
Adam Mikiewiz UniversityFaulty of Mathematis and Computer Siene
Joanna Berli«ska

Sheduling divisible loadsin heterogeneous distributed systems
Ph.D. Thesis

Supervisor: Prof. Dr. Habil. Maiej Drozdowski

Pozna« 2011

Aknowledgements
I wish to express my deep gratitude to my supervisor Professor Maiej Drozdowskifor his keen interest, inspiration and perfet guidane throughout the ompletionof this thesis. He introdued me to the exiting �eld of divisible load theory andmotivated me to ondut original researh with high standards. I am sinerelygrateful for his e�ort in training me to beome a suessful researher.The researh reported in this thesis has been �nanially supported by the Pol-ish Ministry of Siene and Higher Eduation grants N N206 372039 "Shedulingdivisible loads in heterogeneous distributed systems" and N N519 188933 "Newproblems of sheduling theory � omplexity analysis, algorithmization".The work presented in this thesis has been also partially supported by thesholarship of the Adam Mikiewiz University Foundation for the year 2010.

2

Contents
1 Introdution 62 Single-Round Proessing 102.1 Earlier Results . 132.2 FPTAS for Problem DLS{Ci = 0}-OptV 142.3 FPTAS for Problem DLS{Ci = 0}-OptT 182.4 Communiation Sequene for Problem DLS{1Round} 242.5 Approximation Algorithms for Problem DLS{1Round} 292.5.1 Problem DLS{1Round}-OptV 292.5.2 Problem DLS{1Round}-OptT 342.6 Conlusions . 353 Multi-Round Proessing with Limited Memory 363.1 Earlier Results . 373.2 Problem Formulation . 383.3 Branh&Bound Algorithm and Geneti Algorithm 433.3.1 Branh&Bound Algorithm 453.3.2 Geneti Algorithm . 463.3.3 Comparison of B&B and GA 493.4 Properties of the Solutions . 523.4.1 Depth of Overlap . 533.4.2 Length of the Communiation Sequene 603

3.4.3 Number of Used Proessors 643.4.4 Dominating Set of Proessors 673.4.5 Chunk Size Saturation . 743.4.6 When Is It Hard to Find a Good Solution? 763.4.7 Conlusions . 803.5 Heuristis . 823.5.1 Random Heuristis . 823.5.2 First Free Heuristi . 843.5.3 Appender Heuristis . 843.5.4 Best Rate Heuristis . 863.6 Comparison of the Heuristi Algorithms 873.6.1 Load Size . 883.6.2 Startup Time . 903.6.3 Communiation Rate . 923.6.4 Memory Limit . 933.6.5 Computation Rate . 953.6.6 Parameters Dispersion . 953.6.7 Performane Dispersion 973.7 Summary . 984 MapRedue Computations 1004.1 Outline of MapRedue . 1004.2 Mathematial Model of MapRedue 1024.3 Shedule Dominane Properties 1084.3.1 Proessing with a Single Reduer 1084.3.2 Proessing with Many Reduers 1134.4 Sheduling Algorithms . 1184.4.1 Single Reduer . 1184.4.2 Many Reduers . 1204

4.5 Performane Analysis . 1254.6 Summary . 1365 Multilayer Divisible Appliations 1385.1 Model of Multilayer Appliations 1385.2 Sheduling Algorithms . 1435.2.1 Load Partitioning for Reduer Layers 1435.2.2 Load Partitioning for Mapper Layer 1465.2.3 The Complete Load Partitioning Algorithm 1485.2.4 Finishing Mapper Computations Order 1485.2.5 Sheduling Communiations 1525.3 Computational Experiments . 1595.3.1 Speedup of Multilayer Appliations 1595.3.2 Load Distribution between Reduers 1615.3.3 Load Distribution between Mappers 1655.4 Summary . 1686 Summary and Conlusions 170Referenes 172

5

1 Introdution
The progress in many disiplines of siene and tehnology is nowadays stronglysupported by omputational methods. The researh is often based on the resultsdelivered by omplex and time-onsuming alulations. The omputational powerof a single omputer is often insu�ient. Hene, performing the omputationsin distributed environments like grids or lusters beomes a neessity. What ismore, using a distributed omputer system has many advantages. Large numbersof proessors taking part in omputations result in big total omputing power.The system is salable and the time needed for omputations an be reduedby employing more proessors. On the other hand, ontrolling omputations ina distributed system is more omplex. In order to obtain high e�ieny, thedistributed appliations need areful sheduling of ommuniations and ompu-tations. As the omputers may be spread around the world, the ommuniationdelays may be quite big and annot be negleted. The distributed omputer sys-tem is usually heterogeneous, and onsequently, the di�erent parameters of itselements must be taken into aount by the sheduling algorithms.Divisible load theory (DLT) is a model of parallel omputations whih o�ers arealisti approah to this problem. It is mostly used to represent proessing largeamounts of data in distributed systems. It assumes that the input data, alledload, an be divided into piees of arbitrary sizes and these piees an be pro-essed independently in parallel on remote omputers. The divisible load modeloriginated in the late 1980s in publiations [1, 20℄. It was applied to represent6

