between the number of sprites, their sizes,
overheads, and parallelism is stroken. However, certain optimization versions
may be handled as special cases of (4.2). For L = 0, B(¢) = 1, ¢pmar = 1 total
size of transferred data is minimized. Similarly, for L = oo, B(¢) = 1, ¢jaa = 1
the number of communications is minimized, i.e. one sprite will be created.
For the end of this discussion let us note that communication performance
has a ”demographic” aspect. The website performance perceived by its user is
impacted not only by the server, but also by factors on the user side such as
the ”last mile”, the browser, the computer platform. Moreover, not one user
visits the website but many and each of them can be different. Hence, there is a
population of visitors and population of performance indicators. Members of the
population create a specific profile of loading the server with communications.
Thus, each website is unique with respect to its users population. In order to
take the full advantage of performance optimization, parameters L, B should
be measured on the actual web site and its viewers population. Section 4.3.2

demonstrates how this can be done in practice.

78

4.2.5 PROBLEM FORMULATION

Let’s summarize the introductory discussion by formulating CSS-sprite Pack-
ing Problem (CSS-SPP). Given is set T = {T1,...,T,} of n tiles (images in
standard image formats such as JPEG, PNG, GIF), communication link with
latency L and bandwidths vector B of length ¢,,q.. Construct a set of sprites
S such that objective function T'(S) as defined in (4.2) is minimum. Rotation
of tiles is not allowed. Each tile is comprised in only one sprite. Each sprite is
transferred in one communication channel.

Let’s summarize possible advantages and costs implied by the above problem
formulation. By using objective function (4.2) user-side performance perception
is assumed. Applying more than one sprite allows to build better sprites and
thus save on the total transferred data size and memory usage in browsers. Em-
ploying many sprites offers faster downloading by parallelizing communication
at the cost of establishing many connections on the server. The interplay of
communication performance and the sprite(s) determines efficiency of the so-
lution. Hence, sprite construction is guided by the actual data: n, B, L, tiles
sizes and features. The number of sprites in the solution is not predetermined.
Depending on the actual set of tiles and the performance data it may be a sin-
gle or a few sprites. As observed in the previous section, a single sprite will
be constructed if additional latencies outweigh benefits of parallel connections.
It is also justified to consider separating significantly different classes of user
browsers (e.g. mobile vs wired) and constructing different sprite(s) for each

user class.

4.3 PRELIMINARY TESTS

As discussed in the previous section, a number of decisions must be made in
designing a sprite-packing solution. This section reports on the impact of layout
choice on the efficiency of the image compression and also presents results of

network communication performance evaluation.

4.3.1 PACKING MODEL

An aspect ratio of an image is the ratio of its vertical and horizontal sizes.
Vertical and horizontal layouts may be considered the border cases of possible
aspect ratios in this sense that one sprite dimension is fixed to a minimum. As
noted in Section 4.2.2 the sprite aspect ratio may influence the efficiency of image
compression. In order to examine the extent of such relationship, an experiment

has been conducted. 36 sets of 36 rectangular tiles representing web icons,

79

b)

Figure 4.4: Instances with preference for a) vertical layout (

zontal layout (

1.00

0.98

0.96 -

0.94 -

0.92

0.90 -

0.88

0.86

0.84 -

0.82

1.00

0.95 -

0.90 -

0.85

0.80 -

0.75 -

0.70 -

0.65

Relative sprite file size

Benchmark and aspect ratios

blobs game

9]

N

+

<

=

9]

k=]

=

> ?

9]

>

=

F=i

o .

2 Benchmark and aspect ratios
mac2 gloss checker smallicons ~ maccol tiny tango flags

z
Y

_E)

1)

3—16) b) hori-

z
Y

80

1.000

& 0995 { H
w
Q
¢
£
=
o
(%]
(9]
=
=}
o
9 0.9% eﬁ
Benchmarks and aspect ratios
0.985
onebit shot jewel shot2 autumn

Figure 4.5: Instances without strong preference for any aspect ratio.

buttons and similar elements were collected from websites offering stock images.
The sets had various colors, backgrounds, visual styles and sizes. In addition to
sets with images coming from a single origin and hence with similar visual style,
sets comprising images from different sources, distorted images and blank tiles
to simulate wasted space were tested. Since in each test set tile sizes were equal,
it was possible to pack them without real waste. The only waste was introduced
intentionally in the test by using blank tiles. For 36 rectangles 9 aspect ratios
were tested which conventionally represent the size of a sprite as a tile array in
tile units. Thus, aspects (%) 3—16 (a vertical layout), 12—8, %, %, g, %, %, %, % (a
horizontal layout) have been examined. Since the mutual arrangement of the
tiles may alter results of image compression, 200 random permutations of tiles
were generated for each aspect ratio. Image manipulations were performed with
GD Graphics library [17]. For PNG compression PNG_ALL_FILTERS setting was
selected which means that in the construction of the compressed image scanline
all compression filters were tried and the most effective compression filter was
applied. Images were compressed with the strongest level 9 of DEFLATE method.

Results of the experiments with PNG images are shown in Fig.4.4-4.5. On
the horizontal axis different data sets are presented, and for each data set aspect
ratios are shown from % to %. Along the vertical axis sizes of sprite files in
relation to the size of the biggest sprite created for the given test set are given.
The results from 200 permutations are shown as boxplots with minimum, first
quartile (Q1), third quartile (Q3), and maximum. Note that Fig.4.4-4.5 have

81

different ranges on the vertical axes. For clarity of presentation only a subset
of results is shown. It can be verified in Fig.4.4-4.5 that the data sets can
be divided into three groups: with a preference for vertical layout (Fig.4.4a),
with a preference for horizontal layout (Fig.4.4b), and data sets without any
apparent preference for the aspect ratio (Fig.4.5). A preference means here that
certain aspect ratio results in the smallest sprite sizes. Out of 36 data sets 17
had preference for horizontal layout, 14 for vertical layout, and 5 demonstrated
no aspect preference. In the instances with preference of the layout the sprite
sizes could be reduced by 2% to 35% from the worst to the best aspect ratio
(Fig.4.4a,b). In the case of no correlation of file size with the aspect ratio, sprite
file sizes could be reduced by less than 1.5% by selecting the aspect ratio. The
above results give a strong argument that in case of PNG images it is justified
to focus the examination of the geometric packing models on strip packing with
vertical and horizontal layouts. Moreover, for the preferred aspect ratios the
impact of tile permutations was always within 2%. It can be concluded that the
neighborhood of the tiles has a relatively small impact on the sprite size and,
e.g., the CSS-SSP algorithm does not need to examine swapping the same-sized
tiles between their locations.

In the case of JPEG image format no similar preference has been observed.
However, size of the output sprite was strongly correlated with the sprite area
(number of pixels). Therefore, in the case of JPEG images it is advisable to

eliminate unnecessary waste space.

4.3.2 COMMUNICATION PERFORMANCE

In this section it is demonstrated that performance parameters L, B introduced
in Section 4.2.4 can be obtained in practice. Before proceeding to the results let
us explain why using existing performance studies is problematic. As explained
in Section 4.2.4 communication performance parameters should be measured
on the particular web server and its user population. Consequently, latency
and bandwidth results which could be obtined using tools like [124] are not
adequate here becasue the sprites would be optimized not for the population of
real users but for the benchmarking infrastructure. To the best of the auhthor’s
knowledge data on bandwidth scalability, here expressed in vector B, is not
available in the open sources. The number of per-domain parallel connections a
browser may open is well studied [111], but it does not translate directly to the
number of parallel channels ¢,,q, and bandwidth scalability in B because these

are determined by the server, user platform, and the ”last mile”.

82

1E+04
mode 312 ms

min 6ms
median 352 ms max . 148036 ms
| No. of points 43876
mean 531 ms
1E+03 -+
:
©
w
5
o 1E+02 -
o
o
=2

1E+01 |“‘H h\‘m“h “ |
Ll]
1E+00 Latency L [ms]
"
500

a) 0 1000 1500 2000 2500 3000 3500 4000 4500 5000
800

mode 110 kB/s min 2 kB/s
700 max 333 MB/s |

| No. of points 26968

median 464 kB/s
600

500

H mean 811 kB/s

No. of users
B
o
o

300

200 | ‘u

o O o o
o O O o

N O o

1

o

0

Speed B(1) [kB/s]

0
o

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3200
3400
3600
3800
4000

o
o
™

4

b)

Figure 4.6: Experimental verification of network performance: a) latency dis-
tribution (logarithmic vertical axis), b) user download speed distribution.

83

lNumberofchannels [>2 [>3 [>4 [>5 [>6 [>7 [>8 [>9‘

| Accumulated frequency | 100% [81% | 68% | 65% [61% [57% [12% | 6% |

Table 4.2: Distribution of browser parallel channel number limit.

Network performance observed by browsers has been tested experimentally.
In order to estimate latencies and available bandwidth of user browsers a script
downloading files of size 1B and 1MB has been installed on a web page ranking
popularity of other web pages. The test page is linked to from over 700 other
websites using hyperlinks which users may click manually. The variety of linking
websites guarantees that the population of visitors is not too uniform. By
viewing this web page the visitors executed the scripts in their browsers and
downloaded the two files using their specific browsers and Internet connections.
Since the scripts were appended to a ”production” page, the it was possible to
gather real viewers traffic with their specific network performance features. The
times of downloading the two files were collected. According to formula (4.1)
transferring = bytes of data without using parallel channels takes L + 2/B(1)
units of time. Time t; of downloading 1B file is dominated by communication
latency L. Hence, t; as an estimate of L is used. Time t5 of downloading 1MB
file has a significant component related to bandwidth. The speed is calculated
as B(1) =1MB/(ts — t1). Measurements with t; < t; were rejected. In total,
measurements from 17460 unique IP addresses were collected. Time t; was
measured 43876 times, 26968 measurements with to > t; were collected, 277
measurements with ¢5 < t; were rejected.

Results of latency measurement are shown in Fig.4.6a. It can be seen that
latency distribution has a long tail, but majority of the observations are concen-
trated around mean, median and the average value. Over 2/3 observations are
concentrated in range [200ms,500ms]. It can be concluded that performance op-
timization should focus on typical values of the latency. Distribution of speeds
is shown in Fig.4.6b. Also speed distribution has a long tail, but over 76%
of registered speeds are in range [100kB/s,2MB/s]. The histogram in Fig.4.6b
demonstrates that measurements aggregate around particular speeds (in bits/s):
1Mb/s, 2Mb/s, 4Mb/s, 6Mb/s. The number of clients with speeds greater than
6Mb/s (~750kB/s) quickly decreases with increasing speed. Therefore, it may
be advisable to divide users into classes and optimize performance for a partic-
ular speed representing a given user class. Such classes could be established by
ranges of IP addresses assigned by Internet service providers to client connec-
tion type classes, or by separating mobile device browsers or by clustering users
according to their connection performance. This, however, is beyond the scope
of this study.

84

X
X « X
x X
+X +
+ X +
X + x X N +
5 X MK b4
X * X ’ x)
X
< +x¥ X X o X 3
X +
¥ x + X
4 +
x x X
*y
X * X
= Fx
Ss X
= x .
o X + X
X
& X *
2 * + X
+
xX
X
1 « * B(5)/B(1)
+ B(7)/B(1)
x B(9)/B(1)
0 T
0 1 2 3 4 5 6
B(3)/B(1)

Figure 4.7: Speedups B(c)/B(1) vs B(3)/B(1) in using parallel channels.

B(3 B(5 B(7 B(9
Speedups ﬁ ﬁ ﬁ %

Medians 1.36 | 1.56 | 1.66 | 1.77
SIQR 0.39 | 0.60 | 0.61 | 0.68

Table 4.3: Synthetic results of parallel channel experiment.

In order to evaluate opportunities for parallel communication a very similar
script downloading 1MB of data over ¢ = 1, 3,5, 7,9 channels has been designed.
For example, for ¢ = 3 three files of size 1/3MB have been downloaded by a
browser executing the script. The downloading time of the last of the files (3)
has been recorded to calculate bandwidth as B(3) =1MB/#(3). 370 measure-
ments from 276 unique IPs have been collected. Different types of browsers are
opening various numbers of parallel connections. Hence, the first capability of
the user infrastructure in parallel communication has been verified first. The
number of communication channels which can be effectively simultaneously open
has been determined as the number of communications overlapping in time. If
a of communications were performed at least partially in parallel, while the
(a 4+ 1)-th communication was executed after one of the earlier a communica-
tions, then a was recorded as the number of available channels. In Table 4.2
cumulated fraction of browsers capable of using at least some number of parallel

channels is shown. It can be verified in Table 4.2 that all browsers are using

85

at least two parallel channels, in roughly 80% three channels can be used, but
only 12% are using 8, 9 or more. Hence, not in all browsers can any speedup
in communication be observed if, e.g., 8 concurrent downloads are started. To
compensate for the differences in user bandwidths B(1), in the further discussion
bandwidth speedup B(c)/B(1) obtained by using ¢ parallel communications is
considered. For the sake of giving the reader a rough impression of the obtained
results Fig.4.7 shows speedups B(c)/B(1) as sets of points. On the horizontal
axis speedup B(3)/B(1) is shown, along the vertical axis speedups B(c)/B(1)
for ¢ = 5,7,9 are shown. It can be seen that: i) indeed there is some acceleration
of communication by use of parallel channels because most of the observations
are located above a diagonal line, ii) the acceleration has a great deal of dis-
persion, iii) the results form one cluster, iv) there are cases for which no gain
(no speedup) has been observed. In roughly 19% of measurements parallel com-
munication resulted in longer communication time. In Table 4.3 the results are
presented in a more synthetic form. Speedups B(c)/B(1) obtained in parallel
communications are reported. The first line presents medians of the speedups.
The second line provides SIQR, (semi-interquartile range) as an index of disper-
sion. A moderate speedup increasing with the number of open channels ¢ can

be seen. Clearly, the speedups are sub-linear.

4.4 STATE OF THE ART

Initially CSS-sprites were constructed manually [109]. Here only tools for an
automatic CSS-sprite packing are considered. Since there are many software
solutions with little differing names, they will be identified by web addresses
and in some cases their own short names. The index of names and addresses is
given in Table 4.4.

There are three groups of CSS-sprite generators which have been excluded
from further study and evaluation (cf. Table 4.4 and Table 4.6). Firstly, there is
a group of tools bound to web pages developed in a specific technology stack and
software framework. These tools were created with the intention of generating
sprites applicable only in certain technology ecosystem and not as independent
files for external use. Applications in this set are marked as group A in Table 4.4.
Secondly, there is a set of applications which could not be included in the further
study because the it was not possible to use them. Such cases are mentioned
in Table 4.4. The specific situations which were encountered were: failure to
work after installation (group B in Table 4.4), dead web applications giving no

results (C), sprites with overlapping tiles (D).

86

’ Reason

\ Web address

A. bound to websites
created in certain
technology stack and
framework

aspnet.codeplex.com/releases/view/65787
compass-style.org/reference/compass/
helpers/sprites/
contao.org/en/extension-list/view/
cssspritegen.en.html
docs.typo3.org/TYP03/SkinningReference/
BackendCssApi/SpriteGeneration
drupal.org/project/sprites
github.com/northpoint/SpeedySprite
github.com/shwoodard/active_assets
requestreduce.org

spriterightapp.com

B. failed to install and
work properly

search.cpan.org/perldoc?CSS: : SpriteMaker
yostudios.github.io/Spritemapper/

C. online with dead
website or scripts

css—-sprit.es
spritifycss.co.uk

D. produce results
with overlapping tiles

mobinodo.com/spritemasterweb
spritepad.wearekiss.com

timc.idv.tw/canvas-css-sprites/en/

Table 4.4: Excluded CSS-sprite generators.

Further applications are listed in Table 4.6 and Table 4.7. In the third col-
umn of the tables (application type) the way of using a generator is described.
CSS-sprite generators are usually used in two ways: as an online or as a com-
mandline application. In both cases tiles and sprites are files. A few exceptions
exist. SpriteMe and mod_ps read web page background images and convert
them into sprites. Moreover, mod_ps is an Apache server module and does it in
web pages it serves. [HLabs and selaux are scripts without commandline sup-
port, parameters (e.g. input images) are set by code modification. Applications
using script languages (e.g. Ruby or Python) often require additional packages,
sometimes quite hard to install. The set of user options for the output sprite
is described in the fourth column. PNG denotes a 32bpp truecolor PNG image
with transparency. PNGS8 is an 8bpp PNG image with or without transparency.
It can be observed that the set of output formats is usually limited and if there
is any option, then the responsibility rests on the user to choose reasonable
settings. Some applications admit using postprocessing to further reduce the
sprites. However, such post-optimization cannot undo bad decisions made ear-
lier. Hence, there is a need for some decision support in selecting minimum color
depths and in optimizing output format. In Table 4.6 CSS-sprite generators are
listed which align tiles in a single column or row. A drawback of these applica-

tions is that they construct sprites of very big dimensions if the number of tiles

87

Short cf. Web address
Name Tab.
aberant github.com/aberant/css-spriter
cbrewer codebrewery.blogspot.com/2011/01/cssspriter.html
cssscom csssprites.com
CSSSorg csssprites.org
elentok github.com/elentok/sprites-gen
fsgen 46 freespritegenerator.com
IHLabs ' github.com/IndyHallLabs/css-sprite-generator
insts instantsprite.com
JWwsg github.com/jakobwesthoff/web-sprite-generator
perforgsg spritegen.website-performance.org
mod_ps developers.google.com/speed/pagespeed/module/
filter-image-sprite
selaux github.com/selaux/node-sprite-generator
spriteme spriteme.org
acoderin acoderinsights.ro/sprite/
cdplxsg spritegenerator.codeplex.com
codepen codepen.io/JFarrow/full/scxKd
csgencom css.spritegen.com
csssnet cssspritesgenerator.net
glue glue.readthedocs.org/
isaccc codeproject.com/Articles/140251/
A7 Image-Sprites—-and-CSS-Classes-Creator
JSGsf ' github.com/jakesgordon/sprite-factory/
pypack jwezorek.com/2013/01/sprite-packing-in-python/
txturepk codeandweb. com/texturepacker
simpreal simpreal.org.ua/csssprites/
shoebox renderhjs.net/shoebox/
spcanvas cssspritegenerator.net/canvas
stitches draeton.github.io/stitches/
sstool leshylabs.com/apps/sstool/
zerocom zerosprites.com

Table 4.5: Index to the CSS-sprite packing solutions.

