
Poznań University of Technology
Institute of Computing Science

Combinatorial
optimization
problems
in Internet
applications

Doctoral thesis

Jakub Marszałkowski

Supervisor:
prof. dr hab. inż. Maciej Drozdowski

Poznań, 2017

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Scope and Puropose . 5
1.3 Methodology . 6
1.4 Common webpage-related factors 10
1.5 Outline of the Thesis . 11

2 Layout Partitioning for Advertisements Fit 13
2.1 Website’s Layouts and Ad Placement 13
2.2 Problem Formulation . 16
2.3 Objective Functions . 19

2.3.1 Max Ad Number Function 20
2.3.2 Max Most Difficult to Pack Ad Unit Function 20
2.3.3 Min Single Ad Waste . 20

2.4 Solution Method . 21
2.4.1 Combining Ad Units . 22
2.4.2 Valid Column Widths List 23
2.4.3 Browsing Layouts . 24
2.4.4 Selecting Final Results . 25
2.4.5 Example For a Small Instance 25

2.5 Benchmarks . 27
2.5.1 Data Sets . 27
2.5.2 Webmaster Survey . 27

2.6 Computational Experiments . 29
2.6.1 Input Parameters . 29
2.6.2 Execution Times . 31
2.6.3 Layout Partitioning Results and Discussion 31

2.7 Conclusions . 35

3 Tag Cloud Construction 37
3.1 Tag Clouds . 37
3.2 Problem Analysis and Related Work Survey 38

3.2.1 Tag cloud taxonomy . 38
3.2.2 Related work . 40
3.2.3 Tag Cloud Usability Studies 42
3.2.4 Tag Clouds for the Web 43
3.2.5 Client Side . 44
3.2.6 Analysis of Packing Problem Properties 47

3.3 Problem Formulation . 48
3.4 Algorithms for Tag Cloud Optimization 50

3.4.1 Branch and Bound . 51
3.4.2 Greedy Algorithms . 52
3.4.3 Tabu Search . 54

3.5 Computational Experiments . 55
3.5.1 Test Instances . 55
3.5.2 Selection of the Objective Function 56
3.5.3 Super-Fit Algorithm . 57
3.5.4 Tuning Tabu Search . 58
3.5.5 Branch and Bound . 61
3.5.6 Comparison of the Algorithms 62

3.6 Conclusions and Future Work . 65

4 CSS-sprite Packing 66
4.1 CSS-Sprites and Loading of Web Pages 66
4.2 Practical Challenges and Problem Formulation 68

4.2.1 Geometric Challenges . 68
4.2.2 Image Compression Properties 70
4.2.3 Computational Complexity 72
4.2.4 Communication Performance 76
4.2.5 Problem Formulation . 79

4.3 Preliminary Tests . 79
4.3.1 Packing Model . 79
4.3.2 Communication Performance 82

4.4 State of the Art . 86
4.5 Spritepack . 91

4.5.1 Tile Classification . 91
4.5.2 Geometric Packing . 92
4.5.3 Merging with Image Compression 95
4.5.4 Postprocessing . 96

4.6 Spritepack Evaluation . 97
4.6.1 Test Instances . 97
4.6.2 Initial Experiments . 100
4.6.3 Spritepack Performance Comparison 106
4.6.4 End-to-End Evaluation 108

4.7 Conclusions . 110

5 Summary and Final Remarks 112

1 Introduction

1.1 Motivation

The Internet has become a key element of human civilization. It is a cornerstone

of communication, trade, science, social life, entertainment, etc. To realize

how much Internet changed our life’s one should refer to pre-internet works SF

writers and futurologist. They, in general, failed to foresee the global net and

are drawing our times or even further future without the common functionalities

that we have already.

Over the last two decades, World Wide Web has become a new branch

of industry. The subject of engineering in designing, constructing, maintaining,

improving and optimizing various web services or Internet applications and their

components is an art and craft, business, scientific and engineering challenge.

Engineering endeavors related to the Internet are often referred to as web en-

gineering. However, it is hard to refrain from observing that some components

of the web are constructed in an ad-hoc way. Web engineering should not be

exempted from the analysis and optimization of its processes. Hence, web en-

gineering should profit from many decades of scientific experience, including,

combinatorial optimization and operations research heritage analyzing and op-

timizing industrial processes. And vice versa, the combinatorial optimization

society should not omit this new and emerging field of applications.

This leads to this thesis motivation of conducting research in the area of web

engineering and combinatorial optimization. In the next section three problems

which are subject of this thesis/work/manuscript, will be outlined.

However, it should be also noted that the author conducted more research in

the fields of web applications, web services and Internet advertising that went

beyond the scope of the thesis. Instead, conclusions and results from these

papers will be referred to as needed. This includes the paper on effectiveness

of ads server [84], the paper on advertisement exchange [83], two papers on

4

database optimization for web services [88, 97], the paper on the role of website

speed [87], the paper on Internet shopping optimization [85] and the paper on

building a web platform for gamification of education [123].

1.2 Scope and Puropose

The recent astounding growth of the Internet and its applications is bringing

new interesting research field to combinatorial optimization. Although Internet-

related optimization problems are very novel, several elements remain the same:

there is maximization of the revenue or capability, minimization of costs or

resource used, etc. Often similar approaches, after specific adjustments, can be

used. The challenges of computational complexity are the same. Problems are

computationally hard in their nature and often requiring super fast algorithms

for online results. Three specific problems have been chosen as the subject of

the thesis:

I Layout Partitioning for Advertisement Fit (LPfAF) where a website is

partitioned into columns to obtain layout capable of fitting advertisements

well.

II Tag Cloud Construction Problem (TCCP) which consists in optimizing tag

clouds for web pages to provide good readability.

III CSS-sprite Packing Problem (CSS-SPP) where, by bundling web page im-

ages into packages called sprites, shorter load time of web pages is achieved.

The intersection of these research problems is twofold. Firstly, all three

problems are real-world challenges taken by author from his practical experi-

ence with the Internet applications. Thus, solving them can lead to improving

the quality of the web pages. LPfAF can improve ads revenues but also usabil-

ity of web pages. TCCP can improve readability and thus ergonomics of web

applications. CSS-SPP can offload servers and network, speed up page loading

and reduce the memory usage by browsers, which already is a good justification

for the research.

Secondly, all three problems relay heavily on two-dimensional rectangle pack-

ing. Note that all elements of a website are actually rectangles. Regardless of

their visible shapes the placement done by the browser in Document Object

Model (DOM) is putting rectangular elements into rectangular space. Adver-

tisements and slots to insert the ads are rectangular. Images might use opacity

to hide from users sight parts of the rectangle, but are placed the same way. Any

part of the text, would be it a single keyword or three paragraphs, are placed

5

with respect to their rectangular envelope. With that, several new approaches

the old 2-dimensional packing problems and algorithms are developed, which is

another good justification for the research.

1.3 Methodology

In this section methodologies shared in the analysis of the above three prob-

lems will be outlined. It is assumed that the reader has basic knowledge of

computational complexity theory, combinatorial optimization, scheduling the-

ory, 2-dimensional packing. In order to avoid repeating basic facts of computer

science, we do not elaborate on these theories here. An interested reader may

find introduction to these fields in [13, 14, 15, 36, 47, 64, 77]. Instead, we give

here only a short informal outline and explanation of the guidelines used in the

three problems. The guidelines define a pattern of the chapters dealing with

the particular problems.

As all the three problems are real-world problems, requiring the same steps

in the work with them. The common analysis procedure/pattern is as follows:

1. Literature study for state of the art in this or similar problems.

2. Mathematical modeling of the problem.

3. Analysis of the computational complexity of the problem.

4. Development of algorithms to solve the problem.

5. Validation of the algorithms.

The actual research work in these steps may vary with different problems, es-

pecially with the respect to the algorithmic approaches. However, their common

factors can be discussed here.

As the research consists of three separate problems, the literature search

(step 1) was performed for them separately, and the results will be presented

further in the text, with only short outline here. Tag cloud construction, op-

timization or visualization have met some interest of researchers. To the best

of the author’s knowledge, the first research paper on that topic was [65]. This

was continued and extended leading to many other interesting solutions, with

probably Wordle [119] being the most recognized. Sadly Wordle does not offer

any optimization for use on web pages motivating the author to research in this

field. A survey of publications on tag clouds construction is provided in Section

3.2.1.

6

Although CSS-sprite optimization is a kind of popular topic, was up to date

aimed rather at projects using engineering approach than scientific methods.

Thus, rarely was there any optimization problem considered, and even if, then

it was not going further than application of 2-dimensional packing algorithms

to reduce dimensions of the sprite. Survey of projects building CSS-sprites is

provided in Section 4.4.

The idea for research on LPfAF comes from the literature on ad placement

optimization. Many of such problems have already been considered in the con-

text of ad display placement, optimization or scheduling. This area of research

was first proposed in [3] and [39] and up to now proliferated in so many di-

rections, that it definitely deserves a separate review paper. However, all this

research usually is considering optimization of revenues from ads that are placed

in static ad spaces or slots that are given a priori. This leads to the conclusion

that optimization of space for ads might be worth consideration. As the orig-

inal problem of ad placement optimization for revenue maximization is mainly

a motivation for the authors own project no wider survey on the original area

was conducted as it was lying out of scope of this work.

All three problems considered in this thesis are to some point novel and re-

quired providing a mathematical model built from scratch (step 2). Even for the

TCCP dealing with tag clouds that were tackled in numerous research papers,

the author has taken completely different novel approach. In all cases, this re-

quired modeling objective functions to represent realities of the problem. This

is a difficult task. In two of the problems, LPfAF and TCCP, the difficulty was

catching some perception of aesthetics with mathematical equations. Whether

the objective functions were modeled properly can be verified not earlier than

by studying the results of the designed algorithms. While the obtained results

seem to confirm a successful outcome, it will be further discussed in the following

chapters.

Problems considered in this thesis, are combinatorial optimization problems

and consideration of their computational complexity had to be performed (step

3). Problems of combinatorial optimization are defined on sets of discrete ob-

jects rather than on continuous domains. Problems of this nature are very often

hard to solve. The only approach to give optimal solution, or often any solution

is by verifying a number of solutions, which grows exponentially with the prob-

lem size (unless P = NP). Problems of this nature are called NP-hard (see

[47, 64] for precise definition). 2-dimensional packing problems are NP-hard

in general. Because all the considered problems are generalizations of known

2-dimensional packing problems, or have 2-dimensional packing as one of the

sub problems, all the three problems are NP-hard too. It is practically im-

possible to solve such problems by full enumeration of possible solutions. Such

7

approaches are called exact and are effective only for small instances of prob-

lems. Algorithms that are effective in the greater range of instances are the

ones which execution times can be bounded by polynomials in the input size.

These are called polynomial-time algorithms. Unfortunately, unless P = NP we

must expect that for hard combinatorial problems no effective polynomial-time

algorithms can be given.

The theory of computational complexity provides a methodology of dealing

with hard combinatorial problems. Several groups of algorithms have been

developed to solve them (step 3):

1. Full enumeration algorithms, with main feature being searching the space

of possible solutions exhaustively. It means that in the worst case all

possible solutions may be visited. Their complexity may not go below

exponential and execution times are prohibitively high, which limits their

applicability.

2. Algorithms providing efficient search for exponential solution space can

be constructed with the use of methods for pruning the solutions that are

not promising. In two of three research problems such approach was used.

Branch&Bound (B&B) algorithms [76] represent the space of solutions as

a search tree, pruned by bounds on values of the solutions that a given

branch might lead to. Still the size of the instance that can be solved

to optimality even by best exact algorithms is limited because B&B al-

gorithms are also worst-case exponential running time algorithms. Thus,

dedicated B&B algorithm that was developed in one of the research prob-

lems was used only to solve small instances of the problems. For another

of the problem, dedicated for the specific problem exact algorithm known

from literature was adapted, while it solves instances of required size in

acceptable time.

3. Dedicated (or tailored) heuristics are the methods, created to solve just

one given combinatorial optimization problem. These run in polynomial

time (making them effective) and provide correct solutions, yet without

any guarantee of optimality. This can mean that, e.g., the solution given

by a heuristic will be just the first feasible solution found or a local op-

timum of the objective function closing or even sometimes reaching the

global optimum. Dedicated heuristic algorithms are using some specific

characteristic of the problems they are solving, and thus it is not possible

to apply them to different problems. Still, many such heuristics exist or

can be designed, making them very commonly applied in solving combi-

natorial optimization problems [13, 36, 47]. This approach was used in all

three researched problems.

8

4. Metaheuristics are general-purpose methods that can be adapted to many

different combinatorial optimization problems. Metaheuristics provide a

general framework on how the space of combinatorial problems can be

searched. As they are general in their nature, they must be adapted to

every actual combinatorial optimization problem. Metaheuristics include,

for example tabu search, simulated annealing, genetic algorithms, a family

of swarm systems and many others [1, 23, 42, 49, 50, 93, 95]. Two of the

three research problems were approached with metaheuristics.aheuristics.

For all the discussed algorithms a trade-off between time complexity and

quality of results must be considered in general. Usually the better results an

algorithm offers, the more time it consumes. In an online environment like in

TCCP the execution time is absolutely a crucial factor. For problems that are

solved infrequently like in LPfAF, and in most uses of CSS-SPP, the quality of

solutions would be far more important than run time. Algorithm execution time

may be studied in various ways starting with the analytical approaches. For this

purpose, the order of the computational complexity of the algorithm is analyzed.

Informally, computational complexity function of an algorithm is the execution

time in the size of the input [47]. For the majority of the algorithms developed

in this thesis, the computational complexity function is analyzed and given. For

more complex algorithms execution time is often verified experimentally, where

the specificity of the solved problem defines a threshold of runtimes bearable

for the user.

The quality of the results provided by the algorithms can be assessed in

many different ways (step 5). Simpler heuristics are often analyzed to find

and prove guarantees of solution quality, e.g., the ratio or the distance between

the solution provided by the heuristic and the optimum objective value. This

rarely is possible for algorithms solving practical problems due to their to the

problem complication. It can be also observed, that quality of results that the

algorithm offers typically is more important than the guarantees of quality in

the worst case that almost never happens. In many cases the average distance

of the solution from the optimum can be measured experimentally. For this

purpose the algorithm is tested on benchmark instances that are solved also

by other algorithms. This might be a comparison with exact solutions, where

such solutions are known. However, due to the nature of computationally hard

problems this will often require considering benchmark instances being smaller

than the practical ones. Another option is to compare algorithms to other

algorithms solving the same problem. Still, algorithms often may be better on

9

certain test cases while worse on many others. In the result, such experimental

analysis may be inconclusive when the criteria of the comparison are not strictly

defined.

1.4 Common webpage-related factors

As it was mentioned web engineering and development of web applications is

a new branch of industry offering a host of operational research and optimiza-

tion problems. A short summary of the fields of research other than the ones

considered in this thesis will be given here. One of the first considered areas

were Internet advertisements. Optimization of ad networks choosing ads on the

basis of price, web page content, keywords related to the web page, behavioral

and demographic targeting was analyzed in [75]. The first model of revenue

maximization, named “side banners” was proposed in [3, 73], and extended

in [5, 39, 40, 72]. Website layout or content optimization was considered in

[107, 127], content analysis and fast delivery in [71, 90], while techniques for

content interpretation and exploitation [113]. Finally, novel e-business applica-

tions are developed, like Internet shopping with optimization were proposed in

[126] and then extended in [10, 12, 11, 80]. This by no means is a complete

list of problems, rather exaples to show variety of the research on optimization

problems related with Internet deserve a separate survey.

Numerous factors are common for many research problems from the area of

web applications. Three examples that were shared between research problems

in this thesis will be analyzed here.

Websites all over the Internet use vertical scroll layout [57], also known as

column or grid layout. This means that there is no height limitation for content

as the page can be scrolled down. Contrarily, width of the website is usually

limited by the design to display well on most of the clients (browsers). More so,

websites are divided into columns that are supposed to fit the content. Hence,

the web pages or columns can be considered infinite stripes of given width. This

will affect the research on LPfAF and TCCP where assumption of limited and

exactly given width and unlimited, stretchable or scrollable height will be used.

Great deal of factors on web application design and operations depends on

the client side. Thus, another problem with the research targeting web pages

optimization is high fragmentation of the parameters of the client devices. It

is possible to predict these parameters, at least some ranges of them, but only

to some resolution. This was in a way affecting all three problems. A web

designer willing to design a layout for the website, no matter whether using the

solution proposed as LPfAF-solving algorithms or doing it manually with an

10

ad hoc approach, must consider different screen resolutions at client browsers

limiting width of the layout. The optimization done by CSS-SPP must consider

parameters of the Internet connections of the website user base of the website.

The basic parameters of communication performance: latency, bandwidth and

speedup in parallel communication will vary from website to website but also

among users of the same website. This is requiring averaging or maybe clustering

the groups of users into separate optimized solutions. Then, TCCP goes further

with respect to the client side dependability. The sizes of tags will differ in client

browsers, thus can be measured only there and thus the optimization must be

performed with the use of that data.

The time a web page uses to load plays an important role. Research from

2006 [24] suggested that there is a four seconds rule, i.e. if the page loads

longer than 4 seconds, then there is a good chance that a customer will direct

his/her browser elsewhere. In a newer research by the Amazon experiments,

every 100ms delay in page load time decreases the sales by 1 percent [103]. Sim-

ilar measurements at Google showed that 500ms delay in search result display

reduces revenue by 20 percent [20]. Author’s own research presented in [87] was

suggesting that as for 2014 Google was treating only times below 1.5 second as

acceptable. More direct results of paper [87] showed that web page speed affects

position in search engine results and thus also traffic and income. This speed

is the factor that CSS-SPP is trying to improve, while TCCP must consider in

the algorithm design process.

The list of such factors is far greater and more specific ones will be discussed

further in the sections dedicated to the three research problems.

1.5 Outline of the Thesis

The rest of this thesis is organized in three chapters dedicated to each of the

research problems and closed with Chapter 5 containing final summary and

remarks. As the problems are different and have disjointed formulations three

dedicated sets of notations will be used, that are summarized in Table 2.1 for

LPfAF, Table 3.3 for TCCP and Table 4.1 for CSS-SPP.

Chapter 2 is dedicated to the problem of Layout Partitioning for Advertise-

ment Fit. First, in Section 2.2 the LPfAF problem is formulated. Optimization

criteria are discussed in Section 2.3 . Section 2.4 contains the algorithms de-

signed for solving the problem. Benchmark datasets are presented and explained

in Section 2.5. Outlines of the solutions obtained by presented method are given

in Section 2.6. The last section comprises conclusions and discussion of possible

future research, extensions of the model and similar problems.

11

Chapter 3 presents research on Tag Cloud Construction Problem. Tags

and tag clouds are discussed in Section 3.2 including a survey of approaches,

algorithms, design options and the choices taken in the past. This is followed by

a discussion of requirements for tag clouds in the web usage. Section 3.3 provides

a mathematical formulation of the Tag Cloud Construction Problem (TCCP).

Algorithms solving the problem are presented in Section 3.4. In Section 3.5

results of the computational experiments are outlined. Finally, the last section

summarizes the achievements in tag cloud construction.

Chapter 4 contains considerations on CSS-sprite Packing Problem. The

first section, was dedicated to discussion on the realities and the challenges in

sprite packing, followed by formulation of CSS-sprite Packing Problem (CSS-

SPP). Results of preliminary empirical studies on properties of the problem

are presented in Section 4.3. An extensive survey of the current advances in

CSS-Sprite construction is given in Section 4.4. Holistic new method of sprite

packing is given in Section 4.5 and evaluated in Section 4.6. The last section is

dedicated to conclusions.

12

2 Layout Partitioning

for Advertisements Fit

2.1 Website’s Layouts and Ad Placement

In this section a problem of dividing a websites visual area into columns for

future placement of advertisements will be analyzed. Internet advertising is a

basic source of income on the web [32]. According to the Interactive Advertising

Bureau (IAB), Internet advertising is worth AC14.7 billion a year in Europe only

[60]. Internet advertising is usually divided into three markets: search advertis-

ing, display advertising, and classifieds & directories. Display advertising, also

called banner advertising, is the second largest online advertising market. Its

European share was worth AC4.4 billion in 2009 despite the economic crisis at

that time [60]. Optimizing page layouts for this important part of the current

industry is considered here.

In the contemporary display advertising, publishers, i.e., owners of the web

sites, do not contact advertisers directly. Publishers usually join advertising

networks which serve as middlemen between the advertisers and the publishers.

A publisher has to prepare place on the website for fitting the ads provided by

the ad networks. With each new exposition of a web page, ads are fetched from

the ad network and displayed in the place provided by the publisher. The ad

network chooses ads on the basis of price, web page content, keywords related to

the web page, behavioral and demographic targeting [75]. An ad unit is a form

of an agreement on the ad format between the advertiser, the publisher, and the

ad network. Definition of an ad unit consists of its width and height measured

in pixels. Advertisers contribute ads of the given size to the ad networks. Ad

networks provide servers and code for fetching the ads. Publishers place ad

units, i.e. prepare free space of the ad unit size on their web pages, and include

13

Leaderboard 728x90

W
id

e
 S

k
y
s
c
ra

p
e

r
1

6
0

x
6

0
0

S
k
y
s
c
ra

p
e

r
1

2
0

x
6

0
0

Medium
Rectangle

300x250

Full Banner 468x60

a) b)

Figure 2.1: a) Five popular ad units. b) Three column layout, and ad combina-
tions.

there the ad fetching code. Five example ad units are visualized in Fig. 2.1a.

Display advertising uses many different ad units. Despite obvious advantages

of unification, hundreds of ad units are in use. Benchmark ad unit datasets will

be introduced in Section 2.5.

A publisher faces a problem of preparing a website such that it is com-

modious for diverse ad units, and aesthetically pleasing. As it was mentioned

in Section 1 websites use vertical scroll layout with given width but scrollable

down without limit. Currently, layouts comprise two, three (cf. Fig. 2.1b), or

four columns. Because height for packing ads and other content is not limited

as it was explained earlier, columns will be treated here as virtually infinite

stripes. Layout partitioning, i.e. dividing a website into columns, is a critical

decision with long-term consequences, because all graphical elements are ad-

justed to column sizes. After deciding on the number of columns, a publisher

has to select column widths. The state of the art recommendations for choosing

column widths are basic rules of art adapted to websites: golden ratio, rule of

thirds, symmetrical or asymmetrical balance [9]. In practice websites often end

up with the so-called “bread and butter design”. “Bread” is a wide column for

content, and “butter” a narrow column for navigation [9]. The results that are

usually achieved can be described as layouts without obvious errors (LWOE)

[57]. The fact that a layman at first glance cannot suggest easy improvement

is considered a sign of satisfactory layout. The above methods do not consider

ad placement. In practice, layout partitioning is performed ad hoc with lim-

ited consideration of fitting ads. The widest column is chosen to fit the widest

expected advertisement, while the remaining space is divided arbitrarily. This

meets LWOE criteria, but is probably far from what could be achieved, and

causes problems with three and four column layouts. If the remaining space

14

were again divided to fit the widest possible ad unit, then the other columns

would be too narrow for anything. Alternatively, dividing the remaining space

to fit the narrowest ad unit would result in a column for nothing else but that

unit. The recommendations mentioned above are a few quite arbitrary choices

from a wide spectrum of possibilities offering layouts of diverse quality. Hence,

layout partitioning for fitting ads requires a more rudimentary study.

In this section layout partitioning for advertisement fit (LPfAF) will be

formulated as a combinatorial optimization problem. This requires formulat-

ing constraints, and optimization criteria. Constructing a good ad placement

requires grasping aesthetic aspects in a formal way, which is always difficult.

However, an attempt to optimize ad placement, and limit bad-looking ad com-

binations will be made. Ad placement optimization has already been considered

in the context of ad display scheduling. A model of “side banners” was proposed

in [3, 73], and extended in [5, 39, 40, 72]. This model assumes that advertise-

ments are packed in a side column, while column sizes are given. When this

model is generalized to multicolumn ad placement, column sizes must be care-

fully selected, because ads may be put in any column, and ad scheduling is

affected by layout partitioning. Though LPfAF problem is related to ad dis-

play scheduling, it is not per se a scheduling problem because there is no time

dimension here. By a far analogy, LPfAF can be compared to factory layout

optimization. To the author’s best knowledge, column width selection for ad-

vertisement fit has never been considered before. Advertisement placement will

be assumed in a way which is similar to guillotine cutting. Though it is pos-

sible to position ads in a different way, guillotine-cut space partition is easier

for the page-building scripts. The operation of cutting a rectangle into two can

be mimicked either with <TABLE> tag, or with <DIV> tag. There is a slight dif-

ference between ad placement and the guillotine cutting. For aesthetic reasons

ads are not supposed to touch each other. Hence, spacing is added around the

advertisements. It is achieved with the padding parameter, both in <TABLE>

and <DIV> tags.

The rest of this chapter is organized as follows. In Section 2.2 the LPfAF

problem is formulated. In Section 2.3 optimization criteria are taken into con-

sideration. Section 2.4 is dedicated to the algorithms solving the problem. In

Section 2.5 benchmark datasets are introduced. Outlines of the solutions ob-

tained by presented method are given in Section 2.6. The last section comprises

conclusions. Table 2.1 summarizes the notation.

15

Symbol Definition

parameters
a number of columns in a layout
be how many times ad unit re can be used in any combination
mp minimal width of column cp, p ∈ {1, . . . , a}
n number of ad units in the dataset
R = {r1, . . . , rn} set of rectangular advertising units
t, t′ limits on the number of ads units, resp. ads, in any combi-

nation
W page width
we × he dimensions of ad unit re, e ∈ {1, . . . , n}
X set of ad units to be used separately
β amount of space waste acceptable for a combination

decision variables
cp width of column p, p ∈ {1, . . . , a}

intermediate variables
d number of admissible ad combinations
F set of all possible layouts
Gz = (c1z . . . , caz) z-th layout is a vector of a column widths, Gz ∈ F
J(cp) set of ad combinations fitting in a column of width cp, cp ∈ Y
K = {K1, . . . ,Kd} set of ad combinations
kge the number of times ad unit re appears in the combination

Kg

Kg = (kg1, . . . , kgn) vector of ad unit multiplicities in a combination, g ∈
{1, . . . , d}

s number of column widths worth evaluation
u maximum column width
V1, V2, V3 objective functions
w′g × h′g dimensions of combination Kg, g ∈ {1, . . . , d}
Y = {y1, . . . , ys} set of feasible column widths

Table 2.1: Summary of notation for the Layout Partitioning for Advertisement
Fit problem.

2.2 Problem Formulation

In this section formulation of the LPfAF problem is presented. Let R =

{r1, . . . , rn} be a set of rectangular ad units. Ad unit re has dimensions we×he.
All dimensions are natural numbers as they represent screen pixels. We will

denote by W the width of a website. As websites use vertical scroll layouts, the

height is not a constraint here because advertisements can be placed one above

another (cf. Fig. 2.2b). A website is divided into a ∈ {2, 3, 4, . . . } columns of

widths c1 . . . , ca. A layout is constituted by the vector Gz = (c1z, . . . , caz) of

column widths. Column widths are the decision variables. Each column p can

have a minimum width mp imposed by the webmaster. If not provided, the

narrowest ad unit width min1≤e≤n{we} should be used. Column widths are

subject to the constraints:

16

a) b) d)c)

space
waste

unit 2 unit 2

unit 2 unit 2

unit 2 unit 2

unit 4

unit 1

unit 6

unit 3

unit 2

unit 2

unit 1 unit 1

unit 1 unit 1

unit 5

unit 2 unit 2

unit 2 unit 2

Figure 2.2: Example ad units combinations.

Constraint 1: The sum of column widths cannot extend the page width:

a∑
p=1

cp ≤W. (2.1)

Constraint 2: To leave enough space for each column, the widest column

cannot be wider than:

u =W −
a∑
p=1

mp + max
1≤p≤a

{mp}. (2.2)

By joining rectangular ad units vertically or horizontally ad combinations

K = {K1,K2, . . . ,Kd} are created. Examples of good and bad combinations

are shown in Fig. 2.2. The combinations in Fig. 2.2a,b are advantageous be-

cause they are easily implemented. The combination in Fig. 2.2c is difficult to

implement, and aesthetically hard to accept because it looks like a patchwork.

The combination in Fig.2.2d wastes space. Each combination is represented by

vector Kg = (kg1, kg2, . . . , kgn) where component kge denotes how many times

ad unit re appears in combination Kg. The rectangular envelope of ad combina-

tion Kg has dimensions w′g×h′g. Since set K of ad unit combinations is limited,

it implicitly follows that also the set of column widths worth consideration is

limited.

Ad combinations are subject to constraints mostly of aesthetic nature:

Constraint 3: No combination wider than the maximum column width could

be ever placed, so for each combination Kg: w′g ≤ u.

Constraint 4: As mentioned earlier, two combinations can always be placed

one under the other (cf. Fig. 2.2b). However, this does not change fitting

capability. To avoid redundancy in combinations, the height of each combination

Kg is limited to the highest ad unit: h′g ≤ max1≤e≤n{he}.

17

Constraint 5: All ad units have limits b1, . . . , bn on the number of occurrences

in a combination, i.e. kge ≤ be, for combination Kg and ad unit re. A lack of

such limits, or too large limits, would lead to over-representation of the tiniest

well combining ad units in the results. Such a situation will be discussed in

Section 2.6.1.

Constraint 6: Certain ad units are designed for separate use, e.g., in headers,

footers, or pop up windows. Such ad units can appear only as a singleton ad

unit combination. Let X be a set of ad units designed for the sole use. This

requests that ∀re ∈ X, a combination Kg = (kg1, . . . , kgn) exists such that

kg1 = · · · = kge−1 = kge+1 = · · · = kgn = 0, kge = 1.

Constraint 7: No combination can have more than t different ad units:

n∑
e=1

min{1, kge} ≤ t. (2.7)

This constraint is supposed to eliminate patchwork-like combinations as the

one in Fig. 2.2c. It has only 7 ads, but 6 different ad units. Conversely, combi-

nation in Fig. 2.2a has 14 ads but only 2 ad units. It looks better and can be

used in a narrow column.

Constraint 8: The number of ads cannot be excessive. This leads to the limit

on the total number of ads in the entire combination Kg:

n∑
e=1

kge ≤ min{t′, t max
1≤e≤n

{be}}, (2.8)

where t′ is an independent constraint value imposing stricter limit on the num-

ber of ads than it results from the earlier be and t parameters.

Constraint 9: To exclude patchwork-like combinations, a limit of no more

than either one vertical or one horizontal join is imposed. This allows for

combinations that consist of up to two columns of ads (e.g. Fig. 2.2a) or

two rows of ads, and eliminates combinations like the one in Fig. 2.2c with

two horizontal and four vertical joins. Let verg, horg be the number of verti-

cal and horizontal joins performed to obtain combination Kg. Let Kg be ob-

tained by joining combinations K ′g,K
′′
g . For horizontal join of K ′g,K

′′
g , verg =

max{verg′ , verg′′}, horg = horg′ + horg′′ + 1. For vertical join of K ′g,K
′′
g ,

horg = max{horg′ , horg′′}, verg = verg′ + verg′′ + 1. Mathematically, this con-

straint can be expressed as: min{verg, horg} ≤ 1.

Constraint 10: Combinations wasting space, like the one in Fig. 2.2d, should

be avoided. Hence, parameter β, 0 < β ≤ 1 is introduced to limit space waste.

18

Discarded are combinations satisfying:

β < 1− (

n∑
e=1

kgewehe)/(w
′
gh
′
g). (2.10)

Additionally, when creating combinations, ad units are subject to padding.

Empty space of size σ is created around each ad unit. This can be achieved by

adding σ to we and he at the beginning of the solution process.

Combinations of ads are placed in columns of a layout as shown in Fig. 2.1b.

For each admissible column width cp a set of ad combinations J(cp) that fit in

width cp can be calculated. Column widths cp, and combinations Kg ∈ J(cp),
must meet the following requirements:

Constraint 11: By definition, an ad combination fits a column if it is not wider

than the column width: w′g ≤ cp.
Constraint 12: The ad combination should be wider than half of the column

width, i.e. w′g > 1
2cp. Otherwise, a larger combination created by joining

horizontally two such combinations should fit the column to avoid space waste.

See the combinations in the left and right columns in Fig. 2.1b.

Constraint 13: Every ad unit r1, . . . , rn must fit in at least one column of a

website, i.e., max1≤p≤a{cp} ≥ we, for e = 1, . . . , n.

2.3 Objective Functions

In this section objective functions are discussed. LPfAF problem is inherently

multicriterial. There are no standard measures of page layout quality. However,

in the discussions with webmasters three main aspects of layout partitioning

quality for advertisement fit were introduced (cf. Section 2.5.2):

1. A layout should be flexible to accommodate different ad units and their

display organizations.

2. Ad units that are unwieldy should not be discriminated against.

3. Avoid space waste.

These qualitative recommendations need quantitative formulation for optimiza-

tion purposes. Hence, three objective functions are proposed in the following.

19

2.3.1 Max Ad Number Function

This function follows a simple logic that a layout capable of comprising many

combinations with lots of advertisements is commodious and flexible. Thus, the

first objective is the number of possible ad units in the layout:

maxV1(c1, . . . , ca) =

a∑
p=1

∑
Kj∈J(cp)

n∑
e=1

kje (2.14)

2.3.2 Max Most Difficult to Pack Ad Unit Function

High value of V1 can be built on small advertising units that are easily packable.

On the contrary, units that are wide can be very difficult to fit. But still it

is necessary to place them. This objective can be captured by the minimum

number of fitting possibilities for any ad unit in the solution. Thus, the second

objective is:

maxV2(c1, . . . , ca) = min
1≤e≤n

{
a∑
p=1

∑
Kj∈J(cp)

kje} (2.15)

This function is used for checking constraint 13. Layouts with V2(c1, . . . , ca) = 0

are invalid.

2.3.3 Min Single Ad Waste

Due to the lack of ads, some columns may be filled only partially. In the worst

case, only a single ad may be available to put in a column. The waste of space

for a single ad placement can be defined as the remaining free horizontal space.

The inner waste is the space around a sole ad unit in a column of a website.

Thus, it is cp − we for ad unit re and column p. There is also outer waste that

should be taken into account. This is the difference between page width and the

sum of column widths W −
∑a
p=1 cp, multiplied by the number of advertising

units, n, as the waste is calculated for every ad unit. Ignoring outer waste would

lead to a false conclusion that narrowing the layout below W reduces wasted

space. In a multicolumn layout a single advertisement can be put in any of the

columns. By the common sense, it should be placed in the column where the

waste will be the lowest. This leads to the third objective function:

minV3(c1, . . . , ca) =

n∑
e=1

min
1≤p≤a

{cp − we : cp ≥ we}+ n(W −
a∑
p=1

cp) (2.16)

The quality of layouts can be compared on the basis of the above three functions.

20

Let F be a set of all feasible layouts. The goal of layout optimization can be

stated as follows:

max
Gz∈F

{γ1V1(cz1, . . . , cza) + γ2V2(cz1, . . . , cza)− γ3V3(cz1, . . . , cza)} (2.17)

where cz1, . . . , cza are the column widths in the layout Gz, and γ1, γ2, γ3 are

the weights of the objective functions (cf. Section 2.5.2). As the third function

should be minimized, it is subtracted from the sum of the first two functions

that are maximized. The first two functions sum their values over all columns

in a layout. Consequently, their partial scores can be calculated for all possible

column widths once, and then added to evaluate any feasible layout.

Since representing multicriteria problem solution with a single value is as

tempting as it is deceptive, it was decided to construct also Pareto frontiers for

each instance of the LPfAF problem. Thus, the solution algorithm developed in

the following section will give a chance of choosing from a spectrum of nondom-

inated solutions, e.g., the solutions embodying the previously mentioned rules

of art applied to layout partitioning. LPfAF problem is obviously NP-hard

because it comprises, e.g., subset sum and knapsack problems as special cases

[47]. However, in the context of web pages with relatively limited widths and

highly constrained solution set, it is not a key computational constraint. This

will be analyzed in Section 2.6.

2.4 Solution Method

In this section methods of finding the best layout partitioning are introduced.

The algorithm works in four stages:

1. Ad units are joined together to create all feasible combinations.

2. A list of valid combination widths is created and the partial scores of the

first two objective functions are calculated.

3. All feasible layout partitions are enumerated. The third objective function,

and the total scores are calculated.

4. The best solution and/or the member of the Pareto frontier are selected

from the list of layouts.

21

2.4.1 Combining Ad Units

As described earlier, ad placement is similar to guillotine cutting problem.

Therefore, Wang two-dimensional constrained cutting stock algorithm [122] is

used for finding all feasible combinations. Note that constraints similar to 3, 4,

5 and 10 already existed in the original Wang algorithm. The algorithm uses

the following steps [122]:

1. Set the initial variables L(0) = F (0) = R and κ = 1.

2. a. Let F (κ) be a set of all combinations made by joining together com-

binations from L(κ−1) vertically or horizontally with respect to con-

straints 4, 3, 8, 7, 10 and 5 (the order is important here).

b. Set L(κ) = L(κ−1) ∪ F (κ). Remove duplicates from L(κ).

3. If F (κ) is nonempty, set κ = κ + 1 and repeat step 2. Otherwise M =

L(κ−1) is a complete set of feasible ad combinations.