88

Short last up- | application type output options 2D packing mode
Name date

Mar 24, | commandline multi- | PNG One row
aberantT 2011 platform (Ruby)

Nov 5, | commandline multi- | PNG, JPEG One row
elentok T 2011 platform (Python)
fsgen unknown | online PNG One column

Aug 29, | Bookmarklet. Ana- | PNG, color mode One column
spriteme!? | 2014 lyzes a web page

Jan 2, | windows executable | PNG, JPEG One column
cbrewer 2011

Aug 22, | code to modify and | PNG, JPEG, GIF | One column
THLabs® 2008 run (PHP)

unknown | online, single file | PNG, no opacity One column or row
cssscom upload with padding

Feb 14, | commandline multi- | PNG, automatic | One column or row
csssorgTC3 | 2014 platform (JAVA) color depth with padding

Oct 30, | online PNG, GIF One column or row
instsT 2014 with padding

Jan 22, | online, upload of zip | PNG, JPEG, GIF, | Columns or rows
perforgsg? 2010 file (filename bugs) number of colors | with padding

and loss rate

Aug 28, | Apache module PNG, GIF One column
mod_ps! J 2014

Mar 27, | commandline multi- | PNG Multiple rows with
JWwsgC 2010 platform (PHP) pictures of similar

colors

Aug 12, | code to modify and | PNG One column, row

selaux 2014 run (JavaScript) or diagonal line

T Offers tile test sets.
1 Accepts only background PNG and GIF images from a web page.
2 Simple decision support based on predefined rules.

3 Reads images from CSS file, requires manual annotation of the files.

C Offers CSS test sets.

4 Possible postprocess: OptiPNG.

I Does not read JPEGs.

Table 4.6: Solutions not using 2-dimensional packing algorithms.

89

Short Last Update Application Type Output 2D-Packing Method
Name Options
csssnet® 2014 online PNG Unknown
? online PNG Unknown. Choice of:
codepen® tile sorting, sprite di-
mensions.
? commandline multi- | PNG, Implementation of [52].
glue platform (Python) PNGS8
May 8, 2014 | online PNG, Tries [69] for 20 sec-
zerocom 7 PNGS onds. If instance is
large then uses [26].
Jan 6, 2013 commandline multi- | PNG Extension of [52].
pypack platform (Python)
Aug 08, 2014 | commandline multi- | PNG Can be forced to use
JSGsfC8 platform (Ruby) implementation of [52].
Jan 22, 2010 | online, upload of zip | PNG, Some variation of guil-
acoderin©? file JPEG lotine split heuristic.
May 2014 online PNG, Unknown.
csgencom 0 JPEG,
GIF, loss
rate
cdplxsg!? Sep 10, 2010 | windows executable | PNG Implementation of [53].
Oct 27, 2014 | GUI for Windows, | PNG, Best result of the
txturepk!? MacOs, Linux and many | heuristics: MaxRects,
other ShortSideFit, LongSid-
formats eFit, AreaFit, Bottom-
Left, ContactPoint.
stitchesT13 | May 4, 2013 online PNG Unknown.
sstoolT® May 29, 2014 | online PNG Unknown local search.
Feb 17, 2013 windows command | PNG ArevaloRectanglePacker
isaccc® line [100].
Feb 25, 2013 online PNG, Many options: heuris-
simpreal® JPEG, tics, column or row
GIF, mode, groups of im-
BMP, ages, tile sorting.
Base64
spcanvas'® | ? online PNG Implementation of [68].
2014 GUI, multiplatform | PNG Unknown.
shoebox (Adobe Air)

T Offers tile test sets. © Offers CSS test sets. & Does not read GIFs.

5 Forces padding. Fails on spaces in the input filenames, and files larger than 30kB.

6 Not fitting tiles are discarded without warning.

7 Filename limitations. Postprocess: PngOpt. High computational complexity.

8 Failed to work with rmagick package, but works with chunkypng instead. Possible post-
process: pngcrush.

9 Creates more than one sprite if bounding box exceeds 1200px x1200px. Hangs on duplicate
filenames with different extensions. Allows repacking tiles in sprites given as input.

10 Crashes on > 73 tiles.

11 Fails on spaces in the filenames and duplicate filenames.

12 Possible postprocess: PngOpt.

13 9D-packing places pictures instantly, but unexpectedly continues computations for some
more time.

14 Optimization feature randomly repacks sprite. High computational complexity.

15 Rich interface with many options. Hard to use.

16 Bounding box can be resized, which sometimes leads to tile overlapping.

Table 4.7: Solutions using some 2-dimensional packing algorithms.

90

is big and with a lot of wasted space if the tile aspect ratios differ. As a result,
sprites built by such applications are not comparable with the sprites obtained
by using some geometric packing algorithm. Therefore, they are considered not
suitable for real-life industrial use. This is the third set of applications excluded
from further comparisons.

Applications using some geometric packing algorithms are listed in Table 4.7.
In a few lucky cases the applied 2-dimensional packing algorithms were identified
in the provided software documentation. Algorithm [52] is commonly used be-
cause its implementation is openly available. As geometric packing is A'P-hard
most of the applications use some simple greedy heuristics.

To the best of the author’s knowledge all existing sprite generators build a
single output sprite. No solution automatically evaluates options for distribut-
ing the tiles into several sprites for better matching tile types and to optimize
communication time. Only one solution uses a set of rules to optimize image

color depths and compression settings.

4.5 SPRITEPACK

This section presents Spritepack, a method for sprite construction. Given set of
sprites 7, communication parameters L, B Spritepack progresses in four steps:
i) tile classification, ii) geometric packing, iii) packing with image compression,
iv) postprocessing. Spritepack has been implemented in C++ using MS Visual
Studio 12 and Magick++ API to ImageMagick.

4.5.1 TILE CLASSIFICATION

With the goal of grouping tiles with similar sets of colors and to retain as low
color depth in sprites as possible, input tiles are first classified according to their
color depth. The following image classes have been distinguished:

1. 8 bit per pixel (bpp) indexed color PNG without transparency (denoted
as PNGS8i),

2. 8 bpp indexed color PNG with transparency (PNGSit),

8 bpp gray-scale PNG without transparency (PNG8g),

=~ W

8 bpp gray-scale PNG with transparency (PNG8gt),

5. 24 bpp truecolor PNG without transparency (PNG24),
6. 32 bpp truecolor PNG with transparency (PNG32t),
7. JPEG images (jpeg).

91

Each tile is included in the class with minimum color depth greater than or
equal to the original tile color depth. Since the original image information may
specify higher depth than actually existing, images may be attributed to wrong
classes. To avoid such a situation each input tile were converted to minimum
necessary color depth PNG image using Magick++ and saved on file. Only then
was the tile re-opened and assigned to the appropriate class. Similar procedure
was applied to JPEG images. If the JPEG image converted to PNG had smaller
size, then the PNG version was used in the further manipulations. Images with
1,2,4 bits per pixel are currently relatively rare, and therefore are included in
PNGSi, or PNGSit. For similar reasons PNG tiles with 16 bits per color channel
were not considered. All GIF images were converted to PNG8i or PNGS8it which

sometimes reduces image size [115].

4.5.2 GEOMETRIC PACKING

The goals of geometric only packing are twofold. The first objective is to iden-
tify tiles which have similar sizes and can be put together in one sprite with
little waste. It should also filter out tiles with odd shapes which should not
be combined into a sprite to avoid excessive waste. The second purpose is
reducing Spritepack runtime. As noted in Section 4.2.2 image compression is
time-consuming, and full evaluation of each intermediate sprite would take too
much time. Hence, geometric packing is a form of fast proxy to the full version
of the algorithm, or a preprocessing step reducing the number of sprite candi-
dates for complete evaluation. The algorithms for geometric packing operate
on tile bounding boxes, that is on rectangles, rather than on bitmaps. A group
will understood here a set of tentatively assembled tiles. The procedure for

geometric packing is given in the following pseudocode.

GEOMETRIC PACKING

INPUT: set 7 of tiles

1: Create a group for each input tile;

2: while number of groups is bigger than k

2.1: bp1,bps < nil; bw < oo; // create an empty group pair with waste bw
2.2: for all unevaluated group pairs g1, g2 with equal image classes

2.2.1: join g1, g2 into a new group gs;

2.2.2: apply to g3 all geometric packing strategies;

record the packing with minimum geometric waste ws;

2.2.3: if ws < bw then bp1 < g1,bp2 < g2, bw < ws;
2.3: endfor;

92

2.4: create a new group from bp; U bpz, remove bp1, bpa,

reduce number of groups by 1;

3: endwhile

Geometric packing is a one-pass method merging in each iteration the best
pair of groups. Note that in geometric packing only tiles of the same class may
be merged (step 2.2). In this way premature upgrading tiles to higher color
depths is avoided. Thus, dealing with the uncertainties of image compression
efficiency is delayed to the next step of Spritepack. The above procedure finishes
with k groups of tiles. Value of k is a control parameter of Spritepack. Yet,
limits on k exist. On the one hand, k cannot be greater than the number of
tiles, which is important for small sets 7. On the other hand, k cannot be
smaller than the number of tile classes identified in set 7 plus 2. The offset of
two groups has been established experimentally. Without such a margin all tiles
from a given class end up in one group. Consequently, very different tile shapes
are combined, thus invalidating the first purpose of the geometric packing step.
Performance of Spritepack under various k settings is discussed in Section 4.6.
Geometric packing is a simple hyperheuristic [23] because it guides a set of low-
level heuristics referred to as geometric packing strategies in step 2.2.2. The
strategies involve packing model and packing algorithm. Two packing models
are possible: 2-dimensional strip packing (2SP) and rectangle packing (RP).
The 2SP comes in two flavors of either horizontal or vertical layout. Since
geometric phase may involve hundreds of tiles and packing algorithms may be
called hundreds of times and more, therefore only fast heuristics are acceptable
here. Packing algorithms are dedicated to each type of packing model. For 2SP

the following low-level heuristics are available:

e First-Fit Decreasing Height (dhFF, computational complexity O(nlogn)),

First-Fit Decreasing Height with Fit Two (dhFFf2, O(n®logn)),

Best-Fit Decreasing Height (dhBF, O(nlogn)),

Best-Fit Decreasing Height with Fit Two (dhBFf2, O(n3logn)),

Bottom-Left (BL, O(n?)),

e Modified Bottom Left (MBL, O(n?)).

For RP model algorithm Variable Height Left Top (VHLT, with complexity
O(n*wy)) is available. In the following a short description of the above heuristics

is given. A more detailed account can be found, e.g., in [6, 77, 99, 101].

93

tile 1] tile 2 ~ & N
. . o) . D Q@
tile 1 tile 1|= tile1 ' = tile 1|+
E 2 > ’ > —
tile 3 3 .
tle 2 o | tile3 fie 3
a) b) !

Figure 4.8: Increasing bounding box height in VHLT after a) successful, b)
unsuccessful packing.

In the coming description of 2SP algorithms the vertical layout is assumed.
It means that there is a strip of the width equal to the widest tile and in the
process of packing the occupied area extends upward. Heuristics dhFF, dhFFf{2,
dhBF, dhBFf2 are shelf packing. As it was explained in Section 3.2.6, in the
shelf packing, rectangles are put on the stripe in rows aligned to bottom of the
shelf and the height of a shelf is determined by the highest rectangle on the
shelf.

The above shelf algorithms consider tiles in the order of decreasing height.
First-Fit algorithms (dhFF,dhFF{2) place the current tile on the first shelf which
can accommodate the width of the tile. Best-Fit algorithms (dhBF, dhBF{2)
place the tile on the shelf on which the remaining width is smallest. When
placing the current tile closes a shelf, that is no single remaining tile is able
to use the shelf, the Fit Two algorithms (dhFF{2, dhBFf2) search among the
remaining tiles for a pair wider than the current tile and still able to fit on the
shelf. The Fit Two option has been explained in more detail in section 3.4.2. BL
algorithm [25] places tiles as close to the bottom and as close to the left edge of
the strip as possible. In this implementation of BL (MBL) tiles are considered
in the order of nonincreasing width and holes (empty areas not accessible from
above) are not considered. In each iteration MBL tests all available tiles for
their placement. The tile which can be put closest to the bottom is chosen.
The versions of the algorithms for horizontal packing are defined analogously
by swapping the roles of widths and heights.

Implementation of VHLT [101] is inspired by [68]. In the original description
of VHTL [101] a horizontal layout is used. Hence, the Left-Top could equally
well be referred to as Bottom-Left in the vertical layout rendering. However, the
subsequent description sticks to the original horizontal setting. VHLT algorithm
iterates over admissible widths w and heights h of the bounding box, verifies
feasibility of packing in the given (w,h) using Left-Top algorithm, and returns
the bounding box with the smallest total area. A special data structure has

been proposed in [101] to represent available space. The iteration starts from

94

the rectangle of dimensions (wg, ho) obtained by Left-Top for horizontal layout.
Suppose that the current bounding box (w, h) is feasible, then the width w is
decreased by 1px. If the new rectangle is feasible, then w is decreased again. If
it is infeasible, then h is increased by one. Moreover, if w x h is smaller than
the area of tiles, then the bounding box is infeasible and h is increased until
the rectangle is feasible. If w x h is bigger than the smallest area of a feasible
bounding box, i.e. of a known feasible solution, then testing bounding box (w, h)
may be skipped and w is decreased again. In [101] the following rules tailored
to Left-Top have been used: i) After a successful packing the next narrower
bounding box must be higher at least by the height of the highest tile touching
the right edge of the bounding box (cf. Fig.4.8a). ii) After an unsuccessful
packing the next narrower bounding box must be higher at least by the smaller of
the values: the height of the first rectangle which could not fit, or the minimum
extra height allowing rectangles neighboring horizontally be put on one another
(Fig.4.8b). The advantages of VHLT are that dimensions of the bounding box
are not fixed and that holes are considered. A disadvantage is VHLT complexity.
Since each possible width may be verified VHLT is pseudopolynomial, that is
VHLT has exponential running time in the length of wy encoding. In practice
this may be less severe because the initial width wg usually does not exceed
a few thousand pixels and only a subset of possible widths is really tested by
VHLT.

4.5.3 MERGING WITH IMAGE COMPRESSION

Merging with image compression is a core of Spritepack. It is based on a similar
idea as geometric packing, but takes into account size of the obtained sprites
after image compression and the resulting load time estimation defined in (4.2).
The procedure for merging with image compression is given in the following

pseudocode.

MERGING WITH IMAGE COMPRESSION
INPUT: k groups of tiles

1: Create a sprite for each input tile group; record current set of sprites as solution

S and as the best solution S* with objective T* = min{™m¢® T'(S, ¢);
2: while number of sprites is bigger than 1

2.1: bs1,bsz,bss < nil; bS < oo; // create an empty sprite pair

and empty sprite junction with size bS

2.2: for all unevaluated sprite pairs si, s2
2.2.1: apply to the tiles in s1 U s2 all strategies of merging with image compression;

record as s3 the sprite with minimum size Ss;
2.2.2: if S3 < bS then bs; < s1,bs2 < s2,bs3 < s3;bS < S3;

95

2.3: endfor;
2.4: S\ {bs1 Ubsa} U bss; calculate objective T' = min.™¢= T'(S, ¢)
2.5: if T <T* then 8"+ S§; T «+ T;

3: endwhile;

Merging with image compression is again a greedy sprite merging procedure.
In each iteration (while loop in lines 2-3) a pair of sprites which can be packed
in minimum size (measured in bytes) is selected in line 2.2.2. Note that in the
progress from the initial set of &k sprites to just one sprite each intermediate set
of sprites S is a valid solution. The set of intermediate sprites which minimizes
the objective function is selected in line 2.5. A key ingredient of merging with
image compression are the strategies applied in line 2.2.1. A strategy is defined
here by a combination of geometric packing strategy and image compression
method. Geometric packing strategies were discussed in the previous section.
All geometric packing strategies are verified in line 2.2.1 on the set of tiles
included in s1,s2. It means that the tiles in s; U so are once again arranged
geometrically, and their layouts existing in s1, s2 are not passed to s3. Image
compression methods are: i) for PNG format minimum color depth is selected
and all filters are tested, ii) if both sprites s1, so comprise only JPEG tiles or
it is allowed to change PNG type tiles to JPEG then JPEG formats with the
baseline and progressive compression are tested. The set of admissible PNG
filters, the option for changing a PNG class tile into a JPEG class tile, JPEG

compression quality are input parameters of Spritepack.

4.5.4 POSTPROCESSING

As it was described in Section 4.2.2 image sizes may be reduced by applying
different compression settings. It is not possible to verify alternative image com-
pression settings directly in the earlier step because it its too time-consuming.
Therefore, Spritepack takes the opportunity of optimizing sprites as a post-
process to the images obtained in the previous stage. This means that sprites
obtained in the merging with image compression step are further processed for
minimum size. The set of Spritepack post-processors is customizable and builds
on the examples from [81]. In further experiments postprocessors pngout [110]
with the option of using its KFlate algorithm and jpegtran [59] with the option
of verifying progressive and baseline compression have been applied.

For the end of this section let us note that the CSS-style sheets generated
by Spritepack take into account not only the position of a tile in a sprite, but

also which sprite comprises the tile (if there are more than one sprite).

96

4.6 SPRITEPACK EVALUATION

This section reports on testing Spritepack. Performance of Spritepack is com-
pared against other existing applications for sprite generation. The results give
insight not only into the internal workings of this method and its efficiency,
but also into the status quo in the web. Unless stated to be otherwise all
tests were performed with the use of ImageMagick 6.8.7-10-Q16-x64 on a typi-
cal PC with i5-3450 CPU (3.10GHz), 8GB of RAM and Windows 7. For PNG
Compression zlib compression level has been set to 7. All feasible filter types
(0-4) have been always tested for a given PNG-type sprite, and the result-
ing sprite with minimum size was always preserved (cf. Section 4.5.3). For
JPEG images quality has been set to 89 in ImageMagick. Combining a non-
JPEG tile into a JPEG sprite has been disallowed. Latency has been set to
L=352ms which is median in Fig.4.6a. Aggregate bandwidth vector has been
set to B = [464,557,631,685,723,750,770,791,821] in kB/s which has been
calculated from median speed in Fig.4.6b and bandwidth speedups in Table 4.3

with additional curve-fitting.