This algorithm is clearly exponential. In each iteration each pair of combi-

nations can be joined vertically and horizontally. Thus, |L(κ)| ≤ 2|L(κ−1)|2 +
|L(κ−1)|. Since F (0) = R, |F (0)| = n, and t′ is the limit on the number of ad

units in a combination, the complexity of the algorithm can be bounded from

above by O(22t
′−1n2

t′

). However, the number of combinations d is in practice

greatly limited by the imposed constraints (cf. Section 2.6).

The main computational disadvantage of this algorithm are combination

duplicates. Duplicates are combinations built of the same advertising units

aligned in various orders in the same direction. Ads order makes no difference

for packability of a layout. Thus, the combinations that differ exclusively in the

ad unit sequence are duplicates (in other words are isomorphic). Checking as

fast as possible for duplicates is a key requirement for usability of the algorithm.

To avoid creating and checking for unnecessary duplicates, few improvements

were introduced. When constructing F (κ) in step 2a by joining elements from

L(κ−1), where L(κ−1) = L(κ−2) ∪ F (κ−1), the results will comprise:

I. elements from L(κ−2) joined with themselves,

II. elements from L(κ−2) joined with elements from F (κ−1),

III. elements from F (κ−1) joined with elements from L(κ−2),

IV. elements from F (κ−1) joined with themselves.

Observe that construction I was done in the preceding iteration. Results of

II and III are duplicates. To get only results III and IV, F (κ−1) should be

joined with L(κ−1), where L(κ−1) = L(κ−2) ∪ F (κ−1). This gives F (κ) without

22

duplicates built by the original Wang algorithm. For better performance, con-

straints should be evaluated in the order that prunes the combinations as fast

as possible.

Duplicates can be recognized by comparing vectors of ad unit frequencies

Kg = (kg1, . . . , kgn) and dimensions h′g×w′g. To implement it efficiently, numeric

signatures are calculated from Kg where each component kgi is represented as a

digit. Number of bits x for such a digit should be selected to represent the largest

expected value be. For example for be = 2 two bits per digit are required. The

signatures can be stored as int variables. Then, depending on the size of integer

in the programming environment used, for each 32/x or 64/x ad units (digits) in

the input dataset only one fast int comparison is necessary to check them. This,

plus comparison of the combination envelope sizes suffice for efficient duplicate

recognition.

Another performance improvement for Wang algorithm is checking con-

straints in the order that prunes the combinations as fast as possible. The

algorithm uses the following sequence of checking the constraints: 4, 3, 8, 7, 10,

5. The first three are the easiest to check. These constraints can be quickly

checked for excluding a combination from further joining (e.g. when the width

will not allow to add even the narrowest ad without exceeding page width:

w′g > W −min1≤e≤n{we}). Such combination can be omitted without trying to

join it with all other combinations from L(κ−1). Furthermore, if constraints 8,

7 or 5 are not satisfied on horizontal joining, then there is no need to check for

vertical alignment.

The value of t′ for constraint 8 can sometimes be set so high that t′ =

tmax1≤e≤n{be}. In such a case it will not exclude any of the solutions which

would not be otherwise eliminated by constraints 7 or 5. Still, the constraints

should be checked in the presented order. It helps to avoid testing whole

branches of combinations, that would be finally discarded by constraints 7 or 5.

This order provided 12.5% gain in the execution time for the largest dataset.

Finally, constraints 7 and 5 are computationally most demanding and should

be checked as late as possible. The first requires enumeration by the ad units,

and the second needs comparisons for each ad unit.

2.4.2 Valid Column Widths List

As a result of the previous step a set of combination widths is obtained. In this

step algorithm constructs set Y = {y1, . . . , ys} of feasible column widths on the

basis of the combination widths and constraints 11, 12. Violation of constraints

11, 12 effectively eliminates a combination. Objectives V1, V2 change values

only at widths w′g and 2w′g, for each distinct width w′g for some combination

23

Kg, g ∈ {1, . . . , d}, as below w′g and above 2w′g combination Kg cannot be

placed. Objective function V3 is monotone. By constraint 2 no column can be

wider than u ≤ W . Thus, number s of widths in Y is s ≤ min{2d,W}. In

practice s < W because ad unit widths are divisible by 5 and 2. This step can

be done in O(ds) time, including precalculation of partial values of the objective

functions for all the feasible widths.

2.4.3 Browsing Layouts

In this step the algorithm creates all feasible layouts using set Y of feasible

column widths. As column ordering does not affect packability of the layout,

column widths can be ordered non-decreasingly, i.e., c1 ≤ ... ≤ ca to avoid

browsing duplicate solutions. Note that minimum column widths must also

follow the non-decreasing order, i.e., m1 ≤ ... ≤ ma, and thus they determine

the lower bounds on the ordered column widths. Thanks to the column width

order, all acceptable layouts can be enumerated by the following algorithm. For

simplicity of presentation, superscript old is used to refer to values of variables

obtained in the preceding iteration. Remember, that all yr ∈ Y .

1. Set cp = mp for each p = 1, . . . , a− 1.

Set ca = max1≤r≤s{yr : yr ≤W −
∑a−1
p=1 cp}. Set q = a− 1.

2. If ca−1 ≤ ca record (c1, . . . , ca) as a proper layout and calculate values of

the three component objective functions.

Select new ca = max1≤r≤s{yr : yr < colda } and repeat step 2.

If such ca does not exist, proceed to 3.

3. Set new cq = min1≤r≤s{yr : yr > coldq }.
For each p > q set cp = max{mp, cp−1}.
Set ca = max1≤r≤s{yr : yr ≤W −

∑a−1
p=1 cp}.

If cq ≤ cq+1 set q = a− 1 and go to step 2.

4. Decrease q by one.

If q > 0 go to step 3.

For s different column widths and a columns there are at most O(sa) possible

layouts. Hence, this step can be executed in time O(adsa), including calculation

of partial scores of the objective functions, involving at most d combinations.

Since in practice a ≤ 4, this algorithm is basically polynomial in s.

Yet, a method of fast browsing column widths worth checking is needed

because the most time-consuming part of the proposed algorithm is searching

in Y for the next greater or smaller value of column width.

24

This can be done by ordering Y by column widths, and then building a vector

of references from any current width yr to the next greater/smaller width. This

vector can be built with a single pass of Y , and will not be memory-consuming

as in practice its cardinality will be much smaller than page width W , where

usually W ≤ 1600 (see Section 6.1).

2.4.4 Selecting Final Results

In the preceding step the algorithm constructed a list of feasible layouts and

calculated their scores in all three objective functions. For the weighted ob-

jective function (2.17), the three objectives were scaled to the common range

[0,1]. Now, selecting the best weighted solution can be done by scanning the list

of solutions. Constructing Pareto frontier is not much more complicated than

this. Each solution has to be compared with the solutions already included in

the Pareto frontier. If one of them is dominated, then it should be removed and

the current solution should be added to the frontier. This procedure can be run

in quadratic time of the number of feasible layouts.

2.4.5 Example For a Small Instance

For better understanding of how the algorithm works here a sample run on an

instance small enough to make it traceable is presented here.

The instance consists of ad units Skyscraper (120x600), Medium Rectangle

(300x250), page width is W = 990, there are a = 2 columns. Input parameters

are set as described in Section 2.5.2 and Section 2.6.1, with the exception of

padding set for clarity to σ = 0.

In step 1 of the algorithm (cf. Section 2.4.1) ad units are combined into six

feasible ad combinations shown in Fig. 2.3. Combinations higher than 600px,

e.g. two Skyscrapers joined vertically, are discarded by constraint 4. Constraint

10 excludes combinations with space waste above 10%. For example, Skyscraper

joined horizontally with Medium Rectangle have 41.7% of waste. Combinations

with more than two ad units of the same type are excluded by constraint 5.

In step 2 (cf. Section 2.4.2) combinations widths w′g, and double widths 2w′g
serve to build the set of feasible column widths Y = {120, 240, 300, 480, 540, 600}.
By Constraint 2 widths greater than 870px are excluded.

Let υx =
∑
Kj(x)∈J(x)

∑n
e=1 kje represent partial score for function V1 and

column width x. Calculation of function V2 is facilitated by vector φx rep-

resenting ad unit multiplicity for column width x. Component e of φx is

φxe =
∑
Kj∈J(x) kje. Data of combination g of width w′g is aggregated into

partial scores of υx, φx, for column widths x in [w′g, 2w
′
g). For instance, com-

25

S
ky

s
cr

a
p

e
r

1
2
0
x
6
0
0

Medium
Rectangle

300x250

1) 2) 3) 4)w’=1201 w’=2402

9% of space
waste

5) 6)w’=5405 w’=6006

w’=3003 w’=3004

Figure 2.3: Ad combinations for the example instance.

bination g = 2 in Fig.2.3, has ad unit multiplicity vector K2 = (2, 0) and can

be placed in columns 240px and 300px wide. Thus, values of υ240 and υ300 are

increased by the total number of ad units in this combination
∑n
e=1 k2e = 2.

Furthermore, K2 = (2, 0) is added to vectors φ240 and φ300. No other combina-

tion fits in width 240 so the partial scores remain υ240 = 2 and φ240 = (2, 0).

Combinations g = 2, 3, 4 in Fig.2.3 fit in column width 300. The partial scores

for width 300 become υ300 = 5 and φ300 = (2, 3). Other combinations and

widths are evaluated in the analogous way.

In step 3 (cf. Section 2.4.3) feasible layouts are created by browsing combi-

nations of the widths from set Y : 120+600=720, 120+540=660, 120+480=600,

120+300=420, 240+600=840, 240+540=780, 240+480=720, 240+300=540,

300+600=900, 300+540=840, 300+480=780, 300+300=600. Layouts not able

to accommodate some ad unit are eliminated by constraint 13. For example,

layout 120+240=360 has no column for Medium Rectangle (300x250). Layout

objectives V1 and V2 are calculated from the partial scores of the column widths.

For example, for layout 240+300=540: V1(240, 300) =
∑a
p=1 υcp = υ240+υ300 =

7, and V2(240, 300) = min1≤e≤n{φ240,e + φ300,e} = min{2 + 2, 0 + 3} = 3. To

calculate V3 ad units are tested for fit in the layout columns. In the 240+300

26

layout the Skyscraper (120x600) leaves less waste, i.e. 120px, when placed in

the narrower column. The Medium Rectangle (300x250) fits with waste 0 in the

wider column. This layout is very narrow and leaves 2(990 − 540) = 900px of

outer waste. Thus, V3(240, 300) = −120− 0− 900 = −1020.

In step 4 (cf. Section 2.4.4) the layouts are compared on the basis of

V1, V2, V3. Solution 300+540=840 is both Pareto optimal and best on the

weighted objective function. It allows for placing ads in V1 = 12 ways, each

ad unit can be placed in at least V2 = 4 ways. There are V3 = −180 − 0 −
2(990− 840) = −480 pixels of horizontal waste when placing single ads.

2.5 Benchmarks

In this section benchmark datasets are introduced. The datasets are of vital

importance for practical solvability of LPfAF problem. A good column layout

can be determined only with proper data on advertisements.

2.5.1 Data Sets

Ad units of three ad networks were chosen as benchmarks (see Tab. 2.2). The

first network is Google AdSense [51], further referred to as Google. It offers text

ads, graphical banners, and some video ads. They are automatically selected

from a large database on the basis of the keywords. The second is Clicksor [33],

offering an almost equally wide set of ad units, also including text ads, graphical

banners and rich media banners. For most of them Clicksor is using contextual

targeting. Finally, AdBrite [2] is providing the narrowest set of ad units, mostly

graphical and rich media, adding to the contextual targeting some behavioral

and demographic targeting. There are also other advertising methods offered

by the three companies, but studying them is beyond the scope of this thesis.

When it is hard to choose a single ad network, the 18 standard ad units from

the IAB Unit Guidelines [61], seem to be a good choice. A subset and a superset

of the above ad sets will be also used in the following discussion.

2.5.2 Webmaster Survey

To evaluate website layouts using function (2.17), it is necessary to weight the

component objective functions. Instead of choosing the weights ad hoc, a sur-

vey among the webmasters maintaining websites profiting from advertising was

conducted. The experts were asked to order the three objectives as important,

neutral, or unimportant. Totally 21 replies were obtained. The results are as

follows (cf. Fig. 2.4):

27

Ad unit w (px) h (px) IA
B

G
oo

gl
e

C
lic

ks
or

A
dB

ri
te

Su
bs

et

be
Micro Bar 88 31 X 2
Button 2 120 60 X 2
Button 1 120 90 X 2
Vertical Banner 120 240 X X X 2
Skyscraper 120 600 X X X X X 2
Square Button 125 125 X X X 2
Wide Skyscraper 160 600 X X X X X 2
Rectangle 180 150 X X 2
Small Square 200 200 X 2
Half Banner 234 60 X X 2
Vertical Rectangle 240 400 X 2
Square Pop-Up 250 250 X X X 2
3:1 Rectangle 300 100 X 2
Medium Rectangle 300 250 X X X X X 2
Half Page Ad 300 600 X X 2
Large Rectangle 336 280 X X X 2
Full Banner 468 60 X X X X X 2
Full page ad 550 350 X *
Pop-Under 720 300 X *
Leaderboard 728 90 X X X X X 2

Items, n 18 12 10 6 5

Table 2.2: Data sets. Ad unit names come from IAB where possible.
* Ads designed not to be used in groups and thus by constraint 6 excluded from
being combined.

1. General packability V1 - was favored by 11 respondents and only 6 pointed

it as not important.

2. Quality of fitting the most difficult ad units V2 - found the least interest,

only 5 webmasters pointed it out as important while 10 as unimportant.

3. Waste of space resulting from placing single ad units V3 - was in the

middle, it got 5 accepts and 5 rejects.

To represent the results in weights, an assumption was made that weights

should start with an equal score, and should be increased or decreased accord-

ingly for the favoring or disfavoring answers. The initial equal score was 100/3.

There were 63 answers for all objective functions. Therefore, the weights were

decreased, or increased, by 100/63 for each positive or negative recommenda-

tion. The results were rounded down to γ1 = 42, γ2 = 25, γ3 = 33, for objectives

V1, V2, V3 respectively.

28

TAB]

11

5

55

10

6
V 1

V 2

V 3

times disfavored times favored

Strona PAGE]

Figure 2.4: Webmaster survey results.

2.6 Computational Experiments

In this section the results of computational experiments with the above intro-

duced algorithms and datasets are presented and discussed.

2.6.1 Input Parameters

Before starting the experiments, it was necessary to choose the input parame-

ters: W - page width, be - limits to repetitions of ad units re in combinations,

t - the limit to different ad units in a combination, β - acceptable space waste

ratio, σ - ad unit padding size, and minimal column widths mp. Such choices

can be very subjective, and probably every webmaster would set them a bit

differently.

For selecting page width W information about web browsers resolutions

is instrumental. As of January 2011 [105] building layouts looking good in

the 1024x768 resolution could be almost abandoned because less than 14% of

Internet users use such resolution. Over 82% of browsers can display properly

websites prepared for width of 1280px, while those capable of displaying 1440px

or more, were still a minority. Let us remind, that browser elements like frames

and a vertical scroll bar take at least 20-30px. Thus, W = 990px was chosen

for two column, and W = 1250px for three and four column layouts.

The most difficult choice was the value of be. For some ad units be cannot

be set to more than 2. The skyscraper ad units (see Tab. 2.2) can be joined

only horizontally due to constraint 4, and putting more than two in such a way

would be neither acceptable nor aesthetic. The same applies to Banner and

Leaderboard, only with respect to vertical joining and constraint 3. After the

29

analysis of the preliminary results, it has been concluded that large changes in

the results follow from small changes of be. Using be > 2 for some ad units ends

with overflow of combinations constructed of these units, and their great over-

representation in the results. An easy way to get a flood of such poor results

is to set larger be values for the smallest ad units, e.g. the first three in Tab.

2.2. These ad units are too small to violate the combination size constraints 3

and 4, which results in production of an enormous number of combinations. Up

to extra 400% of such combinations were observed in the preliminary tests. It

should be noted that the three smallest ad units are not very important because

they appear in IAB standard only, and are marked as obsolete. Nowadays they

are used mostly for advertising exchange [83], logos, and are rarely seen in

practical advertising. Thus, be = 2 was set for all ad units.

Limit t = 4 of different ad units in a combination was used. Several other

values from 2 to 8 were tested. For values greater than 4 the algorithm produced

many patchwork combinations like the one shown in Fig. 2.2c, without notice-

able improvement in results quality. Space waste limit was set experimentally

to β = 10%. This was a difficult choice, as most webmasters would probably

accept displaying ad combinations with far more waste. However, such small

β reflects good quality layout partitioning. The value of β not only limits the

waste in the final combinations, but also eliminates combinations from further

joining, greatly affecting the search space, as will be shown further. The choice

of padding size σ is purely aesthetic. It does not affect computational complex-

ity, if kept reasonably small compared to ad unit sizes. Value of σ = 2 pixels

was used. Minimum column widths mp were set to the width of the narrowest

ad unit in each used set. Two largest ad units, Pop-Under and Full page ad,

(marked with “*” in Tab. 2.2) are included in set X. By constraint 6 they are

excluded from being combined. This reflects their purpose of working outside

any combinations or even outside column layout, as their names suggest.

Figure 2.5 shows the effect of parameters W, t, be, β on the execution time

of the algorithm and the number of feasible ad combinations for the Google

dataset. Parameters be and β heavily influence both these factors. With the

increasing number of feasible combinations, also the number of layouts in the

Pareto frontier is increasing. Selecting input parameters inadequately, as dis-

cussed above, can lead to very dense Pareto frontiers with solutions differing by

single pixels, usually in the widest column.

30

3,4

5,3

8,8

11,6

3,7

9,8 10

7 7

0,8

524

637

180

474

887 897838
785

740 740

W=1050 W=1150 W=1250 W=1350 W=1450 t = 2 t = 3 t = 4 t = 5 t = 6

1567

2254
2543

1931

4094

740 740

93 63 203
44,9 43,7

183,5

7 70,10,3 0,9

39,1
22,2

be = 1 be = 2 be = 3 be = 4 be = 5 β = 1 β = 5 β = 10 β = 15 β = 20

feasible combinations

execution time

Figure 2.5: Impact of input parameters on the execution time (seconds) and the
number of feasible ad unit combinations (Google dataset was used).

2.6.2 Execution Times

The algorithm presented in Section 2.4 was tested on a computer with Athlon

64 2.4Ghz processor and with RAM limited to 512MB. PHP programming lan-

guage was used to allow future transforming this work into an online decision

support tool. The tool was created later is available here [41]. Table 2.3 presents

execution times for the most difficult case - three columns layout with W = 1250

for all data sets. As it can be seen, despite using exponential algorithms, the

execution times are not particularly long and can be accepted in practice, es-

pecially if one takes into account that computations are performed once at the

website design stage. Table 2.3 also shows the number of feasible combinations

and the number of combinations that were examined.

2.6.3 Layout Partitioning Results and Discussion

Basic results for the given problem, that will be discussed here are presented in

Table 2.4 and Table 2.5. Full results are attached as Appendix A, at the end of

this dissertation. For each dataset and number of columns, there is a separate

set of results consisting of the objective functions ranges, the best weighted

result and selected results from Pareto frontier. Due to the size of most Pareto

31

Stage I Stage II Stage III Stage IV
Search Feasible
space combinations

subset 0.004 0.009 0.002 0.001 562 23
Adbrite 0.004 0.010 0.002 0.001 612 24
Clicksor 1.476 0.577 0.108 0.086 144 610 386
Google 5.016 1.663 0.200 0.166 530 922 740
IAB 92.200 13.661 0.510 0.383 9 340 506 3 120
Superset 140.158 20.444 0.677 0.520 14 120 750 3 836

Table 2.3: Algorithm execution times in seconds, search space size and the
number of feasible combinations found.

frontiers, only the layouts with the best scores for one of the three objective

functions are shown in Table 2.4. Each entry consists of column widths with

the total layout width, values of the three objective functions and the value

of the weighted linear function. For example, consider the results of Google

dataset for three columns layout and W = 1250. Ranges of the three objective

functions were respectively [1663,2571], [16,28], [-7539,-1723], making the range

of the values 55%, 75%, 438% of the lower end (in the terms of absolute values).

Thus, the objective functions are sensitive to the layout construction. Full

results can be found in Appendix A.

Table 2.6 shows the cardinality of Pareto frontiers for all the datasets. The

number of solutions in the Pareto frontier can be an indicator of flexibility in

constructing good layouts. An interesting observation can be made on Adbrite

dataset (it applies to the subset as well). Adbrite contains the fewest ad units.

It has two wide units, two tall units and only one rectangle. Hence, making

good combinations is very difficult. For example, there were only five feasible

solutions for Adbrite, two columns, and W=990px. This resulted in only one

solution in the Pareto frontier, for all Adbrite instances. Clicksor ad units offer

far greater flexibility in use, while Google flexibility is even better. Observe

that for two column instances, which were the least packable because of the

small width, the Pareto frontier cardinality grows slower from Clicksor to the

superset than the number of ad units in the datasets. Furthermore, the number

of feasible combinations and the cardinality of Pareto frontiers of IAB and the

superset may be a sign that these sets are too large. In effect they are difficult

to use. Their subset should be more manageable in practice.

The Adbrite results for two columns are the same as for the ad hoc “bread

and butter design” approach described earlier. “Bread” is set to the widest

add plus padding, the “butter” is given the rest. For three and four column

layouts, the Adbrite results differ from the ad hoc approach solutions, but still

are close to it. The results for the richest sets: IAB in the two column instance

and the superset for two and three columns are of similar nature. Clicksor and

Google best weighted results show less similarity to the results of the ad hoc

32

1

subset, W=990, 2 columns
V1 ∈ [42, 47], V2 ∈ [7, 7], V3 ∈ [−2534,−1914]
248+732=980; 47, 7 , -1914; 100.0

Pareto frontier:
248+732=980; 47, 7 , -1914; 100.0

subset, W=1250, 3 columns
V1 ∈ [39, 55], V2 ∈ [5, 7], V3 ∈ [−2606,−858]
164+328+732=1224; 55, 7 , -858; 100.0

Pareto frontier:
164+328+732=1224; 55, 7 , -858; 100.0

subset, W=1250, 4 columns
V1 ∈ [44, 50], V2 ∈ [7, 7], V3 ∈ [−1986,−858]
164+164+164+732=1224; 50, 7 , -858; 100.0

Pareto frontier:
164+164+164+732=1224; 50, 7 , -858; 100.0

AdBrite, W=990, 2 columns
V1 ∈ [43, 48], V2 ∈ [7, 7], V3 ∈ [−2846,−2102]
248+732=980; 48, 7 , -2102; 100.0

Pareto frontier:
248+732=980; 48, 7 , -2102; 100.0

AdBrite, W=1250, 3 columns
V1 ∈ [40, 56], V2 ∈ [5, 7], V3 ∈ [−3054,−1062]
164+328+732=1224; 56, 7 , -1062; 100.0

Pareto frontier:
164+328+732=1224; 56, 7 , -1062; 100.0

AdBrite, W=1250, 4 columns
V1 ∈ [45, 51], V2 ∈ [7, 7], V3 ∈ [−2310,−1062]
164+164+164+732=1224; 51, 7 , -1062; 100.0

Pareto frontier:
164+164+164+732=1224; 51, 7 , -1062; 100.0

Clicksor, W=990, 2 columns
V1 ∈ [735, 1123], V2 ∈ [16, 20],
V3 ∈ [−5833,−4493]
164+816=980; 1012, 20 , -5433; 64.8

Pareto frontier (selected results):
124+864=988; 1123, 17 , -5833; 48.2
164+816=980; 1012, 20 , -5433; 64.8
258+732=990; 783, 16 , -4493; 38.2

Clicksor, W=1250, 3 columns
V1 ∈ [739, 1386], V2 ∈ [15, 25],
V3 ∈ [−5977,−1655]
184+254+812=1250; 1044, 24 , -2153; 71.5

Pareto frontier (selected results):
129+129+991=1249; 1386, 15 , -4507; 53.2
129+304+816=1249; 1082, 25 , -3282; 67.8
254+258+737=1249; 836, 17 , -1655; 44.3

Clicksor, W=1250, 4 columns
V1 ∈ [743, 1147], V2 ∈ [16, 22],
V3 ∈ [−4737,−1280]
124+124+184+816=1248; 1026, 22 , -2073; 79.9

Pareto frontier (selected results):
124+129+129+864=1246; 1147, 19 , -3638; 65.0
124+124+184+816=1248; 1026, 22 , -2073; 79.9
129+129+254+737=1249; 813, 17 , -1280; 44.4

Google Ads, W=990, 2 columns
V1 ∈ [1659, 2181], V2 ∈ [18, 25],
V3 ∈ [−7123,−5515]
248+742=990; 1769, 25 , -5635; 64.4

Pareto frontier (selected results):
124+864=988; 2181, 18 , -7123; 42.0
248+742=990; 1769, 25 , -5635; 64.4
258+732=990; 1807, 23 , -5515; 62.8

Google Ads, W=1250, 3 columns
V1 ∈ [1663, 2571], V2 ∈ [16, 28],
V3 ∈ [−7539,−1723]
184+254+812=1250; 2150, 26 , -3335; 67.2

Pareto frontier (selected results):
129+129+991=1249; 2571, 16 , -6049; 50.5
129+340+762=1231; 2049, 28 , -4204; 61.8
254+258+737=1249; 1926, 24 , -1723; 61.8

Google Ads, W=1250, 4 columns
V1 ∈ [1667, 2205], V2 ∈ [20, 25],
V3 ∈ [−6051,−1344]
124+129+254+742=1249; 1834, 25 , -1358; 70.9

Pareto frontier (selected results):
124+129+129+864=1246; 2205, 20 , -4932; 49.8
124+124+258+742=1248; 1846, 25 , -1519; 70.7
129+129+258+734=1250; 1824, 23 , -1344; 60.3

IAB, W=990, 2 columns
V1 ∈ [7033, 10453], V2 ∈ [37, 51],
V3 ∈ [−11183,−8195]
258+732=990; 10441, 37 , -8195; 74.9

Pareto frontier (selected results):
254+732=986; 10453, 37 , -8267; 74.2
164+820=984; 8339, 51 , -9887; 55.4
258+732=990; 10441, 37 , -8195; 74.9

IAB, W=1250, 3 columns
V1 ∈ [6495, 13601], V2 ∈ [37, 72],
V3 ∈ [−13567,−2990]
164+258+828=1250; 10301, 69 , -5275; 71.2

Pareto frontier (selected results):
129+383+732=1244; 13601, 37 , -4685; 69.7
92+313+842=1247; 10714, 72 , -9479; 62.7
254+258+737=1249; 12013, 38 , -2990; 66.3

IAB, W=1250, 4 columns
V1 ∈ [6600, 11477], V2 ∈ [37, 53],
V3 ∈ [−11911,−2125]
92+92+254+812=1250; 9715, 50 , -3335; 76.1

Pareto frontier (selected results):
129+129+254+732=1244; 11477, 37 , -2295; 74.4
129+129+129+852=1239; 9536, 53 , -6215; 69.5
92+92+304+761=1249; 9887, 41 , -2125; 67.6

superset, W=990, 2 columns
V1 ∈ [8979, 12475], V2 ∈ [39, 51],
V3 ∈ [−12221,−8901]
258+732=990; 12467, 39 , -8901; 74.9

Pareto frontier (selected results):
254+732=986; 12475, 39 , -8981; 74.2
164+820=984; 10277, 51 , -10781; 54.9
258+732=990; 12467, 39 , -8901; 74.9

superset, W=1250, 3 columns
V1 ∈ [7904, 16708], V2 ∈ [39, 72],
V3 ∈ [−14941,−3225]
129+388+732=1249; 16708, 39 , -5303; 69.1

Pareto frontier (selected results):
129+388+732=1249; 16708, 39 , -5303; 69.1
92+333+824=1249; 13636, 72 , -10029; 66.2
254+258+737=1249; 14104, 40 , -3225; 63.3

superset, W=1250, 4 columns
V1 ∈ [8308, 14280], V2 ∈ [39, 57],
V3 ∈ [−13101,−2419]
92+92+254+812=1250; 11804, 55 , -3643; 76.0

Pareto frontier (selected results):
92+92+333+732=1249; 14280, 39 , -2695; 74.1
92+92+248+816=1248; 10761, 57 , -4217; 69.7
92+92+304+762=1250; 11943, 45 , -2419; 66.9

Table 2.4: Layouts for selected test cases

33

1

AdBrite, W=990, 2 columns
V1 ∈ [22, 46], V2 ∈ [3, 6], V3 ∈ [−2712,−1272]
328+632=960; 46, 6 , -1692; 90.4

Pareto frontier:
328+632=960; 46, 6 , -1692; 90.4
412+576=988; 35, 3 , -1272; 55.8

AdBrite, W=1250, 3 columns
V1 ∈ [23, 56], V2 ∈ [3, 9], V3 ∈ [−2962,−508]
164+472+608=1244; 53, 9 , -564; 95.4

Pareto frontier:
124+472+632=1228; 56, 9 , -1144; 91.4
164+452+632=1248; 54, 6 , -616; 83.5
164+472+608=1244; 53, 9 , -564; 95.4
164+496+576=1236; 41, 6 , -508; 68.4
304+328+608=1240; 50, 6 , -560; 79.2

AdBrite, W=1250, 4 columns
V1 ∈ [24, 49], V2 ∈ [3, 6], V3 ∈ [−2342,−232]
124+164+328+632=1248; 49, 6 , -272; 99.4

Pareto frontier:
124+164+328+632=1248; 49, 6 , -272; 99.4
164+164+328+592=1248; 40, 3 , -232; 59.9

Table 2.5: Results without Leaderboard ad unit

No. of Feasible layouts Pareto frontier
Dataset ad units 2 col. 3 col. 4 col. 2 col. 3 col. 4 col.

subset 5 5 23 7 1 1 1
AdBrite 6 5 23 7 1 1 1
Clicksor 10 102 1296 356 7 21 11
Google 12 146 2123 537 9 39 11
IAB 18 225 4069 1905 10 53 26
superset 20 264 5066 2329 12 72 21

Table 2.6: Datasets flexibility comparison - cardinality of feasible layouts and
Pareto solutions.

approach. There are also many good alternative solutions in Pareto frontiers of

all sets except Adbrite. The similarity to the ad hoc results is caused by the

Leaderboard, the widest ad unit (728px wide). With padding σ = 2 it requires

columns at least 732px wide. The subset and the AdBrite results are all built

on this width, and it appears quite often in other solutions. The Leaderboard is

known among webmasters as difficult to fit, but it is very popular and cannot be

removed by the ad networks. However, if a webmaster choses to use it outside

the column layout (e.g. in a page header or footer) then different solutions

are obtained. Example results for Adbrite without the Leaderboard are shown

in Table 2.5. Now column widths are completely different than for the entire

dataset. Also Pareto frontiers give more options by offering 2, 5, and 2 elements

for two, three, and four columns, respectively.

34

2.7 Conclusions

In this chapter web page layout optimization for advertisement fit has been

studied. A big part of the study was dedicated to mathematical modeling of

the problem including its aesthetic consideration and then providing algorithms

able of solving it. Though the solution method is exponential in general, in

practice it runs in acceptable time of several minutes.

As it could be expected different sets of layouts result from different page

widths and datasets. Moreover, every webmaster would configure input param-

eters differently. Thus, it would not be valid to provide here a set of universal

web page layouts. Rather, there is a need for automated tool constructing the

layouts for practical use. Example of such application was implemented on basis

on this research by students as their engineering thesis under supervision of the

author [41].

Another direction of further research on web page partitioning might be in-

clusion of statistical data on real-world usage of particular ad types into similar

research project. Analysis of the layouts produced with the use of such data

could be a starting point to constructing some new general rules on optimized

layout partitioning. Conversely, it could result in the conclusion that general-

ization here is not possible, and tailored optimization should be always used.

Not only layouts can be evaluated, but also the sets ad units from advertising

networks. It follows from the results that AdBrite’s ad unit set should be

extended, while IAB ad unit set does not seem to provide additional flexibility

matching its size, and thus can be cumbersome in use. A reversed research on

the ad unit sets could suggest what kind of element should be added to a set,

to provide the biggest improvement in usability, or what kind of element should

be removed from a set without loss of flexibility. Ultimately, such algorithms

could be used to construct from scratch a set of ad units that would be highly

optimized for ease of fitting into web pages.

An important remark here is, that web page layout optimization can be seen

as partitioning of two-dimensional space, but in one dimension only. This leads

to a conclusion that problems of similar nature can be solved along the lines

developed for LPfAF problem. For example, paper rolls are stripes produced by

paper mills with big width dictated by the width of the production machinery.

The wide rolls are cut into standardized width rolls for transportation and

distribution. The standardized rolls are some kind of legacy. Instead, the widths

could be optimized according to distribution of page formats cut from rolls. The

roll width optimization could be done in a similar way with roll (column) widths

adjusted to page formats used for printing (ad formats). Consider port container

35

terminals as another example. Assigning berthing space to ships would mean

partitioning terminal space in the dimension perpendicular to the quay. Here

quay partitioning optimization could consider parameters of the ships like width,

capacity, importance, but also a time factor of arrivals or processing.

Hence, time can be also the second dimension if one would like to consider

optimization of partitioning quay into berths. Berths are sections of quay used

to host single ships. Both berths and ships can be considered as one-dimensional

objects having only lengths. However, time of using the berth would add the

second dimension typical of scheduling problem. Then, the problem of selecting

berths widths can be considered as optimization problem similar to the one

presented in this chapter.

In this research layout partitioning which is only one element in the process

of constructing web pages was addressed. Thus, further research should be

conducted into the other aspects of web page layout optimization. For example,

graphical content selection, processing, and geometric positioning are interesting

research topics. It can be concluded that e-commerce and web applications offer

new fields of study in operations research, sometimes involving aesthetic aspects.

36

3 Tag Cloud Construction

3.1 Tag Clouds

In this chapter methods for building aesthetic tag clouds for use on websites

will be proposed.

Basically, tags are phrases representing textually some set of objects. Tags

can be, e.g., words and phrases summarizing content of a web page. These can be

also the most frequent tags in social media, labels for best-sellers in marketing,

keywords in news or in scientific publications. Each tag (a word or a phrase) has

certain importance which is expressed in relation to other tags. Typically, tag

importance is given as a number. A tag cloud is a graphical depicting of the tags

projected onto a plane. A key requirement is that tags with high importance

should be prominently visible in the tag cloud. Commonly, important tags are

simply bigger. An example tag cloud from Flickr website is shown in Figure 3.1.

There are various forms of tags and tag clouds. For instance, there are hashtags,

data clouds, text clouds. A hashtag does not have to be a proper word or a

phrase in some language. It can be an abbreviated word, an acronym, or any

sequence of characters. Hashtags originated from tags and tagging popularized

by Twitter. Hashtag was even chosen a ”Word of the year 2012” by American

Dialect Society [4]. Tag clouds can be built from hashtags as well. Data clouds

or text clouds are specialized forms of tag clouds visualizing numerical data

or word frequencies. In the further discussion, generic terms of a tag and tag

clouds will be used.

The aim of this reasearch is to solve the problem of constructing visually

acceptable tag clouds for web pages. The first step in tag cloud creation is

preparation of tags themselves: tag/phrase selection and weighting (e.g.[46, 78]),

clustering (cf. [82]), etc. Here it is assumed that the set of tags is given and

their rendering in two dimensions is studied. Methods of digesting the text and

extracting the tags rest in text mining area and are beyond the scope of this

37

research. The problem of rendering the tags into a tag cloud is formulated here

as a combinatorial problem with specific objectives and constraints. Further

organization of this chapter is the following. In Section 3.2 tag clouds in gen-

eral and tag clouds for websites are discussed. Approaches, algorithms, design

options and the choices taken in the past are surveyed. Requirements for tag

clouds in the web usage are discussed. Section 3.3 provides a mathematical for-

mulation of the Tag Cloud Construction Problem (TCCP). Algorithms solving

the problem are introduced in Section 3.4. Results of the computational exper-

iments are outlined in Section 3.5. The notation used throughout this chapter

is summarized in Table 3.3.

3.2 Problem Analysis and Related Work

Survey

Although tag clouds seem to be a modern invention, their origins can be traced

back at least to 1976 [94]. Early tag clouds history is outlined in [118]. Around

2003 they gained a wide usage over the Internet. In 2006-2009 they became

bloated, overused by many web-designers without considering whether they fit

the purpose. Consequently, they were criticized and their application declined.

Currently, a new generation of tag cloud approaches and applications is proposed

and tag clouds can be seen where they fit well. Thus, tag clouds seem to

follow the hype cycle [45] and they slowly reach the productivity stage. Many

approaches to the tag cloud construction have been used in the past. In this

section tag clouds are classified, as well as, the results of the studies on tag cloud

formation and usability are outlined. Then, requirements for tag clouds to be

used over the Internet are discussed. Finally, the requirements and status quo

in web browsers as a platform for rendering tag clouds are studied.

3.2.1 Tag cloud taxonomy

There are several design choices determining appearance and usability of tag

clouds. In particular, these are:

1. How tags are sorted. The options are: alphabetically, by importance, by

context, randomly, packing-decided. The last means that tags may be

reordered for better packing quality. Sorting by context means that tags

are placed in groups connected, e.g., semantically, lexically, or in some

other way specific to the field of application.