4.6.1 TEST INSTANCES

In order to evaluate Spritepack 30 test sets were collected first. The tiles in
the test sets are skins and other reusable GUI elements of popular open source
web applications. An index to instance names is given in Table 4.6.1, a concise
summary on the dataset are collected in Table 4.6.1, further details are pro-
vided in [89]. Instance names come from the name of the originating software
package and graphical theme name (if there was any). The second through
fourth columns in Table 4.6.1 provide numbers of tiles in GIF, PNG, JPEG
formats. Animated GIFs and tiles with improperly assigned file extensions
were excluded. The following seven columns specify tile classes assigned by
Spritepack. Spritepack moved all GIFs to PNG format. Also some JPEG tiles
have been transferred to PNG classes because this reduced their sizes. It can
be observed that gray-scale tiles are rare and classes PNG8g, PNG8gt hardly
ever appear. Test sets offered together with the alternative sprite generators
described in Section 4.4 have been also analyzed. Unfortunately, most of them
are too simple, consisting of a few tiles with identical shapes. Therefore, only
acoderin and SpriteCreator test sets were included in this benchmark making a
total of 32 test sets.

97

2102 JNH AON #TWAY 9101S2IY¥ G0 L/so2eTdwe) —1.Ied -USZ /WD * 9Seqsaweyl - mnn// :daay QOQmaHN\aHNUC@N
2102 ‘¥T AON TWAY RUTSSTTTog 6%89/SoWaY] -SJ00X/WOD " 9seqsamway " aum//:daay @EEES@&\@QQOM
GT0Z ‘61 unp Ty fures 1)~ 1g86/sereTdwe] -SSoIdpIoM/wod oseqsameyl - mnn// :daay %Sdo.ﬂo\mopaﬁmog
2102 ‘FT AON 608Z=PT Ude1jERYIRIJR=U0TIDoSPYORIIR=TNpougaIod=dde,;dyd xeput /sunioy/woo ‘ surys-TIresdsntq mmn//:daay SSQUNIRP-UI}R[[NgA
Z10Z ‘9 9o utys-9owkury-uosesardtqey1/6z/60/8002/301q/wod s uosesid81qeys// :daay QOwd@wwﬂﬂwwuakﬂﬁ
2102 ‘9 29(] ure3gedixeq-Io0y-yoorhasTu/ege1dwey/woo - sejerdwes-dxa//:daag | yOoO[AjsIun uI91jed)Xo)
€10g ‘1 uer jooTanoTaxxtnbs/s1oeloxd/qeu-e8103e01n0s//:daay &OOESO\E@S?M&SU@
GT0Z ‘0¢ unp dtz' 0 ga"10r@01D03Tadg/I00R0I)SSOPUYSETIdS / THIH/G) /W02 * 100 [oxdepos - mmn//:daay I07e0IN9)LIdg
2102 r® 29 TWAY * OTSSeT) 6EE.L/SOWYL - NS /WOD 9seqsawayy - mum//:daay OISSR[O™JUIS
€10g ‘1 uer /s1tnaead-1-¢-1-doyseyserd-soweyq -aotrreu/doysessead-soweyq /dyd- xeput/3o1q/13 9013 17e108p//:daay @oia,@E\QOﬂm,mum@uQ
Z10Z ‘9 99(1 TWAY " L -9INJNJ-PAP-qS~608T/SOUWAYL -9HNNJHd /WO * 9Seqsaweyq *mum//:daay @HE#S.«U\;V\@&SGQQQ
2102 ‘9 99 Tw3yq - sAYS~6£89/SOWRYL -UOTST - dHd /WO ' 9Seqsaways - Mun// :d3ay sAys-uorsnydyd
1102 Jmﬁ AON Tway " %.HmmHm>ﬁﬁ<npmsozlwmﬁw\mmawn.ﬁ|mmmnm\aou roseqsaweyl MMM/ / daay EOg\QﬂQQQ
210T T1 AON Tuay - s3od~geT,L/seqeTdus] -osI0umO)SO /WOD * 9sRqSaWLY] ‘ MM/ / 1 daay 5710d-90I9 0280
e10% ‘1 uef SoYeo=7DIeas 191 TTJREGRE=PT UOTSUS]XOR0JUT /UOTSUS1XD /UOTSUS3X0=09101;dyd xopuT /wod * 3xeousdo " mnmm//:daay OUOQU\uHﬁogwgo
10z ‘1 uep 3wt /dexqsuesTd/199seU/0919 /Soweyq /utupeludyd /wos - qnya13//:sdaay thamgﬁguwﬁﬂaﬁﬁ%g
€10Q J wer TW1Y * sweyq -£1TSISATUN -SUTTUO /S TPOOU/WOD *eZWeyq * mmn//:daay \mﬁwhw.\ﬁﬁﬂwwﬁﬁooa
€10z ‘T uer 082%£G/298/speoTunop/mwod ' xa1depod * Teqxodolom/ /:daay ﬁﬂ@o&wﬂﬂﬁdaﬁu@oﬂoa
2102 ‘9 99(] Tway - ejeTdwe -9 TT-029/wod *pxpour//:daay 9JI[029~Xpoux
z102 nw 20T Tuay ' ojeTdweq -JT1e8Id /WOD * pXpour//:daay JIyeaIo”Xpouwr
2102 JVH AON TWAY* SAT[HOOg™ /8% /) /SUTHS -THTMeTPo)/WoD * oseqsawayy - mum//:daay ®>M_.MOOO—AMMB§NM@®S
2102 ‘F1 AON Tway - ogeTdwed -suoz-L3xred/oquen/uod ‘- ezueyq * Mum//:daay @QON%@H@Q\OG—E@E
Z102 ‘9 29(] TWAY * POOMPIRH ™ 96E /L /SUTHS -01uade]{/mod * aseqsamway " aum//:daay ﬁOOE@HﬁQ\O@@QwﬁE
2107 ‘FT AON d1z* I9TTe1SUT o TPUNg B [SOUTSNG/SOTTF/WOD *9podaT13008 * sererdwer-gg-srrzadxe-ul//:daay ﬁﬂﬂmoﬁﬁmﬂﬁlﬂaoo.ﬂ
z10g JNH AON Tuay - o8Teg-eqy gegL/sesrerdus] —eTWOO /WOD * 9seqSawayy * mum/ /1 daay wwmwﬂﬁﬂ‘m\dﬁgooﬁ
2102 9 oo(] Twly ' 90ey~ 90T /L/SoWey] -/ 0o /WoD " oseqsamway - aum//:daay 20BI) (O]°
2102 ‘9 951 Butuepre8/30efoxd /810" Tednip//:daay :@@Hmw\?.&;ﬁ
2102 ‘9 20(] ouway -TednIp-susaIal/gT/600¢/wWod - Suoyayey//:daay mgm\fﬁwﬁﬁdmdhﬁ
€107 ‘T uer xdse-qu311q/88/9T0T21Y/ZST/PTAR)/SUTHSOSI]/WOD * SUTHSUUPSSIT *mum/ /:daay uamﬂﬁwoxﬂaaoguow
2102 6 20(] /o9I1003UTUION/SOWSY] -GO18IOU0D /90U s100[oxdqemreus - mnn//:daay 99]J09~G919I0U0D
710T ‘9¢ Sy drz- 3wt /eTdwes/e311ads /01" sqylStsutaspooe//:daay ULIDPOoIR
2102 ‘FT AON Tuay - ogeTdweq -Ayderdojoyd-Teseay/seSeuty /wod ‘ezuayy mum/ /:daay ou‘o:&m\ﬁmpp\mwm‘mag
UO POsSsaIY TN SWIRU 90UR)SU]

Table 4.8: Test instance index

98

Instance name Original tiles Spritepack tile classification
o 2 el | x| X 8
O | ® 0 0 | ®© N | =
(@) o3 m @) (@) @) ©) (@) &) m g
S| C|8|E|E|E|E|E|E || 8
4images_travelphoto 9 41 7 42 8 0 0 1 0 6 57
acoderin 20 0 0 9 6 0 0 4 1 0 20
concrete5_coffee 0 1 14 0 1 0 0 1 0 13 15
dotnetnuke_bright 2 0 34 0 31 0 0 0 1 4 36
drupal_fervens 5 0 0 2 2 0 0 1 0 0 5
drupal_garden 37 7 4 2 40 0 1 0 1 4 48
elQ07_race 13 16 17 14 19 2 0 2 0 9 46
joomla_ababeige 10 0 4 7 2 0 0 1 0 4 14
joomla_businesl4a 110 1 1 23 82 0 0 0 7 0 112
magneto_hardwood 3 5 1 2 6 0 0 0 0 1 9
mambo_partyzone 2 13 1 14 1 0 0 0 0 1 16
mediawiki_bookjive 6 8 1 1 11 0 0 0 2 1 15
modx_creatif 7 0 17 0 0 0 1 6 10 24
modx_ecolife 0 4 6 4 0 0 0 0 0 6 10
mojoportal_thehobbit 11 19 9 9 22 0 0 1 0 7 39
moodle_university 8 246 3 13 240 0 0 2 0 2 257
myadmin_cleanstrap 210 2 0 22 155 7 10 0 18 0 212
opencart_choco 27 0 0 5 19 0 0 1 2 0 27
oscommerce_pets 1 131 | 71 | 46 | 111 | O 0 131 0 | 33 203
phpbb_wow 81 39 |10 | 6 56 0 0 2 | 58| 8 130
phpfusion_skys 8 31 3 18 22 0 0 0 1 1 42
phpnuke_dvdfuture 0 11 3 3 9 0 0 0 0 2 14
prestashop_matrice 37 122 21 61 110 0 0 6 2 1 180
smf_classic 62 254 1 14 283 0 0 0 19 1 317
SpriteCreator 56 0 0 0 1 0 0 0 55 0 56
squirrelmail_outlook 16 57 0 29 43 0 0 0 1 0 73
textpattern_mistylook 1 3 5 4 0 0 0 2 11
tinymce_bigreason 5 1 0 3 2 0 0 0 1 0 6
vbulletin_darkness 660 355 13 92 833 0 0 3 89 11 1028
wordpres_creamy 28 0 0 3 18 0 0 0 7 0 28
xoops-bellissima 19 2 1 0 7 0 0 0 14 1 22
zencart_artshop 2 55 3 8 49 0 0 0 0 3 60
Total files [1456 [1428 [248 [464 [2193] 9 [11 [39 [285[131][3132]

Table 4.9: Classification of the images in test instances

99

’Numberofsprites\l\2\3\4\5\6\7\8\9\10‘
| Number of cases [11 [77 [52 [68 [51 [31 [12 [14 [3 [1 |

Table 4.10: Number of tests vs the number of final sprites

A disadvantage of the evaluation using a test set collection is some inflexibil-
ity in choosing parameters of the tests. Nevertheless, this test set collection rep-
resents tiles existing in practical applications and allows examining Spritepack

in a realistic setting.

4.6.2 INITIAL EXPERIMENTS

This section reports on performance of Spritepack on a corpus of tile sets (Table
4.6.1). The experiments evaluated goal function optimization, sprite sizes and
numbers, Spritepack processing time. This series of experiments allows to choose
number k of tile groups passed from geometric packing stage and the set of usable
geometric packing algorithms.

Before discussing the results let us remind that Spritepack is minimizing
goal function (4.2) which is a model of communication time. Total size of the
sprites (e.g. in bytes) is not directly minimized and it can be used only as
a secondary criterion for comparisons. In the process of combining tiles into
sprites some space may be wasted. This results in the increased total area of
the sprites compared to the initial area of the tiles (expressed e.g. in px). Con-
sequently, more memory may be needed to represent tiles in the browser than
if the tiles were downloaded independently. Hence, the increase in sprite area
is an additional evaluation criterion. In the experiments a range of parameter
k is swept which has two-fold consequences. On the one hand, reducing k also
reduces processing time because fewer groups of tiles are evaluated in merging
with image compression (Section 4.5.3). On the other hand, increasing k gives
more possibilities of combining groups of tiles into sprites. Thus, k& should be
neither too big, nor too small.

The instances from Table 4.6.1 have been solved for k = 4,...,16. Since k
can be neither greater than the number of tiles n, nor can it be smaller than
the number of tile classes plus two (cf. Section 4.5.2), 320 test instances have
been solved in total. The results of this series of experiments are collected in
Fig.4.9-Fig.4.11 and in Tables 4.6.2 and 4.6.2. In Fig.4.9 reduction of the goal
function (4.2) vs k is shown. The reduction is expressed relative to the value of
the goal function T'(7,1), i.e. as (T'(S)/T(T,1)—1) x 100%. T(T,1) is the cost
of transferring the initial tile set 7 over one communication channel without
packing into any sprite. In Fig.4.9a goal function reduction obtained solely by

Spritepack is shown and in Fig.4.9b the reduction obtained in postprocessing

100

©
o
—
il
1
—
—

cost reduction [%]

k
4 6 8 10 12 14 16

-10

b)

Figure 4.9: Reduction of communication time estimation (4.2). a) Spritepack,
b) postprocessing. Lower is better.

101

is shown. It can be seen that typically Spritepack is able to reduce the goal
function by 60% and postprocessing further reduces it by roughly 0.5-4%. With
growing k the reductions are better, which is a result of two processes. Indeed
there are 6 test sets where increasing k decreases the objective function as could
be expected due to a greater sprite combination flexibility. However, a set of
instances which can be applied for a given k also has influence in Fig.4.9a.
Let us remind that k cannot be greater than the number of tiles nor can it
be smaller than the number of tile classes plus 2. Consequently, the number
of instances which can be packed with a given k grows from 2 for k£ = 4 to
30 instances for k = 7,...,9 and then decreases to 23 test sets for £ = 16.
Therefore, the reduction in the goal function is also a result of changing set
of test cases. It is an unavoidable consequence of using real-world test sets as
mentioned in Section 4.6.1. This observation applies also to Figs 4.10, 4.11. It
can be concluded that for average set of tiles appearing over Internet k > 7
is sufficient. This should be juxtaposed with the number of the sprites finally
constructed shown in Table 4.6.2. In all tests the biggest number of 10 sprites has
been constructed for vbulletin_darkness instance which had 1028 tiles. Hence, in
the further tests £ = 10 has been used because it is not restricting the choice of
the final sprite number. It can be also observed that Spritepack uses moderate
numbers of sprites comparable with the number of browser download channels
(see Table 4.2).

As mentioned above, sprite file sizes and the total area are additional perfor-
mance indicators. Changes in file size are presented in Fig.4.10a for Spritepack
alone and in Fig.4.10b for postprocessing. Along the vertical axis the fraction of
the total initial tile sizes by which the Spritepack sprite(s) are smaller is shown.
Negative values represent reduction in file size. As shown in Fig.4.10b postpro-
cessing reduces file size approximately by 4-7%, which is a useful complement
to Spritepack. It can be seen in Fig.4.10a that in general Spritepack reduces
total file size by more than 20% (cf. medians). However, for approximately 1/6
of all the cases file size increased, which is shown in Fig.4.10a as positive values.
Some increase in file size should not be surprising because merging tiles into a
sprite may waste some space and this results in bigger sprite files. It is further
confirmed in Fig.4.11a showing relative increase in image area. It can be seen in
Fig.4.11a that usually image area is not increasing more than by 10-20%. Yet,
there have been cases when area increased by more than 100% for £ = 7. The im-
pact of enlarged sprite area can be reduced by increasing k even beyond k = 10.
The most problematic tile sets (prestashop_matrice, moodle_university) have
over 180 diverse tiles corresponding to different functionalities of the services
from which they come. Tile sets covering such scattered areas of application

should be merged into separate sprites according to the system functionalities.

102

Otherwise, some tiles may be preloaded in some sprite and never used. This
may be done effectively by the web-designer on the basis of tile application area.
Partitioning tile sets according to their function and frequency of use is beyond
the scope of this thesis. Still, Spritepack is able to deal with such big tile sets
on the basis of web performance. It is demonstrated in Fig.4.11a for k£ > 10
where Spritepack mitigates the worst area increments. Therefore, in the case of
tile sets with hundreds of images, possibly representing varied functionalities,
Spritepack should be allowed to check also k& > 10.

Spritepack processing time depends, among the other, on the number of tiles
n and group number k. The coefficient of correlation between processing time
and the number of tiles observed for k = 10 was 0.438 with p-value (probability
of obtaining such correlation randomly) equal ~0.0175. Hence, the dependence
on n is statistically strong, yet it involves a great deal of dispersion. Such a
situation is natural because timing of graphical image compression depends on
many factors. One of the key factors is image area and color depth. In the test
set tiles had various sizes and color depths. Average execution time per tile in
all test sets was 4.59s per tile at £ = 10. It should not be forgotten that it is only
a rough indication of the execution time and real execution times may change
very much depending on size of tiles and their complexity. Fig.4.11b gives an
impression of Spritepack processing time (including postprocessing). As it can
be seen most of the test sets have been processed in at most a couple of minutes.
This should be acceptable considering that sprites are built once at the web-site
construction stage. Spritepack processing time is split between tile classification,
geometric packing, merging with image compression, and postprocessing. The
four stages consumed on average 5%, 1%, 81%, 13% of the total processing
time, respectively. Thus, merging with image compression is the most time-
consuming step. The geometric packing step is very short and it is worth its
computational effort as a preparatory step before merging with compression.

In the course of experiments frequencies of using certain geometric packing
algorithms were registered. The results are shown in Table 4.6.2. The first
line of Table 4.6.2 contains names of heuristics which output has been used
at least once. Letters H and V refer to the horizontal and the vertical layouts,
respectively. The second line in Table 4.6.2 is the number of times results of some
heuristic have been used. The most frequently used heuristics MBL and VHLT
cover 99% of all use cases. The shelf packing heuristics (dhFF, dhFFf2, dhBF{2)
are hardly ever used. The dhBF method mentioned in Section 4.5.2 has not been
used at all. It seems that reducing the set of geometric packing algorithms to just
MBL, VHLT, dhFFf{2 may be a reasonable option to curb Spritepack complexity
in production systems. Contrarily, to obtain better results the geometric packing

any new algorithms should outperform the MBL.