38

 animals architecture art asia australia autumn baby band barcelona beach berlin bike bird birds

 birthday black blackandwhite blue bw california canada canon car cat chicago

 china christmas church city clouds color concert dance day de dog england europe fall

 family fashion festival film florida flower flowers food football france friends fun

 garden geotagged germany girl graffiti green halloween hawaii holiday house india

 instagramapp iphone iphoneography island italia italy japan kids la

 lake landscape light live london love macro me mexico model museum music nature

 new newyork newyorkcity night nikon nyc ocean old paris park party people

 photo photography photos portrait raw red river rock san sanfrancisco scotland sea

 seattle show sky snow spain spring square squareformat street

 summer sun sunset taiwan texas thailand tokyo travel tree trees trip uk unitedstates

 urban usa vacation vintage washington water wedding white winter woman yellow zoo

Popular Tags on Flickr file:///D:/!TagClouds/datasets/Popular Tags on Flickr.htm

1 z 1 04-01-15 15:01

Figure 3.1: Tag cloud from Flickr instance in Table 3.4.

Figure 3.2: Flickr instance in Table 3.4 rendered by Wordle.

2. Shape of the entire cloud. Possible options: rectangular, other regular

(e.g. circular), irregular, given (e.g. given polygons, map borders used for

visualization). Regular shapes may also have a ragged margin, which is

often considered a typographical defect resulting from bad text justifying.

3. Shape of tag bounds. Options: rectangle, or character body. The former

means that bounding boxes of the tags rendered in some given font are

used. The latter means using the shapes of the characters in the given

font. This allows for tighter tag alignment using free space around the

letter bodies.

4. Tag rotation: none, free to rotate, allowed with limited degrees of freedom.

39

1. Tag 2. Cloud 3. Tag 4. Tag 5. Vertical
Source ordering shape shape rotation alignment

Flickr (2004) alphabetical ragged rectangle rectangle none baseline
[65]Kaser (2007) packing rectangle rectangle none free
[65]Kaser (2007) context ragged rectangle rectangle none limited
[74]Kuo (2007) alphabetical ragged rectangle rectangle none baseline
[46]Fujimura (2008) context irregular rectangle none limited
[108]Seifert (2008) packing ragged polygon rectangle none free
[119]Wordle (2009) random or irregular font body from none free

alphabetical to free
[37]Cui (2010) context irregular rectangle none free
[98]Nguyen (2010) alphabetical given borders rectangle none background
[66]Kim (2011) packing irregular rectangle none baseline
[21]Burch (2013) context ragged regular rectangle none limited
[27]Cheng (2014) context irregular rectangle none limited
[78]Lohmann (2015) context elipsoid rectangle none free
[28]Chi (2015) random given borders rectangle from none free

to free
This research packing rectangle rectangle none baseline

Table 3.1: Summary of packing choices in tag clouds (See Section 3.2 for details)

5. Vertical tag alignment. Options: sticking to the typographical baselines,

limited by the algorithm properties (e.g. some tags are grouped), free -

possibly leading to 2-dimensional packing, forced by the tag cloud back-

ground (e.g. a given heat map).

The consequences of the design decisions can be compared in Figures 3.1

and 3.2 (cf. the design decisions outlined in Table 3.2.1). There are still further

design-choices possible. For instance, it is possible to use differing colors or

fonts (typefaces, sizes, weights and styles). Here it will be assumed that fonts

are determined in the tag preparation step (for example, chosen by the web

designer), and hence given as input. Note that use of colors to distinguish tags

may be a bad idea for users with color-impaired sight. Thus,it can be assumed

that tags are essentially monochromatic on a contrasting background (e.g. black

on white).

3.2.2 Related work

Since the very start tag clouds construction attracted interest of researchers.

Kaser and Lemiere [65] experimented with two types of tag clouds. Firstly,

they considered building baseline tag clouds with the criteria of height and bad-

ness. The badness was similar to the measure developed for TeX [67] which is a

sum of the free space at end of the line but also above the tags of smaller height.

They were testing variants of Next Fit Decreasing and First Fit Decreasing [128]

against random and alphabetical placement. Secondly, they proposed an idea of

adapting min-cut placement floor planning algorithm minimizing cloud height

for fixed width. They used nested tables for slicing floor plans, with grouping

of strongly related tags. The criteria were area of bounding box and distance of

40

related tags. Kuo et al. [74] presented application of a tag cloud to summarize

results of a query over a database. Their tag placement algorithm is very simple,

tags are placed alphabetically and automatic line breaking shapes it into ragged

rectangle. Fujimura et al. [46] proposed a metaphor of generating a topograph-

ical map to visualize large tag clouds (5000 tags, 10000x10000 pixels), where

height on the map reflected tag importance. They used a genetic algorithm

while the rank of each tag defines equivalent of its repulsion force. Seifert et al.

[108] worked on fitting tag clouds into convex polygons, allowing limited font

changes and tag truncation. Their algorithm partitioned the polygon area on

every tag placement, and a technique of prioritization was used to keep these

regions compact. Four versions of the algorithm were tested for best usability

and aesthetic effects. Wordle [119] is a well-known web-based text visualizing

tool. Wordle allows to choose several parameters like rotation or sorting, but

always justifies tags to shapes of characters and outputs irregular tag clouds.

Wordle uses randomized greedy algorithm that starts with tags placement at

positions determined by its internal rules and user input settings. Then, start-

ing from the tags in the middle of the cloud it iterates by colliding tags and

searching for feasible positions on a spiral path around the cloud. To speed up

the collision detection it uses hierarchical bounding boxes for tags, spatial index

for tags already placed and ordered checking of collisions starting with tags that

collided in the previous check. Cui et al.[37] used tag clouds to illustrate tempo-

ral evolution of tags and their contexts (e.g. semantic relations such as common

word roots). They proposed tag clouds keeping the tags linked by the context

together and coloring tags to visualize trends in time (such as tag appearing

and disappearing over time). Their algorithm uses Delaunay Triangulation to

build a graph for the initial tag placement and adaptation of force-directed al-

gorithm to compact the cloud while preserving contextual links. Nguyen and

Schumann [98] applied tag clouds fitting into map shapes to support exposition

and exploration of geo-tagged data. They placed median tag in a calculated

center of the shape, and the remaining tags in rows to fit the silhouette of the

shape vertically. They allowed scaling and flexible adaptation of tag sizes, with

limitations, to improve fitting. Kim et al. [66] applied graphs, where both

nodes and edges were tag clouds, to show relationships between entities of text

corpora. Their algorithm places tags in the free space as close as possible to

the centers of nodes for node clouds, and as close as possible to centers of edges

for edge clouds, respectively. While positioning tags the algorithm partitioned

the remaining space into up to four rectangles which were later used for placing

the following tags. Burch et al. [21] introduced the idea of prefix tag clouds.

They built prefix trees to group words that share roots. The prefix trees were

first visualized as tag clouds stretching to the right from the root prefix. Then

41

prefix tree clouds were positioned along a spiral path and moved as far as needed

from the spiral center to avoid overlapping the previously placed tags. Cheng

et al. [27] applied tag clouds with a similar goal of grouping synonyms. Their

algorithm placed synonyms as a column around the most popular word from

the group. The most popular synonym was visualized as the largest. Then,

the groups were bundled into the cloud. Lohmann et al. [78] proposed word

clouds on concentric circles where appearance of words in sections visualizes re-

lationships between documents. Tag placement is done along concentric circles

starting from the center with words ordered by decreasing frequencies. It was

allowed to omit words that cannot be placed well. Chi et al. [28] are placing

sets of tags into evolving or morphing silhouettes to present how text or data

is changing in time. Tags are placed by use of rigid body dynamics with a

set of constraints to obey the required bonduaries, orientation, position, unifor-

mity, etc. Tag design choices made in the above papers are summarized in the

Table 3.2.1.

3.2.3 Tag Cloud Usability Studies

Results of the studies on the effect of tag clouds on the user experience and pro-

ductivity have been reported in [8, 54, 79, 106, 108, 120]. According to [106], the

tasks supported by tag clouds are: searching, browsing, impression formation,

and recognition/matching. The last one means verifying whether the tag cloud

is representing a particular subject. Note that only searching is a goal-oriented

task, while the remaining ones are rather free browsing tasks. Outcomes from

an experiment measuring time necessary to find a certain tag, are reported in

[54]. It has been found that alphabetically ordered lists are actually faster to

search than tag clouds. The authors also concluded that users scan rather than

read tag clouds. A different approach has been used in [108]. The users have

been asked to point out three most important tags and the coincidence of their

decisions with the actual tag ranking has been measured. Although the results

were partially inconclusive because they depended on the variant of their algo-

rithm, it can be judged that simple visualization methods, few tags, and pruning

less important tags help in shortening reaction time. Yet, the resulting clouds

are not necessarily considered beautiful. In [106] it has been concluded that font

size and tag location affect low-level memory processes, while layout impacts

the high-level ones, such as impression formation. In the study described in [8]

font-related parameters were tested, leading to the conclusion that larger and

stronger fonts draw more users attention. Font color, though well recognized,

incurs difficulties in assessing importance. Authors of [79] conducted a study

on the performance of executing certain tasks on various cloud layouts. They

42

confirm the earlier findings of [54] that locating a specific tag is fastest with

alphabetical sorting and that users are scanning rather than reading. Yet, their

other experiments show that for finding the most important tags, recalling tags,

etc. cloud layout plays an important role. Walhout et al. [120] compared navi-

gation on tag clouds with hierarchical menus by capturing eye movements and

logging task performance. They found that tag clouds lead to more focused

search without impairing task performance, resulting in fewer page revisits.

The above presented research was focused on goal-orientated tasks, which

are easier to measure, as opposed to free browsing. Browsing is an important

application of tag clouds in the web.

3.2.4 Tag Clouds for the Web

In the above account on the state of the art only two papers consider factors

important for website use. Tag clouds for websites have to meet a set of addi-

tional requirements. Website space is always rectangular and scarce so it should

be used wisely. All tag clouds in the web, even the irregular ones, are finally

displayed on a rectangular space of some computer interface. Thus, fancy non-

rectangular shapes waste space around the cloud. This gives a preference to

tag clouds filling a rectangular envelope well. As websites usually use column

layout [86], horizontal size of a tag cloud (i.e. width) is usually fixed, while the

vertical size can be changed by moving website components below the tag cloud

a little up or down.

A tag cloud for a website should use standard technologies, making a rea-

sonable trade-off between fancy looks and the simplicity of the code. This has

two reasons: Firstly, it is a matter of the ease of implementation. Secondly,

not only humans read websites and making website content accessible to the

robots is of great importance in search engine ranking [87]. Thus, tags must be

robot-readable. Consequently, tag clouds must be available as text on the web

page. Using HTML, CSS and JavaScript (JS) for coding tag clouds is a natural

decision here, because these are the technologies commonly used in web page

development. This implies some of the further choices: Though the use of exact

tag shapes or tag rotation are possible in most modern browsers, they are not

standard and cannot be guaranteed to work well and look in the same way for

every client, especially mobile one. Wordle which is using exact font shapes and

rotated tags can output tag clouds only as images. Making such tags clickable

(i.e. assigning links to tag areas) on a website would be a real challenge. Hence,

the use of exact font shapes and tag rotation should be discouraged. The same

argument can be applied in preferring the alignment to the baselines over the

freedom of arbitrary 2-dimensional packing. Tags on a baseline will be consid-

43

1E0

1E1

1E2

1E3

 0 20 40 60 80 100

N
o
.o

f
ap

p
ea

ra
n

ce
s

Figure 3.3: Tag sizes distribution measured on Internet users.

ered just as a line of text by the robots. Considering the results of the studies

demonstrating that users scan lines of the clouds (see Section 3.2.1), the use of

baselines will make reading tags easier and faster.

The next issue is the choice of tag ordering. It was already mentioned

that clouds with alphabetically ordered tags perform worse in terms of search

time than simple lists of phrases. Moreover, alphabetical ordering significantly

restricts flexibility of packing: Firstly, as tags cannot be reordered the only

remaining option is to choose where to put a line break. Secondly, use of different

font sizes incurs big waste spaces because tags in the smallest font cannot be

moved away from the very tall tags in the biggest font size. To achieve any

reasonable visual quality tags have to be rearranged, i.e. the sequence of tags

should follow from the packing algorithm.

3.2.5 Client Side

A number of challenges is posed by the target platform of tag cloud exposition.

In times of more and more personalized web content each user can get a different

set of tags. But there is more than that to significantly affect packing of the

tags. Namely, clients may have different sizes (in pixels) of the same tag de-

pending on the browser, system and fonts installed. A study was conducted into

browser font rendering consistency to verify this expectations. A tailored set of

6 benchmark tag sets testing different methods defining look of text with CSS

properties: fonts, font stacks, sizes and weights has been constructed (cf. Table

3.2). A script measuring tag sizes was installed on a production website and in

the course of two days responses from 4201 different clients were registered.

44

<a h r e f=”#” s t y l e=”
font−f ami ly : sans−s e r i f ;
font−weight : bold ;
font−s t y l e : i t a l i c ;
font−s i z e : medium ; ”>

s h o r t s

<a h r e f=”#” s t y l e=”
font−f ami ly : Cambria ; ’ Hoe f l e r Text ’ ; Utopia ;

’ L ibe ra t i on S e r i f ’ ; ’ Nimbus Roman No9 L Regular ’ ; Times ;
’ Times New Roman ’ ; s e r i f ;

font−weight : normal ;
font−s t y l e : i t a l i c ;
font−s i z e : 14 pt ; ”>

Neutral space

<a h r e f=”#” s t y l e=”
font−f ami ly : monospaced ;
font−weight : 800 ;
font−s t y l e : normal ;
font−s i z e : l a r g e ; ”>

aero−moon . com

<a h r e f=”#” s t y l e=”
font−f ami ly : He lve t i ca ; Verdana ; sans−s e r i f ;
font−weight : 400 ;
font−s t y l e : ’ ’ ;
font−s i z e : x−l a r g e ; ”>

w a f f l e f i l l i n g

<a h r e f=”#” s t y l e=”
font−f ami ly : Frut i g e r ; ’ F ru t i g e r Linotype ’ ; Univers ;

C a l i b r i ; ’ G i l l Sans ’ ; ’ G i l l Sans MT’ ; ’ Myriad Pro ’ ;
Myriad ; ’ DejaVu Sans Condensed ’ ; ’ L ibe ra t i on Sans ’ ;
’ Nimbus Sans L ’ ; Tahoma ; Geneva ; ’ He lve t i c a Neue ’ ;
He lve t i ca ; Ar i a l ; sans−s e r i f ;

font−weight : ’ ’ ;
font−s t y l e : ’ ’ ;
font−s i z e : 16 pt ; ”>

Long Tai l Marketing

<a h r e f=”#” s t y l e=”
font−f ami ly : s e r i f ;
font−weight : 900 ;
font−s t y l e : ’ ’ ;
font−s i z e : smal l ; ”>

CREAM

Table 3.2: Tags set used to test distribution of tag sizes on client side.

45

In the gathered data it was possible to identify 112 distinct combinations of

sizes for the benchmark tags. The results are shown in the Figure 3.3. As could

be expected it was found that the distribution of tag sizes follow the power law:

popularity ≈ 1532 × pos−1.297, where pos is the rank of a position, with fit

quality R2 = 0.984. On the one end, the three most popular font combinations

are found in, respectively, 36.61%, 12.21% and 11.19% of client platforms. Most

of users use browser/system platforms that render the tags in less than a dozen

of popular sizes. On the opposite end, sizes with popularity smaller than 1%

form a long tail of 101 different values. Tag sizes on mobile devices differ much

more than on desktop/laptop computers (even two-three times). These results

lead to the conclusion that tag cloud construction must be adjusted to the tag

sizes measured at the client side. Furthermore, it means that building tag clouds

must be moved to the client side.

Algorithmic building of tag clouds on the client side has to meet a few

further requirements. The algorithm must be deterministic because the tag

cloud must look the same way for the given user. Thus, randomized algorithms,

or algorithms linking their stopping criteria with the runtime must be excluded.

The implementation has to use JavaScript (JS). Although other choices are

possible, only JS has sufficient market penetration. Moreover, JS works on

the elements of the Document Object Model (DOM) structure, thus supporting

readability of the tag cloud for the robots. A disadvantage is that the algorithm

constructing a tag cloud must run in very limited time, i.e. in the order of tenths

of a second. There is plenty of research showing that users do not want to wait

for downloading web page content and rendering it, because they quickly lose

interest. An up-to-date survey given in [87] suggests time below 1.5 second for

the whole page. Since the performance of the client browser is unknown, the

algorithm must be fast and simple enough to give a valid solution in tight time

limits even on slow browsers.

Before proceeding to the final problem formulation, let us summarize the

design requirements: 1) Cloud shape is rectangular, 2) tags are rectangular

boxes, 3) tags are reordered with packing, 4) rotation is not allowed, 5) tags

are packed on shelves and aligned to the baselines, 6) minimum waste of the

rectangular area is desired, 7) tonal weight distribution should be as even as

possible, 8) a tag cloud must be text, not graphics, 10) constructed on the

client side, 11) in tenths of of a seconds, 12) using fonts available on the client

side, 13) by a deterministic algorithm, 14) implemented in JavaScript.

Although it may seem that in most cases simplifying choices were made, we

still end up with a perplexing NP-hard combinatorial problem. Thus, it can

be expected that optimum solutions (e.g. in the sense of used area) can be

delivered only by exponential-time algorithms. Solving a problem formulated

46

tag2

W

... ...

Shelf 1

colum in the web page

tags

tagstags

Shelf 2

xi

yi

Shelf m

2D packing

baseline

Document analysis

Web page

Styletag
baseline

baseline

JavaScript
People

Web design

Technology

Blog

Figure 3.4: The relationship between tags and shelves.

according to the above recommendations encompasses Bin Packing or Strip

Packing problems which can be practically solved by use of, e.g., shelf algorithms

or metaheuristics[22].

3.2.6 Analysis of Packing Problem Properties

Let’s start with determining the type of packing problem we are dealing with. As

discussed in Section 3.2.4: 1) cloud shape is rectangular, 2) tags are rectangular

boxes, 3) tags are reordered with packing, 4) rotation is disallowed, 5) tags are

aligned to baselines. Fulfilling the first two requirements requires solving a 2-

dimensional packing problem [13, 56, 77, 99]. However, not all 2-dimensional

packing formulations are applicable here. For example, in the 2-dimensional Bin

Packing (2BP) formulation [77] both dimensions of the cloud should be fixed.

A difficulty is that it is an NP-complete problem to decide whether certain

cloud dimensions are feasible to accommodate set T , i.e. if the tags fit in the

given box on the web page. Contrarily, in the rectangle packing formulation it is

required to determine the smallest area bounding box enclosing the tags [56]. A

disadvantage is that this formulation makes cloud dimensions variable and the

web-designer would not be able to safely position the cloud on the web page. In

the 2-dimensional Strip Packing (2SP) formulation, tags are put on an infinite

strip with one dimension fixed. This formulation is more practical because it

is always possible to fit tags on such a strip if its length is floating. Thus, in

the presented formulation it is conventionally assumed that tags are put in a

column of width W and flexible height H. All three presented approaches to

2-dimensional packing are NP-hard which implies that according to the current

state of knowledge they can be solved either to optimality by an exponential

running time algorithm or by a polynomial-time heuristic.

47

Let us now return to the canons of typography for typesetting beautiful

text. One of such rules is the use of the baselines. This rule has already been

introduced as the requirement 5. A conjunction of the strip packing and the

requirement of baselines situates the analyzed problem as the so-called level or

shelf packing [7, 77, 99].

Shelf packing means that algorithm packs the tiles as if on shelves cut from

the strip: The bottom lines of the tiles are aligned to the bottom of the shelf. In

each row, rectangles are aligned and the highest rectangle determines the bottom

line of the next row (see Fig.3.4, compare also Fig.3.1). It is required that total

width of the rectangles on no shelf exceeds the width of the strip. Thus, shelf

algorithms are 2-dimensional renditions of 1-dimensional Bin Packing methods.

By convention we will be referring to the rows as to shelves.

Other recommendation from typography is balancing tonal weight distribu-

tion on the page (also called the typographic color distribution). This means

an even distribution of the mass of gray in the case of black letters on white

background [19, 43]. A human typographer usually has to squint to asses tonal

weight distribution. An advantage of this idea is that color can be measured

in HTML/JavaScript by reading pixels using canvas. Then, tonal weights of

the entire cloud, or its sections, can be calculated from the weights and sizes

of the tags. Dispersion of the tonal weight will be the objective guiding the

construction of a tag cloud.

3.3 Problem Formulation

In this section Tag Cloud Construction Problem (TCCP) is formulated. What

is novel in presented approach, is resorting to the canons of typography used

to typeset readable and aesthetic text. Unfortunately, mathematical models for

the canons of beauty are rare. Still, tag clouds construction will be modelled as

a discrete optimization problem with a particular objective function.

Let’s assume that set of tags T = {t1, ..., tn} is given. Tag ti is defined

by the advertised phrase, font (i.e. font-family, style, size, weight, etc.), and

hyperlink url address. This research abstracts away from how the importance

of the phrase is transformed into the font attributes. They are assumed to

be given. Phrase and font determine sizes xi and yi of tag ti as well as its

tonal weight ai. In practice, sizes xi, yi and tonal weight ai can be read with

JavaScript, or its extensions. Tags are basically monochromatic which means

that colors are not used to distinguish the tags.

48

Symbol Definition Role

ai tonal weight of tag ti input parameter
αj tonal weight of shelf j
di density of tag ti input parameter
H height of the tag cloud
m number of shelves
mi mass of tag ti input parameter
n number of tags in T input parameter
O dispersion in tonal weights between shelves objective function
si shelf of tag ti (can be expressed as Zj) decision variable
T set of tags input parameter
W width of the tag cloud input parameter
xi, yi sizes of tag ti input parameter
Zj set of tags on shelf j (can be expressed as si) decision variable

Table 3.3: Summary of the notation for the Tag Cloud Construction Problem.
Variables αj , O derived from tonal weight ai are real numbers, but coming from
a finite set. Remaining variables are discrete.

In more detail, for the pixel at coordinates x, y weight is calculated from:

b[x, y] = 1− R[x, y] +G[x, y] +B[x, y]

3 ∗ 255
(3.1)

where R[x, y], G[x, y], B[x, y] are values of the pixel color components in bytes.

For the sake of simplicity the above equation is used as an averaging method

of producing grayscale from RGB. Other methods like lightness or luminosity

can be used easily where desired. For the time being, two ways of defining

contribution of the tag to the tonal weight will be considered. Let mass of tag

ti be

mi =
∑

1≤x≤xi,1≤y≤yi
b[x, y], (3.2)

and let density of tag be

di =
mi

xiyi
. (3.3)

Let’s denote by si the index of the shelf where tag ti is placed and Zj the

set of tags placed on shelf j, i.e.: Zj = {ti : si = j}. It is required that tags

assigned to shelf j do not exceed width of the tag cloud W :∑
ti∈Zj

xi ≤W ∀ j = 1, . . . ,m. (3.4)

Given set Zj of the tags, the tonal weight of shelf j can be calculated as:

αj =

∑
ti∈Zj

ai

hjW
, (3.5)

49

where hj = max{yi|ti ∈ Zj} is the height of shelf j and ai is tonal weight of tag

ti equal either to its density di or to its mass mi. For the time being two ways of

defining the tonal weight will be allowed: either as mass mi (3.2), or as density

di (3.3). The final choice will be made in Section 3.5.2. Note that free space

in the shelf will impact value of αj . For example, if tags have large differences

in their heights or the shelf is hardly filled, then large empty areas shall result

in small αj . A solution, i.e. a tag cloud, is the set c = {Z1, . . . , Zm} of tag

assignments to shelves 1, . . . ,m. The objective function guiding the dispersion

of tonal weights between shelves will be:

O(c) =

m∑
j=1

(1− αj)k =

m∑
j=1

(
1−

∑
ti∈Zj

ai

max{yi|ti ∈ Zj}W

)k
, (3.6)

where exponent k > 0 is constant and c is a tag cloud. Function O(c) will be

minimized by changing decision variables:

m – the number of shelves, and Zj – the tag-to-shelf assignment, subject

to constraints (3.4). It can be intuitively expected that objective (3.6) favors

solutions with fewer shelves m and bigger values of αj , hence, more densely

packed shelves.

Note that in this formulation neither shelves ordering nor tags ordering on

the shelves is assumed. These can be rearranged after the packing, in the post-

process step. Basically there will be three options of sorting shelves that are

highest, top to bottom, bottom to top or middle to borders. With that, shelves

with bigger (i.e. more important) tags can be moved to the areas more frequently

scanned by users. Let us also observe that the goal of obtaining a good tonal

weight embodied by irregular objective (3.6) makes or TCCP different from the

classic 2-dimensional Bin Packing problems.

3.4 Algorithms for Tag Cloud Optimization

This section outlines algorithms proposed for constructing tag clouds. All these

algorithms must meet the requirement of very light computational demands

imposed by the browser platform. Before proceeding to the details of the algo-

rithms let us explain their position in the tag preparation workflow (see Fig.3.5).

The tags and their weights are obtained by periodically analyzing the docu-

ments, or other data sources for the considered field of application. A web

designer composes a web page, and in particular, chooses font attributes of the

tags in the tag cloud. The font attributes have the form of the CSS classes for

the tags of certain weight. The tags and the CSS classes are merged in a web

50

Document
analysis

Merging
tags

with CSS
classes

in a
Web page

Extracting tags
with font

attributes ()pt.1

Web
design

weighted

tag list

CSS classes for tags

in a Web page

SERVER

SIDE

BROWSER

CLIENT

SIDE

tag list with

CSS classes()periodically

()offline

()download

Rendering tags
in a hidden DIV,
measuring tag
attributes ().pt.2

Rendering
the visible DIV
in browser ()pt.4

2D packing
()pt.3

Rearranging tags
and making

DIV ()pt.4visible

Display

in

GUI

Figure 3.5: Tag preparation and exposition workflow.

page to be downloaded by the client browsers. The above steps are conducted

on the server side in the web page preparation process. On the client side, a

generic method constructing a tag cloud progresses in the following steps:

1. reading set of tags T ;

2. measuring tags sizes, masses, densities to obtain tonal weights;

3. optimizing the assignment of the tags to shelves;

4. delivering tag cloud c in the target format.

As explained in the previous section attributes of the tags rendered in a browser

(sizes, mass, tonal weight) are read by use of JavaScript and canvas element in

HTML. The output format of the tag cloud c is a sequence of HTML elements

representing shelves, e.g. <div> elements, comprising tags as text elements

most often with <a> hyper-reference (url address). Output must also include

proper CSS formatting. In the following alternative algorithms are introduced

for solving TCCP.

3.4.1 Branch and Bound

Branch and bound (B&B) is an exhaustive search method. Unfortunately, for

NP-hard problems (as ours) exhaustive search algorithms run in time exponen-

tial in the size of the problem. Consequently, a B&B algorithm can be applied

only for instances of limited number of tags n, as a reference allowing to mea-

sure optimality gap of other algorithms. A B&B algorithm is defined by the

branching and bounding schemes. The branching scheme determines the way

of enumerating possible solutions. It can be envisaged as construction of and

search in a tree. In this case a tag cloud, i.e. a solution, is defined by an assign-

ment of tags ti to shelves. Consider some node ηi of the B&B tree representing

a partial solution with 0 ≤ i < n tags already assigned to µi shelves, where

µ0 = 0. Tag ti+1 can be assigned to one of the µi shelves (if it fits in the remain-

ing widths) or a new (µi+1)th shelf may be opened for ti. Thus, there are µi+1

offspring nodes of ηi representing the assignments of ti+1 to the shelves. There

are at most |T | = n shelves and at most n! solutions may be visited. Since size

51

of the B&B search tree grows very quickly with n, various bounding methods

are applied to prune the tree. In this case offspring of node ηi were pruned if

µi exceeded the number of shelves m for some complete solution. Values of m

and O were obtained, and updated, whenever the search reached leaves of the

tree, i.e. all n tags have been assigned to some shelf.

3.4.2 Greedy Algorithms

A generic greedy shelf algorithm is formulated as follows:

Generic Greedy Shelf Packing

input: tag sorting rule TSR, shelf choice rule SCR, set T of tags;

output: tag to shelf assignment c;
1: c=new shelf assignment; // initialize tag cloud

2: l=tags in T sorted according to TSR; // order tags

3: while l 6= ∅ // ∅ means here an empty list

3.1: t = first tag from l; remove t from l;

3.2: s = shelf for t from c according to SCR; // find best shelf for t

3.3: if s=nil

3.3.1: s=new shelf; // open a new shelf for t

3.3.2: c = c+ s; // append the new shelf to assignment c

3.4: endif;

3.5: s = s+ t; // put tag t on shelf s

4: endwhile

5: return c.

Particular implementations of the greedy shelf packing are defined by the tag

sorting and shelf selection rules TSR, SCR. These are presented in the follow-

ing.

Tag Sorting Rules TSR Tags can be sorted according to one of the following

orders:

• increasing or decreasing masses mi of the tags (denoted im, dm, respec-

tively),

• increasing or decreasing densities di of the tags (id, dd),

• increasing or decreasing widths xi of the tags (iw, dw),

• increasing or decreasing heights yi of the tags (ih,dh).

The above tag sorting rules generalize ordering by decreasing item height con-

sidered, e.g., in [22, 34]. All tag sorting rules have complexity O(n log n).

52

Shelf Choice Rules SCR One of the following rules to choose shelves for

tags was applied:

• use the shelf with the smallest remaining horizontal space after inserting

the tag (Best Fit, BF);

• use the shelf with the biggest remaining horizontal space after inserting

the tag (Worst Fit, WF);

• use the shelf with the smallest tonal weight (3.5) after inserting the tag

(Smallest Tonal Weight, STW);

• use the shelf with the largest tonal weight (3.5) after inserting the tag

(Largest Tonal Weight, LTW);

There are two additional options for assigning a tag which, if chosen to act,

override the above rule.

Fit Zero (f0). If there is such a shelf j that after inserting the tag, the shelf

will have at most ε free horizontal space, then choose j. If such a shelf is found,

then shelf selection is finished. Here it was applied ε = 0 in pixels. f0 can be

run in O(logm) < O(log n) time per tag, which does not increase the overall

order of complexity of the packing algorithms.

Fit Two (f2) rule is applied after choosing shelf si for tag ti according to one

of the above BF, . . . , LTW methods. Let δ be the horizontal space remaining

on si after inserting ti. If δ < minti∈l{xi} then check for a pair of tags ta, tb
such that xi < xa + xb < xi + δ. In other words, if putting ti on si would leave

less horizontal space than required by the narrowest remaining tag, then check

if there are two tags ta, tb which both fit on si but leave less free space than ti.

If ta, tb are found, then they are placed on si, and tag ti is returned to the list

of tags l. f2 rule, if applied exhaustively, would require complexity O(n2) for

checking all pairs of tags. In order to reduce the complexity of f2 a simplified

search for ta, tb was implemented. The tags are sorted according to their widths

xi. We look for two tags ta, tb in the list of unassigned tags l such that xa is

the biggest width not greater than δ/2 and xb is the smallest width not smaller

than δ/2. If xi < xa + xb < xi + δ satisfy the above conditions, then we are

done. If not, then the rule fails to find ta, tb. In this way ta, tb are searched in

O(log n) time and the additional sorting tags according to their widths is done

once in time O(n log n).
Altogether there are 8× 4× 22 implementations possible of the greedy shelf

packing algorithm. It is feasible to run all the above implementations of the

greedy algorithms and choose the best result. Such a combination of greedy

shelf packing algorithms will be referred to as to Super-Fit (SF) algorithm. An

advantage of SF is that it lessens the impact of the worst-case instances existing

for the component algorithms.

53

3.4.3 Tabu Search

Tabu Search (TS) [49] is a local search method. Local search algorithms improve

solutions by searching their neighborhoods. A neighborhood of a solution is

defined by moves which can be applied on the current solution to obtain a new,

hopefully better, solution. Tabu Search allows to escape local optima by using a

so-called tabu list (actually a queue) of forbidden solutions. Our implementation

of the TS is outlined below:

Tabu Search

input: tag cloud c1;

output: tag cloud c2;
1: i=0; c2 = c1, tabu = ∅; // initialize data structures

2: while i < IterLimit // is iteration number exceeded?

2.1: r=best move for c1; // the best move r must not be tabu

2.2: if r=nil

2.2.1: return c2; // no feasible move in c2

2.3: endif;

2.4: execute move r on c1; // c1 is updated

2.5: if |tabu| = TabuSizeLimit // is tabu list size exceeded?

2.5.1: remove the oldest element from tabu;

2.6: endif;

2.7: append c1 to tabu;

2.8: if O(c1) < O(c2)

2.8.1: c2 = c1; // record the best solution found so far

2.9: endif;

2.10: i = i+ 1; // increase iteration counter

3: endwhile;

4: return c2.

The algorithm starts from the best solution c1 obtained by some other algorithm.

In this case c1 is a solution constructed by the Super-Fit algorithm, i.e. the best

from the 8 × 4 × 22 greedy shelf packing algorithms. According to the above

description TS method has control parameters: IterLimit – the limit on the

number of iterations, TabuSizeLimit – the limit on the length of the tabu list.

Tuning these parameters is subject of Section 3.5. Two types of moves are

evaluated in line 2.1: simple move, and swap move. In the simple move each tag

ti, i = 1, . . . , n is tested for a relocation from its current shelf si to a different

shelf. In the swap move, all pairs of tags ti, tj , i 6= j are exchanged on their

shelves. A move which was not tabu and offering the smallest value of the

objective function of the new solution is applied. In order to reduce the time

of verifying whether some solution is tabu, a dedicated hash function has been

54

Short Reference Date No.of No.of
name accessed tags styles

Collection A (training set)
Amazon http://amazon.com Jun 13, 2015 100 100
Chir.ag http://chir.ag/tags/ Sep 15, 2015 100 95
Flickr https://www.flickr.com/photos/tags/ Sep 15, 2015 142 131
WeDeWa http://webdesignerwall.com/ Jun 13, 2015 25 25
Wykop http://www.wykop.pl/ Jun 13, 2015 35 31

Collection B (test set)
NatDir http://nationaldirectory.co.uk/mod/ Mar 10, 2016 70 5

tagcloud/
VecMe http://pl.vector.me/tags Mar 9, 2016 100 18
WordPress https://en.wordpress.com/tags/ Mar 9, 2016 188 178
ProfOWeb http://www.professionalontheweb.com/ Feb 29, 2016 55 6
Metafilter http://www.metafilter.com/tags/ Feb 29, 2016 150 13

Table 3.4: Test instances.

designed. Thus, when verifying tabu status of a potential new solution only hash

values of the old solutions stored in tabu list and of the new one are checked.

Computational complexity of one TS iteration is O(n2 + TabuSizeLimit).

3.5 Computational Experiments

This section reports on the experiments in solving TCCP. Test instances are

introduced first. The desirable objective function is elected. Tuning of the tabu

method is outlined next. Finally, the performance of the heuristics in quality

and runtime is compared. Unless stated to be otherwise, all tests were performed

on a PC with Intel i7-3840@2.8GHz CPU, 32GB of RAM, Windows 7.0, Chrome

48.0.2564.116 browser. Greedy algorithms and Tabu Search were implemented

in JavaScript. B&B algorithm has been implemented in Java 1.8.0 45 SE.

3.5.1 Test Instances

The experiments were performed on two collections, A and B, of test instances.

Each collection comprises 5 sets T of tags gathered in Internet sources. Short

names and characteristics of the instances are given in Table 3.4. For each set

of tags T , 11 test instances were created by setting tag cloud widths W from

xmax to 2 ∗ xmax with 10% progresses, where xmax = maxti∈T {xmax} is the

width of the widest tag in T . Examples of the sets of tags are shown in Fig.3.6.

Collection A has been used in tuning of the Tabu Search, while collection B has

been applied in the final tests of all the algorithms. In this way training and

testing algorithms on the same data was avoided.

55

a)

hardware humor internet technologia
rozrywka nauka programowanie software

sztuka ciekawostki ekonomia

europa film gospodarka gry heheszki

historia islam kultura mojkrajtakipiekny

motoryzacja muzyka pieniadze polityka
polska prawo rosja samochody sport

swiat usa wydarzenia wykop

zainteresowania zdrowie

file:///D:/tmp/1/TagClouds2/testsets/Wykop.pl.htm

1 of 1 07-03-2016 11:11

b)

coding css design design
process design trends
downloads event flash free

freebies guest posts

illustrator inspiration interview

javascript jobs photoshop

photoshop tutorials responsive
design review seo software

talented people updates
wordpress

file:///D:/tmp/1/TagClouds2/testsets/Web Designer Wall - Design Trends and Tutorials.htm

1 of 1 07-03-2016 11:39

america app arthurawesome backyard birthday blog bombay brain brian buddy bunker cable cage calculus

calcutta campus cellphone chill chime chirag chore chris clientcomputer coolest cough coworker

cute cuzindad database demo economicsemailexam fark florida funny giga google graphics

homework honesty honors hurricane hurts india internet ipad january jersey julietkayak keval

kitties ktype lab laundry lawn lazy learnt marathonmathmichelemom monitor mortgage

nightmareonline pet petersburg phd photo pizza professor programmerquote random
relax rutgers screwed semester server shower sleepy sneh software sucks tampa taylor tera tickets

universityvideo walmartwebsiteweird whenever

Tag Cloud - Chirag Mehta : chir.ag file:///D:/tmp/1/TagClouds2/testsets/chir.ag Mehta Month Tags.htm

1 of 1 07-03-2016 11:14

c)

Figure 3.6: Examples of tag cloud instances. a) Wykop (resized, the biggest tag
is 25pt, the smallest is 11pt), b) WeDeWa (the biggest tag is twice bigger than
the smallest), c) Chir.ag (the biggest tag is 46pt, the smallest is 11pt).

3.5.2 Selection of the Objective Function

In Section 3.3 objective function (3.6) has been introduced which in its generality

allows for two methods of defining tonal weights (either by tag mass (3.2) or by

tag density (3.3)) and alternative ways of directing the tonal weight dispersion

between the tags by different exponents k. Unfortunately, the above defining

features of the objective function cannot be chosen by an analytical study of

function (3.6) because human perception of tag cloud quality comes into play

here. In order to omit this difficulty and select a sensible form of function (3.6)

we decided that human experts will choose the most desirable objective function.

Five experts evaluated all different tag clouds obtained by the B&B algorithm

for a subset of n = 16 tags, for all 55 instances defined in collection A, two ways

of defining tag tonal weight (equation (3.2) vs (3.3)), for exponents k = 0.5, 1, 2

in (3.6). Thus, each expert had to evaluate 55 × 6 tag clouds. The size of tag

set T has been limited to n = 16 due to the computational complexity of the

B&B constructing optimum solutions. For each instance in collection A tag

clouds were constructed using 6 alternative objective functions and the 6 tag

clouds were shown together to the experts. Experts voted for combinations of

k and tonal weight quantifying method by choosing from the 6 clouds the one

which was most aesthetically pleasing. The results of the voting are collected

56

Tonal weight Exponent E1 E2 E3 E4 E5 Sum

density k = 0.5 33 22 23 18 29 125
density k = 1 31 22 28 16 28 125
density k = 2 31 23 22 19 26 121
mass k = 2 8 17 16 22 16 79
mass k = 0.5 13 19 13 20 9 74
mass k = 1 12 18 13 21 9 73

Table 3.5: Goal function selection: votes awarded to goal functions by five
experts.

in Table 3.5.2. Not in all cases were the tag clouds different. If tag clouds

were the same for some combinations of k and tonal weight calculation method,

and some expert chose one of such clouds, then each of the combinations of k

and tonal weight calculation methods that built the identical cloud, received

a vote. Consequently, the number of votes in Table 3.5.2 does not sum to 55

times the number of experts. It can be seen that experts clearly chose tag

density (3.3) as the base of calculating tonal weights. This strong support

may seem surprising because all tag clouds had the same number of shelves

for the considered instance (combination of T ,W) and correlation between the

number of shelves and values of the objective O is very strong (coefficient of

correlation over 0.99 in all cases). And still, experts apparently chose density

over mass. This has at least two consequences. Firstly, density seems more

sensitive than mass to big vs small gradients of tonal weight present in high

vs small tags. Secondly, the distinction between density and mass proves that

the objective function grasps more than just the number of shelves. For the

density as a measure of tonal weight, k = 0.5, 1 were preferred a bit over k = 2.

Different values of k result in various pressure on uniformity set of αj values.

For k < 1, minimization of αj dispersion between the shelves can be expected

by minimizing (3.6). Hence, k = 0.5 has been chosen.

3.5.3 Super-Fit Algorithm

Performance of the SF algorithm is reported in Table 3.5.3. Due to high compu-

tational complexity of the B&B algorithm the relative distance to the optimum

has been calculated only for the instances comprising the first n = 16 tags. It

can be observed that objective O is numerically very close to the optimum if the

same number of shelves is used by the SF and in the optimum solution. Only

for instances Chir.ag at W = 1.5 × xmax and WordPress at W = 1.2 × xmax
was SF not able to construct minimum number of shelves. In the first case SF

used 6 shelves instead of 5 and in the second – 8 instead of 7. It increased the

relative distance from the optimum to ≈ 20% and ≈14%, respectively. This

57

Relative Time [ms]
Test distance Average Std.dev.
set to optimum Median Max per tag per tag

A 0.3639362% 17 30 0.25 0.16
A+B 0.3119139% 17 57 0.24 0.10

Table 3.6: Performance of the Super-Fit Algorithm.

situation happened twice in all tests A and B. The longest registered runtime

57ms appeared for Flickr instance (n = 142), where the average for this instance

was 19ms. The biggest instance WordPress with n = 188 has been solved in at

most 51ms (40ms on average). Thus, execution times of SF are low which allows

to use it as a constructor of a starting solution for Tabu Search. SF execution

times and solution quality will be discussed in more detail in Section 3.5.6.

An interesting aspect of SF method is verifying which component greedy

algorithms returned the best solutions most often. This is shown in Fig. 3.7

for test sets A and B together. If more than one algorithm returned the best

solution, then each of the algorithms won on a given instance. Only algorithms

which won at least twice are shown in Fig. 3.7. The names of the component

algorithms shown along the horizontal axis follow the short-hand notation in-

troduced in Section 3.4.2. For example, the algorithm with TSR decreasing tag

height (dh) and shelf selection rule smallest tonal weight (STW) without fit 0

or fit 2 is used most often. It can be seen in Fig. 3.7 that the most frequently

chosen tag sorting rules are based on the tag height (in 53% of cases). The

next most frequently used tag sorting rules use tag mass (27%). The options

f0, f2, were applied in 16% and 8% of the winning algorithms. Out of the 128

possible algorithms only 52 have ever provided the best solution of the SF. The

algorithms with various combinations of f0, f2 mostly failed to win.

3.5.4 Tuning Tabu Search

Our implementation of TS has two control parameters: IterLimit – the itera-

tions number limit and TabuSizeLimit – the limit of the tabu list length. The

quality measures applied in TS tuning are runtime and objective function O.

Tuning of TS control parameters is intended to keep the runtime low, while

securing noticeable improvements in the objective function O.

Each instance from set A has been solved for IterLimit = {10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} and for tabu list

size limit TabuSizeLimit = IterLimit×{0.1, 0.2, 0.5, 0.8, 0.9, 1}. It means that

the tabu list held from 0.1×IterLimit up to IterLimit of the last moves. Thus,

each instance from collection A has been solved with 19 different iteration limits

58

 0

 5

 10

 15

 20

 25

dh
ST

W
dh

W
Ff

0
dm

ST
W

f0
dh

ST
W

f0
dm

B
F

dm
B

Ff
0

ih
B

Ff
0

dw
ST

W
ih

B
F

dh
B

Ff
0

dh
B

F
dh

W
F

ih
ST

W
f0

dh
L

T
W

f0
dm

W
Ff

0
dm

L
T

W
f0

ih
ST

W
dm

W
F

ih
L

T
W

f0
dw

W
Ff

0
dw

B
Ff

0
dw

ST
W

f0
dw

B
F

dw
L

T
W

f0
ih

W
Ff

0
dm

ST
W

ih
L

T
W

dh
W

Ff
0f

2
dd

ST
W

f2
dd

B
Ff

0f
2

dm
L

T
W

ot
he

r

N
o
.o

f
w

in
s

Figure 3.7: Super-Fit: frequency of giving best results by the component algo-
rithms.

and 6 different tabu list lengths. Quality of the solutions generated by TS has

been compared against the quality of B&B solutions. Since the execution times

of the B&B are quite long, instances comprising the first n = 16 tags were used.

Still, execution times of TS are presented for complete instances. It may be

argued that time and quality performance were evaluated on different test sets,

but it was observed that on instances of size n = 16 even for IterLimit = 1000

the median runtime was below 17ms, and the longest execution time observed

(an outlier) was below 200ms. These times are too optimistic indication of the

runtime especially as TS will be used on complete instances with up to hundreds

of tags. Therefore, it was concluded that runtime on complete instances is a

better indicator for TS tuning. Results of IterLimit evaluation are shown in

Fig.3.8 and TabuSizeLimit in Fig.3.9. In Fig. 3.8a quartiles of TS execution

times are shown. It can be seen in Fig. 3.8a that execution time of TS grows

linearly with the number of iterations and for IterLimit = 300 median execution

time is below 170ms. Note that this time includes 30ms taken on average by SF

constructing the initial solution (see Table 3.5.3). Changes of solution quality

with the number of iterations are shown in Fig. 3.8b. The average distance from

the optimum solution obtained by the B&B method is shown on the vertical axis.

The range of values of the objective function is very narrow in the numerical

sense. For example, the distance from the optimum at the left end of Fig. 3.8b

59

a)
1E-1

1E0

1E1

1E2

1E3

1E4

 10 100 1000

ti
m

e
 [

m
s]

Iter

b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Q
u
al

it
y

Iter

Figure 3.8: Tuning Tabu Search. a) Runtime vs IterLimit, b) Changes of
objective O vs IterLimit (distance from the optimum, scaled to range).

(at IterLimit = 10) is 0.363777% away from the optimum while the right end

(at IterLimit = 1000) is 0.363746% away from the optimum. Hence, for better

visibility, labels on the vertical axes of Fig. 3.8b, 3.9b are scaled to the range

of the observed values. It can be seen that the value of the objective function

is improved with increasing IterLimit, but around IterLimit = 300 the rate

of changes slows down. The impact of TabuSizeLimit on TS execution time

is negligible on average (cf. Fig.3.9a). It can be concluded that the method of

verifying tabu status of a solution, using a hash function, performs effectively.

For the convergence of the objective TabuSizeLimit ≥ 0.5 is sufficient (see

Fig.3.9b). In the following tests IterLimit = 300 and TabuSizeLimit = 0.5

were used as a compromise between solution quality and runtime.

60

a)
1E-1

1E0

1E1

1E2

1E3

1E4

 0 0.2 0.4 0.6 0.8 1

ti
m

e
 [

m
s]

TabuSizeLimit

b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Q
u
al

it
y

TabuSizeLimit

Figure 3.9: Tuning Tabu Search at IterLimit = 300. a) Runtime vs
TabuSizeLimit, b) Changes of objective O vs TabuSizeLimit (distance from
the optimum, scaled to range).

3.5.5 Branch and Bound

The B&B runtimes are reported here to give the reader impression on the com-

putational requirements of this algorithm. Time performance of the B&B is

depicted in Fig.3.10. As it can be seen in Fig.3.10, at n = 7 computational

costs related with enumeration of solutions outweigh the fixed overheads and

quickly grow with n. On average, the B&B algorithm was solving instances with

20 tags in 62s. Unfortunately, solving a few worst-case instances for n = 20 re-

quired time exceeding 4 hours. It can be concluded that B&B cannot be applied

to construct tag clouds in the client’s browser because it takes too much time.

Still, B&B can be applied as a provider of reference solutions for small-size

instances.

61

1E-2

1E0

1E2

1E4

1E6

1E8

 0 5 10 15 20

ti
m

e
 [

m
s]

n

Figure 3.10: Running time of Branch&Bound algorithm.

3.5.6 Comparison of the Algorithms

In this section the trade-off between quality and runtime made by the algorithms

are analyzed. In order to avoid giving advantage to the algorithms tuned on test

set A the performance of all algorithms has been evaluated on test set B. The

results of the comparison are depicted in Fig.3.11. Along the horizontal axis

execution time of the algorithms is shown. Quality is shown along the vertical

axis as the relative distance from the optimum solution for n = 16 (Fig.3.11a)

or from the best obtained solution for the complete set of instances (Fig.3.11b).

The range of the objective function is small in numerical sense if the minimum

number of shelves is used. Therefore, relative distance in quality is shown on

the vertical axis with 1E-10 as the unit of relative distance. Value 1 represents

the optimum, or the best solution. Each algorithm is represented by a box and

a median point (Q2) in time×quality space. Boxes represent ranges between

the first (Q1) and third (Q3) quartile of the execution time (horizontally) and

quality (vertically).

The runtimes and solution quality scores for every greedy algorithm run

separately on all instances have been recorded and the obtained population of

results is presented under label ”Greedy Algorithms”. It can be observed that

running all of the greedy algorithms together and choosing the best solution,

which is done in Super-Fit (SF) algorithm, on average increases the runtime

≈ 60 times and decreases the distance from the best solution by two (n = 16)

to four orders of magnitude (complete instances). The upper end of the box

62

a)

 0.01 0.1 1 10 100 1000

q
u

al
it

y

time [ms]
1

2

1.1

1.01

1.001

1.0001

1+1E-5

1+1E-6

1+1E-7

1+1E-8

1+1E-9
1+1E-10 B&B

SF

TS

Greedy
algorithms

b)

 0.1 1 10 100 1000

q
u

al
it

y

time [ms]
1

1+1E-10
1+1E-9

1+1E-8

1+1E-7

1+1E-6

1+1E-5

1.0001

1.001

1.01

1.1

2

SF

TS

Greedy
algorithms

Figure 3.11: Juxtaposition of all algorithm performance: quality vs runtime. a)
Instances limited to first n = 16 tags, b) complete instances. Log scales. 1E-10
is a unit of distance in quality.

for all greedy algorithms represents solutions with more than the minimum

number of shelves. As the objective function heavily penalizes using additional

shelves, the results of greedy algorithms are much worse with respect to the

objective function, than the for the other algorithms. In the instances of set B for

n = 16 more than 43% of solutions of greedy algorithms used more shelves than

the minimum. For complete instances over 60% of greedy solutions used more

shelves than the minimum observed. Contrarily, greedy algorithms are very

fast. Super-Fit algorithm delivers the best of the greedy solutions at acceptably

low runtime (Q2=11ms for complete instances, and the worst observed runtime

was 48ms). Tabu Search (TS) improves the results of SF on average by at

least two orders of magnitude. Execution time of TS is acceptable on average

(Q2=262ms for complete instances) though it has increased a bit compared to

63

a)

zdrowie nauka humor prawo islam rosja usa film gry

programowanie mojkrajtakipiekny pieniadze historia

ciekawostki polityka kultura wykop

rozrywka polska europa swiat
zainteresowania technologia wydarzenia

ekonomia heheszki internet sztuka muzyka sport

motoryzacja gospodarka samochody hardware software

file:///M:/uczelnia/arty moje/Tag clouds/wykop.htm

1 z 1 2016-07-19 19:15

b)

freebies css inspiration
event design updates review

wordpress responsive design
javascript design trends flash
photoshop tutorials coding seo

guest posts design process jobs

talented people software downloads

illustrator photoshop interview free

file:///M:/webdesigner.htm

1 z 1 2016-07-19 19:09

computer website india video
programmer software online florida exam kayak juliet funny email
awesome economics random kitties rutgers quote weird ktype relax dad
homework hurricane internet america jersey tampa sleepy taylor photo math chill blog
petersburg marathon professor database campus michele chirag chime buddy server hurts pet lab
mortgage screwed bunker laundry shower tickets client cough learnt cuzin brian cute pizza mom fark lazy
nightmare backyard university bombay wheneversemester calculus january google arthur chore keval brain app giga
coworker cellphone walmart birthday monitor calcutta honesty graphics coolest honors cable chris demo lawn sneh sucks cage ipad tera phd

file:///M:/chira.htm

1 z 1 2016-07-19 19:10

c)
Figure 3.12: Tag clouds built by the presented algorithms. a) Wykop by Super-
Fit, ordering of the highest rows from the middle. b) WeDeWa and c) Chir.ag
by Tabu Search the highest rows from the top.

test set A. This could be expected because test set B comprises instances with

more tags than the training set A. The worst-case observed runtime for TS was

1436ms which is hardly acceptable in practice. A partial solution may be re-

tuning of TS if instances bigger than considered here are encountered in practice.

Unfortunately, standard computer systems (i.e. non-real-time ones) give no

guarantees of the limits on the process/thread execution times and runtime

distributions have long-tails. Consequently, it is not possible to eliminate all

such worst-case runtimes altogether. On the other hand, TS is the second best

in delivering quality solutions after B&B.

The advantages and disadvantages of the proposed methods revolve around

the two dimensions of the runtime and the solution quality. Fig.3.11 is a good

illustration of the trade-off between them. It can be observed that proposed

algorithms form non-dominated groups of methods with respect to the quality-

runtime trade-off: Greedy algorithms are fastest but their solutions are the worst

on average. However, choosing the best of them (as in SF) already significantly

improves solution quality. TS provides still better solutions at increased cost.

Finally, B&B offers optimum solutions albeit at computational cost unaccept-

able for the applications considered here.

For the end of this section let us present visual examples of tag clouds con-

structed by the proposed algorithms. The tag clouds built from instances pre-

sented in Fig. 3.6 are shown in Fig. 3.12. Observe that apart from improving

aesthetics and readability of tag clouds their height is reduced as a beneficial

side effect.

64

3.6 Conclusions and Future Work

In this chapter online construction of the tag clouds for the websites has been

considered. While other tag cloud building problems met some interest in the

past, the website application had only a few ad hoc approaches. The tag cloud

construction has been formulated here as a 2-dimensional Strip Packing problem

with irregular objective function embodying canons of typography to control

aesthetics of the generated clouds. Moreover, requirements and restrictions

of the field of application force building tag clouds on the client side which

introduced further restrictions of the computing platform (the browser) and

the runtime. Two algorithms developed here – Super-Fit and Tabu Search –

have practical applicability. They run in dozens of milliseconds (SF) or a few

hundreds of milliseconds (TS), hardly ever use more shelves for tags than the

minimum, and they build visually acceptable tag clouds.

It can be concluded that from the algorithmic point of view, tag cloud con-

struction problem is virtually solved. However, as stated earlier mathematical

models for the rules of beauty are rare and difficult. Hence, better represen-

tation of tag cloud aesthetics (even beauty) in closed-form expressions such

as objective functions should be recommended as the subject of the further

study. Devising such functions condensing in a low computational complexity

expression the connection between tag cloud features and human perception is

a challenge in itself. The methodologies developed here can be applied to solve

problems of similar nature, such as procedural web page layout and content

construction, infographics construction, game content generation, etc. These

can be guided by optimization processes using aesthetics models expressed as

objective functions. All this is doable online in the heterogeneous and volatile

medium of information delivery: the browser.

65

4 CSS-sprite Packing

4.1 CSS-Sprites and Loading of Web Pages

In this chapter novel methods for the generation of CSS-Sprites to offload web

servers and speed up web pages loading will be provided.

Short web page load time has a great importance for the Internet indus-

try [87, 125]. Contemporary web pages are heavily loaded with small images

(icons, buttons, backgrounds, infrastructure elements, etc.) and it is reported

in [63] that 61.3% of all HTTP requests to large scale blog servers are images.

Other static content constitutes only 10.5% of requests. Each image is a re-

source which must be downloaded from a web server. The interaction with a

web server has a relatively long constant delay (a.k.a. latency, startup time)

resulting from, e.g., traversing network stack by the messages carrying the re-

quest, request processing at the server, locating resources in server caches, etc.

Fetching many images separately multiplies such fixed overheads and results in

extensive web page loading time. CSS-sprite packing is a technique used in web

design to overcome disadvantageous repetition of web interactions and improve

performance of displaying web pages. The many small images, called tiles, are

bundled into a single picture called a tile set, a sprite sheet, or simply a sprite.

The sprite is loaded once and hence the constant delay elapses only once. An

additional advantage can be taken in preloading images used in the web page

interaction animations. In such animations appearance of a graphical element

can be changed in almost no time because there is no communication delay of

downloading a different view of the element. Sprites improve performance of

the web servers too. Each interaction with a browser requires an overhead at

the server. Reducing the number of the interactions by supplying a sprite once

lowers the server load. Consequently, CSS-sprite technique is widely used in

many web pages. An example of applying a CSS-sprite is shown in Fig.4.1. A

66

<style>
.image1
{background: url("sprite.png")
0 0 no-repeat;
width:159px; height:188px
}
.image2
{background: url("sprite.png")
0 -188px no-repeat;
width:159px; height:188px
}
.image2:hover
{background: url("sprite.png")
0 -376px no-repeat;
width:159px; height:188px
}
. . .
</style>

<body>
. . .

<span class="image2"
alt="image2.gif">

. . .
</body>

a) b) c)

Figure 4.1: Example of CSS-sprite. a) sprite.png image, b) part of the CSS file
locating images, c) example of use.

sprite is shown in Fig.4.1a. In order to extract tiles from a sprite Cascading

Style Sheets (CSS) are employed in Fig.4.1b. Example code using the tiles in

the sprite is shown in Fig.4.1c.

To the best of the author’s knowledge the first reference to CSS-sprite pack-

ing appeared in [114] and it has been later popularized in [109]. CSS-sprite

packing rests in the area of web development practice rather than in the sphere

of scientific research. It seems quite common situation in web engineering, as

discussed in the introduction and, e.g. in [16, 86]. Contemporary CSS-sprite

generators pack all tiles into a single sprite, optimizing geometric area, if any-

thing. This indeed reduces the number of server interactions, but at the risk of

increasing file size, transmission time and slowing web page rendering. One of

the main ideas behind this research is to allow to pack website tiles into mul-

tiple sprites for optimization of loading time. CSS-sprite packing is a practical

problem with multiple facets involving image compression, complex distributed

system modeling, solving combinatorial optimization problems. These prob-

lems are tackled in the following sections. In the next section realities and the

challenges in sprite packing are discussed, then the CSS-sprite Packing Problem

(CSS-SPP) is formulated. Results of preliminary empirical studies conducted to

define the solution algorithm are presented in Section 4.3. In Section 4.4 current

techniques for packing sprites are outlined. A new method of sprite packing is

given in Section 4.5 and evaluated in Section 4.6. The last section is dedicated

to conclusions. The notation used throughout this chapter is summarized in

Table 4.1.

67

4.2 Practical Challenges and Problem

Formulation

Before formulating the CSS-sprite Packing Problem let us discuss our goals and

technical constraints. This analysis serves representing CSS-SPP as an opti-

mization problem. Given a set of images (tiles) in various file formats, the

intention is to combine them into a set of sprites for minimum browser down-

loading time. Factors determining the downloading time can be arranged into

groups of: (i) geometric packing, (ii) image compression, (iii) communication

performance. The three factors are tightly interrelated which will be shown in

the following discussion. There are certainly also other factors related to the

browser (e.g. rendering efficiency), server (e.g. cache performance), etc., but

constructing a comprehensive model of their works is beyond the scope of this

research and is taken into account only implicitly.

4.2.1 Geometric Challenges

One of the factors affecting sprite size(s) is geometric layout of the tiles. The

layout means here mutual alignment of the tiles on the plane is meant here.

It determines shape, size and location of empty spaces, and consequently, the

total number of pixels in the sprite. The total number of sprite pixels will be

called sprite area. Sprite area (in px) strongly correlates with the size (in bytes)

of the sprite converted to a file or a message. When optimizing sprite area it

can bee seen as a class of regular 2-dimensional packing problems because tiles

and sprites are rectangles. Rotation of images is not allowed. Though it is

technically possible to rotate images using CSS, tile rotation has not been used

in CSS-sprite packing so far for the lack of compatibility with older browsers.

The problem of optimizing a layout of 2-dimensional objects for minimum

space waste has been tackled very early in glass/paper/metal sheet cutting, in

packaging, factory-floor planning, VLSI design, etc. [6, 31, 48, 77, 99]. Need-

less to say that 2-dimensional cutting/packing problem is computationally hard

(precisely NP-hard). In practice, it is solved by heuristic algorithms. Unlike in

the above classic applications, in sprite packing one does not use any material

sheet which (i) should be conserved, (ii) would impose a bounding box. Hence,

it may seem that arbitrary tile layout is as good as any other. For example, the

sprite in Fig.4.2a has a lot of waste space not encoding any tile. It may be argued

that the layout in Fig.4.2a is as good as the layouts in Figs 4.2b,c because al-

gorithms used in image compression are capable of dealing with such waste, i.e.

with repeating equal pixels. In reality it is more complicated because various

68

tile 1

tile 1

tile 1

Waste space

Waste space

Waste space

tile 2 tile 2

tile 2

ti
le

 3

ti
le

 3

ti
le

 3

tile 6

tile 6

tile 6

tile 7

tile 7

tile 7

ti
le

 8

ti
le

 8
ti
le

 8

til
e
 4

til
e
 4

til
e
 4til

e
 5

til
e
 5

til
e
 5

Figure 4.2: Examples of CSS-sprite layouts. a) excessive waste space, b) vertical
layout, c) horizontal layout.

compression strategies used for this purpose have diverse efficiency. Encoding

equal pixels is not completely costless because the information about the pixels

must be stored to reconstruct them. Moreover, sprites must be decompressed to

a bitmap in the browser. Consequently, waste space drains memory. Excessive

memory usage affects browser performance. Hence, there are advantages in not

wasting space in the sprites.

Another geometric factor determining sprite area is its bounding box. It is

possible to restrict sizes in both, in one, or none of the dimensions. Accord-

ingly, three variants of 2-dimensional packing are distinguished [77]. In the

2-dimensional Bin Packing problem (2BP) both sizes of the box (the bin) are

fixed and it is required to minimize the number of used bins. The 2BP is fur-

thest from CSS-SPP because arbitrary bin sizes can be chosen and using many

bins due to size restrictions has no practical sense here. In the 2-dimensional

strip packing problem (2SP) the 2-dimensional objects are put on an infinite

strip with one dimension fixed: either the width or the height [6, 77, 99, 116].

This representation is more attractive because numerous algorithms proposed

for 2SP can be used. Moreover, there are two intuitive ways of defining the

fixed dimension of the strip: either as the width of the widest tile, or as the

height of the highest tile. The former case will be called vertical layout (see

Fig.4.2a,b). Similarly, the the latter option will called a horizontal layout (see

Fig.4.2c). In the rectangle packing problem (RP) the two dimensions are free to

69

change [56, 68, 70, 101]. It is required to find the smallest area bounding box

enclosing a set of rectangles. Rectangle packing seems to be closest to CSS-SPP.

A disadvantage is a smaller set of known algorithms for the RP problem.

The geometric challenges in sprite-packing can be summarized as follows:

• determining packing model (RP vs 2SP),

• determining bounding box, respectively, the strip fixed size,

• selecting packing algorithms,

• determining the assignment of tiles to sprites for good geometric packing.

4.2.2 Image Compression Properties

Image compression techniques and standards (GIF, PNG, JPEG) are essential

elements of this study. However, introducing computer graphics compression

technology is beyond the scope of this research. An interested reader is recom-

mended to begin with, e.g., [35, 62, 104, 121]. Let us note that images can be

delivered to a browser as data URIs inlined in HTML or CSS text documents

[91]. This scheme is out of scope of this research and requires an independent

study.

Methods of image compression introduce complex interactions impacting

sprite size. Combining tiles for the best image compression is computationally

hard in general. There are two examples given: Firstly, PNG and GIF image

formats permit indexed colors. When the number of image colors is limited a

color palette can be used. Then, for each pixel an index of a color in a palette

is recorded. The number of bits per pixel can be smaller than if the colors were

encoded independently for each pixel, while keeping color depth of the image.

Consequently, images sharing a palette of colors, when combined into a sprite,

can be stored with fewer bits per pixel. This requires determining the set of

images sharing an indexed palette. Assume that set T of tiles is given and a

subset T ′ ⊆ T which can share a palette of some fixed size l must be determined.

Determining maximum cardinality T ′ is NP-hard which will be shown in the

next Section 4.2.3. Secondly, compression algorithms in PNG and GIF formats

analyze images line by line. If two tiles aligned horizontally have the touching

border areas in the same colors then such pictures compress better than if the

colors were different. Aligning tiles for maximum length of constant color is

again NP-hard as it will be shown in Section 4.2.3. Since selecting and aligning

tiles for good graphical compression is computationally hard, we are bound to

heuristics choosing the set of tiles and constructing the layout.

70

Lossy JPEG compression adds another dimension of difficulty: When a

JPEG tile is supplied for sprite-packing, it must be converted to a bitmap, and

then may be stored in a JPEG sprite. Such a transformation will be called JPEG

repacking. Repacking and any other conversions into a JPEG file inevitably re-

duce image quality. The change may remain unnoticeable for a nonprofessional

user if the compression ratio is small, but a high compression ratio results in

various discernible artifacts. There are methods of artifact-free decompression

[18], but still cartoon-like smoothing or staircasing effects are problems remain-

ing to be solved. Chroma subsampling allows to reduce image size by lowering

chromatic resolution. Thus, it is easy to build a JPEG sprite of small size by

trimming image quality. However, it has two undesirable consequences: (i) It

is hard to determine acceptable lossy compression settings, e.g. a threshold of

compression ratio. (ii) Fair comparison of various software for sprite-packing

is challenging because in most cases settings of lossy image compression are

undocumented (cf. Section 4.4). Therefore, it is hard to assess whether small

sprite sizes of some sprite-packing software are obtained at the cost of image

quality, or by effectively exploiting opportunities for good geometric packing

or for compression without quality loss. In JPEG compression pixels of touch-

ing tiles influence each other which may distort pictures reconstructed from a

sprite. Some solution may be putting side by side tiles with similar pixels, which

again is computationally hard (as discussed above for PNG/GIF), and its ef-

fects are unpredictable. Aligning tiles to JPEG block sizes can be only a partial

solution because filling the blocks with some dummy pixels may result in the

so-called ringing artifacts and eliminating them is a research subject [44, 102]

and a current engineering challenge [38, 96].

Given some images, their sizes quite often can be further reduced by use of

compression optimizers. Here it means that the sprites can be further processed

for minimum size. This procedure will be called postprocessing. Compression

optimizers reduce image headers, remove metadata, and most importantly, ex-

periment with compression settings. For example, in JPEG there is a choice

between the baseline and the progressive compression, for the latter different

image divisions can be used. For PNG one of five filters can be applied to each

pixel row, which gives numerous possible combinations. Both formats use Huff-

man compression which is impacted by the choices of frame size and methods of

searching for repetitions (PNG 1.2 offers four). Some tools for PNG use LZMA

or Zopfli algorithms as alternatives to Huffman coding. Since the settings result-

ing in the smallest file are data-dependent and hence a priori unknown, various

compression arrangements are checked by brute-force or by some heuristic. This

is an extensively experimental area and its chicanery is partially described in

sources like [29, 30, 58, 59, 81, 110].

71

Choosing the bounding box or the width of a strip in the geometric packing

may limit chances of putting some tiles together. Thus, the geometric packing

implicitly affects image compression efficiency. Observe two consequences: (i)

Building many sprites may be profitable because some pictures do not combine

well and putting them in one sprite gives worse results than keeping them sep-

arated. (ii) Tile to sprite distribution has effect both on geometric packing and

on image compression. Hence, the two aspects are mutually related: It may

be profitable to use worse geometric packing for the benefit of better image

compression or vice versa. However, the overall effect cannot be predicted.

The difficulties resulting from unpredictability of geometric packing and im-

age compression can be overcome by trying many alternative solutions and

choosing the best one. This may take several forms: trying various geometric

packing methods (cf. Section 4.2.1), verifying alternative tile to sprite distribu-

tions, experimenting with different image compression settings. However, the

process of image compression is time-consuming and limits the number of com-

pression attempts that can be made. For example, it seems barely acceptable to

verify a few hundred alternative ways of packing and compressing the tiles, but

it would be far better if only a few dozens of such attempts were made. Further-

more, there are many fast algorithms for geometric tile packing [99], but it seems

impractical to verify all possible sprites resulting from such geometric packings

due to the computational complexity of image compression. Thus, there is a

trade-off between achievable sprite size and the time needed to construct it.

The main challenges related to image compression can be summed up as

follows:

• determining the assignment of tiles to sprites for good image compression,

• choosing satisfactory compression settings for each compression standard,

• finding satisfactory trade-off between sprite construction time and solution

quality.

4.2.3 Computational Complexity

Here complexity of two subproblems of the CSS-SPP will be analyzed. First Max

Pictures for Shared Palette problem and then Picture Alignment for Maximum

Length of Constant Color.

72

Max Pictures for Shared Palette.

Informally, the problem of the maximum set of pictures for a shared palette

consists in selecting as many pictures as possible from a given set such that their

colors are covered by the shared palette of a limited size. Here NP-completeness

of this problem will be shown.

Consider set I of n images. Image i has palette (i.e. set) of colors pi from

some spectrum U of size |U | = | ∪ni=1 pi|. Thus, a palette of size at most |U | is

needed to index all colors of I. Given is a limit l < |U | on the shared palette

size. The problem is formulated as follows:

Max Pictures for Shared Palette

Input: Set I of images with palettes p1, . . . , pn, shared palette size l, positive

integer m.

Question: Is there a subset I ′ ⊆ I such that | ∪i∈I′ pi| ≤ l, and |I ′| ≥ m, i.e. is

it possible to cover at least m pictures from I by palette of size l?

Theorem 1 Max Pictures for Shared Palette is NP-complete.

Proof. Max Set of Pictures for Shared Palette is in NP because NDTM can

guess set I ′ in time O(m) ≤ O(|I|), and verify whether |∪i∈I′pi| ≤ l in O(|I||U |)
time.

Next, it will be shown that Balanced Complete Bipartite Subgraph

(problem GT24 in [64]) polynomially transforms to our problem. The former

problem is defined as follows:

Balanced Complete Bipartite Subgraph (BCBS)

Input: Bipartite graph (V1, V2, E), where V1, V2 are disjoint sets of vertices, E

is set of the edges and positive integer k.

Question: Are there two disjoint sets X1 ⊆ V1, X2 ⊆ V2 such that |X1| = |X2| =
k and such that u ∈ X1, v ∈ X2 implies {u, v} ∈ E.

Thus, the question in BCBS asks for a biclique Kk,k. Let n(i) denote neighbors

of node i ∈ V1. In the transformation from BCBS to Max Pictures for Shared

Palette nodes of V1 correspond with the pictures of I and nodes in V2 with colors

in U . Thus, we have: |I| = |V1|, |U | = |V2|. Let’s assume palette p′i = V2 \ n(i)
consisting of colors not used by image i, i.e. palette p′i is a complement of the

neighbors in n(i). The question is if it is possible to cover m = k pictures with

a palette of size l = |V2| − k. The transformation can be done in polynomial

time O(|E|).
Suppose the answer to BCBS is positive and the required sets X1, X2 exist.

We construct set I ′ using pictures corresponding to the nodes of X1. The palette

p′ has colors in V2 \X2 and size l = |V2|−k. Note that picture i ∈ I ′ uses colors

73

in V2 \ n(i) and hence no colors from X2. Since ∀i ∈ X1, j ∈ X2, {i, j} ∈ E

the picture corresponding to i is using no colors from X2 and a palette of size

|V2| − k = l is sufficient to cover all pictures in I ′.
Suppose the answer to Max Pictures for Shared Palette is positive and set I ′

of m = k pictures covered by a palette of size l = |V2| − k exists. It means that

|V2| − l = k colors are not used by any picture in I ′ and have been eliminated

from the palette. Since picture i uses colors which are complement of n(i), the

instance of BCBS has an edge from each node corresponding to a picture in I ′

to each node corresponding to the colors absent from the palette. Hence, nodes

of X1 corresponding to I ′ and the nodes of X2 corresponding to unused colors

form biclique Kk,k and the answer to BCBS is positive. �

Picture Alignment.

The problem of picture alignment may be formulated as follows: given a set

of pictures align them horizontally for maximum overlap of colors on neighbor-

ing sides. Picture alignment problem has practical motivation. When packing

pictures into a CSS-sprite some pictures will be in direct horizontal contact,

i.e. their vertical edges touch each other. If a pair of neighboring pictures

have edges of different colors then more data is stored to encode the different

neighboring colors, than if the colors were the same. The best alignment of

the pictures minimizes the number of color changes. It will be shown here that

picture alignment problem is NP-complete.

More formally picture alignment problem may be formulated as follows.

Given is set I of n rectangular images. For the sake of conciseness picture

features and graphical compression are very simple. Only pixels on the vertical

sides of a picture matter for packing efficiency. Therefore, picture i is defined by

the sequence of pixel colors li on the left side and the sequence of pixel colors ri
on the right side as if the pictures were 2 pixels wide. Both li and ri are arrays,

and color of x-th pixel, e.g., in li can be referred to as li[x]. We assume that all

pictures have the same height. If ri[y] = lj [y], i.e. y-th right-edge pixel of some

picture y has the same color as the y-th left-edge pixel of picture j, then the

cost of encoding the pair is 1. Otherwise, ri[y] 6= lj [y] and the cost of encoding

them is equal 2.

Picture Alignment

Input: Set I of n images of width 2 and height k with pixels li, ri, for i =

1, . . . , n, on the left and the right side respectively, positive integer f .

Question: Is there a sequence of images such that their cost of packing is not

greater than f?

74

edges

edge
{1,i}

... ...

1 1 1

1

k=n

i

li ri

r [i]=1il [i]=1i

n

identifying
nodes

Figure 4.3: Pictures in the picture alignment problem

Theorem 2 Picture alignment is NP-complete.

Proof. The problem is in NP because NDTM can guess the sequence of length

n and calculate the cost of packing in time O(nk). Next, we give polynomial

time transformation from Hamiltionian Path problem [47, 64]:

Hamiltonian Path (HP)

Input: Graph (V,E), where V is the set of vertices, E is the set of edges.

Question: Is there a Hamiltonian path in G, i.e. a path visiting each node of G

once?

In the transformation nodes of HP correspond with pictures. We will use three

colors: 0, 1, 2. The set of the right pixels ri serves for identifying nodes. Hence,

|I| = n = |V |, k = n, ri[i] = 1,∀j 6= i, ri[j] = 2, for pictures i = 1, . . . , n. Colors

in li make for edges, ∀{i, j} ∈ E, lj [i] = 1 and otherwise lj [i] = 0 (cf. Fig.4.3).

The question is whether it is possible to pack the pictures in I with the cost not

greater than f = (n − 1)(2k − 1). If {i, j} ∈ E then pictures i aligned on the

left of j have one neighboring equal pixel and cost of packing j after i is 2k− 1.

Otherwise {i, j} 6∈ E and all k pixels are different and the cost of packing j after

i is 2k.