103

D
o

N
o

N
o

o

A
S

file size reduction [%]
N
o
I
——

wl | T

1
AN
P
—

1
(o]
I

1
(o]

=
o

file size reduction [%]

KR
N

KR
N

k
4 6 8 10 12 14 16

-16

b)

Figure 4.10: Reduction in file size. a) Spritepack, b) postprocessing. Lower is
better. Positive values represent increased file sizes.

|- £ g5
> T o —~ | ~ |8 | & |
T | 3 8 e |5|lEle & |&
= B 52225
= = = 3 mi<s | < |
(24135 | 5381 | 2829 [208 | 68 | 21 [17| 8 | 5 |

Table 4.11: Usage of geometric packing heuristics

104

1E3

1E2

1

1
S
T3
I
T
| S—
1
T}
I
T —
T
| —

=
m
o

increase in area [%0]
H
m
|_\
— T

1E-1

1E-2

1E4

1E3

1600

time[q
[y
m
N
.
= o
-
—

1E1L LB l

1E0

4 6 8 10 12 14 16
b)

Figure 4.11: a) Change in image area, b) Processing time. Logarithmic scales.
Lower is better.

105

4.6.3 SPRITEPACK PERFORMANCE COMPARISON

In this section Spritepack is compareds with alternative sprite generators. For
the reasons discussed in Section 4.2 comparing sprite generators rigorously and
fairly is not easy. Moreover, a great number of sprite generators exist. Therefore,
the following procedure was applied. In the first experiment a big set of sprite
generators has been compared on a small set of test instances. As a result, a
few solutions have been singled out which have been most reliable, versatile and
provided the smallest sprites. In the second series of tests the selected generators
have been compared with Spritepack in generating sprites for all instances from
Table 4.6.1.

As mentioned above sizes of the sprites built by the alternative generators
have been evaluated first. Test instances with moderate number of tiles n have
been used. Since not all generators were able to deal with JPEG tiles all tiles
have been converted to PNG image format. The alternative sprite genera-
tors construct one sprite, while Spritepack builds a number of sprites which
minimizes objective function (4.2). In order to make the comparison possible
Spritepack code has been modified to extract the single sprite constructed in the
last iteration of merging with image compression. The results of the evaluation
are collected in Table 4.6.3. The table head gives names of the test instances.
Sizes of the sprites constructed by Spritepack (in bytes) are reported in the last
line of Table 4.6.3. Except for the last line results are expressed in % relative to
the size of the single sprite constructed by Spritepack. Each line gives results
for a certain generator. Line labeled ”input” expresses size of the input tiles rel-
ative to the single Spritepack sprite. An empty entry in Table 4.6.3 means that
certain generator has not been able to construct a sprite. Four alternative sprite
generators which have given the smallest sprites on average have been selected
for the next round of performance comparison. Although Spritepack was not
built for creating one sprite with the smallest file size it still outperforms most
of the competitors and only one application in a single case produces better
results.

In the second round of comparisons the selected sprite generators have been
evaluated with respect to the values of the objective function (4.2), and size of
the output sprites on a complete set of instances from Table 4.6.1. However, it
turned out that Spritepack outperformed the alternative generators and their
results were extremely bad. For example, the shoebox generator, which was the
best in the previous set of tests, returned sprites which had objective (4.2) equal
on average 235% of the Spritepack’s (and 642% in the worst case). Similarly, file
sizes were on average 376% of the Spritepack’s sprite sizes (883% in the worst

case). In the case of vbulletin_darkness (1028 tiles) shoebox stopped reacting

106

%
2 5
5 =%
= 5 S =
. & g g B
o S o — |
z ‘ 5} e =
g] = g
'tof ! = = g
Q =) o8 o Q
Instance name: & g n @ 2 Average
Input 198 100 236 122 87 148
csssnet, 211 205 159 192
codepen 199 140 157 122 128 149
glue 154 114 174 157 146 149
Zerocom 136 117 191 159 137 148
pypack 149 120 182 146 141 148
JSGsf 161 114 162 156 135 146
acoderin 136 118 170 161 143 145
csgencom 145 116 173 144
cdplxsg 135 140 192 129 115 143
txturepk 132 112 166 128 149 137
stitches 126 139 168 121 117 134
sstool 134 132 174 112 116 134
isacce 114 153 155 121 123 133
simpreal 123 136 177 107 121 133
spcanvas 137 135 164 116 112 133
shoebox 107 120 143 106 96 114

Spritepack [bytes] | 7274 [395393 [28663 | 69714 [190145 [-

Table 4.12: Comparison of sprite generators on size of output. Lower is better.
Spritepack is 100%. Spritepack was forced to create a single file.

(hang) on tile 666. There are various reasons for such situation, mostly some
tacit assumptions made while designing the alternative generators. It can be
inferred that most of the alternative generators assume that (i) there are no
large JPEG tiles (like backgrounds or page headers), (ii) tiles have minimum
possible color depth, (iii) there is no advantage in special treatment of tiles with
odd dimensions, (iv) all tiles sizes are small (icons, buttons), (v) there is no
advantage in parallel communication.

A consequence of the first four assumptions is that big savings that could
have been made by optimizing big images for color depth, alternative compres-
sion, geometric layout are not realized. Still, some of the above assumptions may
be considered reasonable in certain applications and the presented evaluation
may be deemed unfair. Therefore, to make the conditions of the comparison
more compatible with the above assumptions and easier for the alternative gen-
erators limitation was made (and only for them) on the set of the tiles subjected

to sprite construction to the tiles of file size below 10kB. As a result each tile set

107

] \ shoebox \ spcanvas \ simpreal \ isaccc ‘

objective function (4.2)
min 101 101 101 101
median 132 131 137 134
max 248 284 272 291
file size
min 82 82 82 83
median 138 141 143 143
max 382 379 386 397

Table 4.13: Evaluation of best sprite generators on 32 test instances. Lower is
better. Spritepack is 100%.

has been split into a number of tiles which have not been combined into a sprite
and a set of tiles which have been. The obtained set of files, i.e. a sprite and a
set of untouched tiles, has been treated as an output tile set S and the objective
function (4.2) has been calculated in the same way as in the Spritepack. In this
experiment Spritepack still operated on the whole data sets comprising all the
tiles and produced as many sprites as it found effective.

The results of this series of experiments are collected in Table 4.6.3. The
four alternative sprite generators have been compared in two criteria: objec-
tive function (4.2) and sprite file size. Since the tests have been done on a
set of 32 instances, three statistics are reported: minimum, median and max-
imum values in the population. These three measures are given in % relative
to the results provided by Spritepack. It can be seen that the four alternative
generators on average build solutions worse than Spritepack by roughly 30%
with respect to the objective function (4.2) and 40% with respect to file sizes.
There has been only one instance phpfusion_skys when the alternative gener-
ators have constructed a solution with smaller overall file size. In this case
Spritepack included a JPEG tile with chroma subsampling into a PNG sprite.
Since Spritepack is not optimizing sprite size, but the objective function (4.2),
it is not surprising that some other method performs better on the sprite size

criterion.

4.6.4 END-TO-END EVALUATION

The end-to-end tests were conducted to verify in a real setting the validity
of using multiple sprites, the communication performance model and objective
function (4.2), to evaluate the advantages of applying sprites in general and

Spritepack in particular. Furthermore, the Spritepack and shoebox generator

108

Instance input shoebox Spritepack

name files | size [B] |sprites| size [B] |sprites| size [B]
magneto_hardwood 9 373610 1 482828 3 294128
modx_ecolife 10 50947 1 366663 3 48891
mojoportal_thehobbit | 39 218993 1 726364 7 154486
oscommerce_pets 203 | 1201692 1 1683872 6 673785

Table 4.14: Sprites in end-to-end test of sprite generators.

performance have been compared. Shoebox has been selected as an alternative
generator because in the preceding tests it demonstrated high reliability and
solution quality.

In the experiment, the times of downloading all the tiles separately, as a sin-
gle sprite constructed by shoebox, and as the sprites constructed by Spritepack
were measured on the clients’ side and reported back to the server. For this
purpose a similar script as mentioned in Section 4.3.2 has been designed and
inserted into a web page analyzed in Section 4.3.2. By viewing the page, users
downloaded the tiles in the above three alternative ways: first all of them sep-
arately, next as a single shoebox sprite, finally as a set of Spritepack sprites.
Note that in this experimental setup the same communication performance pa-
rameters were experienced as had been measured in Section 4.3.2 and had been
applied to build sprites by Spritepack. Parameters of the test instances are
shown in Table 4.6.4. The instances were chosen to represent a spectrum of
possible situations: from modx_ecolife tile set of size smaller than 50kB to os-
commerce_pets with 203 tiles and over 1.1MB total size. It can be seen that
Spritepack, by using a few sprites, was able to reduce the total size of trans-
ferred data. Shoebox, with single sprites, achieves much bigger file sizes, which
is in line with the results reported in the previous section.

The results of time measurements are collected in Table 4.6.4. The second
and fifth columns ('input’) represent all the tiles sent independently, i.e. not
sprited. For oscommerce_pets, the biggest tile set with over 203 tiles, 2274
measurements were collected. For the remaining tile sets the number of mea-
surements exceeded 4000 and, e.g., for modx_ecolife 5057 samples were collected.
It can be seen that using a single sprite, as in shoebox, may halve the down-
load time. Yet, such reductions not always materialize because in some cases
one sprite is not as effective in keeping small file size as Spritepack or even
not spriting at all. Despite using a few sprites, which incur additional interac-
tions with the server, Spritepack was able to reduce the download time of tiles
sent individually by a factor of 2.5-4. In absolute terms it was from approx.
350ms to 2.4s (medians of differences) while the reduction from shoebox sin-

gle sprite download time was 140-800ms. It can be concluded that judiciously

109

medians [ms] SIQR [ms]

~q 4

« | 2 w | &

= [} = = [} =

o, @) = o, o =

Instance name k= @ o k= S| &
magneto_hardwood 1723 | 764 | 574 | 1597 | 441 | 330
modx_ecolife 685 727 | 244 | 1502 | 427 | 119
mojoportal_thehobbit | 776 | 954 | 302 | 456 | 539 | 204
oscommerce_pets 3653 | 1831 | 931 | 1453 | 872 | H37

Table 4.15: Time results of the end-to-end evaluation in real-world setting.

chosen multiple sprites are not an obstacle to short download times. Overall,
it can be concluded that Spritepack fares very well compared to the alternative
generators.

Finally, let us comment on the validity of objective (4.2) as a model of the
download time. The coefficient of correlation between the medians of download
times and the objective function (4.2) was 0.952 and its p-value was below 2E-
06. Though these results should be taken with caution, because of big SIQRs
in Table 4.6.4, function (4.2) can be considered an effective guide in sprite

optimization process.

4.7 CONCLUSIONS

The problem of effective construction of CSS-sprites for web applications (CSS-
SPP) has been considered in this chapter. This problem poses a number of
theoretical and practical challenges. On the theoretical side it is a matter of con-
structing effective heuristics when evaluation of one solution is time-consuming.
It is also difficult to grasp in a tractable way complexity of the network com-
munication performance. On the practical side it is a matter of, e.g., tuning
the algorithms for particular tile datasets, choosing image compression setting,
obtaining network performance indicators, finding a good trade-off between so-
lution quality and processing time. The method Proposed and implemented
Spritepack significantly extends current methods of sprite construction. A typ-
ical approach in sprite packing is to take all small images building page layout
and combine them into one CSS-sprite. Spritepack approach allows to take all
static images, including the ones normally not considered for spriting, and let
the algorithm decide how to combine them on the basis of communication perfor-
mance. Consequently, the overall number of web interactions for one page can be
reduced. The key ingredients of Spritepack there are considered: (i) geometric

packing method which is a fast hyperheuristic operating on low-level geometric

110

packing algorithms, (ii) verifying many options for effective image compression,
(iii) constructing many sprites for better file size and faster network transfer.
Spritepack performance has been compared against alternative solutions on a
set of benchmark instances. Though Spritepack is not constructing guaranteed
optimum sprites, because it is a heuristic for an NP-hard problem, it can be
concluded that this method builds quality sprites in reasonable time and com-
pares well with the alternative methods. Spritepack source code is available at
[89].

It seems technically feasible to improve Spritepack, e.g., by more extensive
combinatorial search in the stage of merging with image compression or by
verifying alternative compression strategies in this stage. Such a step would
allow for more effective discovery of tile combinations and for avoiding singular
bad cases. However, there is a trade-off between solution quality and processing
time. The area of image compression is constantly evolving and thus, new
algorithms may be tested in the merging with image compression or in the
postprocessing steps. Spritepack has been constructed as a research tool, not
an industry-grade product. Hence, the CSS stylesheets produced by Spritepack
may be extended by an automatic analysis and update of the existing web pages.
Future technologies such as the upcoming HTTP 2.0 [55] or growing popularity
of SVG encoding may change the context of sprite packing. Nevertheless, it
does not seem that these new technologies will make Spritepack irrelevant and

the techniques introduced here can be adapted to the new circumstances.

111

5 SUMMARY AND FINAL REMARKS

In this thesis three combinatorial optimization problems were analyzed. Firstly,
in Layout Partitioning for Advertisement Fit where a website layout was par-
titioned into columns and where by optimization of widths of these columns
capability of fitting advertisements was improved. Secondly, in Tag Cloud Con-
struction Problem the tags were packed on shelves of the cloud to provide good
readability on the web pages. And finally, in CSS-sprite Packing Problem web
page images were packed into a set of bigger sprite-images offloading a server
and speeding up page loading. The three presented research problems share the
fact that they are solving real-world optimization tasks taken from the field of
the Internet and web applications. Another common factor was 2-dimensional
cutting/packing which was one of the subproblems of all three analyzed prob-
lems and thus certain approaches or even algorithms could be shared between
them.

There are many novel elements in all three presented problems and their
solutions. Optimization of layout partitioning is a new idea as a whole. While
similar problems are subject to computational optimization in text processing or
in advertisement placement, the step of webpage layout preparation was usually
preformed ad-hoc by a web designer. The algorithms provided for LPfAF allow
for optimization of this process and with the wide spectrum of input parameters
that can be set by chosen by the user, the results can be well customized for
anyone’s needs. Finally, the output in the form of weighted best partition or
Pareto frontier of nondominated solutions allows finding usable layout even with
further conditions set by the web designers. Construction of tag clouds relies on
a novel idea of using rules of typography, namely the rule of typographical color.
Building the objective function on the basis of the rules of art, where such rules
are available, was proven to be valid as a more general idea of optimization
of the aesthetic feel. Using the provided mathematical model for Tag Cloud
Construction Problem, even the simplest algorithms proposed here produce tag

clouds looking better than original ones. Moreover, tag clouds produced by

112

the algorithms solving TCPP are meeting requirements dictated by the website
usage. CSS-sprite optimization introduces a long list of novel ideas, starting with
allowing more than one sprite, exploiting the speedups in parallel download or
tailoring solution to specific traffic measured on site. The algorithms facilitate
properties of the compression methods including the aspect ratio of PNG file
property analyzed for the first time in this thesis. Moreover, the objective used
is not one but two steps ahead of state of the art solutions optimizing only
image dimensions. While the first step was minimizing image file size, then the
second was optimization of the download time. As a whole, the software suite
built for the CSS-sprite Packing Problem is providing a complex framework,
from measuring the traffic parameters on the website, through the analysis of
the images used to build its layout, to optimization of the sprites, including an
intelligent decision on their number.

As all the three problems were taken from real-world applications it was
important to prove that all of the algorithms and their results are usable in
practice. Firstly, as the three problems are NP-hard and optimum solutions
can be expected in polynomial time (unless P = N'P), the execution times of
the algorithms developed had to fit into acceptable time frames for each prob-
lem. Secondly, the results provided should be meaningfully better than the
state of the art. Algorithms provided for Layout Partitioning Problem for Ad-
vertisement Fit are solving the given instances in time acceptable for tasks done
once, at the stage of the creation or redesigning of a web page. The constructed
layouts, both the one suggested as optimal and the set of nondominated ones,
are substantially different from what an ad hoc partitioning would result in.
Moreover, their scores for the three given objective function seem to show, that
optimized layouts are better. A variety of algorithms developed for tag clouds
construction is fulfilling both qualitative requirements, and meet the range of
runtimes acceptable for usable web pages. It is difficult to measure whether the
beauty goal was achieved, but experiment with experts scoring the solutions
seems to confirm this. Similarly to LPfAF, the CSS-sprite optimization algo-
rithm is doing the required work in the non-negligible time, but acceptable at
the phase of creation or redesigning a web page. Then, the quantitative results
of CSS-sprite optimization are firstly provided analytically, by comparison of
the objective function’s estimations and then confirmed by measurement in a
real-world experiment. These quantitative results are of great importance as
they demonstrate that application of the proposed CSS-sprite optimization on
websites can offer significant performance gains both on the server side by of-
floading and infrastructure and client side speeding up loading web pages and

reducing memory usage.

113

Possible extensions of the research topics considered here are immense. The
method of solving Layout Partitioning Problem for Advertisement Fit together
with parts of the algorithms can be transferred to such remote areas like logistics
optimization problems including harbor or general yard organization problems
and very specific ones like paper rolls factory. Both Tag Cloud Construction
Problem and CSS-sprite Packing Problem are functioning in rapidly changing
technological context. Achievements of TCCP can be used both on websites
but also in other areas suitable for tag clouds, while its general idea in an even
wider area of data visualization. CSS-SPP is closest to being market-ready and
the proof of concept produced should see more work on a working prototype to

become an industry-grade product.

114

APPENDIX A: COMPLETE RESULTS OF PARTITIONING

Due to their size complete computational results are presented in this supple-
ment. Instances are defined by a benchmark set of ad units, webpage width
W, and the number of columns. Objective functions ranges for all feasible lay-
outs are included. For each instance there the set of results consists of the best
weighted solution and the complete Pareto frontier. Each solution is given as
column widths with the total layout width, values of the three objective func-

tions, and the value of the weighted linear function.

subset, W=990, 2 columns Pareto frontier:
Vi € [42,47], V5 € [7,7], V3 € [—2534, —1914] 248+-732=980; 47, 7 , -1914; 100.0
248+732=980; 47, 7 , -1914; 100.0

subset, W=1250, 3 columns Pareto frontier:
Vi € [39,55], Va € [5,7], Va € [—2606, —858] 1644-328+732=1224; 55, 7 , -858; 100.0
1644-328+732=1224; 55, 7 , -858; 100.0

subset, W=1250, 4 columns Pareto frontier:
Vi € [44,50], V2 € [7,7], V3 € [—1986, —858] 1644-164+164+732=1224; 50, 7 , -858; 100.0
164+164+164+732=1224; 50, 7 , -858; 100.0

AdBrite, W=990, 2 columns Pareto frontier:
Vi € [43,48],V, € [7,7], V3 € [—2846, —2102] 248+732=980; 48, 7 , -2102; 100.0
248+732=980; 48, 7 , -2102; 100.0

AdBrite, W=1250, 3 columns Pareto frontier:
Vi € [40,56], Vs € [5,7], V3 € [—3054, —1062] 164+3284-732=1224; 56, 7 , -1062; 100.0
164+328+4-732=1224; 56, 7 , -1062; 100.0

AdBrite, W=1250, 4 columns Pareto frontier:
Vi € [45,51],V» € [7,7], V3 € [—2310, —1062] 1644-164+164+732=1224; 51, 7 , -1062; 100.0
164+164+164+732=1224; 51, 7 , -1062; 100.0

Clicksor, W=990, 2 columns 164+816=980; 1012, 20 , -5433; 64.8
Vi € [735,1123],Vo € [16,20],V3 € 184+4806=990; 922, 20 , -5233; 60.0
[—5833, —4493] 248+4742=990; 796, 18 , -4593; 49.6
164+816=980; 1012, 20 , -5433; 64.8 253+737=990; 779, 17 , -4543; 42.8
Pareto frontier: 258+732=990; 783, 16 , -4493; 38.2

1244-864=988; 1123, 17 , -5833; 48.2
1294-861=990; 1075, 17 , -5783; 44.3

Clicksor, W=1250, 3 columns 164+2584-828=1250; 1056, 21 , -2797; 59.9
Vi € [739,1386],V, € [15,25],Vs € 164+258+816=1238; 1059, 24 , -2845; 67.2
[—5977, —1655] 184+184+876=1244; 1147, 18 , -2533; 60.3
184+254+812=1250; 1044, 24 , -2153; 71.5 184+184+866=1234; 1152, 18 , -2583; 60.2
Pareto frontier: 184+184+864=1232; 1157, 18 , -2593; 60.5
129+129+991=1249; 1386, 15 , -4507; 53.2 184+2544812=1250; 1044, 24 , -2153; 71.5
129+164+948=1241; 1279, 16 , -4286; 50.5 184+2584-806=1248; 969, 24 , -2143; 66.7

129+184+936=1249; 1246, 16 , -4122; 49.6 184+293+773=1250; 891, 21 , -1958; 55.6

120+254+866=1249; 1168, 20 , -3632; 58.3 184+304+761=1249; 893, 20 , -1908; 53.6

120+254+864=1247; 1173, 20 , -3638; 58.5 184+3084756=1248; 878, 19 , -1893; 50.2

129+258+862=1249; 1152, 20 , -3604; 57.4 2544254+742=1250; 855, 18 , -1665; 48.0

129+304+816=1249; 1082, 25 , -3282; 67.8 2544258+ 737=1249; 836, 17 , -1655; 44.3

129+308+812=1249; 1073, 25 , -3254; 67.5

164+184+898=1246; 1194, 18 , -3257; 57.8

115

Clicksor, W=1250, 4 columns 1244-129+4254+4-742=1249; 829, 18 , -1290; 50.2
1% € [743,1147], Va c [16,22], V3 € 1294129+1294-862=1249; 1129, 19 , -3604; 63.4

[—4737, —1280] 129+1294164+828=1250; 1033, 19 , -2692; 62.2
124+1244184+816=1248; 1026, 22 , -2073; 79.9 129+129+4+164+816=1238; 1036, 22 , -2740; 74.5
Pareto frontier: 1294-129+184+4-806=1248; 946, 22 , -1978; 72.4

1244-124+184+816=1248; 1026, 22
1244-129+129+866=1248; 1142, 19

-2073; 79.9 120+129+4254+737=1249; 813, 17 , -1280; 44.4
-3632; 64.5 129+4164+184+773=1250; 860, 21 , -1773; 61.3

124+129+129+864=1246; 1147, 19 , -3638; 65.0

1244-129+184+812=1249; 1018, 22 , -1988; 79.8

Google Ads, W=990, 2 columns 164+816=980; 2032, 22 , -6643; 54.1
Vi € [1659,2181],V> € [18,25],V3 € 184+806=990; 1908, 22 , -6403; 49.1
[—7123, —5515] 204+762=966; 1812, 22 , -6163; 46.3
248+742=990; 1769, 25 , -5635; 64.4 248+742=990; 1769, 25 , -5635; 64.4
Pareto frontier: 253+737=990; 1756, 24 , -5575; 61.0
1244-864=988; 2181, 18 , -7123; 42.0 258+732=990; 1807, 23 , -5515; 62.8

129+861=990; 2123, 18 , -7063; 38.6
120+848=977; 2077, 19 , -7063; 38.4

Google Ads, W=1250, 3 columns 164+313+773=1250; 1977, 27 , -3571; 60.0

Vi € [1663,2571],Vo, € [16,28],V3 € 164+4313+762=1239; 1983, 27 , -3615; 60.0
(7539, —1723] 184+184+864=1232; 2215, 19 , -3915; 52.3
1844-254+812=1250; 2150, 26 , -3335; 67.2 1844-204+862=1250; 2203, 19 , -3685; 53.1
Pareto frontier: 184+4-254+812=1250; 2150, 26 , -3335; 67.2
124+258+4-864=1246; 2313, 22 , -5667; 53.2 184+258+4-806=1248; 2040, 26 , -3317; 62.2
124+313+812=1249; 2214, 27 , -5111; 62.2 184+304+762=1250; 1969, 27 , -2985; 62.9
129+4129+4992=1250; 2567, 16 , -6046; 50.3 184+308+756=1248; 1910, 27 , -2967; 60.3
1294-129+4991=1249; 2571, 16 , -6049; 50.5 204+4-2044-842=1250; 2113, 20 , -3007; 54.9
1294-164+952=1245; 2351, 16 , -5746; 42.0 204+204+816=1224; 2085, 23 , -3163; 58.9
1294+164+948=1241; 2377, 16 , -5758; 43.1 204+238+4-806=1248; 1961, 23 , -2815; 55.2
129+4184+936=1249; 2307, 16 , -5554; 41.1 204+254+792=1250; 1936, 26 , -2707; 60.9
1294-254+864=1247; 2301, 22 , -4930; 56.8 204+2584-778=1240; 1937, 26 , -2743; 60.7
1294-258+862=1249; 2295, 22 , -4888; 56.8 204+4-258+4-773=1235; 1938, 26 , -2773; 60.6
129+308+812=1249; 2209, 27 , -4438; 65.8 204-+258+762=1224; 1944, 26 , -2839; 60.5
129+4-313+806=1248; 2092, 27 , -4396; 60.6 204+288+756=1248; 1883, 27 , -2515; 61.6
120+340+778=1247; 2042, 28 , -4156; 61.7 238+254+756=1248; 1864, 26 , -2201; 60.4
1294-340+773=1242; 2043, 28 , -4171; 61.7 254+4-2544-742=1250; 1930, 25 , -1731; 64.1
1294-340+762=1231; 2049, 28 , -4204; 61.8 254+4-258+4-737=1249; 1926, 24 , -1723; 61.8
1644+184+898=1246; 2271, 19 , -4619; 50.9 258+258+734=1250; 1932, 23 , -1731; 60.0
164+4-204+864=1232; 2223, 19 , -4515; 49.3 2584-258+4732=1248; 1939, 23 , -1747; 60.2
164+4-258+828=1250; 2161, 23 , -4011; 57.6

1644-258+816=1238; 2164, 26 , -4059; 63.8

Google Ads, W=1250, 4 columns 1244-129+254+742=1249; 1834, 25 , -1358; 70.9
Vi € [1667,2205],V> € [20,25],Vs € 1294129+129+4862=1249; 2187, 20 , -4888; 48.7
[—6051, —1344] 129+4129+129+848=1235; 2101, 21 , -4930; 46.7
1244-129+254+4-742=1249; 1834, 25 , -1358; 70.9 129+4129+164+816=1238; 2056, 24 , -3954; 65.1
Pareto frontier: 129+4129+184+4806=1248; 1932, 24 , -3152; 61.0
1244-124+258+4744=1250; 1842, 25 , -1503; 70.5 129+129+254+4737=1249; 1818, 24 , -1348; 64.8
1244-124+258+742=1248; 1846, 25 , -1519; 70.7 129+129+258+734=1250; 1824, 23 , -1344; 60.3
124+129+4129+864=1246; 2205, 20 , -4932; 49.8

1244129+1844-812=1249; 2054, 24 , -3172; 70.4

IAB, W=990, 2 columns 184+806=990; 8146, 47 , -9527; 49.8

Vi € [7033,10453], V> € [37,51], 216+4-773=989; 7872, 42 , -8951; 43.9

V3 € [—11183, —8195] 2164761=977; 8220, 41 , -8951; 46.4
258+732=990; 10441, 37 , -8195; 74.9 248+742=990; 9195, 39 , -8375; 61.1

Pareto frontier: 2534-737=990; 9990, 38 , -8285; 70.1
129+4852=981; 8512, 51 , -10517; 50.5 254+732=986; 10453, 37 , -8267; 74.2
164+4-824=988; 8413, 48 , -9887; 50.9 258+4-732=990; 10441, 37 , -8195; 74.9

164-+820=984; 8339, 51 , -9887; 55.4

116

IAB, W=1250, 3 columns
Vi € [6495,13601], V> € [37,72],
V3 € [—13567, —2990]

1644-258+828=1250; 10301, 69 , -5275; 71.2

Pareto frontier:

92+313+844=1249; 10707, 72 , -9477; 62.7

92+313+842=1247; 10714, 72 , -9479; 62.7
92+313+4-834=1239; 10716, 69 , -9487; 60.5
92+330+828=1250; 10704, 69 , -9187; 61.4
92+340+816=1248; 10768, 52 , -9019; 50.2
92+4-382+4-776=1250; 11459, 43 , -8303; 50.0
92+383+773=1248; 11842, 42 , -8288; 51.6
92+396+761=1249; 12193, 41 , -8066; 53.7
1244-288+836=1248; 10037, 71 , -6543; 67.1
1244-313+812=1249; 10794, 50 , -6213; 57.6
1244-368+756=1248; 11160, 40 , -5503; 54.9
124+4383+742=1249; 13005, 39 , -5303; 65.7
129+293+828=1250; 10410, 70 , -5729; 71.2
1294-304+816=1249; 10551, 52 , -5603; 59.5
129+308+812=1249; 10783, 50 , -5555; 59.6
129+4-313+808=1250; 10889, 47 , -5489; 58.3
129+4328+792=1249; 10675, 44 , -5315; 55.5
129+4340+780=1249; 10786, 43 , -5171; 55.8
1294-340+764=1233; 11089, 41 , -5267; 55.9
129+340+761=1230; 11119, 41 , -5285; 56.0
1294-362+756=1247; 11136, 40 , -4919; 56.6
129+4-378+742=1249; 12901, 39 , -4715; 66.9
129+4383+737=1249; 13285, 38 , -4655; 68.7
1294-383+734=1246; 13590, 37 , -4673; 69.7
1294-3834+-732=1244; 13601, 37 , -4685; 69.7
IAB, W=1250, 4 columns

Vi € [6600,11477], V5 € [37,53],

Vs € [—11911, —2125]

92+92+254+812=1250; 9715, 50 , -3335; 76.1
Pareto frontier:

92+4-92+244+820=1248; 8469, 51 , -3903; 65.0
92+92+248+816=1248; 8737, 52 , -3907; 68.8
92+92+254+812=1250; 9715, 50 , -3335; 76.1
92+92+304+761=1249; 9887, 41 , -2125; 67.6
92+92+308+756=1248; 10097, 40 , -2175; 67.6
92+92+308+754=1246; 10444, 39 , -2203; 69.0
92+92+313+744=1241; 11056, 39 , -2318; 73.8
92+92+313+742=1239; 11068, 39 , -2346; 73.9
92+124+254+780=1250; 9417, 43 , -2591; 65.1
92+124+258+776=1250; 9397, 43 , -2587; 64.9
92+4129+4184+4-844=1249; 8996, 52 , -4582; 68.8
92+129+184+842=1247; 9003, 52 , -4598; 68.8
92+129+4-2534-776=1250; 9578, 43 , -2976; 65.2
92+129+42544773=1248; 9718, 42 , -2473; 66.5

superset, W=990, 2 columns
Vi € [8979,12475], V5 € [39, 51],
Vs € [—12221, —8901]

258+-732=990; 12467, 39 , -8901; 74.9

Pareto frontier:

129+852=981; 10487, 51 , -11481;
164+824=988; 10356, 48 , -10781;
164+820=984; 10277, 51 , -10781;
164+812=976; 10320, 49 , -10781;

50.5
49.6
54.9
51.3

164+254+828=1246; 10313, 69
164+2584-828=1250; 10301, 69
164+3084778=1250; 10289, 43
164+3134773=1250; 10605, 42
1644313+764=1241; 10923, 41
164+4313+761=1238; 10953, 41
164+3304756=1250; 10943, 40
184+2484-816=1248; 9285, 52 ,
184+4254+812=1250; 10263, 50
184+4258+808=1250; 10030, 47
184+288+-778=1250; 9805, 43 ,
184+42934773=1250; 9855, 42 ,
184+3044761=1249; 10435, 41
184+308+756=1248; 10645, 40
238+244+768=1250; 8496, 42 ,
2384248+ 764=1250; 9114, 41 ,
238+4248+761=1247; 9144, 41 ,
2384254+ 756=1248; 10100, 40
244+244+761=1249; 8937, 41 ,
244+248+756=1248; 9188, 40 ,
2544254+742=1250; 12061, 39
2544254+734=1242; 12330, 37
2544254+732=1240; 12341, 37
254+258+737=1249; 12013, 38
254+258+734=1246; 12318, 37
254+258+732=1244; 12329, 37
258+258+734=1250; 12306, 37
258+258+732=1248; 12317, 37

92+129+254+761=1236; 10066, 41
92+129+258+764=1243; 10024, 41
92+4-129+258+761=1240; 10054, 41
124+124+184+816=1248; 8767, 51
1244-129+254+742=1249;

72.6

, -5347; 71.1
, -5275; 71.2
, -4725; 54.3
, -4670; 55.6
, -4733; 56.6
, -4754; 56.7
, -4483; 56.8
-4687; 54.9
, -4611; 59.5
, -4571; 56.1
-4271; 52.9
-4221; 52.6
,-4119; 55.6
, -4087; 56.2
-4073; 45.0
-4037; 48.1
-4064; 48.2
, -4001; 53.3
-3565; 48.5
-3543; 49.3
-3007; 67.3

-2605; 67.5
-2520; 67.4
-2553; 67.6
-4387; 65.9

10881, 39 , -2250;

1294-129+129+852=1239; 9536, 53 , -6215; 69.5
1294-129+164+820=1242; 9363, 52 , -5121; 70.1

129+129+254+737=1249;

73.5

129+4-129+4-254+734=1246;

74.4

129+1294-254+732=1244;

74.4

1294-129+258+734=1250;

74.5

129+1294-258+732=1248;

74.5

184+806=990; 10043, 49
204+780=984; 9832, 47 ,
216+773=989; 9891, 46 ,
216-+762=978; 10245, 45
248+4-742=990; 11162, 41
253-+737=990; 11957, 40
254+732=986; 12475, 39
258+732=990; 12467, 39

117

11161, 38 , -2240;
11466, 37 , -2273;
11477, 37 , -2295;
11454, 37 | -2221;

11465, 37 , -2243;

,-10381; 51.9

-9981;
-9741;
,-9741
. -9101
- 29001
, -8981
, -8901

49.2

50.2

; 52.4
; 61.4
; 69.9
; 74.2
; 74.9

superset, W=1250, 3 columns
Vi € [7904, 16708], V5 € [39,72],
V3 € [—14941, —3225]

1294-388+732=1249; 16708, 39 , -5303; 69.1

Pareto frontier:

92-+333+824=1249; 13636, 72 , -10029; 66.2
92+340+816=1248; 13735, 57 , -9897; 55.7

92+340+-812=1244; 13783, 55
92+362+792=1246; 13299, 48

92+4-388+4-768=1248; 14946, 46

-9901; 54.4
-9481; 47.9

-8985; 55.7

92+3824+776=1250; 14450, 47 , -9097; 53.7

92+4-396+4-762=1250; 15330, 45

-8831; 57.2

124+2884-836=1248; 12112, 71 , -7461; 65.4

124+313+812=1249; 12887, 55 , -7081; 58.0
124+3334792=1249; 13247, 48 , -6781; 55.3
124+368+756=1248; 14148, 43 , -6261; 57.3
124+43834742=1249; 16007, 41 , -6031; 65.3
129+254+852=1235; 12478, 64 , -7263; 62.4
129+258+852=1239; 12470, 64 , -7183; 62.6
129+293+828=1250; 12460, 70 , -6627; 68.6
129+3044816=1249; 12596, 57 , -6479; 59.9
129+3084812=1249; 12876, 55 , -6423; 59.8
129+3134808=1250; 12893, 51 , -6347; 57.1
129+3284792=1249; 13157, 48 , -6143; 56.7
129+3404780=1249; 13691, 47 , -5975; 58.9
129+3404+773=1242; 13743, 46 , -6017; 58.3
129+3404764=1233; 14067, 45 , -6071; 58.9
129+3404762=1231; 14097, 45 , -6083; 59.0
129+3624756=1247; 14080, 43 , -5679; 58.6
129+3784742=1249; 15897, 41 , -5443; 66.4

129+4-383+737=1249; 16287, 40 , -5373; 67.7
1294-388+732=1249; 16708, 39 , -5303; 69.1

164+254+828=1246; 12359, 69
164+258+828=1250; 12351, 69
164+4-313+773=1250; 12655, 46
164+313+764=1241; 12979, 45
1644-313+762=1239; 13009, 45
164+330+756=1250; 13441, 43
164+340+746=1250; 14379, 41

superset, W=1250, 4 columns
Vi € [8308,14280], V> € [39,57],
Vs € [—13101, —2419)
92+92+254+812=1250; 11804, 55
Pareto frontier:
92+92+248+816=1248; 10761, 57
92+92+254+812=1250; 11804, 55
92+92+304+762=1250; 11943, 45
92+92+308+756=1248; 12096, 43
92+92+313+744=1241; 13044, 41
92+92+313+742=1239; 13056, 41
92+92+328+737=1249; 13520, 40
92+92+330+734=1248; 13849, 39