If a Hamiltionian path exists in HP, then the sequence of pictures correspond-

ing to the sequence of G nodes is used. The cost of packing is f = (n−1)(2k−1).
If a packing of cost not greater than (n − 1)(2k − 1) exists then it means that

the number of different colors in each aligned pair is k − 1 because it is not

75

possible to have a smaller difference. This means that between each pair of

nodes corresponding to the pair of pictures in the sequence there is an edge in

G. Hence, Hamiltonian path also exists. �

4.2.4 Communication Performance

Since quality of a set of sprites should be measured as the downloading time,

sprite(s) can be constructed to take advantage of communication channel char-

acteristics. For example, a large constant delay in communication time encour-

ages packing tiles in one sprite. Hence, the primary rule of web performance

optimization has always been to minimize the number of HTTP requests. Still,

if parallel communication is possible, then it may be advantageous to construct

a few sprites and send them in parallel [112]. As mentioned above, in the

ideal case downloading time measures sprite(s) quality. However, a number of

circumstances make it close to impossible. Let us consider limitations to the

perception of communication performance. Downloading time is determined

by a chain of components: the browser, network communication stacks, net-

work devices on the path from the client to the server, web-server queuing and

buffering. A variety of browser, communication, server platforms exist which

deal with messages in various ways. All these components are shared by activ-

ities with unknown arrival times and durations. Diverse scheduling strategies

are used to dispatch them. Consequently, communication time is unpredictable

and nondeterministic, which materializes in dispersion of performance parame-

ters (see Section 4.3.2). It is not possible to use detailed methods of packet-level

simulation to calculate sprite transfer time because such methods are too time-

consuming to be called hundreds of times in the optimization process. Hence,

in evaluating quality of a set of sprites it must be relied on performance models,

such as flow models [117], preferably an easy to calculate formula, representing

typical tendencies which can be reasonably traced. Thus, occurs a dilemma

how to represent essential determinants of the transfer time in the tractable

way. Our approach is detailed in the following.

Given a set of sprites sizes, three communication channel performance ele-

ments are considered to estimate transfer time: (i) communication latency, (ii)

available bandwidth, (iii) the number of concurrent communication channels.

It is assumed that one sprite is transferred over one communication channel

but the this abstracts away from the specific packet exchanges. Communication

latency (startup time) L is the constant overhead emerging in a sprite transfer

time. Bandwidth B(1) (e.g. in bytes per second) is the speed of transferring

data between the web-server and the browser using one communication chan-

nel. Thus, according to this model, transferring x bytes of data over one channel

76

takes L+x/B(1) seconds. Note that in this representation L implicitly covers all

constant overheads, both in the communication channel and in the web-server.

Similarly, bandwidth accounts for the speed of the communication channel and

the server. Consequently, this network performance model encompasses all com-

munication layers from the physical to the application layer. Browsers allow for

opening a few concurrent communication channels to the web-server (cf. Sec-

tion 4.3.2). This opens an opportunity to transfer sprites in parallel. It is

assumed that one channel may transfer several sprites sequentially. The perfor-

mance for parallel communications is ruled by sequencing them in the browser,

packet scheduling in the network, sharing the communication path and band-

width with other communications and with network protocols signaling. Hence,

the total bandwidth is not increasing linearly with the number of used channels.

Instead it is assumed that the total bandwidth B(c) is a function of the number

of simultaneously open channels c. Then, a single channel bandwidth share is

B(c)/c. A vector of aggregate bandwidths for different numbers of channels will

be denote by B = [B(1), . . . , B(cmax)] Suppose that size of sprite i is fi, for

i = 1, . . . ,m. The time of transferring the set of sprites S over c concurrent

channels is modeled by the formula:

T (S, c) = max

{
1

c

m∑
i=1

(L+
fi

B(c)/c
),

m
max
i=1
{L+

fi
B(c)/c

)}

}
. (4.1)

In the above formula L + fi/(B(c)/c) is communication time of sprite i trans-

ferred via one of c channels. The first part of (4.1) is total communication time

shared fairly over c channels. The second part is a duration of the single longest

communication. Formula (4.1) represents communications like preemptive tasks

scheduled on a set of c parallel processors in the scheduling theory [92]. Clearly

formula (4.1) is an approximation. A simple communication time is assumed

model because, as discussed above, the actual scheduling of communications is

unknown. More detailed models of the transfer time (e.g. accepting certain

sequencing of sprites in channels) are not justified without further disputable

assumptions. An advantage of formula (4.1) is that it can be easily calculated

in O(m) time from sprite sizes without a need for more complex algorithms or

simulations. Note that increasing the number of sprites m means increasing the

number of HTTP requests. This is represented by mL in the first part of for-

mula (4.1). Thus, (4.1) takes into account the trade-off between the opportunity

of transfer time reduction by parallel communication and the cost of issuing an

HTTP request for each sprite. Usually B(c) is a nondecreasing sublinear func-

tion (see Section 4.3.2). Consequently, B(c)/c is nonincreasing and (4.1) has

maximum in one of two trivial cases c = 1 or c = cmax. Hence, to encourage

77

Symbol Definition

B(c) accumulated bandwidth of c concurrent communication channels
B vector [B(1), . . . , B(cmax)]
c number of concurrent communication channels
cmax maximum admissible number of concurrent communication chan-

nels
fi size of sprite i in bytes
k number of intermediate tile groups (cf. Section 4.5.2)
L communication latency (startup time)
m number of sprites
n number of tiles
S set of sprites
T set of tiles
T (S, c) communication time as a function of the set of sprites S and num-

ber of used communication channels c

Table 4.1: Summary of notation for the CSS-sprite Packing Problem.

applying a mild number of parallel communication function

T (S) =
cmax

min
c=1
{T (S, c)} (4.2)

will be used as the objective function evaluating quality of a set of sprites. It is

not taken for granted that any aspect of the problem dominates download time,

but by optimizing (4.2) a balance between the number of sprites, their sizes,

overheads, and parallelism is stroken. However, certain optimization versions

may be handled as special cases of (4.2). For L = 0, B(c) = 1, cmax = 1 total

size of transferred data is minimized. Similarly, for L =∞, B(c) = 1, cmax = 1

the number of communications is minimized, i.e. one sprite will be created.

For the end of this discussion let us note that communication performance

has a ”demographic” aspect. The website performance perceived by its user is

impacted not only by the server, but also by factors on the user side such as

the ”last mile”, the browser, the computer platform. Moreover, not one user

visits the website but many and each of them can be different. Hence, there is a

population of visitors and population of performance indicators. Members of the

population create a specific profile of loading the server with communications.

Thus, each website is unique with respect to its users population. In order to

take the full advantage of performance optimization, parameters L,B should

be measured on the actual web site and its viewers population. Section 4.3.2

demonstrates how this can be done in practice.

78

4.2.5 Problem Formulation

Let’s summarize the introductory discussion by formulating CSS-sprite Pack-

ing Problem (CSS-SPP). Given is set T = {T1, . . . , Tn} of n tiles (images in

standard image formats such as JPEG, PNG, GIF), communication link with

latency L and bandwidths vector B of length cmax. Construct a set of sprites

S such that objective function T (S) as defined in (4.2) is minimum. Rotation

of tiles is not allowed. Each tile is comprised in only one sprite. Each sprite is

transferred in one communication channel.

Let’s summarize possible advantages and costs implied by the above problem

formulation. By using objective function (4.2) user-side performance perception

is assumed. Applying more than one sprite allows to build better sprites and

thus save on the total transferred data size and memory usage in browsers. Em-

ploying many sprites offers faster downloading by parallelizing communication

at the cost of establishing many connections on the server. The interplay of

communication performance and the sprite(s) determines efficiency of the so-

lution. Hence, sprite construction is guided by the actual data: n,B,L, tiles

sizes and features. The number of sprites in the solution is not predetermined.

Depending on the actual set of tiles and the performance data it may be a sin-

gle or a few sprites. As observed in the previous section, a single sprite will

be constructed if additional latencies outweigh benefits of parallel connections.

It is also justified to consider separating significantly different classes of user

browsers (e.g. mobile vs wired) and constructing different sprite(s) for each

user class.

4.3 Preliminary Tests

As discussed in the previous section, a number of decisions must be made in

designing a sprite-packing solution. This section reports on the impact of layout

choice on the efficiency of the image compression and also presents results of

network communication performance evaluation.

4.3.1 Packing Model

An aspect ratio of an image is the ratio of its vertical and horizontal sizes.

Vertical and horizontal layouts may be considered the border cases of possible

aspect ratios in this sense that one sprite dimension is fixed to a minimum. As

noted in Section 4.2.2 the sprite aspect ratio may influence the efficiency of image

compression. In order to examine the extent of such relationship, an experiment

has been conducted. 36 sets of 36 rectangular tiles representing web icons,

79

a)
0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

ships blue blue2 blobs2 tanchaos blobs game autumn2

R
e

la
ti

v
e

sp

ri
te

fi

le

si
ze

Benchmark and aspect ratios

b)
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

mac2 gloss checker smallicons maccol tiny tango flags

R
e

la
ti

v
v
e

 s
p

ri
te

 f
il

e
 s

iz
e

Benchmark and aspect ratios

Figure 4.4: Instances with preference for a) vertical layout (xy = 1
36) b) hori-

zontal layout (xy = 36
1).

80

0.985

0.990

0.995

1.000

onebit shot jewel shot2 autumn

R
e

la
ti

v
e

sp

ri
te

fi

le

si
ze

Benchmarks and aspect ratios

Figure 4.5: Instances without strong preference for any aspect ratio.

buttons and similar elements were collected from websites offering stock images.

The sets had various colors, backgrounds, visual styles and sizes. In addition to

sets with images coming from a single origin and hence with similar visual style,

sets comprising images from different sources, distorted images and blank tiles

to simulate wasted space were tested. Since in each test set tile sizes were equal,

it was possible to pack them without real waste. The only waste was introduced

intentionally in the test by using blank tiles. For 36 rectangles 9 aspect ratios

were tested which conventionally represent the size of a sprite as a tile array in

tile units. Thus, aspects (xy): 1
36 (a vertical layout), 2

18 ,
3
12 ,

4
9 ,

6
6 ,

9
4 ,

12
3 ,

18
2 ,

36
1 (a

horizontal layout) have been examined. Since the mutual arrangement of the

tiles may alter results of image compression, 200 random permutations of tiles

were generated for each aspect ratio. Image manipulations were performed with

GD Graphics library [17]. For PNG compression png all filters setting was

selected which means that in the construction of the compressed image scanline

all compression filters were tried and the most effective compression filter was

applied. Images were compressed with the strongest level 9 of deflate method.

Results of the experiments with PNG images are shown in Fig.4.4-4.5. On

the horizontal axis different data sets are presented, and for each data set aspect

ratios are shown from 1
36 to 36

1 . Along the vertical axis sizes of sprite files in

relation to the size of the biggest sprite created for the given test set are given.

The results from 200 permutations are shown as boxplots with minimum, first

quartile (Q1), third quartile (Q3), and maximum. Note that Fig.4.4-4.5 have

81

different ranges on the vertical axes. For clarity of presentation only a subset

of results is shown. It can be verified in Fig.4.4-4.5 that the data sets can

be divided into three groups: with a preference for vertical layout (Fig.4.4a),

with a preference for horizontal layout (Fig.4.4b), and data sets without any

apparent preference for the aspect ratio (Fig.4.5). A preference means here that

certain aspect ratio results in the smallest sprite sizes. Out of 36 data sets 17

had preference for horizontal layout, 14 for vertical layout, and 5 demonstrated

no aspect preference. In the instances with preference of the layout the sprite

sizes could be reduced by 2% to 35% from the worst to the best aspect ratio

(Fig.4.4a,b). In the case of no correlation of file size with the aspect ratio, sprite

file sizes could be reduced by less than 1.5% by selecting the aspect ratio. The

above results give a strong argument that in case of PNG images it is justified

to focus the examination of the geometric packing models on strip packing with

vertical and horizontal layouts. Moreover, for the preferred aspect ratios the

impact of tile permutations was always within 2%. It can be concluded that the

neighborhood of the tiles has a relatively small impact on the sprite size and,

e.g., the CSS-SSP algorithm does not need to examine swapping the same-sized

tiles between their locations.

In the case of JPEG image format no similar preference has been observed.

However, size of the output sprite was strongly correlated with the sprite area

(number of pixels). Therefore, in the case of JPEG images it is advisable to

eliminate unnecessary waste space.

4.3.2 Communication Performance

In this section it is demonstrated that performance parameters L,B introduced

in Section 4.2.4 can be obtained in practice. Before proceeding to the results let

us explain why using existing performance studies is problematic. As explained

in Section 4.2.4 communication performance parameters should be measured

on the particular web server and its user population. Consequently, latency

and bandwidth results which could be obtined using tools like [124] are not

adequate here becasue the sprites would be optimized not for the population of

real users but for the benchmarking infrastructure. To the best of the auhthor’s

knowledge data on bandwidth scalability, here expressed in vector B, is not

available in the open sources. The number of per-domain parallel connections a

browser may open is well studied [111], but it does not translate directly to the

number of parallel channels cmax and bandwidth scalability in B because these

are determined by the server, user platform, and the ”last mile”.

82

a)
1E+00

1E+01

1E+02

1E+03

1E+04

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
o

.
o

f
u

se
rs

Latency L [ms]

mode 312 ms

median 352 ms

mean 531 ms

6 ms

148036 ms

43876

min

max

No. of points

b)

0

100

200

300

400

500

600

700

800

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

3
0

0
0

3
2

0
0

3
4

0
0

3
6

0
0

3
8

0
0

4
0

0
0

N
o

.
o

f
u

se
rs

Speed B(1) [kB/s]

mode 110 kB/s

median 464 kB/s

mean 811 kB/s

min 2 kB/s

max 333 MB/s

No. of points 26968

Figure 4.6: Experimental verification of network performance: a) latency dis-
tribution (logarithmic vertical axis), b) user download speed distribution.

83

Number of channels ≥2 ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 ≥9

Accumulated frequency 100% 81% 68% 65% 61% 57% 12% 6%

Table 4.2: Distribution of browser parallel channel number limit.

Network performance observed by browsers has been tested experimentally.

In order to estimate latencies and available bandwidth of user browsers a script

downloading files of size 1B and 1MB has been installed on a web page ranking

popularity of other web pages. The test page is linked to from over 700 other

websites using hyperlinks which users may click manually. The variety of linking

websites guarantees that the population of visitors is not too uniform. By

viewing this web page the visitors executed the scripts in their browsers and

downloaded the two files using their specific browsers and Internet connections.

Since the scripts were appended to a ”production” page, the it was possible to

gather real viewers traffic with their specific network performance features. The

times of downloading the two files were collected. According to formula (4.1)

transferring x bytes of data without using parallel channels takes L + x/B(1)

units of time. Time t1 of downloading 1B file is dominated by communication

latency L. Hence, t1 as an estimate of L is used. Time t2 of downloading 1MB

file has a significant component related to bandwidth. The speed is calculated

as B(1) =1MB/(t2 − t1). Measurements with t2 ≤ t1 were rejected. In total,

measurements from 17460 unique IP addresses were collected. Time t1 was

measured 43876 times, 26968 measurements with t2 > t1 were collected, 277

measurements with t2 ≤ t1 were rejected.

Results of latency measurement are shown in Fig.4.6a. It can be seen that

latency distribution has a long tail, but majority of the observations are concen-

trated around mean, median and the average value. Over 2/3 observations are

concentrated in range [200ms,500ms]. It can be concluded that performance op-

timization should focus on typical values of the latency. Distribution of speeds

is shown in Fig.4.6b. Also speed distribution has a long tail, but over 76%

of registered speeds are in range [100kB/s,2MB/s]. The histogram in Fig.4.6b

demonstrates that measurements aggregate around particular speeds (in bits/s):

1Mb/s, 2Mb/s, 4Mb/s, 6Mb/s. The number of clients with speeds greater than

6Mb/s (≈750kB/s) quickly decreases with increasing speed. Therefore, it may

be advisable to divide users into classes and optimize performance for a partic-

ular speed representing a given user class. Such classes could be established by

ranges of IP addresses assigned by Internet service providers to client connec-

tion type classes, or by separating mobile device browsers or by clustering users

according to their connection performance. This, however, is beyond the scope

of this study.

84

0

1

2

3

4

5

6

0 1 2 3 4 5 6

B
(c
)/
B
(1
)

B(3)/B(1)

B(5)/B(1)

B(7)/B(1)

B(9)/B(1)

Figure 4.7: Speedups B(c)/B(1) vs B(3)/B(1) in using parallel channels.

Speedups B(3)
B(1)

B(5)
B(1)

B(7)
B(1)

B(9)
B(1)

Medians 1.36 1.56 1.66 1.77
SIQR 0.39 0.60 0.61 0.68

Table 4.3: Synthetic results of parallel channel experiment.

In order to evaluate opportunities for parallel communication a very similar

script downloading 1MB of data over c = 1, 3, 5, 7, 9 channels has been designed.

For example, for c = 3 three files of size 1/3MB have been downloaded by a

browser executing the script. The downloading time of the last of the files t(3)

has been recorded to calculate bandwidth as B(3) =1MB/t(3). 370 measure-

ments from 276 unique IPs have been collected. Different types of browsers are

opening various numbers of parallel connections. Hence, the first capability of

the user infrastructure in parallel communication has been verified first. The

number of communication channels which can be effectively simultaneously open

has been determined as the number of communications overlapping in time. If

a of communications were performed at least partially in parallel, while the

(a + 1)-th communication was executed after one of the earlier a communica-

tions, then a was recorded as the number of available channels. In Table 4.2

cumulated fraction of browsers capable of using at least some number of parallel

channels is shown. It can be verified in Table 4.2 that all browsers are using

85

at least two parallel channels, in roughly 80% three channels can be used, but

only 12% are using 8, 9 or more. Hence, not in all browsers can any speedup

in communication be observed if, e.g., 8 concurrent downloads are started. To

compensate for the differences in user bandwidths B(1), in the further discussion

bandwidth speedup B(c)/B(1) obtained by using c parallel communications is

considered. For the sake of giving the reader a rough impression of the obtained

results Fig.4.7 shows speedups B(c)/B(1) as sets of points. On the horizontal

axis speedup B(3)/B(1) is shown, along the vertical axis speedups B(c)/B(1)

for c = 5, 7, 9 are shown. It can be seen that: i) indeed there is some acceleration

of communication by use of parallel channels because most of the observations

are located above a diagonal line, ii) the acceleration has a great deal of dis-

persion, iii) the results form one cluster, iv) there are cases for which no gain

(no speedup) has been observed. In roughly 19% of measurements parallel com-

munication resulted in longer communication time. In Table 4.3 the results are

presented in a more synthetic form. Speedups B(c)/B(1) obtained in parallel

communications are reported. The first line presents medians of the speedups.

The second line provides SIQR (semi-interquartile range) as an index of disper-

sion. A moderate speedup increasing with the number of open channels c can

be seen. Clearly, the speedups are sub-linear.

4.4 State of the Art

Initially CSS-sprites were constructed manually [109]. Here only tools for an

automatic CSS-sprite packing are considered. Since there are many software

solutions with little differing names, they will be identified by web addresses

and in some cases their own short names. The index of names and addresses is

given in Table 4.4.

There are three groups of CSS-sprite generators which have been excluded

from further study and evaluation (cf. Table 4.4 and Table 4.6). Firstly, there is

a group of tools bound to web pages developed in a specific technology stack and

software framework. These tools were created with the intention of generating

sprites applicable only in certain technology ecosystem and not as independent

files for external use. Applications in this set are marked as group A in Table 4.4.

Secondly, there is a set of applications which could not be included in the further

study because the it was not possible to use them. Such cases are mentioned

in Table 4.4. The specific situations which were encountered were: failure to

work after installation (group B in Table 4.4), dead web applications giving no

results (C), sprites with overlapping tiles (D).

86

Reason Web address

A. bound to websites
created in certain
technology stack and
framework

aspnet.codeplex.com/releases/view/65787
compass-style.org/reference/compass/
helpers/sprites/
contao.org/en/extension-list/view/
cssspritegen.en.html
docs.typo3.org/TYPO3/SkinningReference/
BackendCssApi/SpriteGeneration
drupal.org/project/sprites
github.com/northpoint/SpeedySprite
github.com/shwoodard/active_assets
requestreduce.org
spriterightapp.com

B. failed to install and
work properly

search.cpan.org/perldoc?CSS::SpriteMaker
yostudios.github.io/Spritemapper/

C. online with dead
website or scripts

css-sprit.es
spritifycss.co.uk

D. produce results
with overlapping tiles

mobinodo.com/spritemasterweb
spritepad.wearekiss.com
timc.idv.tw/canvas-css-sprites/en/

Table 4.4: Excluded CSS-sprite generators.

Further applications are listed in Table 4.6 and Table 4.7. In the third col-

umn of the tables (application type) the way of using a generator is described.

CSS-sprite generators are usually used in two ways: as an online or as a com-

mandline application. In both cases tiles and sprites are files. A few exceptions

exist. SpriteMe and mod ps read web page background images and convert

them into sprites. Moreover, mod ps is an Apache server module and does it in

web pages it serves. IHLabs and selaux are scripts without commandline sup-

port, parameters (e.g. input images) are set by code modification. Applications

using script languages (e.g. Ruby or Python) often require additional packages,

sometimes quite hard to install. The set of user options for the output sprite

is described in the fourth column. PNG denotes a 32bpp truecolor PNG image

with transparency. PNG8 is an 8bpp PNG image with or without transparency.

It can be observed that the set of output formats is usually limited and if there

is any option, then the responsibility rests on the user to choose reasonable

settings. Some applications admit using postprocessing to further reduce the

sprites. However, such post-optimization cannot undo bad decisions made ear-

lier. Hence, there is a need for some decision support in selecting minimum color

depths and in optimizing output format. In Table 4.6 CSS-sprite generators are

listed which align tiles in a single column or row. A drawback of these applica-

tions is that they construct sprites of very big dimensions if the number of tiles

87

Short
Name

cf.
Tab.

Web address

aberant

4.6

github.com/aberant/css-spriter
cbrewer codebrewery.blogspot.com/2011/01/cssspriter.html
cssscom csssprites.com
csssorg csssprites.org
elentok github.com/elentok/sprites-gen
fsgen freespritegenerator.com
IHLabs github.com/IndyHallLabs/css-sprite-generator
insts instantsprite.com
JWwsg github.com/jakobwesthoff/web-sprite-generator
perforgsg spritegen.website-performance.org
mod ps developers.google.com/speed/pagespeed/module/

filter-image-sprite
selaux github.com/selaux/node-sprite-generator
spriteme spriteme.org

acoderin

4.7

acoderinsights.ro/sprite/
cdplxsg spritegenerator.codeplex.com
codepen codepen.io/JFarrow/full/scxKd
csgencom css.spritegen.com
csssnet cssspritesgenerator.net
glue glue.readthedocs.org/
isaccc codeproject.com/Articles/140251/

Image-Sprites-and-CSS-Classes-Creator
JSGsf github.com/jakesgordon/sprite-factory/
pypack jwezorek.com/2013/01/sprite-packing-in-python/
txturepk codeandweb.com/texturepacker
simpreal simpreal.org.ua/csssprites/
shoebox renderhjs.net/shoebox/
spcanvas cssspritegenerator.net/canvas
stitches draeton.github.io/stitches/
sstool leshylabs.com/apps/sstool/
zerocom zerosprites.com

Table 4.5: Index to the CSS-sprite packing solutions.

88

Short
Name

last up-
date

application type output options 2D packing mode

aberantT
Mar 24,
2011

commandline multi-
platform (Ruby)

PNG One row

elentokT
Nov 5,
2011

commandline multi-
platform (Python)

PNG, JPEG One row

fsgen unknown online PNG One column

spriteme1T2
Aug 29,
2014

Bookmarklet. Ana-
lyzes a web page

PNG, color mode One column

cbrewer
Jan 2,
2011

windows executable PNG, JPEG One column

IHLabsC
Aug 22,
2008

code to modify and
run (PHP)

PNG, JPEG, GIF One column

cssscom
unknown online, single file

upload
PNG, no opacity One column or row

with padding

csssorgTC3
Feb 14,
2014

commandline multi-
platform (JAVA)

PNG, automatic
color depth

One column or row
with padding

instsT
Oct 30,
2014

online PNG, GIF One column or row
with padding

perforgsg4
Jan 22,
2010

online, upload of zip
file (filename bugs)

PNG, JPEG, GIF,
number of colors
and loss rate

Columns or rows
with padding

mod ps1 J
Aug 28,
2014

Apache module PNG, GIF One column

JWwsgC
Mar 27,
2010

commandline multi-
platform (PHP)

PNG Multiple rows with
pictures of similar
colors

selaux
Aug 12,
2014

code to modify and
run (JavaScript)

PNG One column, row
or diagonal line

TOffers tile test sets. COffers CSS test sets. JDoes not read JPEGs.
1 Accepts only background PNG and GIF images from a web page.
2 Simple decision support based on predefined rules.
3 Reads images from CSS file, requires manual annotation of the files.
4 Possible postprocess: OptiPNG.

Table 4.6: Solutions not using 2-dimensional packing algorithms.

89

Short
Name

Last Update Application Type Output
Options

2D-Packing Method

csssnet5 2014 online PNG Unknown

codepen6
? online PNG Unknown. Choice of:

tile sorting, sprite di-
mensions.

glue
? commandline multi-

platform (Python)
PNG,
PNG8

Implementation of [52].

zerocomT7
May 8, 2014 online PNG,

PNG8
Tries [69] for 20 sec-
onds. If instance is
large then uses [26].

pypack
Jan 6, 2013 commandline multi-

platform (Python)
PNG Extension of [52].

JSGsfC8
Aug 08, 2014 commandline multi-

platform (Ruby)
PNG Can be forced to use

implementation of [52].

acoderinG9
Jan 22, 2010 online, upload of zip

file
PNG,
JPEG

Some variation of guil-
lotine split heuristic.

csgencom10
May 2014 online PNG,

JPEG,
GIF, loss
rate

Unknown.

cdplxsg11 Sep 10, 2010 windows executable PNG Implementation of [53].

txturepk12
Oct 27, 2014 GUI for Windows,

MacOs, Linux
PNG,
and many
other
formats

Best result of the
heuristics: MaxRects,
ShortSideFit, LongSid-
eFit, AreaFit, Bottom-
Left, ContactPoint.

stitchesT13 May 4, 2013 online PNG Unknown.
sstool14 May 29, 2014 online PNG Unknown local search.

isacccG
Feb 17, 2013 windows command

line
PNG ArevaloRectanglePacker

[100].

simpreal15
Feb 25, 2013 online PNG,

JPEG,
GIF,
BMP,
Base64

Many options: heuris-
tics, column or row
mode, groups of im-
ages, tile sorting.

spcanvas16 ? online PNG Implementation of [68].

shoebox
2014 GUI, multiplatform

(Adobe Air)
PNG Unknown.

TOffers tile test sets. COffers CSS test sets. GDoes not read GIFs.
5 Forces padding. Fails on spaces in the input filenames, and files larger than 30kB.
6 Not fitting tiles are discarded without warning.
7 Filename limitations. Postprocess: PngOpt. High computational complexity.
8 Failed to work with rmagick package, but works with chunkypng instead. Possible post-

process: pngcrush.
9 Creates more than one sprite if bounding box exceeds 1200px×1200px. Hangs on duplicate

filenames with different extensions. Allows repacking tiles in sprites given as input.
10 Crashes on ≥ 73 tiles.
11 Fails on spaces in the filenames and duplicate filenames.
12 Possible postprocess: PngOpt.
13 2D-packing places pictures instantly, but unexpectedly continues computations for some

more time.
14 Optimization feature randomly repacks sprite. High computational complexity.
15 Rich interface with many options. Hard to use.
16 Bounding box can be resized, which sometimes leads to tile overlapping.

Table 4.7: Solutions using some 2-dimensional packing algorithms.

90

is big and with a lot of wasted space if the tile aspect ratios differ. As a result,

sprites built by such applications are not comparable with the sprites obtained

by using some geometric packing algorithm. Therefore, they are considered not

suitable for real-life industrial use. This is the third set of applications excluded

from further comparisons.

Applications using some geometric packing algorithms are listed in Table 4.7.

In a few lucky cases the applied 2-dimensional packing algorithms were identified

in the provided software documentation. Algorithm [52] is commonly used be-

cause its implementation is openly available. As geometric packing is NP-hard

most of the applications use some simple greedy heuristics.

To the best of the author’s knowledge all existing sprite generators build a

single output sprite. No solution automatically evaluates options for distribut-

ing the tiles into several sprites for better matching tile types and to optimize

communication time. Only one solution uses a set of rules to optimize image

color depths and compression settings.

4.5 Spritepack

This section presents Spritepack, a method for sprite construction. Given set of

sprites T , communication parameters L,B Spritepack progresses in four steps:

i) tile classification, ii) geometric packing, iii) packing with image compression,

iv) postprocessing. Spritepack has been implemented in C++ using MS Visual

Studio 12 and Magick++ API to ImageMagick.

4.5.1 Tile Classification

With the goal of grouping tiles with similar sets of colors and to retain as low
color depth in sprites as possible, input tiles are first classified according to their
color depth. The following image classes have been distinguished:

1. 8 bit per pixel (bpp) indexed color PNG without transparency (denoted
as PNG8i),

2. 8 bpp indexed color PNG with transparency (PNG8it),

3. 8 bpp gray-scale PNG without transparency (PNG8g),

4. 8 bpp gray-scale PNG with transparency (PNG8gt),

5. 24 bpp truecolor PNG without transparency (PNG24),

6. 32 bpp truecolor PNG with transparency (PNG32t),

7. JPEG images (jpeg).

91

Each tile is included in the class with minimum color depth greater than or

equal to the original tile color depth. Since the original image information may

specify higher depth than actually existing, images may be attributed to wrong

classes. To avoid such a situation each input tile were converted to minimum

necessary color depth PNG image using Magick++ and saved on file. Only then

was the tile re-opened and assigned to the appropriate class. Similar procedure

was applied to JPEG images. If the JPEG image converted to PNG had smaller

size, then the PNG version was used in the further manipulations. Images with

1,2,4 bits per pixel are currently relatively rare, and therefore are included in

PNG8i, or PNG8it. For similar reasons PNG tiles with 16 bits per color channel

were not considered. All GIF images were converted to PNG8i or PNG8it which

sometimes reduces image size [115].

4.5.2 Geometric Packing

The goals of geometric only packing are twofold. The first objective is to iden-

tify tiles which have similar sizes and can be put together in one sprite with

little waste. It should also filter out tiles with odd shapes which should not

be combined into a sprite to avoid excessive waste. The second purpose is

reducing Spritepack runtime. As noted in Section 4.2.2 image compression is

time-consuming, and full evaluation of each intermediate sprite would take too

much time. Hence, geometric packing is a form of fast proxy to the full version

of the algorithm, or a preprocessing step reducing the number of sprite candi-

dates for complete evaluation. The algorithms for geometric packing operate

on tile bounding boxes, that is on rectangles, rather than on bitmaps. A group

will understood here a set of tentatively assembled tiles. The procedure for

geometric packing is given in the following pseudocode.

Geometric Packing

input: set T of tiles
1: Create a group for each input tile;

2: while number of groups is bigger than k

2.1: bp1, bp2 ← nil; bw ←∞; // create an empty group pair with waste bw

2.2: for all unevaluated group pairs g1, g2 with equal image classes

2.2.1: join g1, g2 into a new group g3;

2.2.2: apply to g3 all geometric packing strategies;

record the packing with minimum geometric waste w3;

2.2.3: if w3 < bw then bp1 ← g1, bp2 ← g2, bw ← w3;

2.3: endfor;

92

2.4: create a new group from bp1 ∪ bp2, remove bp1, bp2,

reduce number of groups by 1;

3: endwhile

Geometric packing is a one-pass method merging in each iteration the best

pair of groups. Note that in geometric packing only tiles of the same class may

be merged (step 2.2). In this way premature upgrading tiles to higher color

depths is avoided. Thus, dealing with the uncertainties of image compression

efficiency is delayed to the next step of Spritepack. The above procedure finishes

with k groups of tiles. Value of k is a control parameter of Spritepack. Yet,

limits on k exist. On the one hand, k cannot be greater than the number of

tiles, which is important for small sets T . On the other hand, k cannot be

smaller than the number of tile classes identified in set T plus 2. The offset of

two groups has been established experimentally. Without such a margin all tiles

from a given class end up in one group. Consequently, very different tile shapes

are combined, thus invalidating the first purpose of the geometric packing step.

Performance of Spritepack under various k settings is discussed in Section 4.6.

Geometric packing is a simple hyperheuristic [23] because it guides a set of low-

level heuristics referred to as geometric packing strategies in step 2.2.2. The

strategies involve packing model and packing algorithm. Two packing models

are possible: 2-dimensional strip packing (2SP) and rectangle packing (RP).

The 2SP comes in two flavors of either horizontal or vertical layout. Since

geometric phase may involve hundreds of tiles and packing algorithms may be

called hundreds of times and more, therefore only fast heuristics are acceptable

here. Packing algorithms are dedicated to each type of packing model. For 2SP

the following low-level heuristics are available:

• First-Fit Decreasing Height (dhFF, computational complexityO(n log n)),

• First-Fit Decreasing Height with Fit Two (dhFFf2, O(n3 log n)),

• Best-Fit Decreasing Height (dhBF, O(n log n)),

• Best-Fit Decreasing Height with Fit Two (dhBFf2, O(n3 log n)),

• Bottom-Left (BL, O(n2)),

• Modified Bottom Left (MBL, O(n3)).

For RP model algorithm Variable Height Left Top (VHLT, with complexity

O(n2w0)) is available. In the following a short description of the above heuristics

is given. A more detailed account can be found, e.g., in [6, 77, 99, 101].

93

tile 1

tile 1 ti
le

 2

ti
le

 2

ti
le

 2

ti
le

 2

tile 1 tile 1tile 1

tile 3
tile 3tile 3

tile 2

tile 2

a) b)

Figure 4.8: Increasing bounding box height in VHLT after a) successful, b)
unsuccessful packing.

In the coming description of 2SP algorithms the vertical layout is assumed.

It means that there is a strip of the width equal to the widest tile and in the

process of packing the occupied area extends upward. Heuristics dhFF, dhFFf2,

dhBF, dhBFf2 are shelf packing. As it was explained in Section 3.2.6, in the

shelf packing, rectangles are put on the stripe in rows aligned to bottom of the

shelf and the height of a shelf is determined by the highest rectangle on the

shelf.

The above shelf algorithms consider tiles in the order of decreasing height.

First-Fit algorithms (dhFF,dhFFf2) place the current tile on the first shelf which

can accommodate the width of the tile. Best-Fit algorithms (dhBF, dhBFf2)

place the tile on the shelf on which the remaining width is smallest. When

placing the current tile closes a shelf, that is no single remaining tile is able

to use the shelf, the Fit Two algorithms (dhFFf2, dhBFf2) search among the

remaining tiles for a pair wider than the current tile and still able to fit on the

shelf. The Fit Two option has been explained in more detail in section 3.4.2. BL

algorithm [25] places tiles as close to the bottom and as close to the left edge of

the strip as possible. In this implementation of BL (MBL) tiles are considered

in the order of nonincreasing width and holes (empty areas not accessible from

above) are not considered. In each iteration MBL tests all available tiles for

their placement. The tile which can be put closest to the bottom is chosen.

The versions of the algorithms for horizontal packing are defined analogously

by swapping the roles of widths and heights.

Implementation of VHLT [101] is inspired by [68]. In the original description

of VHTL [101] a horizontal layout is used. Hence, the Left-Top could equally

well be referred to as Bottom-Left in the vertical layout rendering. However, the

subsequent description sticks to the original horizontal setting. VHLT algorithm

iterates over admissible widths w and heights h of the bounding box, verifies

feasibility of packing in the given (w, h) using Left-Top algorithm, and returns

the bounding box with the smallest total area. A special data structure has

been proposed in [101] to represent available space. The iteration starts from

94

the rectangle of dimensions (w0, h0) obtained by Left-Top for horizontal layout.

Suppose that the current bounding box (w, h) is feasible, then the width w is

decreased by 1px. If the new rectangle is feasible, then w is decreased again. If

it is infeasible, then h is increased by one. Moreover, if w × h is smaller than

the area of tiles, then the bounding box is infeasible and h is increased until

the rectangle is feasible. If w × h is bigger than the smallest area of a feasible

bounding box, i.e. of a known feasible solution, then testing bounding box (w, h)

may be skipped and w is decreased again. In [101] the following rules tailored

to Left-Top have been used: i) After a successful packing the next narrower

bounding box must be higher at least by the height of the highest tile touching

the right edge of the bounding box (cf. Fig.4.8a). ii) After an unsuccessful

packing the next narrower bounding box must be higher at least by the smaller of

the values: the height of the first rectangle which could not fit, or the minimum

extra height allowing rectangles neighboring horizontally be put on one another

(Fig.4.8b). The advantages of VHLT are that dimensions of the bounding box

are not fixed and that holes are considered. A disadvantage is VHLT complexity.

Since each possible width may be verified VHLT is pseudopolynomial, that is

VHLT has exponential running time in the length of w0 encoding. In practice

this may be less severe because the initial width w0 usually does not exceed

a few thousand pixels and only a subset of possible widths is really tested by

VHLT.

4.5.3 Merging with Image Compression

Merging with image compression is a core of Spritepack. It is based on a similar

idea as geometric packing, but takes into account size of the obtained sprites

after image compression and the resulting load time estimation defined in (4.2).

The procedure for merging with image compression is given in the following

pseudocode.

Merging with Image Compression

input: k groups of tiles

1: Create a sprite for each input tile group; record current set of sprites as solution

S and as the best solution S∗ with objective T ∗ = mincmax
c=1 T (S, c);

2: while number of sprites is bigger than 1

2.1: bs1, bs2, bs3 ← nil; bS ←∞; // create an empty sprite pair

and empty sprite junction with size bS

2.2: for all unevaluated sprite pairs s1, s2
2.2.1: apply to the tiles in s1 ∪ s2 all strategies of merging with image compression;

record as s3 the sprite with minimum size S3;
2.2.2: if S3 < bS then bs1 ← s1, bs2 ← s2, bs3 ← s3; bS ← S3;

95

2.3: endfor;

2.4: S \ {bs1 ∪ bs2} ∪ bs3; calculate objective T = mincmax
c=1 T (S, c)

2.5: if T < T ∗ then S∗ ← S; T ∗ ← T ;

3: endwhile;

Merging with image compression is again a greedy sprite merging procedure.

In each iteration (while loop in lines 2-3) a pair of sprites which can be packed

in minimum size (measured in bytes) is selected in line 2.2.2. Note that in the

progress from the initial set of k sprites to just one sprite each intermediate set

of sprites S is a valid solution. The set of intermediate sprites which minimizes

the objective function is selected in line 2.5. A key ingredient of merging with

image compression are the strategies applied in line 2.2.1. A strategy is defined

here by a combination of geometric packing strategy and image compression

method. Geometric packing strategies were discussed in the previous section.

All geometric packing strategies are verified in line 2.2.1 on the set of tiles

included in s1, s2. It means that the tiles in s1 ∪ s2 are once again arranged

geometrically, and their layouts existing in s1, s2 are not passed to s3. Image

compression methods are: i) for PNG format minimum color depth is selected

and all filters are tested, ii) if both sprites s1, s2 comprise only JPEG tiles or

it is allowed to change PNG type tiles to JPEG then JPEG formats with the

baseline and progressive compression are tested. The set of admissible PNG

filters, the option for changing a PNG class tile into a JPEG class tile, JPEG

compression quality are input parameters of Spritepack.

4.5.4 Postprocessing

As it was described in Section 4.2.2 image sizes may be reduced by applying

different compression settings. It is not possible to verify alternative image com-

pression settings directly in the earlier step because it its too time-consuming.

Therefore, Spritepack takes the opportunity of optimizing sprites as a post-

process to the images obtained in the previous stage. This means that sprites

obtained in the merging with image compression step are further processed for

minimum size. The set of Spritepack post-processors is customizable and builds

on the examples from [81]. In further experiments postprocessors pngout [110]

with the option of using its KFlate algorithm and jpegtran [59] with the option

of verifying progressive and baseline compression have been applied.

For the end of this section let us note that the CSS-style sheets generated

by Spritepack take into account not only the position of a tile in a sprite, but

also which sprite comprises the tile (if there are more than one sprite).

96

4.6 Spritepack Evaluation

This section reports on testing Spritepack. Performance of Spritepack is com-

pared against other existing applications for sprite generation. The results give

insight not only into the internal workings of this method and its efficiency,

but also into the status quo in the web. Unless stated to be otherwise all

tests were performed with the use of ImageMagick 6.8.7-10-Q16-x64 on a typi-

cal PC with i5-3450 CPU (3.10GHz), 8GB of RAM and Windows 7. For PNG

Compression zlib compression level has been set to 7. All feasible filter types

(0-4) have been always tested for a given PNG-type sprite, and the result-

ing sprite with minimum size was always preserved (cf. Section 4.5.3). For

JPEG images quality has been set to 89 in ImageMagick. Combining a non-

JPEG tile into a JPEG sprite has been disallowed. Latency has been set to

L=352ms which is median in Fig.4.6a. Aggregate bandwidth vector has been

set to B = [464, 557, 631, 685, 723, 750, 770, 791, 821] in kB/s which has been

calculated from median speed in Fig.4.6b and bandwidth speedups in Table 4.3

with additional curve-fitting.

4.6.1 Test Instances

In order to evaluate Spritepack 30 test sets were collected first. The tiles in

the test sets are skins and other reusable GUI elements of popular open source

web applications. An index to instance names is given in Table 4.6.1, a concise

summary on the dataset are collected in Table 4.6.1, further details are pro-

vided in [89]. Instance names come from the name of the originating software

package and graphical theme name (if there was any). The second through

fourth columns in Table 4.6.1 provide numbers of tiles in GIF, PNG, JPEG

formats. Animated GIFs and tiles with improperly assigned file extensions

were excluded. The following seven columns specify tile classes assigned by

Spritepack. Spritepack moved all GIFs to PNG format. Also some JPEG tiles

have been transferred to PNG classes because this reduced their sizes. It can

be observed that gray-scale tiles are rare and classes PNG8g, PNG8gt hardly

ever appear. Test sets offered together with the alternative sprite generators

described in Section 4.4 have been also analyzed. Unfortunately, most of them

are too simple, consisting of a few tiles with identical shapes. Therefore, only

acoderin and SpriteCreator test sets were included in this benchmark making a

total of 32 test sets.

97

In
st

an
ce

na
m

e
U

R
L

A
cc

es
se

d
on

4i
m

ag
es

tr
av

el
ph

ot
o

ht
tp
:/
/w
ww
.t
he
mz
a.
co
m/
4i
ma
ge
s/
tr
av
el
-
ph
ot
og
ra
ph
y-
te
mp
la
te
.h
tm
l

N
ov

14
,

20
12

ac
od

er
in

ht
tp
:/
/a
co
de
ri
ns
ig
ht
s.
ro
/s
pr
it
e/
sa
mp
le
/i
mg
.z
ip

A
u

g
26

,
20

14
co

nc
re

te
5

co
ff

ee
ht
tp
:/
/w
ww
.s
ma
rt
we
bp
ro
je
ct
s.
ne
t/
co
nc
re
te
5-
th
em
es
/m
or
ni
ng
co
ff
ee
/

D
ec

6,
20

12
do

tn
et

nu
ke

br
ig

ht
ht
tp
:/
/w
ww
.f
re
ed
nn
sk
in
s.
co
m/
Fr
ee
Sk
in
s/
ta
bi
d/
15
2/
Ar
ti
cl
e/
88
/b
ri
gh
t.
as
px

Ja
n

1,
20

13
dr

up
al

fe
rv

en
s

ht
tp
:/
/k
ah
th
on
g.
co
m/
20
09
/1
2/
fe
rv
en
s-
dr
up
al
-
th
em
e

D
ec

6,
20

12
dr

up
al

ga
rd

en
ht
tp
:/
/d
ru
pa
l.
or
g/
pr
oj
ec
t/
ga
rd
en
in
g

D
ec

6,
20

12
e1

07
ra

ce
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
e1
07
-
Th
em
es
/7
10
6_
Ra
ce
.h
tm
l

D
ec

6,
20

12
jo

om
la

ab
ab

ei
ge

ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
Jo
om
la
-
Te
mp
la
te
s/
72
32
_A
ba
-
Be
ig
e.
ht
ml

N
ov

14
,

20
12

jo
om

la
bu

si
ne

s1
4a

ht
tp
:/
/j
m-
ex
pe
rt
s-
25
-
te
mp
la
te
s.
go
og
le
co
de
.c
om
/f
il
es
/b
us
in
es
14
a_
bu
nd
le
_i
ns
ta
ll
er
.z
ip

N
ov

14
,

20
12

m
ag

ne
to

ha
rd

w
oo

d
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
Ma
ge
nt
o-
Sk
in
s/
73
96
_H
ar
dw
oo
d.
ht
ml

D
ec

6,
20

12
m

am
b

o
pa

rt
yz

on
e

ht
tp
:/
/w
ww
.t
he
mz
a.
co
m/
ma
mb
o/
pa
rt
y-
zo
ne
-
te
mp
la
te
.h
tm
l

N
ov

14
,

20
12

m
ed

ia
w

ik
i

b
oo

kj
iv

e
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
Me
di
aw
ik
i-
Sk
in
s/
74
87
_B
oo
kJ
iv
e.
ht
ml

N
ov

14
,

20
12

m
od

x
cr

ea
ti

f
ht
tp
:/
/m
od
xd
.c
om
/c
re
at
if
-
te
mp
la
te
.h
tm
l

D
ec

6,
20

12
m

od
x

ec
ol

if
e

ht
tp
:/
/m
od
xd
.c
om
/e
co
-
li
fe
-
te
mp
la
te
.h
tm
l

D
ec

6,
20

12
m

oj
op

or
ta

l
th

eh
ob

bi
t
ht
tp
:/
/m
oj
op
or
ta
l.
co
de
pl
ex
.c
om
/d
ow
nl
oa
ds
/g
et
/5
34
28
0

Ja
n

1,
20

13
m

oo
dl

e
un

iv
er

si
ty

ht
tp
:/
/w
ww
.t
he
mz
a.
co
m/
mo
od
le
/o
nl
in
e-
un
iv
er
si
ty
-
th
em
e.
ht
ml

Ja
n

1,
20

13
m

ya
dm

in
cl

ea
ns

tr
ap

ht
tp
s:
//
gi
th
ub
.c
om
/p
hp
my
ad
mi
n/
th
em
es
/t
re
e/
ma
st
er
/c
le
an
st
ra
p/
im
g

Ja
n

1,
20

13
op

en
ca

rt
ch

oc
o

ht
tp
:/
/w
ww
.o
pe
nc
ar
t.
co
m/
in
de
x.
ph
p?
ro
ut
e=
ex
te
ns
io
n/
ex
te
ns
io
n/
in
fo
&e
xt
en
si
on
_i
d=
98
53
&f
il
te
r_
se
ar
ch
=c
ak
es

Ja
n

1,
20

13
os

co
m

m
er

ce
p

et
s

ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
os
Co
mm
er
se
-
Te
mp
la
te
s/
71
95
_p
et
s.
ht
ml

N
ov

14
,

20
12

ph
pb

b
w

ow
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
ph
pB
B-
Th
em
es
/8
12
4_
Wo
W5
th
An
iv
er
sa
ry
.h
tm
l

N
ov

14
,

20
11

ph
pf

us
io

n
sk

ys
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
PH
P-
Fu
si
on
-
Th
em
es
/6
83
9_
Sk
ys
.h
tm
l

D
ec

6,
20

12
ph

pn
uk

e
dv

df
ut

ur
e

ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
PH
PN
uk
e-
Th
em
es
/1
80
9_
sb
-
dv
d-
fu
tu
re
-
7.
ht
ml

D
ec

6,
20

12
pr

es
ta

sh
op

m
at

ri
ce

ht
tp
:/
/d
gc
ra
ft
.f
re
e.
fr
/b
lo
g/
in
de
x.
ph
p/
th
em
es
-
pr
es
ta
sh
op
/m
at
ri
ce
-
th
em
es
-
pr
es
ta
sh
op
-
1-
3-
1-
gr
at
ui
ts
/

Ja
n

1,
20

13
sm

f
cl

as
si

c
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
SM
F-
Th
em
es
/7
33
9_
Cl
as
si
c.
ht
ml

D
ec

6,
20

12
Sp

ri
te

C
re

at
or

ht
tp
:/
/w
ww
.c
od
ep
ro
je
ct
.c
om
/K
B/
HT
ML
/S
pr
it
es
An
dC
SS
Cr
ea
to
r/
Sp
ri
te
Cr
ea
to
r_
v2
.0
.z
ip

Ju
n

30
,

20
15

sq
ui

rr
el

m
ai

l
ou

tl
oo

k
ht
tp
:/
/s
ou
rc
ef
or
ge
.n
et
/p
ro
je
ct
s/
sq
ui
rr
el
ou
tl
oo
k

Ja
n

1,
20

13
te

xt
pa

tt
er

n
m

is
ty

lo
ok

ht
tp
:/
/t
xp
-
te
mp
la
te
s.
co
m/
te
mp
la
te
/m
is
ty
lo
ok
-
fo
r-
te
xt
pa
tt
er
n

D
ec

6,
20

12
ti

ny
m

ce
bi

gr
ea

so
n

ht
tp
:/
/t
he
bi
gr
ea
so
n.
co
m/
bl
og
/2
00
8/
09
/2
9/
th
eb
ig
re
as
on
-
ti
ny
mc
e-
sk
in

D
ec

6,
20

12
vb

ul
le

ti
n

da
rk

ne
ss

ht
tp
:/
/w
ww
.b
lu
ep
ea
rl
-
sk
in
s.
co
m/
fo
ru
ms
/i
nd
ex
.p
hp
?a
pp
=c
or
e&
mo
du
le
=a
tt
ac
h&
se
ct
io
n=
at
ta
ch
&a
tt
ac
h_
id
=2
80
9

N
ov

14
,

20
12

w
or

dp
re

s
cr

ea
m

y
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
Wo
rd
Pr
es
s-
Te
mp
la
te
s/
98
31
_C
re
am
y.
ht
ml

Ju
n

19
,

20
15

xo
op

s
b

el
lis

si
m

a
ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
XO
OP
S-
Th
em
es
/6
84
9_
Be
ll
is
si
ma
.h
tm
l

N
ov

14
,

20
12

ze
nc

ar
t

ar
ts

ho
p

ht
tp
:/
/w
ww
.t
he
me
sb
as
e.
co
m/
Ze
n-
ca
rt
-
te
mp
la
te
s/
74
05
_A
rt
st
or
e.
ht
ml
#

N
ov

14
,

20
12

Table 4.8: Test instance index

98

Instance name Original tiles Spritepack tile classification

P
N

G

G
IF

JP
E

G

P
N

G
8i

P
N

G
8i

t

P
N

G
8g

P
N

G
8g

t

P
N

G
24

P
N

G
32

t

JP
E

G

T
ot

al
n

4images travelphoto 9 41 7 42 8 0 0 1 0 6 57
acoderin 20 0 0 9 6 0 0 4 1 0 20
concrete5 coffee 0 1 14 0 1 0 0 1 0 13 15
dotnetnuke bright 2 0 34 0 31 0 0 0 1 4 36
drupal fervens 5 0 0 2 2 0 0 1 0 0 5
drupal garden 37 7 4 2 40 0 1 0 1 4 48
e107 race 13 16 17 14 19 2 0 2 0 9 46
joomla ababeige 10 0 4 7 2 0 0 1 0 4 14
joomla busines14a 110 1 1 23 82 0 0 0 7 0 112
magneto hardwood 3 5 1 2 6 0 0 0 0 1 9
mambo partyzone 2 13 1 14 1 0 0 0 0 1 16
mediawiki bookjive 6 8 1 1 11 0 0 0 2 1 15
modx creatif 7 0 17 7 0 0 0 1 6 10 24
modx ecolife 0 4 6 4 0 0 0 0 0 6 10
mojoportal thehobbit 11 19 9 9 22 0 0 1 0 7 39
moodle university 8 246 3 13 240 0 0 2 0 2 257
myadmin cleanstrap 210 2 0 22 155 7 10 0 18 0 212
opencart choco 27 0 0 5 19 0 0 1 2 0 27
oscommerce pets 1 131 71 46 111 0 0 13 0 33 203
phpbb wow 81 39 10 6 56 0 0 2 58 8 130
phpfusion skys 8 31 3 18 22 0 0 0 1 1 42
phpnuke dvdfuture 0 11 3 3 9 0 0 0 0 2 14
prestashop matrice 37 122 21 61 110 0 0 6 2 1 180
smf classic 62 254 1 14 283 0 0 0 19 1 317
SpriteCreator 56 0 0 0 1 0 0 0 55 0 56
squirrelmail outlook 16 57 0 29 43 0 0 0 1 0 73
textpattern mistylook 1 7 3 5 4 0 0 0 0 2 11
tinymce bigreason 5 1 0 3 2 0 0 0 1 0 6
vbulletin darkness 660 355 13 92 833 0 0 3 89 11 1028
wordpres creamy 28 0 0 3 18 0 0 0 7 0 28
xoops bellissima 19 2 1 0 7 0 0 0 14 1 22
zencart artshop 2 55 3 8 49 0 0 0 0 3 60

Total files 1456 1428 248 464 2193 9 11 39 285 131 3132

Table 4.9: Classification of the images in test instances

99

Number of sprites 1 2 3 4 5 6 7 8 9 10

Number of cases 11 77 52 68 51 31 12 14 3 1

Table 4.10: Number of tests vs the number of final sprites

A disadvantage of the evaluation using a test set collection is some inflexibil-

ity in choosing parameters of the tests. Nevertheless, this test set collection rep-

resents tiles existing in practical applications and allows examining Spritepack

in a realistic setting.

4.6.2 Initial Experiments

This section reports on performance of Spritepack on a corpus of tile sets (Table

4.6.1). The experiments evaluated goal function optimization, sprite sizes and

numbers, Spritepack processing time. This series of experiments allows to choose

number k of tile groups passed from geometric packing stage and the set of usable

geometric packing algorithms.

Before discussing the results let us remind that Spritepack is minimizing

goal function (4.2) which is a model of communication time. Total size of the

sprites (e.g. in bytes) is not directly minimized and it can be used only as

a secondary criterion for comparisons. In the process of combining tiles into

sprites some space may be wasted. This results in the increased total area of

the sprites compared to the initial area of the tiles (expressed e.g. in px). Con-

sequently, more memory may be needed to represent tiles in the browser than

if the tiles were downloaded independently. Hence, the increase in sprite area

is an additional evaluation criterion. In the experiments a range of parameter

k is swept which has two-fold consequences. On the one hand, reducing k also

reduces processing time because fewer groups of tiles are evaluated in merging

with image compression (Section 4.5.3). On the other hand, increasing k gives

more possibilities of combining groups of tiles into sprites. Thus, k should be

neither too big, nor too small.

The instances from Table 4.6.1 have been solved for k = 4, . . . , 16. Since k

can be neither greater than the number of tiles n, nor can it be smaller than

the number of tile classes plus two (cf. Section 4.5.2), 320 test instances have

been solved in total. The results of this series of experiments are collected in

Fig.4.9-Fig.4.11 and in Tables 4.6.2 and 4.6.2. In Fig.4.9 reduction of the goal

function (4.2) vs k is shown. The reduction is expressed relative to the value of

the goal function T (T , 1), i.e. as (T (S)/T (T , 1)−1)×100%. T (T , 1) is the cost

of transferring the initial tile set T over one communication channel without

packing into any sprite. In Fig.4.9a goal function reduction obtained solely by

Spritepack is shown and in Fig.4.9b the reduction obtained in postprocessing

100

a)

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 4 6 8 10 12 14 16

co
st

 r
ed

uc
tio

n
[%

]

k

b)

-10

-8

-6

-4

-2

 0

 4 6 8 10 12 14 16

co
st

 r
ed

uc
tio

n
[%

]

k

Figure 4.9: Reduction of communication time estimation (4.2). a) Spritepack,
b) postprocessing. Lower is better.

101

is shown. It can be seen that typically Spritepack is able to reduce the goal

function by 60% and postprocessing further reduces it by roughly 0.5-4%. With

growing k the reductions are better, which is a result of two processes. Indeed

there are 6 test sets where increasing k decreases the objective function as could

be expected due to a greater sprite combination flexibility. However, a set of

instances which can be applied for a given k also has influence in Fig.4.9a.

Let us remind that k cannot be greater than the number of tiles nor can it

be smaller than the number of tile classes plus 2. Consequently, the number

of instances which can be packed with a given k grows from 2 for k = 4 to

30 instances for k = 7, . . . , 9 and then decreases to 23 test sets for k = 16.

Therefore, the reduction in the goal function is also a result of changing set

of test cases. It is an unavoidable consequence of using real-world test sets as

mentioned in Section 4.6.1. This observation applies also to Figs 4.10, 4.11. It

can be concluded that for average set of tiles appearing over Internet k ≥ 7

is sufficient. This should be juxtaposed with the number of the sprites finally

constructed shown in Table 4.6.2. In all tests the biggest number of 10 sprites has

been constructed for vbulletin darkness instance which had 1028 tiles. Hence, in

the further tests k = 10 has been used because it is not restricting the choice of

the final sprite number. It can be also observed that Spritepack uses moderate

numbers of sprites comparable with the number of browser download channels

(see Table 4.2).

As mentioned above, sprite file sizes and the total area are additional perfor-

mance indicators. Changes in file size are presented in Fig.4.10a for Spritepack

alone and in Fig.4.10b for postprocessing. Along the vertical axis the fraction of

the total initial tile sizes by which the Spritepack sprite(s) are smaller is shown.

Negative values represent reduction in file size. As shown in Fig.4.10b postpro-

cessing reduces file size approximately by 4-7%, which is a useful complement

to Spritepack. It can be seen in Fig.4.10a that in general Spritepack reduces

total file size by more than 20% (cf. medians). However, for approximately 1/6

of all the cases file size increased, which is shown in Fig.4.10a as positive values.

Some increase in file size should not be surprising because merging tiles into a

sprite may waste some space and this results in bigger sprite files. It is further

confirmed in Fig.4.11a showing relative increase in image area. It can be seen in

Fig.4.11a that usually image area is not increasing more than by 10–20%. Yet,

there have been cases when area increased by more than 100% for k = 7. The im-

pact of enlarged sprite area can be reduced by increasing k even beyond k = 10.

The most problematic tile sets (prestashop matrice, moodle university) have

over 180 diverse tiles corresponding to different functionalities of the services

from which they come. Tile sets covering such scattered areas of application

should be merged into separate sprites according to the system functionalities.

102

Otherwise, some tiles may be preloaded in some sprite and never used. This

may be done effectively by the web-designer on the basis of tile application area.

Partitioning tile sets according to their function and frequency of use is beyond

the scope of this thesis. Still, Spritepack is able to deal with such big tile sets

on the basis of web performance. It is demonstrated in Fig.4.11a for k ≥ 10

where Spritepack mitigates the worst area increments. Therefore, in the case of

tile sets with hundreds of images, possibly representing varied functionalities,

Spritepack should be allowed to check also k > 10.

Spritepack processing time depends, among the other, on the number of tiles

n and group number k. The coefficient of correlation between processing time

and the number of tiles observed for k = 10 was 0.438 with p-value (probability

of obtaining such correlation randomly) equal ≈0.0175. Hence, the dependence

on n is statistically strong, yet it involves a great deal of dispersion. Such a

situation is natural because timing of graphical image compression depends on

many factors. One of the key factors is image area and color depth. In the test

set tiles had various sizes and color depths. Average execution time per tile in

all test sets was 4.59s per tile at k = 10. It should not be forgotten that it is only

a rough indication of the execution time and real execution times may change

very much depending on size of tiles and their complexity. Fig.4.11b gives an

impression of Spritepack processing time (including postprocessing). As it can

be seen most of the test sets have been processed in at most a couple of minutes.

This should be acceptable considering that sprites are built once at the web-site

construction stage. Spritepack processing time is split between tile classification,

geometric packing, merging with image compression, and postprocessing. The

four stages consumed on average 5%, 1%, 81%, 13% of the total processing

time, respectively. Thus, merging with image compression is the most time-

consuming step. The geometric packing step is very short and it is worth its

computational effort as a preparatory step before merging with compression.

In the course of experiments frequencies of using certain geometric packing

algorithms were registered. The results are shown in Table 4.6.2. The first

line of Table 4.6.2 contains names of heuristics which output has been used

at least once. Letters H and V refer to the horizontal and the vertical layouts,

respectively. The second line in Table 4.6.2 is the number of times results of some

heuristic have been used. The most frequently used heuristics MBL and VHLT

cover 99% of all use cases. The shelf packing heuristics (dhFF, dhFFf2, dhBFf2)

are hardly ever used. The dhBF method mentioned in Section 4.5.2 has not been

used at all. It seems that reducing the set of geometric packing algorithms to just

MBL, VHLT, dhFFf2 may be a reasonable option to curb Spritepack complexity

in production systems. Contrarily, to obtain better results the geometric packing

any new algorithms should outperform the MBL.

103

a)

-80

-60

-40

-20

 0

 20

 40

 60

 4 6 8 10 12 14 16

fi
le

 s
iz

e
re

du
ct

io
n

[%
]

k

b)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 4 6 8 10 12 14 16

fi
le

 s
iz

e
re

du
ct

io
n

[%
]

k

Figure 4.10: Reduction in file size. a) Spritepack, b) postprocessing. Lower is
better. Positive values represent increased file sizes.

M
B

L
(V

)

M
B

L
(H

)

V
H

LT

dh
F

F
f2

(V
)

B
L

(V
)

B
L

(H
)

dh
F

F
f2

(H
)

dh
B

F
f2

(V
)

dh
F

F
(V

)

24135 5381 2829 208 68 21 17 8 5

Table 4.11: Usage of geometric packing heuristics

104

a)

1E-2

1E-1

1E0

1E1

1E2

1E3

 4 6 8 10 12 14 16

in
cr

ea
se

 in
 a

re
a

[%
]

b)

1E0

1E1

1E2

1E3

1E4

 4 6 8 10 12 14 16

tim
e

[s
]

Figure 4.11: a) Change in image area, b) Processing time. Logarithmic scales.
Lower is better.

105

4.6.3 Spritepack Performance Comparison

In this section Spritepack is compareds with alternative sprite generators. For

the reasons discussed in Section 4.2 comparing sprite generators rigorously and

fairly is not easy. Moreover, a great number of sprite generators exist. Therefore,

the following procedure was applied. In the first experiment a big set of sprite

generators has been compared on a small set of test instances. As a result, a

few solutions have been singled out which have been most reliable, versatile and

provided the smallest sprites. In the second series of tests the selected generators

have been compared with Spritepack in generating sprites for all instances from

Table 4.6.1.

As mentioned above sizes of the sprites built by the alternative generators

have been evaluated first. Test instances with moderate number of tiles n have

been used. Since not all generators were able to deal with JPEG tiles all tiles

have been converted to PNG image format. The alternative sprite genera-

tors construct one sprite, while Spritepack builds a number of sprites which

minimizes objective function (4.2). In order to make the comparison possible

Spritepack code has been modified to extract the single sprite constructed in the

last iteration of merging with image compression. The results of the evaluation

are collected in Table 4.6.3. The table head gives names of the test instances.

Sizes of the sprites constructed by Spritepack (in bytes) are reported in the last

line of Table 4.6.3. Except for the last line results are expressed in % relative to

the size of the single sprite constructed by Spritepack. Each line gives results

for a certain generator. Line labeled ”input” expresses size of the input tiles rel-

ative to the single Spritepack sprite. An empty entry in Table 4.6.3 means that

certain generator has not been able to construct a sprite. Four alternative sprite

generators which have given the smallest sprites on average have been selected

for the next round of performance comparison. Although Spritepack was not

built for creating one sprite with the smallest file size it still outperforms most

of the competitors and only one application in a single case produces better

results.

In the second round of comparisons the selected sprite generators have been

evaluated with respect to the values of the objective function (4.2), and size of

the output sprites on a complete set of instances from Table 4.6.1. However, it

turned out that Spritepack outperformed the alternative generators and their

results were extremely bad. For example, the shoebox generator, which was the

best in the previous set of tests, returned sprites which had objective (4.2) equal

on average 235% of the Spritepack’s (and 642% in the worst case). Similarly, file

sizes were on average 376% of the Spritepack’s sprite sizes (883% in the worst

case). In the case of vbulletin darkness (1028 tiles) shoebox stopped reacting

106

Instance name: ac
od

er
in

m
od

x
cr

ea
ti

f

Sp
ri

te
C

re
at

or

sq
ui

rr
el

m
ai

l
ou

tl
oo

k

jo
om

la
bu

si
ne

s1
4a

Average
Input 198 100 236 122 87 148
csssnet 211 205 159 192
codepen 199 140 157 122 128 149
glue 154 114 174 157 146 149
zerocom 136 117 191 159 137 148
pypack 149 120 182 146 141 148
JSGsf 161 114 162 156 135 146
acoderin 136 118 170 161 143 145
csgencom 145 116 173 144
cdplxsg 135 140 192 129 115 143
txturepk 132 112 166 128 149 137
stitches 126 139 168 121 117 134
sstool 134 132 174 112 116 134
isaccc 114 153 155 121 123 133
simpreal 123 136 177 107 121 133
spcanvas 137 135 164 116 112 133
shoebox 107 120 143 106 96 114

Spritepack [bytes] 7274 395393 28663 69714 190145 –

Table 4.12: Comparison of sprite generators on size of output. Lower is better.
Spritepack is 100%. Spritepack was forced to create a single file.

(hang) on tile 666. There are various reasons for such situation, mostly some

tacit assumptions made while designing the alternative generators. It can be

inferred that most of the alternative generators assume that (i) there are no

large JPEG tiles (like backgrounds or page headers), (ii) tiles have minimum

possible color depth, (iii) there is no advantage in special treatment of tiles with

odd dimensions, (iv) all tiles sizes are small (icons, buttons), (v) there is no

advantage in parallel communication.

A consequence of the first four assumptions is that big savings that could

have been made by optimizing big images for color depth, alternative compres-

sion, geometric layout are not realized. Still, some of the above assumptions may

be considered reasonable in certain applications and the presented evaluation

may be deemed unfair. Therefore, to make the conditions of the comparison

more compatible with the above assumptions and easier for the alternative gen-

erators limitation was made (and only for them) on the set of the tiles subjected

to sprite construction to the tiles of file size below 10kB. As a result each tile set

107

shoebox spcanvas simpreal isaccc

objective function (4.2)
min 101 101 101 101
median 132 131 137 134
max 248 284 272 291

file size
min 82 82 82 83
median 138 141 143 143
max 382 379 386 397

Table 4.13: Evaluation of best sprite generators on 32 test instances. Lower is
better. Spritepack is 100%.

has been split into a number of tiles which have not been combined into a sprite

and a set of tiles which have been. The obtained set of files, i.e. a sprite and a

set of untouched tiles, has been treated as an output tile set S and the objective

function (4.2) has been calculated in the same way as in the Spritepack. In this

experiment Spritepack still operated on the whole data sets comprising all the

tiles and produced as many sprites as it found effective.

The results of this series of experiments are collected in Table 4.6.3. The

four alternative sprite generators have been compared in two criteria: objec-

tive function (4.2) and sprite file size. Since the tests have been done on a

set of 32 instances, three statistics are reported: minimum, median and max-

imum values in the population. These three measures are given in % relative

to the results provided by Spritepack. It can be seen that the four alternative

generators on average build solutions worse than Spritepack by roughly 30%

with respect to the objective function (4.2) and 40% with respect to file sizes.

There has been only one instance phpfusion skys when the alternative gener-

ators have constructed a solution with smaller overall file size. In this case

Spritepack included a JPEG tile with chroma subsampling into a PNG sprite.

Since Spritepack is not optimizing sprite size, but the objective function (4.2),

it is not surprising that some other method performs better on the sprite size

criterion.

4.6.4 End-to-End Evaluation

The end-to-end tests were conducted to verify in a real setting the validity

of using multiple sprites, the communication performance model and objective

function (4.2), to evaluate the advantages of applying sprites in general and

Spritepack in particular. Furthermore, the Spritepack and shoebox generator

108

Instance input shoebox Spritepack
name files size [B] sprites size [B] sprites size [B]

magneto hardwood 9 373610 1 482828 3 294128
modx ecolife 10 50947 1 366663 3 48891
mojoportal thehobbit 39 218993 1 726364 7 154486
oscommerce pets 203 1201692 1 1683872 6 673785

Table 4.14: Sprites in end-to-end test of sprite generators.

performance have been compared. Shoebox has been selected as an alternative

generator because in the preceding tests it demonstrated high reliability and

solution quality.

In the experiment, the times of downloading all the tiles separately, as a sin-

gle sprite constructed by shoebox, and as the sprites constructed by Spritepack

were measured on the clients’ side and reported back to the server. For this

purpose a similar script as mentioned in Section 4.3.2 has been designed and

inserted into a web page analyzed in Section 4.3.2. By viewing the page, users

downloaded the tiles in the above three alternative ways: first all of them sep-

arately, next as a single shoebox sprite, finally as a set of Spritepack sprites.

Note that in this experimental setup the same communication performance pa-

rameters were experienced as had been measured in Section 4.3.2 and had been

applied to build sprites by Spritepack. Parameters of the test instances are

shown in Table 4.6.4. The instances were chosen to represent a spectrum of

possible situations: from modx ecolife tile set of size smaller than 50kB to os-

commerce pets with 203 tiles and over 1.1MB total size. It can be seen that

Spritepack, by using a few sprites, was able to reduce the total size of trans-

ferred data. Shoebox, with single sprites, achieves much bigger file sizes, which

is in line with the results reported in the previous section.

The results of time measurements are collected in Table 4.6.4. The second

and fifth columns (’input’) represent all the tiles sent independently, i.e. not

sprited. For oscommerce pets, the biggest tile set with over 203 tiles, 2274

measurements were collected. For the remaining tile sets the number of mea-

surements exceeded 4000 and, e.g., for modx ecolife 5057 samples were collected.

It can be seen that using a single sprite, as in shoebox, may halve the down-

load time. Yet, such reductions not always materialize because in some cases

one sprite is not as effective in keeping small file size as Spritepack or even

not spriting at all. Despite using a few sprites, which incur additional interac-

tions with the server, Spritepack was able to reduce the download time of tiles

sent individually by a factor of 2.5-4. In absolute terms it was from approx.

350ms to 2.4s (medians of differences) while the reduction from shoebox sin-

gle sprite download time was 140-800ms. It can be concluded that judiciously

109

medians [ms] SIQR [ms]

Instance name in
pu

t

sh
oe

b
ox

Sp
ri

te
pa

ck

in
pu

t

sh
oe

b
ox

Sp
ri

te
pa

ck

magneto hardwood 1723 764 574 1597 441 330
modx ecolife 685 727 244 1502 427 119
mojoportal thehobbit 776 954 302 456 539 204
oscommerce pets 3653 1831 931 1453 872 537

Table 4.15: Time results of the end-to-end evaluation in real-world setting.

chosen multiple sprites are not an obstacle to short download times. Overall,

it can be concluded that Spritepack fares very well compared to the alternative

generators.

Finally, let us comment on the validity of objective (4.2) as a model of the

download time. The coefficient of correlation between the medians of download

times and the objective function (4.2) was 0.952 and its p-value was below 2E-

06. Though these results should be taken with caution, because of big SIQRs

in Table 4.6.4, function (4.2) can be considered an effective guide in sprite

optimization process.

4.7 Conclusions

The problem of effective construction of CSS-sprites for web applications (CSS-

SPP) has been considered in this chapter. This problem poses a number of

theoretical and practical challenges. On the theoretical side it is a matter of con-

structing effective heuristics when evaluation of one solution is time-consuming.

It is also difficult to grasp in a tractable way complexity of the network com-

munication performance. On the practical side it is a matter of, e.g., tuning

the algorithms for particular tile datasets, choosing image compression setting,

obtaining network performance indicators, finding a good trade-off between so-

lution quality and processing time. The method Proposed and implemented

Spritepack significantly extends current methods of sprite construction. A typ-

ical approach in sprite packing is to take all small images building page layout

and combine them into one CSS-sprite. Spritepack approach allows to take all

static images, including the ones normally not considered for spriting, and let

the algorithm decide how to combine them on the basis of communication perfor-

mance. Consequently, the overall number of web interactions for one page can be

reduced. The key ingredients of Spritepack there are considered: (i) geometric

packing method which is a fast hyperheuristic operating on low-level geometric

110

packing algorithms, (ii) verifying many options for effective image compression,

(iii) constructing many sprites for better file size and faster network transfer.

Spritepack performance has been compared against alternative solutions on a

set of benchmark instances. Though Spritepack is not constructing guaranteed

optimum sprites, because it is a heuristic for an NP-hard problem, it can be

concluded that this method builds quality sprites in reasonable time and com-

pares well with the alternative methods. Spritepack source code is available at

[89].

It seems technically feasible to improve Spritepack, e.g., by more extensive

combinatorial search in the stage of merging with image compression or by

verifying alternative compression strategies in this stage. Such a step would

allow for more effective discovery of tile combinations and for avoiding singular

bad cases. However, there is a trade-off between solution quality and processing

time. The area of image compression is constantly evolving and thus, new

algorithms may be tested in the merging with image compression or in the

postprocessing steps. Spritepack has been constructed as a research tool, not

an industry-grade product. Hence, the CSS stylesheets produced by Spritepack

may be extended by an automatic analysis and update of the existing web pages.

Future technologies such as the upcoming HTTP 2.0 [55] or growing popularity

of SVG encoding may change the context of sprite packing. Nevertheless, it

does not seem that these new technologies will make Spritepack irrelevant and

the techniques introduced here can be adapted to the new circumstances.

111

5 Summary and Final Remarks

In this thesis three combinatorial optimization problems were analyzed. Firstly,

in Layout Partitioning for Advertisement Fit where a website layout was par-

titioned into columns and where by optimization of widths of these columns

capability of fitting advertisements was improved. Secondly, in Tag Cloud Con-

struction Problem the tags were packed on shelves of the cloud to provide good

readability on the web pages. And finally, in CSS-sprite Packing Problem web

page images were packed into a set of bigger sprite-images offloading a server

and speeding up page loading. The three presented research problems share the

fact that they are solving real-world optimization tasks taken from the field of

the Internet and web applications. Another common factor was 2-dimensional

cutting/packing which was one of the subproblems of all three analyzed prob-

lems and thus certain approaches or even algorithms could be shared between

them.