)

)

-6253; 68.5
-6173; 68.6
-5458; 54.7
-5521; 55.3
-5535; 55.4
-5237; 56.8
-5107; 60.1

-3643; 76.0

-4217; 69.7
-3643; 76.0
-2419; 66.9
-2485; 65.0
-2635; 68.4
-2665; 68.4
-2650; 70.3
-2683; 71.2

92+92+333+732=1249; 14280, 39 , -2695; 74.1
92+124+4-2544-780=1250; 11396, 47 , -2867; 64.4 69.3
92+4-124+4-2584-776=1250; 11380, 47 , -2863; 64.3

164+-340+744=1248;
164+340+742=1246;
164+-340+734=1238;
1644-340+732=1236;
184+248+-816=1248;
1844-254+812=1250;
184+258+-808=1250;
1844-293+773=1250;
184+304+762=1250;
184+308+756=1248;
184+333+-732=1249;
204+204+842=1250;
204+4-2164-828=1248;
204+216+820=1240;
204-+238+808=1250;
204+244+802=1250;
204+254+792=1250;
204+-2884-756=1248;
216+216+816=1248;
216+216+812=1244;
216+254+780=1250;
216+254+773=1243;
216+4-2584-776=1250;
216+258+773=1247;
216+258+764=1238;
216+258+762=1236;
238+-2444-768=1250;
238+-2484-764=1250;
238+248+762=1248;
238+4-2544-756=1248;
244+244+762=1250;
244+-2484-756=1248;
254+254+742=1250;
254+254+732=1240;
254+4-258+737=1249;
254+258+732=1244;
258+-258+-734=1250;
258+258+732=1248;

14640, 41
14652, 41
14934, 39
14970, 39
11309, 57
12352, 55
12034, 51
11905, 46
12491, 45
12644, 43
14828, 39
11154, 52
11114, 49
11023, 52
10773, 50
10639, 49
11878, 48
12191, 43
11025, 50
11073, 50
11830, 47
11882, 46
11814, 47
11874, 46
12198, 45
12228, 45
10597, 46
11228, 45
11258, 45
12174, 43
11044, 45
11245, 43
14148, 41
14466, 39
14104, 40
14458, 39
14414, 39
14450, 39

5121

-5135;
-5191;
-5205;
-5565;
-5477;
-5429;
-5009;
-4877;
-4845;
-4537;
-5359;
-5245;
-5317;
-4985;
-4919;
-4809;
-4453;
-5221;
-5257;
-4785;
-4848;
4741

-4768;
-4849;
-4867;
4321

4281

-4301;
-4241;
-3803;
-3789;
-3245;
-3365;
-3225;
-3285;
-3229;
-3253;

02+129+253+776=1250; 11540, 47 , -3247; 64.3

92+41294-254+773=1248; 11764, 46
92+129+254+762=1237; 12118, 45
92+129+258+764=1243; 12080, 45
92+129+258+762=1241; 12110, 45
124+1294254+742=1249;

67.6

129+1294-254+737=1249;

68.2

129+129+-254+732=1244;

69.1

129+129+-258+734=1250;

69.1

1294-129+258+4732=1248;

118

)

, -2746; 66.0
, -2878; 66.7
, -2798; 66.7
, -2822; 66.8
12865, 41 , -2490
13145, 40 , -2475
13499, 39 , -2535
13455, 39 , -2455
13491, 39 , -2479

APPENDIX B: POLSKIE STRESZCZENIE

W pracy zaproponowano i rozwiazano trzy nowatorskie zagadnienia badawcze,
ktérych gtownymi wspolnymi cechami bylo pochodzenie z rzeczywistych za-
stosowan aplikacji internetowych oraz uzycie optymalizacji kombinatorycznej,
a w szczegdlnosci algorytméw pakowania dwuwymiarowego, dla poprawy ja-
kosci dziatania. Elementéw wspdlnych jest jednak znacznie wiecej: wszystkie
rozpatrywane problemy sg obliczeniowo trudne, nalezg do klasy probleméw NP-
trudnych i jako takie w praktyce musza by¢ rozwiazywane algorytmami heury-

stycznymi. Wspomniane trzy zagadnienia badawcze opisano ponize;j.

OPTYMALIZACJA UKLADU SZEROKOSCI KOLUMN STRONY
INTERNETOWEJ W CELU UMIESZCZANIA REKLAM

Jednostka reklamowa to format reklamy uzgodniony miedzy reklamodawca, wy-
dawca a siecia reklamowa. Jest to prostokat o zadanych wymiarach. Wydawca
musi przygotowaé strony internetowe tak, zeby mie¢ mozliwie wiele dogodnych
mozliwo$ci umieszczania jednostek reklamowych, ale tez by zachowaé estetyczny
wyglad calosci. Witryny maja uktad kolumn z przewijaniem pionowym, w kto-
rym szeroko$ci sg zadane na stale, zag wysoko$¢ jest wladciwie nieograniczona.
Obecnie stosowana jest metoda dobierania szerokosci kolumn ad-hoc. Podzial
catkowitej szerokosSci strony na kolumny sformutowano jako problem optymali-
zacyjny. Reklamy moga by¢ umieszczane w kolumnach w grupach, ktére przez
ograniczenia HTML podobne sa do problemu ciecia gilotynowego. Szerokosci
kolumn, ktére w modelu matematycznym sa zmiennymi decyzyjnymi, beda do-
stosowywane do mozliwie wszechstronnego mieszczenia takich grup reklam.

W optymalizacji uzyto trzech funkcji celu, ktére odzwierciedlaja kolejno:
1) Elastyczno$é uktadu kolumn, tj. jak wiele réznych kombinacji reklam jest on
w stanie zmiesci¢. 2) Zdolno$é mieszczenia najmniej wygodnej, tzn. najszerszej
jednostki reklamowej. 3) Minimalizacje marnowanego miejsca, przy pesymi-
stycznym zalozeniu umieszczania tylko jednej reklamy. Aby wlasciwie odzwier-
ciedli¢ wielokryterialno$¢ problemu, jako wyniki podawano zaréwno wszystkie
rozwigzania niezdominowane w sensie Pareto, jak i jedno rozwiazanie najlepsze,
uzyskanie przez nadanie funkcjom celu wag. Dla wyznaczenia wag przeprowa-
dzono ankiete wérdéd 21 ekspertéw, profesjonalistow zajmujacych sie stronami
internetowymi.

Zaproponowany model ma az 13 ograniczen, poczawszy od tak oczywistych
jak nie przekraczanie ograniczen szerokosSci strony, poprzez ograniczajace re-
dundancje rozwiazan, skonczywszy na takich ktore maja odzwierciedla¢ wyma-

gania estetyczne w laczeniu reklam w grupy, czy pozostawiania pustej prze-

119

strzeni. Model poprzez wartosSci wejSciowe parametrow uzywanych w ograni-
czeniach pozwala na znaczne dostosowanie wynikéw do potrzeb konkretnego

web-developera. Zaproponowany algorytm dziala w czterech etapach:
1. Jednostki reklamowe sa taczone, tworzac wszystkie mozliwe kombinacje.

2. Tworzona jest lista dopuszczalnych szerokos$ci kombinacji i czesciowe war-

tosci dla péZniejszego wyliczenia funkcji celu.

3. Generowane sa wszystkie dopuszczalne uktady szerokosci kolumn i osta-

teczne wyniki funkcji celu.

4. 7 tej listy wybierane sa najlepsze rozwiazanie i listy rozwigzan Pareto-

optymalnych.

Etapy 2. i 4. to w gruncie rzeczy do$¢ trywialne przegladanie listy wartosci
dostarczonych przez poprzednie etapy. Dla etapu 1. uzyto zmodyfikowanego al-
gorytmu Wanga dla dwuwymiarowego rozkroju z ograniczeniami. Modyfikacje
polegaly na dostosowaniu go do potrzeb rozwazanego problemu, oraz na po-
prawkach wydajnosciowych, w szczegdlnosci ograniczeniu generowania duplika-
tow i sprawniejszego ich wyszukiwania i usuwania. Dla etapu 3. skonstruowano
algorytm przegladajacy uktady kolumn w mozliwie sprawny sposéb, przez wy-
korzystanie ograniczen zbioru mozliwych szerokosci. Algorytm ma ztozonosé
wyktadnicza, jednak wobec ograniczonych rozmiaréw szerokosci strony, jest to
rozwigzaniem akceptowalnym.

Dla potrzeb eksperymentéw obliczeniowych, zaproponowano jako bench-
marki zestawy jednostek reklamowych trzech popularnych sieci reklamowych
oraz zestaw rekomendacji jednostek reklamowych Internet Advertising Bureau.
Wartosci wejsciowe parametréow zostaly dobrane tak, by w miare mozliwosci
jak najlepiej odzwierciedlaly rzeczywiste warunki. Algorytm na przecietnym
komputerze biurowym generowal wyniki w czasach od kilku milisekund o 160
sekund, co jest rezultatem bardzo dobrym dla czynnosci, ktéra wykonywana jest
tylko raz przy tworzeniu strony internetowej. Czas dzialania algorytmu moze
sie zmienia¢ w zaleznosci od parametréw wejsSciowych, co zostalo przebadane.

Prezentowane wyniki sktadaja sie z najlepszego uktadu kolumn i zestawu
uktadéw Pareto-optymalnych dla kolejnych benchmarkéw i réznych szeroko-
$ci stron. Zakresy wartosci przyjmowanych przez trzy skladowe funkcje celu
$wiadcza o ich czulosci. Z wynikéw mozna tez wyciagnaé¢ dodatkowe wnioski.
Na przyktad, zestaw reklam Adbrite zawierajacy tylko pie¢ jednostek jest zbyt
maly i jego uzycie jest utrudnione. Z kolei dla wielu innych zestawdéw wyniki
wykazuja, ze zmienienie uktadu kolumn o kilka pixeli moze znacznie poprawié

elastyczno$¢ umieszczania reklam.

120

Whnioski koncowe wskazuja dodatkowe przyszle kierunki badan. Mozliwa
jest préba zastosowania danych o czestodci stosowania jednostek reklamowych,
np. w danym kraju, w celu znalezienia ukladéw kolumn majacych pewng
wszechstronng stosowalnosé. Z kolei odwrocenie problemu tj. badanie zesta-
wéw jednostek reklamowych, pozwoliloby stwierdzi¢ ktére z nich maja braki,
jakie jednostki nalezaloby dodaé¢ dla najlepszego efektu, nawet pozwolityby na
pokuszenie si¢ na stworzenie od podstaw kompletnego zestawu. Badanie mozna
tez uogolnia¢ do problemu podzialu dwuwymiarowej przestrzeni w jednym wy-
miarze, czyli na kolumny. Takie zagadnienie moze znalez¢ zastosowanie w pla-
nowaniu struktury portu, czy cieciu szerokich bel papieru produkowanych przez

fabryki na wezsze, dajace sie transportowac i skladowac.

BUDOWANIE CHMUR TAGOW DLA ZASTOSOWAN
INTERNETOWYCH

Tag to inaczej fraza reprezentujaca tekstowo jakis obiekt. Tagi maja przypisang
wartos¢ istotnosci w relacji do innych tagéw. Chmura tagdéw to ulozenie tagdéw
na plaszczyznie z wizualizacja graficzng ich istotnosci zazwyczaj przez wiekszy
rozmiar. Celem badania bylo rozwigzanie problemu konstrukcji estetycznych
i czytelnych chmur tagéw.

Na potrzeby przegladu literaturowego zaproponowana zostala taksonomia

klasyfikacji chmur tagéw w oparciu o 5 parametréw i zakresy ich wartosci:

1. Sortowanie tagéw. Dostepne opcje to: alfabetycznie, wedlug znaczenia,

kontekstowo, losowo, badz kolejnosé uktadana przez algorytm pakowania.

2. Ksztalt calej chmury. Mozliwe opcje: prostokatny, inny ksztalt regularny

(np. okragly), nieregularny, zadany (np. zadany wielobok, granice mapy).
3. Ksztalt samych tagdéw. Opcje: prostokat, lub ksztalt znakéw.

4. Obracanie znacznikéw. Opcje: brak, swobodne, dozwolone z ogranicze-
niami.
5. Wyréwnanie w pionie. Opcje: uzycie typograficznych linii podstawowych,

ograniczone przez wilasciwoscei algorytmu (np. grupowanie tagéw), swo-
bodne.

Przeanalizowano 14 chmur tagéw z literatury, zaréwno w zakresie tych para-
metréw jaki uzytych algorytméw oraz zastosowan chmury. Przeanalizowano
rowniez literature dotyczaca badan uzytecznosci chmur tagow.

Nastepnie przeprowadzono analize wymagan i zalecen dla chmur tagdw,
ktoére maja by¢ uzywane na stronach internetowych. Wymagania i zalecenia

te wynikaja zaréwno z ograniczen zasad konstrukeji i technologii (np. HTML,

121

CSS) samych stron internetowych, fragmentacji rynku klientéw jak i tego, ze
strony maja by¢ czytelne zaréwno dla ludzi, jak i dla robotéw indeksujacych.
Wynikajace z analizy rekomendacje i decyzje dotyczace chmur tagow dla WWW
sa nastepujace: 1) chmura jest prostokatna, 2) tagi sa traktowane jak prosto-
katy, 3) algorytm pakowania ustala kolejno$¢ tagéw, 4) obracanie tagdéw nie
jest dopuszczalne, 5) znaczniki umieszczane sa na linii bazowej (na pdétkach),
6) realizowana winna byé minimalizacja marnowanej przestrzeni w prostokacie
chmury. Chociaz moze sie wydawaé, ze w wiekszosci przypadkéw dokonano wy-
boréw najprostszych, nadal wyjsciowy problem optymalizacyjny jest NP-trudny,
jako ze jest szczegdlna wersja probleméw bin- lub strip-packing.

Dla uzyskania estetycznego wygladu chmury zastosowano regule typograficz-
nej réwnomiernego koloru typograficznego, tj. tekst tak ulozony powinien wi-
zualizowaé sig¢ np. jako mozliwie jednorodna masa szarosci. Osobnym wymaga-
niem jest uruchamianie algorytmu konstruowania chmur po stronie uzytkownika.
Wykazato to badanie rozmiaréw tagéw przeprowadzone na 4201 uzytkownikach
rzeczywistej strony internetowej, w ktérym zidentyfikowano 112 kombinacji roz-
miaréow tagéw wynikajacych z réznych czcionek dostepnych na urzadzeniach
i r6zni¢ w ich renderowaniu. Dodatkowo chmury powinny za kazdym razem
byé¢ generowane w tym samych wygladzie, aby nie powodowaé konsternacji dla
uzytkownika, a wiec przez algorytm deterministyczny, oraz ze wzgledu na wy-
magania szybkosci wyswietlania stron internetowych w czasie rzedu dziesiatych
czesei sekundy.

Przeprowadzona zostata analiza problemu pakowania rozwiazywanego przy
budowaniu chmur tagéw. Mamy tu do czynienia z problemem typu strip-
packing, w ktorym szeroko$¢ prostokata jest ustalona, za$ wysokos¢ moze by¢é
zmieniana w miare potrzeb przez przesuwanie elementéw strony www znajdu-
jacych sie pod chmura. Nastepnie przedstawione zostalo matematyczne sfor-
mutowanie problemu. Dla kazdego tagu mozliwe jest wyliczenie jego zaczer-
nienia, a z tagéw takze dla kazdej pdétki. Minimalizowana winna by¢ potega
k r6éznicy miedzy zaczernieniem potki a maksymalnym mozliwym, sumowana
po wszystkich potkach w chmurze. Wykladnik potegi k zostatl wyznaczony eks-
perymentalnie. Drugim elementem do dobranym eksperymentalnie byl sposéb
reprezentowania zaczernienia potek, ktory moze by¢ masa, czyli suma czarnosci
pixeli w tagach lub gestoscia, czyli masa dzielona przez powierzchnie.

Eksperymenty obliczeniowe przeprowadzono za pomoca specjalnie zaprojek-
towanego algorytmu typu Branch and Bound, pozwalajacego rozwiaza¢ pro-
blem do optymalnosci. Poniewaz jednak algorytm ten jest wyktadniczy, moze
rozwiazywaé¢ w akceptowalnym czasie ograniczone rozmiary instancji, wstepne
testy ograniczono do 16 tagéw. Wyniki zostaluy wykorzystane dla zmierzenia

dystansu od rozwiazan optymalnych oraz dostrojenia funkcji celu. Strojenie

122

przeprowadzono przez wygenerowanie 55 testowych chmur tagéw w 6 kombi-
nacjach parametréw i poddanie ich ocenie pieciu ekspertéw. Na tej podstawie
oceniono, ze gestosé jest bardziej czulym parametrem niz masa, za$ dla gestosci
najlepiej oceniana wratoscia k jest 0,5. W dalszych pracach uzyto wiec tych
parametréw funkcji celu.

Dla rozwiazania problemu zaproponowano tez specjalny algorytm zachtanny.
W oparciu o jego bazowa wersje z wykorzystaniem 8 réznych regul sortowania
tagéw (po masie, gestosci, wysokosci i szerokosci) oraz 4 réznych regul wy-
bierania pélek (best fit, worst fit, najmniejsza oraz najwigksza masa tonalna)
oraz dwdch dodatkowych modyfikacji mozliwe bylo 8*4*2*2 wersji algorytmu
zachtannego. Calos¢ postanowiono wykorzystaé¢ jako algorytm Super Fit, kté-
rego gléwna zaleta jest mniejsze prawdopodobienstwo wpadniecia w pulapke
przypadkéw pesymistycznych. Jako ostatnia metode rozwiazania problemu al-
gorytmu przygotowano algorytm Tabu Search. Algorytm startuje z najlepszego
rozwiazania z Super Fit i nastepnie przeszukuje przestrzen lokalnie wykorzystu-
jac tablice ruchéw tabu, w celu ominiecia juz odwiedzanych rozwigzan.