There are many novel elements in all three presented problems and their

solutions. Optimization of layout partitioning is a new idea as a whole. While

similar problems are subject to computational optimization in text processing or

in advertisement placement, the step of webpage layout preparation was usually

preformed ad-hoc by a web designer. The algorithms provided for LPfAF allow

for optimization of this process and with the wide spectrum of input parameters

that can be set by chosen by the user, the results can be well customized for

anyone’s needs. Finally, the output in the form of weighted best partition or

Pareto frontier of nondominated solutions allows finding usable layout even with

further conditions set by the web designers. Construction of tag clouds relies on

a novel idea of using rules of typography, namely the rule of typographical color.

Building the objective function on the basis of the rules of art, where such rules

are available, was proven to be valid as a more general idea of optimization

of the aesthetic feel. Using the provided mathematical model for Tag Cloud

Construction Problem, even the simplest algorithms proposed here produce tag

clouds looking better than original ones. Moreover, tag clouds produced by

112

the algorithms solving TCPP are meeting requirements dictated by the website

usage. CSS-sprite optimization introduces a long list of novel ideas, starting with

allowing more than one sprite, exploiting the speedups in parallel download or

tailoring solution to specific traffic measured on site. The algorithms facilitate

properties of the compression methods including the aspect ratio of PNG file

property analyzed for the first time in this thesis. Moreover, the objective used

is not one but two steps ahead of state of the art solutions optimizing only

image dimensions. While the first step was minimizing image file size, then the

second was optimization of the download time. As a whole, the software suite

built for the CSS-sprite Packing Problem is providing a complex framework,

from measuring the traffic parameters on the website, through the analysis of

the images used to build its layout, to optimization of the sprites, including an

intelligent decision on their number.

As all the three problems were taken from real-world applications it was

important to prove that all of the algorithms and their results are usable in

practice. Firstly, as the three problems are NP-hard and optimum solutions

can be expected in polynomial time (unless P = NP), the execution times of

the algorithms developed had to fit into acceptable time frames for each prob-

lem. Secondly, the results provided should be meaningfully better than the

state of the art. Algorithms provided for Layout Partitioning Problem for Ad-

vertisement Fit are solving the given instances in time acceptable for tasks done

once, at the stage of the creation or redesigning of a web page. The constructed

layouts, both the one suggested as optimal and the set of nondominated ones,

are substantially different from what an ad hoc partitioning would result in.

Moreover, their scores for the three given objective function seem to show, that

optimized layouts are better. A variety of algorithms developed for tag clouds

construction is fulfilling both qualitative requirements, and meet the range of

runtimes acceptable for usable web pages. It is difficult to measure whether the

beauty goal was achieved, but experiment with experts scoring the solutions

seems to confirm this. Similarly to LPfAF, the CSS-sprite optimization algo-

rithm is doing the required work in the non-negligible time, but acceptable at

the phase of creation or redesigning a web page. Then, the quantitative results

of CSS-sprite optimization are firstly provided analytically, by comparison of

the objective function’s estimations and then confirmed by measurement in a

real-world experiment. These quantitative results are of great importance as

they demonstrate that application of the proposed CSS-sprite optimization on

websites can offer significant performance gains both on the server side by of-

floading and infrastructure and client side speeding up loading web pages and

reducing memory usage.

113

Possible extensions of the research topics considered here are immense. The

method of solving Layout Partitioning Problem for Advertisement Fit together

with parts of the algorithms can be transferred to such remote areas like logistics

optimization problems including harbor or general yard organization problems

and very specific ones like paper rolls factory. Both Tag Cloud Construction

Problem and CSS-sprite Packing Problem are functioning in rapidly changing

technological context. Achievements of TCCP can be used both on websites

but also in other areas suitable for tag clouds, while its general idea in an even

wider area of data visualization. CSS-SPP is closest to being market-ready and

the proof of concept produced should see more work on a working prototype to

become an industry-grade product.

114

Appendix A: Complete Results of Partitioning

Due to their size complete computational results are presented in this supple-

ment. Instances are defined by a benchmark set of ad units, webpage width

W , and the number of columns. Objective functions ranges for all feasible lay-

outs are included. For each instance there the set of results consists of the best

weighted solution and the complete Pareto frontier. Each solution is given as

column widths with the total layout width, values of the three objective func-

tions, and the value of the weighted linear function.

subset, W=990, 2 columns
V1 ∈ [42, 47], V2 ∈ [7, 7], V3 ∈ [−2534,−1914]
248+732=980; 47, 7 , -1914; 100.0

Pareto frontier:
248+732=980; 47, 7 , -1914; 100.0

subset, W=1250, 3 columns
V1 ∈ [39, 55], V2 ∈ [5, 7], V3 ∈ [−2606,−858]
164+328+732=1224; 55, 7 , -858; 100.0

Pareto frontier:
164+328+732=1224; 55, 7 , -858; 100.0

subset, W=1250, 4 columns
V1 ∈ [44, 50], V2 ∈ [7, 7], V3 ∈ [−1986,−858]
164+164+164+732=1224; 50, 7 , -858; 100.0

Pareto frontier:
164+164+164+732=1224; 50, 7 , -858; 100.0

AdBrite, W=990, 2 columns
V1 ∈ [43, 48], V2 ∈ [7, 7], V3 ∈ [−2846,−2102]
248+732=980; 48, 7 , -2102; 100.0

Pareto frontier:
248+732=980; 48, 7 , -2102; 100.0

AdBrite, W=1250, 3 columns
V1 ∈ [40, 56], V2 ∈ [5, 7], V3 ∈ [−3054,−1062]
164+328+732=1224; 56, 7 , -1062; 100.0

Pareto frontier:
164+328+732=1224; 56, 7 , -1062; 100.0

AdBrite, W=1250, 4 columns
V1 ∈ [45, 51], V2 ∈ [7, 7], V3 ∈ [−2310,−1062]
164+164+164+732=1224; 51, 7 , -1062; 100.0

Pareto frontier:
164+164+164+732=1224; 51, 7 , -1062; 100.0

Clicksor, W=990, 2 columns
V1 ∈ [735, 1123], V2 ∈ [16, 20], V3 ∈
[−5833,−4493]
164+816=980; 1012, 20 , -5433; 64.8
Pareto frontier:
124+864=988; 1123, 17 , -5833; 48.2
129+861=990; 1075, 17 , -5783; 44.3

164+816=980; 1012, 20 , -5433; 64.8
184+806=990; 922, 20 , -5233; 60.0
248+742=990; 796, 18 , -4593; 49.6
253+737=990; 779, 17 , -4543; 42.8
258+732=990; 783, 16 , -4493; 38.2

Clicksor, W=1250, 3 columns
V1 ∈ [739, 1386], V2 ∈ [15, 25], V3 ∈
[−5977,−1655]
184+254+812=1250; 1044, 24 , -2153; 71.5
Pareto frontier:
129+129+991=1249; 1386, 15 , -4507; 53.2
129+164+948=1241; 1279, 16 , -4286; 50.5
129+184+936=1249; 1246, 16 , -4122; 49.6
129+254+866=1249; 1168, 20 , -3632; 58.3
129+254+864=1247; 1173, 20 , -3638; 58.5
129+258+862=1249; 1152, 20 , -3604; 57.4
129+304+816=1249; 1082, 25 , -3282; 67.8
129+308+812=1249; 1073, 25 , -3254; 67.5
164+184+898=1246; 1194, 18 , -3257; 57.8

164+258+828=1250; 1056, 21 , -2797; 59.9
164+258+816=1238; 1059, 24 , -2845; 67.2
184+184+876=1244; 1147, 18 , -2533; 60.3
184+184+866=1234; 1152, 18 , -2583; 60.2
184+184+864=1232; 1157, 18 , -2593; 60.5
184+254+812=1250; 1044, 24 , -2153; 71.5
184+258+806=1248; 969, 24 , -2143; 66.7
184+293+773=1250; 891, 21 , -1958; 55.6
184+304+761=1249; 893, 20 , -1908; 53.6
184+308+756=1248; 878, 19 , -1893; 50.2
254+254+742=1250; 855, 18 , -1665; 48.0
254+258+737=1249; 836, 17 , -1655; 44.3

115

Clicksor, W=1250, 4 columns
V1 ∈ [743, 1147], V2 ∈ [16, 22], V3 ∈
[−4737,−1280]
124+124+184+816=1248; 1026, 22 , -2073; 79.9
Pareto frontier:
124+124+184+816=1248; 1026, 22 , -2073; 79.9
124+129+129+866=1248; 1142, 19 , -3632; 64.5
124+129+129+864=1246; 1147, 19 , -3638; 65.0
124+129+184+812=1249; 1018, 22 , -1988; 79.8

124+129+254+742=1249; 829, 18 , -1290; 50.2
129+129+129+862=1249; 1129, 19 , -3604; 63.4
129+129+164+828=1250; 1033, 19 , -2692; 62.2
129+129+164+816=1238; 1036, 22 , -2740; 74.5
129+129+184+806=1248; 946, 22 , -1978; 72.4
129+129+254+737=1249; 813, 17 , -1280; 44.4
129+164+184+773=1250; 860, 21 , -1773; 61.3

Google Ads, W=990, 2 columns
V1 ∈ [1659, 2181], V2 ∈ [18, 25], V3 ∈
[−7123,−5515]
248+742=990; 1769, 25 , -5635; 64.4
Pareto frontier:
124+864=988; 2181, 18 , -7123; 42.0
129+861=990; 2123, 18 , -7063; 38.6
129+848=977; 2077, 19 , -7063; 38.4

164+816=980; 2032, 22 , -6643; 54.1
184+806=990; 1908, 22 , -6403; 49.1
204+762=966; 1812, 22 , -6163; 46.3
248+742=990; 1769, 25 , -5635; 64.4
253+737=990; 1756, 24 , -5575; 61.0
258+732=990; 1807, 23 , -5515; 62.8

Google Ads, W=1250, 3 columns
V1 ∈ [1663, 2571], V2 ∈ [16, 28], V3 ∈
[−7539,−1723]
184+254+812=1250; 2150, 26 , -3335; 67.2
Pareto frontier:
124+258+864=1246; 2313, 22 , -5667; 53.2
124+313+812=1249; 2214, 27 , -5111; 62.2
129+129+992=1250; 2567, 16 , -6046; 50.3
129+129+991=1249; 2571, 16 , -6049; 50.5
129+164+952=1245; 2351, 16 , -5746; 42.0
129+164+948=1241; 2377, 16 , -5758; 43.1
129+184+936=1249; 2307, 16 , -5554; 41.1
129+254+864=1247; 2301, 22 , -4930; 56.8
129+258+862=1249; 2295, 22 , -4888; 56.8
129+308+812=1249; 2209, 27 , -4438; 65.8
129+313+806=1248; 2092, 27 , -4396; 60.6
129+340+778=1247; 2042, 28 , -4156; 61.7
129+340+773=1242; 2043, 28 , -4171; 61.7
129+340+762=1231; 2049, 28 , -4204; 61.8
164+184+898=1246; 2271, 19 , -4619; 50.9
164+204+864=1232; 2223, 19 , -4515; 49.3
164+258+828=1250; 2161, 23 , -4011; 57.6
164+258+816=1238; 2164, 26 , -4059; 63.8

164+313+773=1250; 1977, 27 , -3571; 60.0
164+313+762=1239; 1983, 27 , -3615; 60.0
184+184+864=1232; 2215, 19 , -3915; 52.3
184+204+862=1250; 2203, 19 , -3685; 53.1
184+254+812=1250; 2150, 26 , -3335; 67.2
184+258+806=1248; 2040, 26 , -3317; 62.2
184+304+762=1250; 1969, 27 , -2985; 62.9
184+308+756=1248; 1910, 27 , -2967; 60.3
204+204+842=1250; 2113, 20 , -3007; 54.9
204+204+816=1224; 2085, 23 , -3163; 58.9
204+238+806=1248; 1961, 23 , -2815; 55.2
204+254+792=1250; 1936, 26 , -2707; 60.9
204+258+778=1240; 1937, 26 , -2743; 60.7
204+258+773=1235; 1938, 26 , -2773; 60.6
204+258+762=1224; 1944, 26 , -2839; 60.5
204+288+756=1248; 1883, 27 , -2515; 61.6
238+254+756=1248; 1864, 26 , -2201; 60.4
254+254+742=1250; 1930, 25 , -1731; 64.1
254+258+737=1249; 1926, 24 , -1723; 61.8
258+258+734=1250; 1932, 23 , -1731; 60.0
258+258+732=1248; 1939, 23 , -1747; 60.2

Google Ads, W=1250, 4 columns
V1 ∈ [1667, 2205], V2 ∈ [20, 25], V3 ∈
[−6051,−1344]
124+129+254+742=1249; 1834, 25 , -1358; 70.9
Pareto frontier:
124+124+258+744=1250; 1842, 25 , -1503; 70.5
124+124+258+742=1248; 1846, 25 , -1519; 70.7
124+129+129+864=1246; 2205, 20 , -4932; 49.8
124+129+184+812=1249; 2054, 24 , -3172; 70.4

124+129+254+742=1249; 1834, 25 , -1358; 70.9
129+129+129+862=1249; 2187, 20 , -4888; 48.7
129+129+129+848=1235; 2101, 21 , -4930; 46.7
129+129+164+816=1238; 2056, 24 , -3954; 65.1
129+129+184+806=1248; 1932, 24 , -3152; 61.0
129+129+254+737=1249; 1818, 24 , -1348; 64.8
129+129+258+734=1250; 1824, 23 , -1344; 60.3

IAB, W=990, 2 columns
V1 ∈ [7033, 10453], V2 ∈ [37, 51],
V3 ∈ [−11183,−8195]
258+732=990; 10441, 37 , -8195; 74.9
Pareto frontier:
129+852=981; 8512, 51 , -10517; 50.5
164+824=988; 8413, 48 , -9887; 50.9
164+820=984; 8339, 51 , -9887; 55.4

184+806=990; 8146, 47 , -9527; 49.8
216+773=989; 7872, 42 , -8951; 43.9
216+761=977; 8220, 41 , -8951; 46.4
248+742=990; 9195, 39 , -8375; 61.1
253+737=990; 9990, 38 , -8285; 70.1
254+732=986; 10453, 37 , -8267; 74.2
258+732=990; 10441, 37 , -8195; 74.9

116

IAB, W=1250, 3 columns
V1 ∈ [6495, 13601], V2 ∈ [37, 72],
V3 ∈ [−13567,−2990]
164+258+828=1250; 10301, 69 , -5275; 71.2
Pareto frontier:
92+313+844=1249; 10707, 72 , -9477; 62.7
92+313+842=1247; 10714, 72 , -9479; 62.7
92+313+834=1239; 10716, 69 , -9487; 60.5
92+330+828=1250; 10704, 69 , -9187; 61.4
92+340+816=1248; 10768, 52 , -9019; 50.2
92+382+776=1250; 11459, 43 , -8303; 50.0
92+383+773=1248; 11842, 42 , -8288; 51.6
92+396+761=1249; 12193, 41 , -8066; 53.7
124+288+836=1248; 10037, 71 , -6543; 67.1
124+313+812=1249; 10794, 50 , -6213; 57.6
124+368+756=1248; 11160, 40 , -5503; 54.9
124+383+742=1249; 13005, 39 , -5303; 65.7
129+293+828=1250; 10410, 70 , -5729; 71.2
129+304+816=1249; 10551, 52 , -5603; 59.5
129+308+812=1249; 10783, 50 , -5555; 59.6
129+313+808=1250; 10889, 47 , -5489; 58.3
129+328+792=1249; 10675, 44 , -5315; 55.5
129+340+780=1249; 10786, 43 , -5171; 55.8
129+340+764=1233; 11089, 41 , -5267; 55.9
129+340+761=1230; 11119, 41 , -5285; 56.0
129+362+756=1247; 11136, 40 , -4919; 56.6
129+378+742=1249; 12901, 39 , -4715; 66.9
129+383+737=1249; 13285, 38 , -4655; 68.7
129+383+734=1246; 13590, 37 , -4673; 69.7
129+383+732=1244; 13601, 37 , -4685; 69.7

164+254+828=1246; 10313, 69 , -5347; 71.1
164+258+828=1250; 10301, 69 , -5275; 71.2
164+308+778=1250; 10289, 43 , -4725; 54.3
164+313+773=1250; 10605, 42 , -4670; 55.6
164+313+764=1241; 10923, 41 , -4733; 56.6
164+313+761=1238; 10953, 41 , -4754; 56.7
164+330+756=1250; 10943, 40 , -4483; 56.8
184+248+816=1248; 9285, 52 , -4687; 54.9
184+254+812=1250; 10263, 50 , -4611; 59.5
184+258+808=1250; 10030, 47 , -4571; 56.1
184+288+778=1250; 9805, 43 , -4271; 52.9
184+293+773=1250; 9855, 42 , -4221; 52.6
184+304+761=1249; 10435, 41 , -4119; 55.6
184+308+756=1248; 10645, 40 , -4087; 56.2
238+244+768=1250; 8496, 42 , -4073; 45.0
238+248+764=1250; 9114, 41 , -4037; 48.1
238+248+761=1247; 9144, 41 , -4064; 48.2
238+254+756=1248; 10100, 40 , -4001; 53.3
244+244+761=1249; 8937, 41 , -3565; 48.5
244+248+756=1248; 9188, 40 , -3543; 49.3
254+254+742=1250; 12061, 39 , -3007; 67.3
254+254+734=1242; 12330, 37 , -3095; 67.2
254+254+732=1240; 12341, 37 , -3117; 67.2
254+258+737=1249; 12013, 38 , -2990; 66.3
254+258+734=1246; 12318, 37 , -3023; 67.3
254+258+732=1244; 12329, 37 , -3045; 67.3
258+258+734=1250; 12306, 37 , -2995; 67.3
258+258+732=1248; 12317, 37 , -3017; 67.3

IAB, W=1250, 4 columns
V1 ∈ [6600, 11477], V2 ∈ [37, 53],
V3 ∈ [−11911,−2125]
92+92+254+812=1250; 9715, 50 , -3335; 76.1
Pareto frontier:
92+92+244+820=1248; 8469, 51 , -3903; 65.0
92+92+248+816=1248; 8737, 52 , -3907; 68.8
92+92+254+812=1250; 9715, 50 , -3335; 76.1
92+92+304+761=1249; 9887, 41 , -2125; 67.6
92+92+308+756=1248; 10097, 40 , -2175; 67.6
92+92+308+754=1246; 10444, 39 , -2203; 69.0
92+92+313+744=1241; 11056, 39 , -2318; 73.8
92+92+313+742=1239; 11068, 39 , -2346; 73.9
92+124+254+780=1250; 9417, 43 , -2591; 65.1
92+124+258+776=1250; 9397, 43 , -2587; 64.9
92+129+184+844=1249; 8996, 52 , -4582; 68.8
92+129+184+842=1247; 9003, 52 , -4598; 68.8
92+129+253+776=1250; 9578, 43 , -2976; 65.2
92+129+254+773=1248; 9718, 42 , -2473; 66.5

92+129+254+761=1236; 10066, 41 , -2605; 67.5
92+129+258+764=1243; 10024, 41 , -2520; 67.4
92+129+258+761=1240; 10054, 41 , -2553; 67.6
124+124+184+816=1248; 8767, 51 , -4387; 65.9
124+129+254+742=1249; 10881, 39 , -2250;
72.6
129+129+129+852=1239; 9536, 53 , -6215; 69.5
129+129+164+820=1242; 9363, 52 , -5121; 70.1
129+129+254+737=1249; 11161, 38 , -2240;
73.5
129+129+254+734=1246; 11466, 37 , -2273;
74.4
129+129+254+732=1244; 11477, 37 , -2295;
74.4
129+129+258+734=1250; 11454, 37 , -2221;
74.5
129+129+258+732=1248; 11465, 37 , -2243;
74.5

superset, W=990, 2 columns
V1 ∈ [8979, 12475], V2 ∈ [39, 51],
V3 ∈ [−12221,−8901]
258+732=990; 12467, 39 , -8901; 74.9
Pareto frontier:
129+852=981; 10487, 51 , -11481; 50.5
164+824=988; 10356, 48 , -10781; 49.6
164+820=984; 10277, 51 , -10781; 54.9
164+812=976; 10320, 49 , -10781; 51.3

184+806=990; 10043, 49 , -10381; 51.9
204+780=984; 9832, 47 , -9981; 49.2
216+773=989; 9891, 46 , -9741; 50.2
216+762=978; 10245, 45 , -9741; 52.4
248+742=990; 11162, 41 , -9101; 61.4
253+737=990; 11957, 40 , -9001; 69.9
254+732=986; 12475, 39 , -8981; 74.2
258+732=990; 12467, 39 , -8901; 74.9

117

superset, W=1250, 3 columns
V1 ∈ [7904, 16708], V2 ∈ [39, 72],
V3 ∈ [−14941,−3225]
129+388+732=1249; 16708, 39 , -5303; 69.1
Pareto frontier:
92+333+824=1249; 13636, 72 , -10029; 66.2
92+340+816=1248; 13735, 57 , -9897; 55.7
92+340+812=1244; 13783, 55 , -9901; 54.4
92+362+792=1246; 13299, 48 , -9481; 47.9
92+382+776=1250; 14450, 47 , -9097; 53.7
92+388+768=1248; 14946, 46 , -8985; 55.7
92+396+762=1250; 15330, 45 , -8831; 57.2
124+288+836=1248; 12112, 71 , -7461; 65.4
124+313+812=1249; 12887, 55 , -7081; 58.0
124+333+792=1249; 13247, 48 , -6781; 55.3
124+368+756=1248; 14148, 43 , -6261; 57.3
124+383+742=1249; 16007, 41 , -6031; 65.3
129+254+852=1235; 12478, 64 , -7263; 62.4
129+258+852=1239; 12470, 64 , -7183; 62.6
129+293+828=1250; 12460, 70 , -6627; 68.6
129+304+816=1249; 12596, 57 , -6479; 59.9
129+308+812=1249; 12876, 55 , -6423; 59.8
129+313+808=1250; 12893, 51 , -6347; 57.1
129+328+792=1249; 13157, 48 , -6143; 56.7
129+340+780=1249; 13691, 47 , -5975; 58.9
129+340+773=1242; 13743, 46 , -6017; 58.3
129+340+764=1233; 14067, 45 , -6071; 58.9
129+340+762=1231; 14097, 45 , -6083; 59.0
129+362+756=1247; 14080, 43 , -5679; 58.6
129+378+742=1249; 15897, 41 , -5443; 66.4
129+383+737=1249; 16287, 40 , -5373; 67.7
129+388+732=1249; 16708, 39 , -5303; 69.1
164+254+828=1246; 12359, 69 , -6253; 68.5
164+258+828=1250; 12351, 69 , -6173; 68.6
164+313+773=1250; 12655, 46 , -5458; 54.7
164+313+764=1241; 12979, 45 , -5521; 55.3
164+313+762=1239; 13009, 45 , -5535; 55.4
164+330+756=1250; 13441, 43 , -5237; 56.8
164+340+746=1250; 14379, 41 , -5107; 60.1

164+340+744=1248; 14640, 41 , -5121; 61.3
164+340+742=1246; 14652, 41 , -5135; 61.3
164+340+734=1238; 14934, 39 , -5191; 61.0
164+340+732=1236; 14970, 39 , -5205; 61.1
184+248+816=1248; 11309, 57 , -5565; 56.3
184+254+812=1250; 12352, 55 , -5477; 60.0
184+258+808=1250; 12034, 51 , -5429; 55.6
184+293+773=1250; 11905, 46 , -5009; 52.4
184+304+762=1250; 12491, 45 , -4877; 54.8
184+308+756=1248; 12644, 43 , -4845; 54.1
184+333+732=1249; 14828, 39 , -4537; 62.3
204+204+842=1250; 11154, 52 , -5359; 52.3
204+216+828=1248; 11114, 49 , -5245; 50.2
204+216+820=1240; 11023, 52 , -5317; 51.8
204+238+808=1250; 10773, 50 , -4985; 50.1
204+244+802=1250; 10639, 49 , -4919; 48.9
204+254+792=1250; 11878, 48 , -4809; 54.3
204+288+756=1248; 12191, 43 , -4453; 53.0
216+216+816=1248; 11025, 50 , -5221; 50.6
216+216+812=1244; 11073, 50 , -5257; 50.7
216+254+780=1250; 11830, 47 , -4785; 53.4
216+254+773=1243; 11882, 46 , -4848; 52.7
216+258+776=1250; 11814, 47 , -4741; 53.4
216+258+773=1247; 11874, 46 , -4768; 52.9
216+258+764=1238; 12198, 45 , -4849; 53.5
216+258+762=1236; 12228, 45 , -4867; 53.5
238+244+768=1250; 10597, 46 , -4321; 48.1
238+248+764=1250; 11228, 45 , -4281; 50.4
238+248+762=1248; 11258, 45 , -4301; 50.5
238+254+756=1248; 12174, 43 , -4241; 53.5
244+244+762=1250; 11044, 45 , -3803; 50.9
244+248+756=1248; 11245, 43 , -3789; 50.4
254+254+742=1250; 14148, 41 , -3245; 64.2
254+254+732=1240; 14466, 39 , -3365; 63.9
254+258+737=1249; 14104, 40 , -3225; 63.3
254+258+732=1244; 14458, 39 , -3285; 64.1
258+258+734=1250; 14414, 39 , -3229; 64.0
258+258+732=1248; 14450, 39 , -3253; 64.1

superset, W=1250, 4 columns
V1 ∈ [8308, 14280], V2 ∈ [39, 57],
V3 ∈ [−13101,−2419]
92+92+254+812=1250; 11804, 55 , -3643; 76.0
Pareto frontier:
92+92+248+816=1248; 10761, 57 , -4217; 69.7
92+92+254+812=1250; 11804, 55 , -3643; 76.0
92+92+304+762=1250; 11943, 45 , -2419; 66.9
92+92+308+756=1248; 12096, 43 , -2485; 65.0
92+92+313+744=1241; 13044, 41 , -2635; 68.4
92+92+313+742=1239; 13056, 41 , -2665; 68.4
92+92+328+737=1249; 13520, 40 , -2650; 70.3
92+92+330+734=1248; 13849, 39 , -2683; 71.2
92+92+333+732=1249; 14280, 39 , -2695; 74.1
92+124+254+780=1250; 11396, 47 , -2867; 64.4
92+124+258+776=1250; 11380, 47 , -2863; 64.3

92+129+253+776=1250; 11540, 47 , -3247; 64.3
92+129+254+773=1248; 11764, 46 , -2746; 66.0
92+129+254+762=1237; 12118, 45 , -2878; 66.7
92+129+258+764=1243; 12080, 45 , -2798; 66.7
92+129+258+762=1241; 12110, 45 , -2822; 66.8
124+129+254+742=1249; 12865, 41 , -2490;
67.6
129+129+254+737=1249; 13145, 40 , -2475;
68.2
129+129+254+732=1244; 13499, 39 , -2535;
69.1
129+129+258+734=1250; 13455, 39 , -2455;
69.1
129+129+258+732=1248; 13491, 39 , -2479;
69.3

118

Appendix B: Polskie streszczenie

W pracy zaproponowano i rozwiązano trzy nowatorskie zagadnienia badawcze,

których głównymi wspólnymi cechami było pochodzenie z rzeczywistych za-

stosowań aplikacji internetowych oraz użycie optymalizacji kombinatorycznej,

a w szczególności algorytmów pakowania dwuwymiarowego, dla poprawy ja-

kości działania. Elementów wspólnych jest jednak znacznie więcej: wszystkie

rozpatrywane problemy są obliczeniowo trudne, należą do klasy problemów NP-

trudnych i jako takie w praktyce muszą być rozwiązywane algorytmami heury-

stycznymi. Wspomniane trzy zagadnienia badawcze opisano poniżej.

Optymalizacja układu szerokości kolumn strony

internetowej w celu umieszczania reklam

Jednostka reklamowa to format reklamy uzgodniony między reklamodawcą, wy-

dawcą a siecią reklamową. Jest to prostokąt o zadanych wymiarach. Wydawca

musi przygotować strony internetowe tak, żeby mieć możliwie wiele dogodnych

możliwości umieszczania jednostek reklamowych, ale też by zachować estetyczny

wygląd całości. Witryny mają układ kolumn z przewijaniem pionowym, w któ-

rym szerokości są zadane na stałe, zaś wysokość jest właściwie nieograniczona.

Obecnie stosowana jest metoda dobierania szerokości kolumn ad-hoc. Podział

całkowitej szerokości strony na kolumny sformułowano jako problem optymali-

zacyjny. Reklamy mogą być umieszczane w kolumnach w grupach, które przez

ograniczenia HTML podobne są do problemu cięcia gilotynowego. Szerokości

kolumn, które w modelu matematycznym są zmiennymi decyzyjnymi, będą do-

stosowywane do możliwie wszechstronnego mieszczenia takich grup reklam.

W optymalizacji użyto trzech funkcji celu, które odzwierciedlają kolejno:

1) Elastyczność układu kolumn, tj. jak wiele różnych kombinacji reklam jest on

w stanie zmieścić. 2) Zdolność mieszczenia najmniej wygodnej, tzn. najszerszej

jednostki reklamowej. 3) Minimalizację marnowanego miejsca, przy pesymi-

stycznym założeniu umieszczania tylko jednej reklamy. Aby właściwie odzwier-

ciedlić wielokryterialność problemu, jako wyniki podawano zarówno wszystkie

rozwiązania niezdominowane w sensie Pareto, jak i jedno rozwiązanie najlepsze,

uzyskanie przez nadanie funkcjom celu wag. Dla wyznaczenia wag przeprowa-

dzono ankietę wśród 21 ekspertów, profesjonalistów zajmujących się stronami

internetowymi.

Zaproponowany model ma aż 13 ograniczeń, począwszy od tak oczywistych

jak nie przekraczanie ograniczeń szerokości strony, poprzez ograniczające re-

dundancję rozwiązań, skończywszy na takich które mają odzwierciedlać wyma-

gania estetyczne w łączeniu reklam w grupy, czy pozostawiania pustej prze-

119

strzeni. Model poprzez wartości wejściowe parametrów używanych w ograni-

czeniach pozwala na znaczne dostosowanie wyników do potrzeb konkretnego

web-developera. Zaproponowany algorytm działa w czterech etapach:

1. Jednostki reklamowe są łączone, tworząc wszystkie możliwe kombinacje.

2. Tworzona jest lista dopuszczalnych szerokości kombinacji i częściowe war-

tości dla późniejszego wyliczenia funkcji celu.

3. Generowane są wszystkie dopuszczalne układy szerokości kolumn i osta-

teczne wyniki funkcji celu.

4. Z tej listy wybierane są najlepsze rozwiązanie i listy rozwiązań Pareto-

optymalnych.

Etapy 2. i 4. to w gruncie rzeczy dość trywialne przeglądanie listy wartości

dostarczonych przez poprzednie etapy. Dla etapu 1. użyto zmodyfikowanego al-

gorytmu Wanga dla dwuwymiarowego rozkroju z ograniczeniami. Modyfikacje

polegały na dostosowaniu go do potrzeb rozważanego problemu, oraz na po-

prawkach wydajnościowych, w szczególności ograniczeniu generowania duplika-

tów i sprawniejszego ich wyszukiwania i usuwania. Dla etapu 3. skonstruowano

algorytm przeglądający układy kolumn w możliwie sprawny sposób, przez wy-

korzystanie ograniczeń zbioru możliwych szerokości. Algorytm ma złożoność

wykładniczą, jednak wobec ograniczonych rozmiarów szerokości strony, jest to

rozwiązaniem akceptowalnym.

Dla potrzeb eksperymentów obliczeniowych, zaproponowano jako bench-

marki zestawy jednostek reklamowych trzech popularnych sieci reklamowych

oraz zestaw rekomendacji jednostek reklamowych Internet Advertising Bureau.

Wartości wejściowe parametrów zostały dobrane tak, by w miarę możliwości

jak najlepiej odzwierciedlały rzeczywiste warunki. Algorytm na przeciętnym

komputerze biurowym generował wyniki w czasach od kilku milisekund o 160

sekund, co jest rezultatem bardzo dobrym dla czynności, która wykonywana jest

tylko raz przy tworzeniu strony internetowej. Czas działania algorytmu może

się zmieniać w zależności od parametrów wejściowych, co zostało przebadane.

Prezentowane wyniki składają się z najlepszego układu kolumn i zestawu

układów Pareto-optymalnych dla kolejnych benchmarków i różnych szeroko-

ści stron. Zakresy wartości przyjmowanych przez trzy składowe funkcje celu

świadczą o ich czułości. Z wyników można też wyciągnąć dodatkowe wnioski.

Na przykład, zestaw reklam Adbrite zawierający tylko pięć jednostek jest zbyt

mały i jego użycie jest utrudnione. Z kolei dla wielu innych zestawów wyniki

wykazują, że zmienienie układu kolumn o kilka pixeli może znacznie poprawić

elastyczność umieszczania reklam.

120

Wnioski końcowe wskazują dodatkowe przyszłe kierunki badań. Możliwa

jest próba zastosowania danych o częstości stosowania jednostek reklamowych,

np. w danym kraju, w celu znalezienia układów kolumn mających pewną

wszechstronną stosowalność. Z kolei odwrócenie problemu tj. badanie zesta-

wów jednostek reklamowych, pozwoliłoby stwierdzić które z nich mają braki,

jakie jednostki należałoby dodać dla najlepszego efektu, nawet pozwoliłyby na

pokuszenie się na stworzenie od podstaw kompletnego zestawu. Badanie można

też uogólniać do problemu podziału dwuwymiarowej przestrzeni w jednym wy-

miarze, czyli na kolumny. Takie zagadnienie może znaleźć zastosowanie w pla-

nowaniu struktury portu, czy cięciu szerokich bel papieru produkowanych przez

fabryki na węższe, dające się transportować i składować.

Budowanie chmur tagów dla zastosowań

internetowych

Tag to inaczej fraza reprezentująca tekstowo jakiś obiekt. Tagi mają przypisaną

wartość istotności w relacji do innych tagów. Chmura tagów to ułożenie tagów

na płaszczyźnie z wizualizacją graficzną ich istotności zazwyczaj przez większy

rozmiar. Celem badania było rozwiązanie problemu konstrukcji estetycznych

i czytelnych chmur tagów.

Na potrzeby przeglądu literaturowego zaproponowana została taksonomia

klasyfikacji chmur tagów w oparciu o 5 parametrów i zakresy ich wartości:

1. Sortowanie tagów. Dostępne opcje to: alfabetycznie, według znaczenia,

kontekstowo, losowo, bądź kolejność układana przez algorytm pakowania.

2. Kształt całej chmury. Możliwe opcje: prostokątny, inny kształt regularny

(np. okrągły), nieregularny, zadany (np. zadany wielobok, granice mapy).

3. Kształt samych tagów. Opcje: prostokąt, lub kształt znaków.

4. Obracanie znaczników. Opcje: brak, swobodne, dozwolone z ogranicze-

niami.

5. Wyrównanie w pionie. Opcje: użycie typograficznych linii podstawowych,

ograniczone przez właściwości algorytmu (np. grupowanie tagów), swo-

bodne.

Przeanalizowano 14 chmur tagów z literatury, zarówno w zakresie tych para-

metrów jaki użytych algorytmów oraz zastosowań chmury. Przeanalizowano

również literaturę dotyczącą badań użyteczności chmur tagów.

Następnie przeprowadzono analizę wymagań i zaleceń dla chmur tagów,

które mają być używane na stronach internetowych. Wymagania i zalecenia

te wynikają zarówno z ograniczeń zasad konstrukcji i technologii (np. HTML,

121

CSS) samych stron internetowych, fragmentacji rynku klientów jak i tego, że

strony mają być czytelne zarówno dla ludzi, jak i dla robotów indeksujących.

Wynikające z analizy rekomendacje i decyzje dotyczące chmur tagów dla WWW

są następujące: 1) chmura jest prostokątna, 2) tagi są traktowane jak prosto-

kąty, 3) algorytm pakowania ustala kolejność tagów, 4) obracanie tagów nie

jest dopuszczalne, 5) znaczniki umieszczane są na linii bazowej (na półkach),

6) realizowana winna być minimalizacja marnowanej przestrzeni w prostokącie

chmury. Chociaż może się wydawać, że w większości przypadków dokonano wy-

borów najprostszych, nadal wyjściowy problem optymalizacyjny jest NP-trudny,

jako że jest szczególną wersją problemów bin- lub strip-packing.

Dla uzyskania estetycznego wyglądu chmury zastosowano regułę typograficz-

nej równomiernego koloru typograficznego, tj. tekst tak ułożony powinien wi-

zualizować się np. jako możliwie jednorodna masa szarości. Osobnym wymaga-

niem jest uruchamianie algorytmu konstruowania chmur po stronie użytkownika.

Wykazało to badanie rozmiarów tagów przeprowadzone na 4201 użytkownikach

rzeczywistej strony internetowej, w którym zidentyfikowano 112 kombinacji roz-

miarów tagów wynikających z różnych czcionek dostępnych na urządzeniach

i różnić w ich renderowaniu. Dodatkowo chmury powinny za każdym razem

być generowane w tym samych wyglądzie, aby nie powodować konsternacji dla

użytkownika, a więc przez algorytm deterministyczny, oraz ze względu na wy-

magania szybkości wyświetlania stron internetowych w czasie rzędu dziesiątych

części sekundy.