Do eksperymentéw obliczeniowych wykorzystano rzeczywiste chmury tagow
pobrane z dzialajacych stron internetowych. Algorytm Super Fit rozwiazuje in-
stancje do 142 tagéw w czasie do 57ms ($rednio 17ms). Parametry algorytmoéw
zachtannych zastosowanych w Super Fit powodowaly rézna jego efektywnosé,
52 z 128 nigdy nie wyprodukowalo rozwiazania, ktore byloby lepsze od rozwia-
zan innych algorytmow i moglyby zostaé¢ usuniete z pakietu, gdyby byla taka
potrzeba. Algorytm Tabu Search po strojeniu, wykonujac 300 iteracji, dzialat
$rednio w czasie 170ms. Rdznice numeryczne w wartosci funkcji celu sg niewiel-

kie, jezeli algorytm uzyska minimalng mozliwg liczbe potek.

PAKOWANIE CSS-SPRITE

CSS-sprite to technika umieszczenia wielu grafik stanowiacych elementy strony
WWW na jednym obrazku (nazywanym wlasnie CSS-sprtite) w celu zmniej-
szenia liczby zapytan do serwera. Fragmenty tego obrazka sa wyswietlane za
pomoca regul CSS w miejscu oryginalnych grafik.

Rozwiazanie problemu rozpoczeto od analizy wyzwan zwiazanych z pakowa-
niem CSS-sprite. Wyzwania natury geometrycznej zwiazane sa z ukladaniem
grafik na CSS-sprite czyli z problemem pakowania. Wystepujacy tu problem
pakowania jest nietypowej natury poniewaz przestrzen, do ktérej beda pako-
wane elementy nie ma zadanych zadnych wymiaréw. Zamiast tego poszuki-
wana jest najmniejsza powierzchnia w ktérej upakowane moga zostaé¢ elementy.
Techniki kompresji grafiki stwarzaja kolejne wyzwania, wplywajac na rozmiar

plikéw docelowych w sposéb nie mozliwy do przewidzenia. Pliki maja rézne

123

glebie koloréw, odzwierciedlane za pomoca réznej liczby bitéw na pixel. Do-
datkowo kompresja PNG bedzie osiagac lepsze rezultaty, jezeli w obrazku beda
dhuzsze ciagi punktow o jednakowym kolorze. A to moze zaleze¢ od wzajem-
nego polozenia grafik. 7 kolei kompresja JPEG jest stratna, ale tez pixele
z sasiadujacych grafik na jednym obrazku moga na siebie wzajemnie wplywac.
Oba formaty nadaja sie tez lepiej dla réznych typéw grafik i maja wiele innych
parametréw decydujacych o rozmiarach obrazkéw i inych wlasnosciach. Dal-
sze wyzwania sa natury obliczeniowej. W pracy przedstawiony zostal dowod,
ze zarowno problem wyboru zbioru grafik dla wspdlnej palety kolorow o ogra-
niczonym rozmiarze jak i problem umiejscowienia obok siebie grafik tak, by
maksymalizowaé¢ sasiadowanie takich samych koloréw sa NP-trudne. Wreszcie
wydajno$é komunikacji, przesylu CSS-sprite miedzy serwerem a przegladarka
nie jest znana. Wplywa na nig wiele czynnikéw poczawszy od parametrow ser-
wera, tacza i klienta, poprzez parametry przesytanych plikéw, a skonczywszy
na uzytym algorytmie szeregowania pakietéw. Jako przyblizenie tego procesu
zaproponowana zostala zalezno$¢ wykorzystujaca algorytm McNaughtona. Za-
proponowana metoda wyliczenia czasu komunikacji ma jednocze$nie niski koszt
akceptowalny dla zastosowania w praktyce, jak i akceptowalng dokladnosc.

Nastepnie problem zostal sformutowany jako model matematyczny. Dany
zestaw grafik ma by¢ umieszczonych na CSS-sprite, a umiejscowienie grafik,
jak i liczba CSS-sprite sa zmiennymi decyzyjnymi. Funkcja celu zaklada mini-
malizowanie czasu przesylu CSS-sprite dla zadanych parametréw lacza, w tym
przyspieszenia wynikajacego z zréwnoleglenia przesytania.

Przed przystapieniem do dalszych prac przeprowadzono szereg dodatkowych
eksperymentéw. W pierwszym z nich testowano wplyw ksztaltu CSS-sprite
i wzajemnego umiejscowienia grafik na rozmiar plikéw. Przygotowane grafiki
ukladano na CSS-sprite o wszystkich mozliwych ksztaltach, poczawszy od bar-
dzo dlugich ale niskich, przez zblizone do kwadratu, a skonczywszy na bardzo
wysokich ale waskich. Jednoczesnie testowano 200 permutacji wzajemnego uto-
zenia grafik. Z 36 testowych zestawow grafik 17 silnie preferowalo dla ukltad
dtugi, 14 uktadéw wysoki, a 5 nie wykazalo preferencji. Przez dobér wlasciwego
ukladu rozmiar CSS-sprite moze by¢ zmniejszony o 2% do 35%. Nie znale-
ziono czynnikow pozwalajacych okresla¢ preferencje inaczej niz eksperymental-
nie. Jednakze po znalezieniu wtasciwego ukltadu permutacje kolejnosci grafik
pozwalaly na zysk mniejszy niz 1,5%. Uznano, ze dla grafik typu PNG istotne
bedzie testowanie obu ukladéw, za$ kolejnoéé¢ utozenia grafik mozna pominaé.
Nie stwierdzono podobnych zaleznosci w plikach JPEG.

Drugi eksperyment miat na celu znalezienie przyktadowych parametrow wy-
dajnosci komunikacji i sprawdzenie przyspieszenia wynikajacego z réwnoleglego

pobierania danych. W tym celu skonstruowano skrypt do pomiaréw, ktory

124

umieszczono na dzialajacej stronie internetowej z rzeczywistym ruchem i ze-
brano pomiary z 17460 unikatowych adreséw IP. Wykazane zostalo, ze przegla-
darki sg zdolne do réwnoleglego pobierania. Co najmniej dwa kanaly stwier-
dzono w 100% z nich, za$ przeszlo potowa miala ich wigcej niz 7. Z kolei
przyspieszenie z pobierania réwnoleglego wynosilo érednio od 36% dla trzech
kanaléw do 77% dla 9 kanaléw.

Nastepnie przystapiono do analizy dostepnych rozwiazan generujacych CSS
Sprite. Zidentyfikowano przeszto 30 gotowych programéw. Czesé z nich nie
mogla zostaé¢ wlaczona do dalszych eksperymentéw, poniewaz byly zamknie-
tymi rozwiazaniami dostepnymi tylko dla konkretnej technologii, np. serwera,
badz nie dalo si¢ ich uruchomié, np. przez niedzialajace strony internetowe.
W pozostalej grupie mozna bylo jeszcze wyrdznié¢ rozwiazania nie stosujace zad-
nych algorytméw pakowania, uktadajacych grafiki po prostu jedna obok drugie;j.
Wreszcie ostatnia grupa to narzedzia do tworzenia CSS-sprite, uzywajace algo-
rytméw pakowania, czasem dosé zaawansowanych, dla minimalizowania wymia-
row CSS-sprite. Wszystkie znalezione rozwigzania generuja dokltadnie jednego
CSS-sprite, nie biorg pod uwage odkrytych zaleznosci formatéw kompresji, nie
optymalizuja rozmiaru pliku, nie optymalizuja czasu pobierania, ktore to cechy
sa gléwnymi nowosciami proponowanego rozwiazania. Niektore ze znalezionych
programéw uzywaja postprocessingu algorytméw pakowania dla mozliwego po-
prawienia kompresji i zmniejszenia rozmiaru wyjsciowego pliku.

Jako alternatywe zaproponowano algorytm SpritePack dziala w czterech eta-

pach:

1. klasyfikacja grafik — w ktérym testowane sa ich parametry takie jak glebia

koloréw i podatnosé na kompresje,

2. pakowanie geometryczne - w ktérym obrazki sg wstepnie grupowane w za-
dana liczbe k grup na podstawie pasowania do siebie wymiarami w pako-
waniu geometrycznym i zbieznopsci parametrow grafik poznanych w kla-

syfikacji,

3. pakowanie z kompresjg obrazu — grupy z poprzedniego kroku sa laczone
dalej, pakowane 2-wymiarowo i testowo kompresowane, taczenie w grupy
ma charakter algorytmu zachlannego, a funkcja celu jest oszacowanie czasu

pobierania,
4. postprocessing — wykonywane jest dodatkowe ulepszenie kompres;ji.

W procesie pakowania 2D testowane byly algorytmy: First-Fit Decreasing He-
ight (oraz w wersji z Fit2), Best-Fit Decreasing Height (oraz w wersji z Fit2),
Bottom-Left, Modified Bottom Left oraz Variable Height Left Top. W praktyce

125

dwa ostatnie radzily sobie najlepiej w 99% przypadkéw, choé oczywiscie wiazalo
sie to z pewnym kosztem czasowym, zwlaszcza w poréwnaniu do algorytméw
zachlannych otwierajacych ta liste. Docelowo do tej dwojki postanowiono do-
taczy¢ jeszcze First-Fit Decreasing Height Two-Fit, ktory radzil sobie najlepiej
w wigkszodci instancji niezdominowanych przez tamte dwa.

Na potrzeby eksperymentéw obliczeniowych przygotowano 32 instancje te-
stowe bedace zestawami grafik ze skorek dla popularnych aplikacji webowych
w otwartym kodzie. Wstepne testy postuzyly to strojenia parametréw pracy
SpritePacka, w szczegdlnoéci parametr k, ktéry wydatnie wpltywa na czas wyko-
nania najkosztowniejszego trzeciego etapu. Eksperymentalnie ustalono k = 10.
Nastepnie przeprowadzono na pieciu zestawach testowych poroéwnanie z dostep-
nymi rozwiazaniami zmuszajac SpritePack (dla uzyskania zgodnosci formy re-
zultatéw) do generowania doktadnie jednego CSS-sprite. Tylko dla jednego z ze-
stawéw testowych tylko jedno z konkurencyjnych rozwiazan dato lepszy wynik.
Do dalszych testéw wybrano cztery najlepsze rozwiazania, ktore byty gorsze
od SpritePack érefunkcji celudnio o 14-33%. Tym razem pordéwnywano funkcje
celu, a wiec czas pobierania CSS-sprite, ale takze rozmiary plikéw CSS-sprite na
wszystkich 32 instancjach testowaych. Dla rozmiaréw plikéw, optymalizowanych
przez SpritePack posrednio, byl on lepszy $rednio o 38-43%, jednak zdarzaty sie
przypadki, w ktérych konkurencyjne rozwiazania dawaly rozwiazania lepsze o
do 18%. W funkcji celu SpritePack byt $rednio lepszy od kazdego z konkuren-
tow o przynajmniej 31% i nigdy nie wystapil przypadek, zeby konkurencja byla
lepsza od SpritePack. Na koniec przeprowadzono jeszcze eksperyment z wygene-
rowanymi CSS-sprite na rzeczywistym serwerze poréwnujac CSS-sprite genero-
wane przez SpritePack z zestawem obrazkdéw przesylanych bez uzycia CSS-sprite
i z rozwigzaniem generowanym przez najlepszego z konkurentéw. Na czterech
testowanych zestawach grafik Spritepack zmniejszal czasy pobierania o 350ms
do 2.4s w poréwnaniu z brakiem CCC-sprite, podczas gdy najlepsza z rozwia-
zan konkurencyjnych zaledwie o 140-800ms. Eksperyment ten potwierdzil tez,
ze uzyty model, w szczegdlnosci prognozowanie czaséw pobierania za pomoca
funkcji McNaughtona oraz zmierzone przyspieszenie pobierania réwnoleglego,
sa poprawne. Wspodlezynnik korelacji miedzy medianami zmierzonego czasu
pobierania a prognozowanymi przez funkcje celu wynosit 0,952, a jego wartosé

p byla ponizej 2E-06.

126

BIBLIOGRAPHY

1]

[2]
[3]

(4]

[5]

[11]

[12]

E. H. AARTS AND J. H. KORST, Simulated annealing, ISSUES, 1 (1988),
p. 16.

ADBRITE, adbrite exchange. [on-line] http://www.adbrite.com/, 2011.

M. ADLER, P. B. GIBBONS, AND Y. MATIAS, Scheduling space-sharing
for internet advertising, Journal of Scheduling, 5 (2002), pp. 103-119.

AMERICAN DIALECT SOCIETY, “Hashtag” is the 2012 word of the year.
http://www.americandialect.org/hashtag-2012, 2013.

A. AMIRI AND S. MENON, Efficient scheduling of internet banner adver-
tisements, ACM Transactions on Internet Technology (TOIT), 3 (2003),
pp- 334-346.

ARC PROJECT, Survey on two-dimensional packing. http://cgi.csc.
liv.ac.uk/"epa/survey.pdf, 2013.

B. S. BAKER AND J. S. SCHWARZ, Shelf algorithms for two-dimensional
packing problems, STAM J. Comput., 12 (1983), pp. 508-525.

S. BATEMAN, C. GUTWIN, AND M. NACENTA, Seeing things in the
clouds: the effect of visual features on tag cloud selections, in Proceed-
ings of the nineteenth ACM conference on Hypertext and hypermedia,
ACM, 2008, pp. 193-202.

J. BEAIRD, The principles of beautiful web design, SitePoint, Collingwood,
Vic. :, 1st ed. ed., 2007.

J. Brazgwicz, P. Bouvry, M. KovALyov, AND J. MUSIAL, FErra-
tum to: Internet shopping with price-sensitive discounts, 40R, 12 (2014),
pp- 403-406.

——, Internet shopping with price sensitive discounts, 40R, 12 (2014),
pp. 35-48.

J. BLAzEwicz, N. CHERIERE, P.-F. Duror, J. MusiAL, AND D. TRys-
TRAM, Novwel dual discounting functions for the internet shopping opti-
mization problem: new algorithms, Journal of Scheduling, (2014), pp. 1-
11.

127

[13]

[14]

[15]

[16]

[19]
[20]

[21]

[22]

[23]

[25]

[26]

J. BRLAZEWICZ, M. DROZDOWSKI, B. SONIEWICKI, AND
R. WALKOWIAK, Two-dimensional cutting problem: Basic complex-
ity results and algorithms for irreqular shapes, Foundations of Control
Engineering, 14 (1989), pp. 137-159.

J. Brazewicz, K. H. Ecker, E. PrscH, G. SCHMIDT, AND
J. WEGLARZ, Handbook on scheduling: from theory to applications,
Springer Science & Business Media, 2007.

——, Scheduling computer and manufacturing processes, Springer Science
& Business Media, 2013.

J. BLAZEWICZ AND J. MUSIAL, E-commerce evaluation-multi-item inter-
net shopping, optimization and heuristic algorithms, in Operations Re-
search Proceedings, B. H. et al, ed., Berlin Heidelberg, 2010, Springer-
Verlag, pp. 149-154.

T. BouteLL, P. JoyE, AND PHP.NET, GD graphics library. http:
//1ibgd.bitbucket.org/, 2013.

K. BREDIES AND M. HOLLER, A total variation-based JPEG decompres-
sion model, STAM Journal on Imaging Sciences, 5 (2012), pp. 366-393.

R. BRINGHURST, The elements of typographic style, CRC Studio, 1996.

J. BRuUTLAG, Speed matters for google web search. http:
//www.isaacsunyer.com/wp-content/uploads/2009/09/test_
velocidad_google.pdf, 2009.

M. BurcH, S. LoHMANN, D. PoMPE, AND D. WEISKOPF, Prefix tag
clouds, in 17th International Conference Information Visualisation, IEEE,
2013, pp. 45-50.

E. K. Burkge, M. R. HYDE, AND G. KENDALL, Fvolving bin packing
heuristics with genetic programming, in Parallel Problem Solving from
Nature-PPSN IX, LNCS 4193, T. Runarsson, H.-G. Beyer, E. Burke,
J. Merelo-Guervés, J. L. Darrell Whitley, and X. Yao, eds., Springer,
2006, pp. 860-869.

K. CHAKHLEVITCH AND P. COWLING, Hyperheuristics: Recent develop-
ments, in Adaptive and Multilevel Metaheuristics, C. C. et al, ed., vol. 136
of Studies in Computational Intelligence, Springer-Verlag, Berlin Heidel-
berg, 2008, pp. 3-29.

G. CHARLTON, Eight second rule for e-commerce web-
sites now halved. http://econsultancy.com/uk/blog/
500-eight-second-rule-for-e-commerce-websites-now-halved,
2006.

B. CHAZELLE, The bottom-left bin-packing heuristic: An efficient imple-
mentation, IEEE Transactions on Computers, 32 (1983), pp. 697-707.

T.-C. CHEN AND Y.-W. CHANG, Modern floorplanning based on b*-
tree and fast simulated annealing, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25 (2006), pp. 637-650.

128

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[36]

[37]

[38]

[39]

[40]

[41]

C. CHENG, T. AncustiA, M. H. CHING, C. A. CRISTOBAL, AND
G. M. GABUYO, Synonym based tag cloud generation, in DLSU Research
Congress, 2014.

M.-T. CHi, S.-S. LiN, S.-Y. CHEN, C.-H. LiN, aND T.-Y. LEE, Mor-
phable word clouds for time-varying text data visualization, IEEE transac-
tions on visualization and computer graphics, 21 (2015), pp. 1415-1426.

S. CHIKUYONOK, Clever JPEG optimization tech-
niques. http://www.smashingmagazine.com/2009/07/01/
clever-jpeg-optimization-techniques/, 2009.

_ Clever png optimization techniques.
http://www.smashingmagazine.com/2009/07/15/
clever-png-optimization-techniques/, 2009.

N. CHRISTOFIDES AND C. WHITLOCK, An algorithm for two-dimensional
cutting problems, Operations Research, 25 (1977), pp. 30-44.

E. CLEMONS, Monetizing the internet: Surely there must be something
other than advertising, in System Sciences, 2009. HICSS ’09. 42nd Hawaii
International Conference on, 2009, pp. 1 —10.

CLICKSOR, Online contextual advertising and behavioral marketing ser-
vices. [on-line] http://www.clicksor.com/, 2011.

E. G. J. CorrMAN, M. R. GAREY, D. S. JOHNSON, AND R. E. TAR-
JAN, Performance bounds for level-oriented two-dimensional packing algo-
rithms, STAM J. Comput., 9 (1980), pp. 808-826.

COMPUSERVE INC., Graphics interchange format. http://www.w3.org/
Graphics/GIF/spec-gif89a.txt, 1990.