Przeprowadzona została analiza problemu pakowania rozwiązywanego przy

budowaniu chmur tagów. Mamy tu do czynienia z problemem typu strip-

packing, w którym szerokość prostokąta jest ustalona, zaś wysokość może być

zmieniana w miarę potrzeb przez przesuwanie elementów strony www znajdu-

jących się pod chmurą. Następnie przedstawione zostało matematyczne sfor-

mułowanie problemu. Dla każdego tagu możliwe jest wyliczenie jego zaczer-

nienia, a z tagów także dla każdej półki. Minimalizowana winna być potęga

k różnicy między zaczernieniem półki a maksymalnym możliwym, sumowana

po wszystkich półkach w chmurze. Wykładnik potęgi k został wyznaczony eks-

perymentalnie. Drugim elementem do dobranym eksperymentalnie był sposób

reprezentowania zaczernienia półek, który może być masą, czyli sumą czarności

pixeli w tagach lub gęstością, czyli masą dzieloną przez powierzchnię.

Eksperymenty obliczeniowe przeprowadzono za pomocą specjalnie zaprojek-

towanego algorytmu typu Branch and Bound, pozwalającego rozwiązać pro-

blem do optymalności. Ponieważ jednak algorytm ten jest wykładniczy, może

rozwiązywać w akceptowalnym czasie ograniczone rozmiary instancji, wstępne

testy ograniczono do 16 tagów. Wyniki zostałuy wykorzystane dla zmierzenia

dystansu od rozwiązań optymalnych oraz dostrojenia funkcji celu. Strojenie

122

przeprowadzono przez wygenerowanie 55 testowych chmur tagów w 6 kombi-

nacjach parametrów i poddanie ich ocenie pięciu ekspertów. Na tej podstawie

oceniono, że gęstość jest bardziej czułym parametrem niż masa, zaś dla gęstości

najlepiej ocenianą wratością k jest 0,5. W dalszych pracach użyto więc tych

parametrów funkcji celu.

Dla rozwiązania problemu zaproponowano też specjalny algorytm zachłanny.

W oparciu o jego bazową wersję z wykorzystaniem 8 różnych reguł sortowania

tagów (po masie, gęstości, wysokości i szerokości) oraz 4 różnych reguł wy-

bierania półek (best fit, worst fit, najmniejsza oraz największa masa tonalna)

oraz dwóch dodatkowych modyfikacji możliwe było 8*4*2*2 wersji algorytmu

zachłannego. Całość postanowiono wykorzystać jako algorytm Super Fit, któ-

rego główną zaletą jest mniejsze prawdopodobieństwo wpadnięcia w pułapkę

przypadków pesymistycznych. Jako ostatnią metodę rozwiązania problemu al-

gorytmu przygotowano algorytm Tabu Search. Algorytm startuje z najlepszego

rozwiązania z Super Fit i następnie przeszukuje przestrzeń lokalnie wykorzystu-

jąc tablicę ruchów tabu, w celu ominięcia już odwiedzanych rozwiązań.

Do eksperymentów obliczeniowych wykorzystano rzeczywiste chmury tagów

pobrane z działających stron internetowych. Algorytm Super Fit rozwiązuje in-

stancje do 142 tagów w czasie do 57ms (średnio 17ms). Parametry algorytmów

zachłannych zastosowanych w Super Fit powodowały różną jego efektywność,

52 z 128 nigdy nie wyprodukowało rozwiązania, które byłoby lepsze od rozwią-

zań innych algorytmów i mogłyby zostać usunięte z pakietu, gdyby była taka

potrzeba. Algorytm Tabu Search po strojeniu, wykonując 300 iteracji, działał

średnio w czasie 170ms. Różnice numeryczne w wartości funkcji celu są niewiel-

kie, jeżeli algorytm uzyska minimalną możliwą liczbę półek.

Pakowanie CSS-sprite

CSS-sprite to technika umieszczenia wielu grafik stanowiących elementy strony

WWW na jednym obrazku (nazywanym właśnie CSS-sprtite) w celu zmniej-

szenia liczby zapytań do serwera. Fragmenty tego obrazka są wyświetlane za

pomocą reguł CSS w miejscu oryginalnych grafik.

Rozwiązanie problemu rozpoczęto od analizy wyzwań związanych z pakowa-

niem CSS-sprite. Wyzwania natury geometrycznej związane są z układaniem

grafik na CSS-sprite czyli z problemem pakowania. Występujący tu problem

pakowania jest nietypowej natury ponieważ przestrzeń, do której będą pako-

wane elementy nie ma zadanych żadnych wymiarów. Zamiast tego poszuki-

wana jest najmniejsza powierzchnia w której upakowane mogą zostać elementy.

Techniki kompresji grafiki stwarzają kolejne wyzwania, wpływając na rozmiar

plików docelowych w sposób nie możliwy do przewidzenia. Pliki mają różne

123

głębie kolorów, odzwierciedlane za pomocą różnej liczby bitów na pixel. Do-

datkowo kompresja PNG będzie osiągać lepsze rezultaty, jeżeli w obrazku będą

dłuższe ciągi punktów o jednakowym kolorze. A to może zależeć od wzajem-

nego położenia grafik. Z kolei kompresja JPEG jest stratna, ale też pixele

z sąsiadujących grafik na jednym obrazku mogą na siebie wzajemnie wpływać.

Oba formaty nadają się też lepiej dla różnych typów grafik i mają wiele innych

parametrów decydujących o rozmiarach obrazków i inych własnościach. Dal-

sze wyzwania są natury obliczeniowej. W pracy przedstawiony został dowód,

że zarówno problem wyboru zbioru grafik dla wspólnej palety kolorów o ogra-

niczonym rozmiarze jak i problem umiejscowienia obok siebie grafik tak, by

maksymalizować sąsiadowanie takich samych kolorów są NP-trudne. Wreszcie

wydajność komunikacji, przesyłu CSS-sprite między serwerem a przeglądarką

nie jest znana. Wpływa na nią wiele czynników począwszy od parametrów ser-

wera, łącza i klienta, poprzez parametry przesyłanych plików, a skończywszy

na użytym algorytmie szeregowania pakietów. Jako przybliżenie tego procesu

zaproponowana została zależność wykorzystująca algorytm McNaughtona. Za-

proponowana metoda wyliczenia czasu komunikacji ma jednocześnie niski koszt

akceptowalny dla zastosowania w praktyce, jak i akceptowalną dokładność.

Następnie problem został sformułowany jako model matematyczny. Dany

zestaw grafik ma być umieszczonych na CSS-sprite, a umiejscowienie grafik,

jak i liczba CSS-sprite są zmiennymi decyzyjnymi. Funkcja celu zakłada mini-

malizowanie czasu przesyłu CSS-sprite dla zadanych parametrów łącza, w tym

przyspieszenia wynikającego z zrównoleglenia przesyłania.

Przed przystąpieniem do dalszych prac przeprowadzono szereg dodatkowych

eksperymentów. W pierwszym z nich testowano wpływ kształtu CSS-sprite

i wzajemnego umiejscowienia grafik na rozmiar plików. Przygotowane grafiki

układano na CSS-sprite o wszystkich możliwych kształtach, począwszy od bar-

dzo długich ale niskich, przez zbliżone do kwadratu, a skończywszy na bardzo

wysokich ale wąskich. Jednocześnie testowano 200 permutacji wzajemnego uło-

żenia grafik. Z 36 testowych zestawów grafik 17 silnie preferowało dla układ

długi, 14 układów wysoki, a 5 nie wykazało preferencji. Przez dobór właściwego

układu rozmiar CSS-sprite może być zmniejszony o 2% do 35%. Nie znale-

ziono czynników pozwalających określać preferencję inaczej niż eksperymental-

nie. Jednakże po znalezieniu właściwego układu permutacje kolejności grafik

pozwalały na zysk mniejszy niż 1,5%. Uznano, że dla grafik typu PNG istotne

będzie testowanie obu układów, zaś kolejność ułożenia grafik można pominąć.

Nie stwierdzono podobnych zależności w plikach JPEG.

Drugi eksperyment miał na celu znalezienie przykładowych parametrów wy-

dajności komunikacji i sprawdzenie przyspieszenia wynikającego z równoległego

pobierania danych. W tym celu skonstruowano skrypt do pomiarów, który

124

umieszczono na działającej stronie internetowej z rzeczywistym ruchem i ze-

brano pomiary z 17460 unikatowych adresów IP. Wykazane zostało, że przeglą-

darki są zdolne do równoległego pobierania. Co najmniej dwa kanały stwier-

dzono w 100% z nich, zaś przeszło połowa miała ich więcej niż 7. Z kolei

przyspieszenie z pobierania równoległego wynosiło średnio od 36% dla trzech

kanałów do 77% dla 9 kanałów.

Następnie przystąpiono do analizy dostępnych rozwiązań generujących CSS

Sprite. Zidentyfikowano przeszło 30 gotowych programów. Część z nich nie

mogła zostać włączona do dalszych eksperymentów, ponieważ były zamknię-

tymi rozwiązaniami dostępnymi tylko dla konkretnej technologii, np. serwera,

bądź nie dało się ich uruchomić, np. przez niedziałające strony internetowe.

W pozostałej grupie można było jeszcze wyróżnić rozwiązania nie stosujące żad-

nych algorytmów pakowania, układających grafiki po prostu jedna obok drugiej.

Wreszcie ostatnia grupa to narzędzia do tworzenia CSS-sprite, używające algo-

rytmów pakowania, czasem dość zaawansowanych, dla minimalizowania wymia-

rów CSS-sprite. Wszystkie znalezione rozwiązania generują dokładnie jednego

CSS-sprite, nie biorą pod uwagę odkrytych zależności formatów kompresji, nie

optymalizują rozmiaru pliku, nie optymalizują czasu pobierania, które to cechy

są głównymi nowościami proponowanego rozwiązania. Niektóre ze znalezionych

programów używają postprocessingu algorytmów pakowania dla możliwego po-

prawienia kompresji i zmniejszenia rozmiaru wyjściowego pliku.

Jako alternatywę zaproponowano algorytm SpritePack działa w czterech eta-

pach:

1. klasyfikacja grafik – w którym testowane są ich parametry takie jak głębia

kolorów i podatność na kompresję,

2. pakowanie geometryczne - w którym obrazki są wstępnie grupowane w za-

daną liczbę k grup na podstawie pasowania do siebie wymiarami w pako-

waniu geometrycznym i zbieżnopści parametrów grafik poznanych w kla-

syfikacji,

3. pakowanie z kompresją obrazu – grupy z poprzedniego kroku są łączone

dalej, pakowane 2-wymiarowo i testowo kompresowane, łączenie w grupy

ma charakter algorytmu zachłannego, a funkcją celu jest oszacowanie czasu

pobierania,

4. postprocessing – wykonywane jest dodatkowe ulepszenie kompresji.

W procesie pakowania 2D testowane były algorytmy: First-Fit Decreasing He-

ight (oraz w wersji z Fit2), Best-Fit Decreasing Height (oraz w wersji z Fit2),

Bottom-Left, Modified Bottom Left oraz Variable Height Left Top. W praktyce

125

dwa ostatnie radziły sobie najlepiej w 99% przypadków, choć oczywiście wiązało

się to z pewnym kosztem czasowym, zwłaszcza w porównaniu do algorytmów

zachłannych otwierających tą listę. Docelowo do tej dwójki postanowiono do-

łączyć jeszcze First-Fit Decreasing Height Two-Fit, który radził sobie najlepiej

w większości instancji niezdominowanych przez tamte dwa.

Na potrzeby eksperymentów obliczeniowych przygotowano 32 instancje te-

stowe będące zestawami grafik ze skórek dla popularnych aplikacji webowych

w otwartym kodzie. Wstępne testy posłużyły to strojenia parametrów pracy

SpritePacka, w szczególności parametr k, który wydatnie wpływa na czas wyko-

nania najkosztowniejszego trzeciego etapu. Eksperymentalnie ustalono k = 10.

Następnie przeprowadzono na pięciu zestawach testowych porównanie z dostęp-

nymi rozwiązaniami zmuszając SpritePack (dla uzyskania zgodności formy re-

zultatów) do generowania dokładnie jednego CSS-sprite. Tylko dla jednego z ze-

stawów testowych tylko jedno z konkurencyjnych rozwiązań dało lepszy wynik.

Do dalszych testów wybrano cztery najlepsze rozwiązania, które były gorsze

od SpritePack śrefunkcji celudnio o 14-33%. Tym razem porównywano funkcję

celu, a więc czas pobierania CSS-sprite, ale także rozmiary plików CSS-sprite na

wszystkich 32 instancjach testowaych. Dla rozmiarów plików, optymalizowanych

przez SpritePack pośrednio, był on lepszy średnio o 38-43%, jednak zdarzały się

przypadki, w których konkurencyjne rozwiązania dawały rozwiązania lepsze o

do 18%. W funkcji celu SpritePack był średnio lepszy od każdego z konkuren-

tów o przynajmniej 31% i nigdy nie wystąpił przypadek, żeby konkurencja była

lepsza od SpritePack. Na koniec przeprowadzono jeszcze eksperyment z wygene-

rowanymi CSS-sprite na rzeczywistym serwerze porównując CSS-sprite genero-

wane przez SpritePack z zestawem obrazków przesyłanych bez użycia CSS-sprite

i z rozwiązaniem generowanym przez najlepszego z konkurentów. Na czterech

testowanych zestawach grafik Spritepack zmniejszał czasy pobierania o 350ms

do 2.4s w porównaniu z brakiem CCC-sprite, podczas gdy najlepsza z rozwią-

zań konkurencyjnych zaledwie o 140-800ms. Eksperyment ten potwierdził też,

że użyty model, w szczególności prognozowanie czasów pobierania za pomocą

funkcji McNaughtona oraz zmierzone przyspieszenie pobierania równoległego,

są poprawne. Współczynnik korelacji między medianami zmierzonego czasu

pobierania a prognozowanymi przez funkcję celu wynosił 0,952, a jego wartość

p była poniżej 2E-06.

126

Bibliography

[1] E. H. Aarts and J. H. Korst, Simulated annealing, ISSUES, 1 (1988),
p. 16.

[2] adBrite, adbrite exchange. [on-line] http://www.adbrite.com/, 2011.

[3] M. Adler, P. B. Gibbons, and Y. Matias, Scheduling space-sharing
for internet advertising, Journal of Scheduling, 5 (2002), pp. 103–119.

[4] American Dialect Society, “Hashtag” is the 2012 word of the year.
http://www.americandialect.org/hashtag-2012, 2013.

[5] A. Amiri and S. Menon, Efficient scheduling of internet banner adver-
tisements, ACM Transactions on Internet Technology (TOIT), 3 (2003),
pp. 334–346.

[6] ARC Project, Survey on two-dimensional packing. http://cgi.csc.
liv.ac.uk/~epa/survey.pdf, 2013.

[7] B. S. Baker and J. S. Schwarz, Shelf algorithms for two-dimensional
packing problems, SIAM J. Comput., 12 (1983), pp. 508–525.

[8] S. Bateman, C. Gutwin, and M. Nacenta, Seeing things in the
clouds: the effect of visual features on tag cloud selections, in Proceed-
ings of the nineteenth ACM conference on Hypertext and hypermedia,
ACM, 2008, pp. 193–202.

[9] J. Beaird, The principles of beautiful web design, SitePoint, Collingwood,
Vic. :, 1st ed. ed., 2007.

[10] J. Blazewicz, P. Bouvry, M. Kovalyov, and J. Musial, Erra-
tum to: Internet shopping with price-sensitive discounts, 4OR, 12 (2014),
pp. 403–406.

[11] , Internet shopping with price sensitive discounts, 4OR, 12 (2014),
pp. 35–48.

[12] J. Blazewicz, N. Cheriere, P.-F. Dutot, J. Musial, and D. Trys-
tram, Novel dual discounting functions for the internet shopping opti-
mization problem: new algorithms, Journal of Scheduling, (2014), pp. 1–
11.

127

[13] J. Błażewicz, M. Drozdowski, B. Soniewicki, and
R. Walkowiak, Two-dimensional cutting problem: Basic complex-
ity results and algorithms for irregular shapes, Foundations of Control
Engineering, 14 (1989), pp. 137–159.

[14] J. Błażewicz, K. H. Ecker, E. Pesch, G. Schmidt, and
J. Weglarz, Handbook on scheduling: from theory to applications,
Springer Science & Business Media, 2007.

[15] , Scheduling computer and manufacturing processes, Springer Science
& Business Media, 2013.

[16] J. Błażewicz and J. Musiał, E-commerce evaluation-multi-item inter-
net shopping, optimization and heuristic algorithms, in Operations Re-
search Proceedings, B. H. et al, ed., Berlin Heidelberg, 2010, Springer-
Verlag, pp. 149–154.

[17] T. Boutell, P. Joye, and PHP.net, GD graphics library. http:
//libgd.bitbucket.org/, 2013.

[18] K. Bredies and M. Holler, A total variation-based JPEG decompres-
sion model, SIAM Journal on Imaging Sciences, 5 (2012), pp. 366–393.

[19] R. Bringhurst, The elements of typographic style, CRC Studio, 1996.

[20] J. Brutlag, Speed matters for google web search. http:
//www.isaacsunyer.com/wp-content/uploads/2009/09/test_
velocidad_google.pdf, 2009.

[21] M. Burch, S. Lohmann, D. Pompe, and D. Weiskopf, Prefix tag
clouds, in 17th International Conference Information Visualisation, IEEE,
2013, pp. 45–50.

[22] E. K. Burke, M. R. Hyde, and G. Kendall, Evolving bin packing
heuristics with genetic programming, in Parallel Problem Solving from
Nature-PPSN IX, LNCS 4193, T. Runarsson, H.-G. Beyer, E. Burke,
J. Merelo-Guervós, J. L. Darrell Whitley, and X. Yao, eds., Springer,
2006, pp. 860–869.

[23] K. Chakhlevitch and P. Cowling, Hyperheuristics: Recent develop-
ments, in Adaptive and Multilevel Metaheuristics, C. C. et al, ed., vol. 136
of Studies in Computational Intelligence, Springer-Verlag, Berlin Heidel-
berg, 2008, pp. 3–29.

[24] G. Charlton, Eight second rule for e-commerce web-
sites now halved. http://econsultancy.com/uk/blog/
500-eight-second-rule-for-e-commerce-websites-now-halved,
2006.

[25] B. Chazelle, The bottom-left bin-packing heuristic: An efficient imple-
mentation, IEEE Transactions on Computers, 32 (1983), pp. 697–707.

[26] T.-C. Chen and Y.-W. Chang, Modern floorplanning based on b*-
tree and fast simulated annealing, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25 (2006), pp. 637–650.

128

[27] C. Cheng, T. Angustia, M. H. Ching, C. A. Cristobal, and
G. M. Gabuyo, Synonym based tag cloud generation, in DLSU Research
Congress, 2014.

[28] M.-T. Chi, S.-S. Lin, S.-Y. Chen, C.-H. Lin, and T.-Y. Lee, Mor-
phable word clouds for time-varying text data visualization, IEEE transac-
tions on visualization and computer graphics, 21 (2015), pp. 1415–1426.

[29] S. Chikuyonok, Clever JPEG optimization tech-
niques. http://www.smashingmagazine.com/2009/07/01/
clever-jpeg-optimization-techniques/, 2009.

[30] , Clever png optimization techniques.
http://www.smashingmagazine.com/2009/07/15/
clever-png-optimization-techniques/, 2009.

[31] N. Christofides and C. Whitlock, An algorithm for two-dimensional
cutting problems, Operations Research, 25 (1977), pp. 30–44.

[32] E. Clemons, Monetizing the internet: Surely there must be something
other than advertising, in System Sciences, 2009. HICSS ’09. 42nd Hawaii
International Conference on, 2009, pp. 1 –10.

[33] Clicksor, Online contextual advertising and behavioral marketing ser-
vices. [on-line] http://www.clicksor.com/, 2011.

[34] E. G. J. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tar-
jan, Performance bounds for level-oriented two-dimensional packing algo-
rithms, SIAM J. Comput., 9 (1980), pp. 808–826.

[35] CompuServe Inc., Graphics interchange format. http://www.w3.org/
Graphics/GIF/spec-gif89a.txt, 1990.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, In-
troduction to algorithms, vol. 6, MIT press Cambridge, 2001.

[37] W. Cui, Y. Wu, S. Liu, F. Wei, M. X. Zhou, and H. Qu, Con-
text preserving dynamic word cloud visualization, in Pacific Visualization
Symposium (PacificVis), IEEE, 2010, pp. 121–128.

[38] A. Davies, G. Fabritius, N. Jedrzejewski, A. Lenzen, C. Metel-
ing, A. Roaldseth, C. Schäfer, and Y. Weiss, Adept -
the adaptive JPG compressor. https://github.com/technopagan/
adept-jpg-compressor/, 2014.

[39] M. Dawande, S. Kumar, and C. Sriskandarajah, Performance
bounds of algorithms for scheduling advertisements on a web page, Journal
of Scheduling, 6 (2003), pp. 373–394.

[40] , Scheduling web advertisements: a note on the minspace problem,
Journal of Scheduling, 8 (2005), pp. 97–106.

[41] M. Domański, W. Piasecki, P. Płatek, M. Witczak, J. Marsza-
łkowski, and M. Drozdowski, Aplikacja wspierająca wybór układu
stron www dla celów reklamowych. http://www.cs.put.poznan.pl/
jmarszalkowski/optymalizator_layoutu/, 2012.

129

[42] R. Eberhart and J. Kennedy, A new optimizer using particle swarm
theory, in Micro Machine and Human Science, 1995. MHS’95., Proceedings
of the Sixth International Symposium on, IEEE, 1995, pp. 39–43.

[43] R. Eckersley, R. Angstadt, C. M. Ellertson, and R. Hendel,
Glossary of typesetting terms, University of Chicago Press, 2008.

[44] M. Eckert and A. Bradley, Perceptual quality metrics applied to still
image compression, Signal Processing, 70 (1998), pp. 177–200.

[45] J. Fenn, When to leap on the hype cycle. http://www.cata.ca/
_pvw522C275E/files/PDF/Resource_Centres/hightech/reports/
indepstudies/Whentoleaponthehypecycle.pdf, 1995.

[46] K. Fujimura, S. Fujimura, T. Matsubayashi, T. Yamada, and
H. Okuda, Topigraphy: visualization for large-scale tag clouds, in Pro-
ceedings of the 17th international conference on World Wide Web, ACM,
2008, pp. 1087–1088.

[47] M. R. Garey and D. S. Johnson, Computers and intractability: A
Guide to the Theory of NP-Completeness, W.H.Freeman and Co., 1979.

[48] P. Gilmore and R. Gomory, Multistage cutting stock problems of two
and more dimensions, Operations Research, 13 (1965), pp. 94–120.

[49] F. Glover, Tabu search, part I, ORSA Journal on Computing, 1 (1989),
pp. 190–206.

[50] D. E. Goldberg, Genetic algorithms, Pearson Education India, 2006.

[51] Google, Adsense. [on-line] http://adsense.google.com, 2011.

[52] J. Gordon, Binary tree bin packing algorithm. http:
//codeincomplete.com/posts/2011/5/7/bin_packing/, 2011.

[53] P.-N. Guo, T. Takahashi, C.-K. Cheng, and T. Yoshimura, Floor-
planning using a tree representation, IEEE Transaction On Computer-
Aided Design of Integrated Circuits And Systems, 20 (2001), pp. 281–289.

[54] M. J. Halvey and M. T. Keane, An assessment of tag presentation
techniques, in Proceedings of the 16th international conference on World
Wide Web, ACM, 2007, pp. 1313–1314.

[55] HTTPbis Working Group, Hypertext transfer protocol version 2.
https://tools.ietf.org/html/draft-ietf-httpbis-http2-17, 2015.

[56] E. Huang and R. E. Korf, New improvements in optimal rectangle
packing, in Proceedings of the 21st International Jont Conference on Ar-
tificial Intelligence IJCAI’09, 2009, pp. 511–516.

[57] N. Hurst and K. Marriott, Satisficing scrolls: a shortcut to satisfac-
tory layout, in Proceeding of the eighth ACM symposium on Document
engineering, DocEng ’08, New York, NY, USA, 2008, ACM, pp. 131–140.

[58] Impulse Adventure, What is an optimized JPEG? http://www.
impulseadventure.com/photo/optimized-jpeg.html, 2007.

130

[59] Independent JPEG Group, Jpegtran. http://jpegclub.org/
jpegtran/, 2012.

[60] Interactive Advertising Bureau, Adex 2009 european online adver-
tising expenditure, 2009.

[61] , IAB ad unit guidelines. [on-line] http://www.iab.net/media/
file/IAB-Ad-Unit-Guidelines-Update-20091029.pdf, 2009.

[62] International Telecommunication Union, Recommendation t.81:
Information technology - digital compression and coding of continuous-
tone still images - requirements and guidelines. http://www.w3.org/
Graphics/JPEG/itu-t81.pdf, 1993.

[63] M. Jeon, Y. Kim, J. Hwang, J. Lee, and E. Seo, Workload charac-
terization and performance implications of large-scale blog servers, ACM
Transactions on the Web (TWEB), 6 (2012), p. 16.

[64] R. M. Karp, Reducibility among combinatorial problems, in Complexity
of Computer Computations, R. E. M. J. W. Thatcher, ed., Plenum Press,
New York, 1972, pp. 85–103.

[65] O. Kaser and D. Lemire, Tag-cloud drawing: Algorithms for cloud
visualization, arXiv preprint cs/0703109, (2007).

[66] K. Kim, S. Ko, N. Elmqvist, and D. S. Ebert, Wordbridge: Using
composite tag clouds in node-link diagrams for visualizing content and re-
lations in text corpora, in 44th Hawaii International Conference on System
Sciences (HICSS), IEEE, 2011, pp. 1–8.

[67] D. E. Knuth and M. F. Plass, Breaking paragraphs into lines, Soft-
ware: Practice and Experience, 11 (1981), pp. 1119–1184.

[68] R. E. Korf, Optimal rectangle packing: Initial results, in Proceedings
of the Thirteenth International Conference on Automated Planning and
Scheduling ICAPS’03, Palo Alto, USA, 2003, American Association for
Artificial Intelligence, pp. 287–295.

[69] R. E. Korf and E. Huang, Optimal rectangle packing: An absolute
placement approach, Journal of Artificial Intelligence Research, 46 (2012),
pp. 47–87.

[70] R. E. Korf, M. D. Moffitt, and M. E. Pollack, Optimal rectangle
packing, Annals of Operations Research, 179 (2010), pp. 261–295.

[71] M. Kudelka, V. Snasel, Z. Horak, A. E. Hassanien, A. Abraham,
and J. D. Velásquez, A novelapproach for comparing web sites by using
microgenres, Engineering Applications of Artificial Intelligence, 35 (2014),
pp. 187–198.

[72] S. Kumar, M. Dawande, and V. Mookerjee, Optimal scheduling
and placement of internet banner advertisements, Knowledge and Data
Engineering, IEEE Transactions on, 19 (2007), pp. 1571–1584.

131

[73] S. Kumar, V. S. Jacob, and C. Sriskandarajah, Scheduling ad-
vertisements on a web page to maximize revenue, European Journal of
Operational Research, 173 (2006), pp. 1067 – 1089.

[74] B. Y. Kuo, T. Hentrich, B. M. Good, and M. D. Wilkinson,
Tag clouds for summarizing web search results, in Proceedings of the 16th
international conference on World Wide Web, ACM, 2007, pp. 1203–1204.

[75] M. Langheinrich, A. Nakamura, N. Abe, T. Kamba, and
Y. Koseki, Unintrusive customization techniques for web advertising,
Computer Networks, 31 (1999), pp. 1259–1272.

[76] E. L. Lawler and D. E. Wood, Branch-and-bound methods: A survey,
Operations research, 14 (1966), pp. 699–719.

[77] A. Lodi, S. Martello, and M. Monaci, Two-dimensional packing
problems: A survey, European Journal of Operational Research, 141
(2002), pp. 241–252.

[78] S. Lohmann, F. Heimerl, F. Bopp, M. Burch, and T. Ertl, Con-
centri cloud: Word cloud visualization for multiple text documents, in 2015
19th International Conference on Information Visualisation, IEEE, 2015,
pp. 114–120.

[79] S. Lohmann, J. Ziegler, and L. Tetzlaff, Comparison of tag cloud
layouts: Task-related performance and visual exploration, in Human-
Computer Interaction–INTERACT 2009, Springer, 2009, pp. 392–404.

[80] M. C. Lopez-Loces, J. Musiał, J. E. Pecero, H. J. Fraire-
Huacuja, J. Blazewicz, and P. Bouvry, Exact and heuristic ap-
proaches to solve the internet shopping optimization problem with delivery
costs, International Journal of Applied Mathematics and Computer Sci-
ence, 26 (2016), pp. 391–406.

[81] C. Louvrier, Optimisation web (images, performance). http://css-ig.
net/, 2013.

[82] M. Mahdavi, M. H. Chehreghani, H. Abolhassani, and R. For-
sati, Novel meta-heuristic algorithms for clustering web documents, Ap-
plied Mathematics and Computation, 201 (2008), pp. 441–451.

[83] J. Marszałkowski, The importance of advertising exchange for market-
ing browser games, Homo Ludens, 3 (2011).

[84] J. Marszałkowski, Prototype of high performance scalable advertising
server with local memory storage and centralised processing, in Informa-
tion and Communication Technologies: 18th EUNICE/ IFIP WG 6.2, 6.6
International Conference, EUNICE 2012, Budapest, Hungary, August 29-
31, 2012. Proceedings, R. Szabó and A. Vidács, eds., Berlin, Heidelberg,
2012, Springer Berlin Heidelberg, pp. 194–203.

[85] , Budgeted internet shopping optimization problem (b-isop), in Pro-
ceedings of 7th Multidisciplinary International Conference on Scheduling:
Theory and Applications (MISTA 2015), B. M. P. v. Zdenek Hanzálek,
Graham Kendall, ed., 2015, pp. 885 – 887.

132

[86] J. Marszałkowski and M. Drozdowski, Optimization of column
width in website layout for advertisement fit, European Journal of Op-
erational Research, 226 (2013), pp. 592–601.

[87] J. Marszałkowski, J. M. Marszałkowski, and M. Drozdowski,
Empirical study of load time factor in search engine ranking, Journal of
Web Engineering, 13 (2014), pp. 114–128.

[88] J. Marszałkowski, J. M. Marszałkowski, and J. Musiał, Database
scheme optimization for online applications, Foundations of Computing
and Decision Sciences, 36 (2011), pp. 121–129.

[89] J. Marszałkowski, J. Mizgajski, D. Mokwa, and M. Drozdowski,
Spritepack resources. http://www.cs.put.poznan.pl/mdrozdowski/
spritepack/, 2015.

[90] J. Marszałkowski, J. Mizgajski, D. Mokwa, and M. Drozdowski,
Analysis and solution of CSS-sprite packing problem, ACM Transactions
on the Web, 10 (2016), p. article No.1.

[91] L. Masinter, Frc 2397: The ”data” URL scheme. https://www.ietf.
org/rfc/rfc2397.txt, 1998.

[92] R. McNaughton, Scheduling with deadlines and loss functions, Manage-
ment Science, 6 (1959), pp. 1–12.

[93] Z. Michalewicz, Gas: What are they?, in Genetic algorithms+ data
structures= evolution programs, Springer, 1994, pp. 13–30.

[94] S. Milgram and D. Jodelet, Psychological maps of Paris, in Environ-
mental Psychology: People and Their Physical Settings, H. Proshansky,
W. Ittelson, and L. Rivlin, eds., Holt, Reinehart and Winston, New York,
1976.

[95] M. Mitchell, An introduction to genetic algorithms, MIT press, 1998.

[96] Mozilla Co., Mozilla jpeg encoder project. https://github.com/
mozilla/mozjpeg/, 2014.

[97] J. Musiał and J. Marszałkowski, Propozycja poprawy wydajności
bazy danych dla nowoczesnych aplikacji internetowych, Zeszyty Naukowe
Uniwersytetu Szczecińskiego. Ekonomiczne Problemy Usług, (2011),
pp. 404–411.

[98] D.-Q. Nguyen and H. Schumann, Taggram: Exploring geo-data on
maps through a tag cloud-based visualization, in 14th International Con-
ference Information Visualisation, IEEE, 2010, pp. 322–328.

[99] N. Ntene and J. H. van Vuuren, A survey and comparison of guillo-
tine heuristics for the 2d oriented offline strip packing problem, Discrete
Optimization, 6 (2009), pp. 174–188.

[100] Nuclex Framework, Rectangle packing. http://nuclexframework.
codeplex.com/wikipage?title=Rectangle, 2009.

133

[101] M. Perdeck, Fast optimizing rectangle packing algorithm for build-
ing CSS sprites. http://www.codeproject.com/Articles/210979/
Fast-optimizing-rectangle-packing-algorithm-for-bu, 2011.

[102] I. Popovici and W. Withers, Locating edges and removing ringing ar-
tifacts in JPEG images by frequency-domain analysis, IEEE Transactions
on Image Processing, 16 (2007), pp. 1470–1474.

[103] R. L. R. Kohavi, Online experiments: Lessons learned, Computer 40,
no. 9, (2007), pp. 103–105.

[104] G. Randers-Pehrson and T. Boutell, PNG (portable network
graphics) specification. http://www.libpng.org/pub/png/spec/1.2/
PNG-Contents.html, 1999.

[105] Refsnes Data, Browser display statistics. [on-line] http://www.
w3schools.com/browsers/browsers_resolution_higher.asp, 2011.

[106] A. W. Rivadeneira, D. M. Gruen, M. J. Muller, and D. R.
Millen, Getting our head in the clouds: toward evaluation studies of
tagclouds, in Proceedings of the SIGCHI conference on Human factors in
computing systems, ACM, 2007, pp. 995–998.

[107] H. Q. Saremi, B. Abedin, and A. M. Kermani, Website structure im-
provement: quadratic assignment problem approach and ant colony meta-
heuristic technique, Applied Mathematics and Computation, 195 (2008),
pp. 285–298.

[108] C. Seifert, B. Kump, W. Kienreich, G. Granitzer, and M. Gran-
itzer, On the beauty and usability of tag clouds, in 12th International
Conference Information Visualisation, IEEE, 2008, pp. 17–25.

[109] D. Shea, CSS sprites: Image slicing’s kiss of death. http://www.
alistapart.com/articles/sprites, 2004.

[110] K. Silverman, Ken Silverman’s utility page. http://advsys.net/ken/
utils.htm, 2013.

[111] L. Simon and S. Souders et al, Browserscope. http://www.
browserscope.org/?category=network&v=1, 2015.

[112] K. Simpson, Obsessions: Http request reduction. http://blog.getify.
com/obsessions-http-request-reduction/, 2015.

[113] E. Spyrou and P. Mylonas, A survey on flickr multimedia research
challenges, Engineering Applications of Artificial Intelligence, 51 (2016),
pp. 71–91.

[114] P. Stańiček, CSS technique: Fast rollovers without preload.
http://wellstyled.com/css-nopreload-rollovers.html, 2003.

[115] S. Stefanov, Image optimization, part 3: Four steps to file size reduction.
http://yuiblog.com/blog/2008/11/14/imageopt-3/, 2008.

134

[116] A. Steinberg, A strip-packing algorithm with absolute performance
bound, SIAM Journal on Computing, 26 (1997), pp. 401–409.

[117] P. Velho, L. M. Schnorr, H. Casanova, and A. Legrand, On the
validity of flow-level tcp network models for grid and cloud simulations,
ACM Transactions on Modeling and Computer Simulation, 23 (2013),
p. 23.

[118] F. B. Viégas and M. Wattenberg, Timelines: Tag clouds and the case
for vernacular visualization, ACM Interactions, 15 (2008), pp. 49–52.

[119] F. B. Viégas, M. Wattenberg, and J. Feinberg, Participatory visu-
alization with Wordle, IEEE Transactions on Visualization and Computer
Graphics, 15 (2009), pp. 1137–1144.

[120] J. Walhout, S. Brand-Gruwel, H. Jarodzka, M. van Dijk,
R. de Groot, and P. A. Kirschner, Learning and navigating in hyper-
text: Navigational support by hierarchical menu or tag cloud?, Computers
in Human Behavior, 46 (2015), pp. 218–227.

[121] G. K. Wallace, The JPEG still picture compression standard, Commu-
nications of the ACM, 34 (1991), pp. 30–44.

[122] P. Y. Wang, Two algorithms for constrained two-dimensional cutting
stock problems, Operations Research, 31 (1983), pp. 573–586.

[123] J. Wawrzyniak and J. Marszałkowski, Gamifikacja w edukacji:
przegląd wymagań dla platformy gamifikacyjnej, Homo Ludens, 7 (2015),
pp. 229–247.

[124] Webpagetest. http://www.webpagetest.org/, 2015.

[125] B. D. Weinberg, Don’t keep your internet customers waiting too long
at the (virtual) front door, Journal of Interactive Marketing, 14 (2000),
pp. 30–39.

[126] A. Wojciechowski and J. Musial, A customer assistance system: Op-
timizing basket cost, Foundations of Computing and Decision Sciences, 34
(2009), pp. 59–69.

[127] P.-Y. Yin and Y.-M. Guo, Optimization of multi-criteria website struc-
ture based on enhanced tabu search and web usage mining, Applied Math-
ematics and Computation, 219 (2013), pp. 11082–11095.

[128] M. Yue, A simple proof of the inequality ffd (l)? 11/9 opt (l)+ 1,? l
for the ffd bin-packing algorithm, Acta Mathematicae Applicatae Sinica
(English Series), 7 (1991), pp. 321–331.

135