T. H. CorMEN, C. E. LEISERSON, R. L. RiveEsT, AND C. STEIN, In-
troduction to algorithms, vol. 6, MIT press Cambridge, 2001.

W. Cul, Y. Wu, S. Liu, F. WEI, M. X. ZHou, AND H. Qu, Con-
text preserving dynamic word cloud visualization, in Pacific Visualization
Symposium (PacificVis), IEEE, 2010, pp. 121-128.

A. Davies, G. FABRITIUS, N. JEDRZEJEWSKI, A. LENZEN, C. METEL-
ING, A. RoALDSETH, C. SCHAFER, AND Y. WEISS, Adept -
the adaptive JPG compressor. https://github.com/technopagan/
adept-jpg-compressor/, 2014.

M. DAwANDE, S. KuMAR, AND C. SRISKANDARAJAH, Performance
bounds of algorithms for scheduling advertisements on a web page, Journal
of Scheduling, 6 (2003), pp. 373-394.

——, Scheduling web advertisements: a note on the minspace problem,
Journal of Scheduling, 8 (2005), pp. 97-106.

M. DoMANSKI, W. PIASECKI, P. PLATEK, M. WITCZAK, J. MARSZA-
EKOWSKI, AND M. DROZDOWSKI, Aplikacja wspierajgca wybdr ukladu
stron www dla celow reklamowych. http://www.cs.put.poznan.pl/
jmarszalkowski/optymalizator_layoutu/, 2012.

129

[42]

[43]

[44]

[45]

[46]

[54]

[55]

[56]

[57]

[58]

R. EBERHART AND J. KENNEDY, A new optimizer using particle swarm
theory, in Micro Machine and Human Science, 1995. MHS’95., Proceedings
of the Sixth International Symposium on, IEEE, 1995, pp. 39—43.

R. ECKERSLEY, R. ANGSTADT, C. M. ELLERTSON, AND R. HENDEL,
Glossary of typesetting terms, University of Chicago Press, 2008.

M. ECKERT AND A. BRADLEY, Perceptual quality metrics applied to still
image compression, Signal Processing, 70 (1998), pp. 177-200.

J. FENN, When to leap on the hype cycle. http://www.cata.ca/
_pvwb22C275E/files/PDF/Resource_Centres/hightech/reports/
indepstudies/Whentoleaponthehypecycle.pdf, 1995.

K. FusiMUrA, S. FuJiIMURA, T. MATSUBAYASHI, T. YAMADA, AND
H. OkuDA, Topigraphy: wvisualization for large-scale tag clouds, in Pro-
ceedings of the 17th international conference on World Wide Web, ACM,
2008, pp. 1087-1088.

M. R. GAREY AND D. S. JOHNSON, Computers and intractability: A
Guide to the Theory of NP-Completeness, W.H.Freeman and Co., 1979.

P. GILMORE AND R. GOMORY, Multistage cutting stock problems of two
and more dimensions, Operations Research, 13 (1965), pp. 94-120.

F. GLOVER, Tabu search, part I, ORSA Journal on Computing, 1 (1989),
pp- 190-206.

D. E. GOLDBERG, Genetic algorithms, Pearson Education India, 2006.
GOOGLE, Adsense. [on-line] http://adsense.google.com, 2011.

J. GORDON, Binary tree bin packing algorithm. http:
//codeincomplete.com/posts/2011/5/7/bin_packing/, 2011.

P.-N. Guo, T. TakAHASHI, C.-K. CHENG, AND T. YOSHIMURA, Floor-
planning using a tree representation, IEEE Transaction On Computer-
Aided Design of Integrated Circuits And Systems, 20 (2001), pp. 281-289.

M. J. HALVEY AND M. T. KEANE, An assessment of tag presentation
techniques, in Proceedings of the 16th international conference on World
Wide Web, ACM, 2007, pp. 1313-1314.

HTTPBIS WORKING GROUP, Hypertext transfer protocol version 2.
https://tools.ietf.org/html/draft-ietf-httpbis-http2-17, 2015.

E. Huancg AND R. E. KORF, New improvements in optimal rectangle
packing, in Proceedings of the 21st International Jont Conference on Ar-
tificial Intelligence IJCAT’09, 2009, pp. 511-516.

N. HursT AND K. MARRIOTT, Satisficing scrolls: a shortcut to satisfac-
tory layout, in Proceeding of the eighth ACM symposium on Document
engineering, DocEng 08, New York, NY, USA, 2008, ACM, pp. 131-140.

IMPULSE ADVENTURE, What is an optimized JPEG? http://www.
impulseadventure.com/photo/optimized-jpeg.html, 2007.

130

[59]

[60]

[61]

[62]

[69]

[70]

[71]

[72]

INDEPENDENT JPEG Group, Jpegtran. http://jpegclub.org/
jpegtran/, 2012.

INTERACTIVE ADVERTISING BUREAU, Adez 2009 european online adver-
tising expenditure, 2009.

——, IAB ad unit guidelines. [on-line] http://www.iab.net/media/
file/IAB-Ad-Unit-Guidelines-Update-20091029.pdf, 2009.

INTERNATIONAL TELECOMMUNICATION UNION, Recommendation t.81:
Information technology - digital compression and coding of continuous-
tone still images - requirements and guidelines. http://www.w3.org/
Graphics/JPEG/itu-t81.pdf, 1993.

M. Jeon, Y. Kiv, J. HwANG, J. LEE, AND E. SEO, Workload charac-

terization and performance implications of large-scale blog servers, ACM
Transactions on the Web (TWEB), 6 (2012), p. 16.

R. M. KARP, Reducibility among combinatorial problems, in Complexity
of Computer Computations, R. E. M. J. W. Thatcher, ed., Plenum Press,
New York, 1972, pp. 85-103.

O. KASER AND D. LEMIRE, Tag-cloud drawing: Algorithms for cloud
visualization, arXiv preprint ¢s/0703109, (2007).

K. KM, S. Ko, N. ELmqQvisT, AND D. S. EBERT, Wordbridge: Using
composite tag clouds in node-link diagrams for visualizing content and re-

lations in text corpora, in 44th Hawaii International Conference on System
Sciences (HICSS), IEEE, 2011, pp. 1-8.

D. E. KNuTH AND M. F. PLASS, Breaking paragraphs into lines, Soft-
ware: Practice and Experience, 11 (1981), pp. 1119-1184.

R. E. KoOrF, Optimal rectangle packing: Initial results, in Proceedings
of the Thirteenth International Conference on Automated Planning and
Scheduling ICAPS’03, Palo Alto, USA, 2003, American Association for
Artificial Intelligence, pp. 287-295.

R. E. Korr AND E. HUANG, Optimal rectangle packing: An absolute
placement approach, Journal of Artificial Intelligence Research, 46 (2012),
pp. 47-87.

R. E. Korr, M. D. MoOFrFITT, AND M. E. POLLACK, Optimal rectangle
packing, Annals of Operations Research, 179 (2010), pp. 261-295.

M. KUDELKA, V. SNASEL, Z. HORAK, A. E. HASSANIEN, A. ABRAHAM,
AND J. D. VELASQUEZ, A novelapproach for comparing web sites by using
microgenres, Engineering Applications of Artificial Intelligence, 35 (2014),
pp. 187-198.

S. KuMAR, M. DAWANDE, AND V. MOOKERJEE, Optimal scheduling
and placement of internet banner advertisements, Knowledge and Data
Engineering, IEEE Transactions on, 19 (2007), pp. 1571-1584.

131

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[83]

[84]

[85]

S. KuMAR, V. S. JAcOB, AND C. SRISKANDARAJAH, Scheduling ad-
vertisements on a web page to mazimize revenue, FEuropean Journal of
Operational Research, 173 (2006), pp. 1067 — 1089.

B. Y. Kvo, T. HENTRICH, B. M. GooD, AND M. D. WILKINSON,

Tag clouds for summarizing web search results, in Proceedings of the 16th
international conference on World Wide Web, ACM, 2007, pp. 1203-1204.

M. LANGHEINRICH, A. NAKAMURA, N. ABE, T. KAMBA, AND
Y. KOsEKI, Unintrusive customization techniques for web advertising,
Computer Networks, 31 (1999), pp. 1259-1272.

E. L. LAWLER AND D. E. Woo0D, Branch-and-bound methods: A survey,
Operations research, 14 (1966), pp. 699-719.

A. Lobi, S. MARTELLO, AND M. MoNAcI, Two-dimensional packing
problems: A survey, European Journal of Operational Research, 141
(2002), pp. 241-252.

S. LouMANN, F. HEIMERL, F. Borp, M. BURcH, AND T. ErTL, Con-
centri cloud: Word cloud visualization for multiple text documents, in 2015
19th International Conference on Information Visualisation, IEEE, 2015,
pp. 114-120.

S. LOHMANN, J. ZIEGLER, AND L. TETZLAFF, Comparison of tag cloud
layouts: Task-related performance and wvisual exploration, in Human-
Computer Interaction-INTERACT 2009, Springer, 2009, pp. 392—-404.

M. C. Lopez-Loces, J. Musiat, J. E. PECERO, H. J. FRAIRE-
Huacusa, J. BrLAzEwicZz, AND P. BOUVRY, Ezact and heuristic ap-
proaches to solve the internet shopping optimization problem with delivery
costs, International Journal of Applied Mathematics and Computer Sci-
ence, 26 (2016), pp. 391-406.

C. LOUVRIER, Optimisation web (images, performance). http://css-ig.
net/, 2013.

M. Manpavi, M. H. CHEHREGHANI, H. ABOLHASSANI, AND R. FOR-

SATI, Novel meta-heuristic algorithms for clustering web documents, Ap-
plied Mathematics and Computation, 201 (2008), pp. 441-451.

J. MARSZALKOWSKI, The importance of advertising exchange for market-
ing browser games, Homo Ludens, 3 (2011).

J. MARSZALKOWSKI, Prototype of high performance scalable advertising
server with local memory storage and centralised processing, in Informa-
tion and Communication Technologies: 18th EUNICE/ IFIP WG 6.2, 6.6
International Conference, EUNICE 2012, Budapest, Hungary, August 29-
31, 2012. Proceedings, R. Szab6 and A. Vidécs, eds., Berlin, Heidelberg,
2012, Springer Berlin Heidelberg, pp. 194-203.

———, Budgeted internet shopping optimization problem (b-isop), in Pro-
ceedings of 7th Multidisciplinary International Conference on Scheduling:
Theory and Applications (MISTA 2015), B. M. P. v. Zdenek Hanzalek,
Graham Kendall, ed., 2015, pp. 885 — 887.

132

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]
[96]

[97]

[98]

[99]

[100]

J. MARSZALKOWSKI AND M. DROZDOWSKI, Optimization of column
width in website layout for advertisement fit, European Journal of Op-
erational Research, 226 (2013), pp. 592—601.

J. MARSZAEKOWSKI, J. M. MARSZALKOWSKI, AND M. DROZDOWSKI,
Empirical study of load time factor in search engine ranking, Journal of
Web Engineering, 13 (2014), pp. 114-128.

J. MARSZAEKOWSKI, J. M. MARSZALKOWSKI, AND J. MUSIAL, Database
scheme optimization for online applications, Foundations of Computing
and Decision Sciences, 36 (2011), pp. 121-129.

J. MARSZALKOWSKI, J. MI1ZGAJSKI, D. MOKWA, AND M. DROZDOWSKI,
Spritepack resources. http://www.cs.put.poznan.pl/mdrozdowski/
spritepack/, 2015.

J. MARSZAEKOWSKI, J. M1ZGAJSKI, D. MOKWA, AND M. DROZDOWSKI,
Analysis and solution of CSS-sprite packing problem, ACM Transactions
on the Web, 10 (2016), p. article No.1.

L. MASINTER, Frc 2397: The ”data” URL scheme. https://wuw.ietf.
org/rfc/rfc2397.txt, 1998.

R. MCNAUGHTON, Scheduling with deadlines and loss functions, Manage-
ment Science, 6 (1959), pp. 1-12.

Z. MICHALEWICZ, Gas: What are they?, in Genetic algorithms+ data
structures= evolution programs, Springer, 1994, pp. 13-30.

S. MILGRAM AND D. JODELET, Psychological maps of Paris, in Environ-
mental Psychology: People and Their Physical Settings, H. Proshansky,
W. Ittelson, and L. Rivlin, eds., Holt, Reinehart and Winston, New York,
1976.

M. MITCHELL, An introduction to genetic algorithms, MIT press, 1998.

MoziLLa Co., Mozilla jpeg encoder project. https://github.com/
mozilla/mozjpeg/, 2014.

J. Musiat. AND J. MARSZALKOWSKI, Propozycja poprawy wydajnosci
bazy danych dla nowoczesnych aplikacji internetowych, Zeszyty Naukowe
Uniwersytetu Szczecifiskiego. Ekonomiczne Problemy Ustug, (2011),
pp. 404-411.

D.-Q. NGUYEN AND H. SCHUMANN, Taggram: Ezploring geo-data on
maps through a tag cloud-based visualization, in 14th International Con-
ference Information Visualisation, IEEE, 2010, pp. 322-328.

N. NTENE AND J. H. VAN VUUREN, A survey and comparison of guillo-
tine heuristics for the 2d oriented offline strip packing problem, Discrete
Optimization, 6 (2009), pp. 174-188.

NucLEX FRAMEWORK, Rectangle packing. http://nuclexframework.
codeplex.com/wikipage?title=Rectangle, 2009.

133

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

M. PERDECK, Fast optimizing rectangle packing algorithm for build-
ing CSS sprites. http://www.codeproject.com/Articles/210979/
Fast-optimizing-rectangle-packing-algorithm-for-bu, 2011.

I. Popovict AND W. WITHERS, Locating edges and removing ringing ar-
tifacts in JPEG images by frequency-domain analysis, IEEE Transactions
on Image Processing, 16 (2007), pp. 1470-1474.

R. L. R. KoHAvl, Online experiments: Lessons learned, Computer 40,
no. 9, (2007), pp. 103-105.

G. RANDERS-PEHRSON AND T. BoOUTELL, PNG (portable network
graphics) specification. http://www.libpng.org/pub/png/spec/1.2/
PNG-Contents.html, 1999.

REFSNES DATA, Browser display statistics. [on-line] http://www.
w3schools.com/browsers/browsers_resolution_higher.asp, 2011.

A. W. RIVADENEIRA, D. M. GRUEN, M. J. MULLER, AND D. R.
MILLEN, Getting our head in the clouds: toward evaluation studies of
tagclouds, in Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM, 2007, pp. 995-998.

H. Q. SAREMI, B. ABEDIN, AND A. M. KERMANI, Website structure im-
provement: quadratic assignment problem approach and ant colony meta-
heuristic technique, Applied Mathematics and Computation, 195 (2008),
pp. 285-298.

C. SEIFerT, B. KumP, W. KIENREICH, G. GRANITZER, AND M. GRAN-
ITZER, On the beauty and usability of tag clouds, in 12th International
Conference Information Visualisation, IEEE, 2008, pp. 17-25.

D. SHEA, CSS sprites: Image slicing’s kiss of death. http://www.
alistapart.com/articles/sprites, 2004.

K. SILVERMAN, Ken Silverman’s utility page. http://advsys.net/ken/
utils.htm, 2013.

L. SIMON AND S. SOUDERS et al, Browserscope. http://www.
browserscope.org/?category=network&v=1, 2015.

K. SIMPSON, Obsessions: Http request reduction. http://blog.getify.
com/obsessions-http-request-reduction/, 2015.

E. SpYROU AND P. MYLONAS, A survey on flickr multimedia research
challenges, Engineering Applications of Artificial Intelligence, 51 (2016),
pp. 71-91.

P. STANICEK, CSS technique: Fast rollovers without preload.
http://wellstyled.com/css-nopreload-rollovers.html, 2003.

S. STEFANOV, Image optimization, part 3: Four steps to file size reduction.
http://yuiblog.com/blog/2008/11/14/imageopt-3/, 2008.

134

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]
[125]

[126]

[127]

[128]

A. STEINBERG, A strip-packing algorithm with absolute performance
bound, STAM Journal on Computing, 26 (1997), pp. 401-409.

P. VELHO, L. M. SCHNORR, H. CASANOVA, AND A. LEGRAND, On the
validity of flow-level tcp network models for grid and cloud simulations,
ACM Transactions on Modeling and Computer Simulation, 23 (2013),
p- 23.

F. B. VIEGAS AND M. WATTENBERG, Timelines: Tag clouds and the case
for vernacular visualization, ACM Interactions, 15 (2008), pp. 49-52.

F. B. VIEGAS, M. WATTENBERG, AND J. FEINBERG, Participatory visu-
alization with Wordle, IEEE Transactions on Visualization and Computer
Graphics, 15 (2009), pp. 1137-1144.

J. WALHOUT, S. BRAND-GRUWEL, H. JARODZKA, M. VAN DK,
R. DE GROOT, AND P. A. KIRSCHNER, Learning and navigating in hyper-
text: Navigational support by hierarchical menu or tag cloud?, Computers
in Human Behavior, 46 (2015), pp. 218-227.

G. K. WALLACE, The JPEG still picture compression standard, Commu-
nications of the ACM, 34 (1991), pp. 30—44.

P. Y. WANG, Two algorithms for constrained two-dimensional cutting
stock problems, Operations Research, 31 (1983), pp. 573-586.

J. WAWRZYNIAK AND J. MARSZALKOWSKI, Gamifikacja w edukacji:
przeglad wymagari dla platformy gamifikacyjnej, Homo Ludens, 7 (2015),
pp- 229-247.

Webpagetest. http://www.webpagetest.org/, 2015.

B. D. WEINBERG, Don’t keep your internet customers waiting too long
at the (virtual) front door, Journal of Interactive Marketing, 14 (2000),
pp. 30-39.

A. WOJICIECHOWSKI AND J. MUSIAL, A customer assistance system: Op-
timizing basket cost, Foundations of Computing and Decision Sciences, 34
(2009), pp. 59-69.

P.-Y. YIN AND Y.-M. GUo, Optimization of multi-criteria website struc-
ture based on enhanced tabu search and web usage mining, Applied Math-
ematics and Computation, 219 (2013), pp. 11082-11095.

M. YUE, A simple proof of the inequality ffd (1)? 11/9 opt (1)+ 1,7 1
for the ffd bin-packing algorithm, Acta Mathematicae Applicatae Sinica
(English Series), 7 (1991), pp. 321-331.

135