distributed omputations in a network of workstations in [1℄. In [20℄ a hain net-work of intelligent sensors was studied. In both ases, the analyzed problem washow to shedule ommuniations and omputations, so that the total time neededto proess the load of a given size is as short as possible. On the one hand, usingmore proessors redues omputation time, but on the other hand it needs moreommuniations, whih ost time. Hene, the problem is whih proessors shouldbe used and what load quantities they should reeive. The mathematial modelsproposed in the early publiations were omputationally tratable and reduedthe sheduling problem to a set of linear equations. Later on, more omplexmodels were developed and applied to various network topologies [16, 20, 21, 25℄,systems with memory limitations [12, 30, 37℄, omputation osts [46℄ and other.The most general divisible load sheduling problem was proved to be NP-hardin [48℄. Surveys of divisible load theory an be found, e.g., in [3, 14, 24, 45℄. Wedisuss these results in more detail in the following setions.There are many examples of divisible load omputations, like proessing mea-surement data [20℄, searhing for patterns in text and database �les [28℄, imageand video proessing [38, 39, 43℄, solving linear algebra problems [22, 32℄, DNAsequene alignment [47℄. As we showed in [7, 10℄, proessing large amounts ofdata in MapRedue model [23℄ on dediated lusters an also be analyzed onthe grounds of divisible load theory. Moreover, the omputations on volunteerplatforms like BOINC and distributed.net ful�ll the assumptions about the di-visibility and independene of the load grains. Therefore, the progress in DLT isuseful in e�iently managing many real distributed appliations.The main goal of this work is the analysis of several divisible load shedulingproblems in heterogeneous distributed systems and the onstrution of algorithmssolving these problems. As the analyzed problems are known to be omputa-tionally hard, we will propose approximation algorithms and heuristis. Thealgorithms will be evaluated and ompared by both analytial and experimental7

methods. The divisible load theory will be also applied to model, analyze andshedule omputations in new parallel proessing environments, like the MapRe-due framework. We will onstrut a mathematial model of suh omputationsand propose sheduling algorithms. Performane limits of the proposed organi-zation of omputations will be investigated.The struture of this thesis is the following. Chapter 2 is dediated to single-round divisible load sheduling. In the single-round proessing eah omputerreeives at most one message with the data to proess. The sheduling problemis whih proessors should take part in omputations, what amounts of data theyshould reeive and in what order. Our main ontributions presented in Chapter2 are fully polynomial time approximation shemes for two sheduling problems.These results have been already published in [6℄. Extensions to more generalases are also analyzed.Chapter 3 overs multi-round divisible load sheduling in systems with limitedmemory. Multi-round proessing means that eah proessor an reeive multiplemessages with data to proess. It is assumed that the whole load is too big to storeit in the memories of the omputers at the same moment. Therefore, the loadmust be distributed and proessed in many small piees �tting available memorybu�ers. We provide an experimental study of the features of near-optimum solu-tions, and hene, the nature of the sheduling problem. Based on these results,several groups of heuristis solving the analyzed problems are proposed. Theiradvantages and weaknesses are demonstrated for a wide range of hanging sys-tem parameters. The experimental omparison of the proposed algorithms withthe heuristis known from earlier literature shows that a big improvement in thequality of the obtained solutions has been ahieved. The results ontained inChapter 3 have been published in [8, 9, 11, 12℄.Chapter 4 introdues MapRedue paradigm for parallel omputations. Weshow that MapRedue omputations an be analyzed as two divisible applia-8

tions, suh that the output of the �rst of them is the input for the seond. Weformulate the mathematial model of suh omputations and propose shedulingalgorithms. Then, an experimental analysis of the MapRedue performane isprovided. These results have been published in [7, 10℄. It was the �rst time whensheduling divisible loads with preedene onstraints was studied.In Chapter 5 the problem onsidered in Chapter 4 is generalized. We introduethe notion of a multilayer appliation. An example of a multilayer appliation is ahain of MapRedue appliations, suh that one appliation in the hain produesinput for the next appliation. The in�uene of the system parameters on thestruture of the shedules is studied.The last hapter ontains a summary of all the presented results. We alsopropose diretions for future researh on the aspets of divisible load theory ad-dressed in this work.

9

2 Single-Round Proessing
In this hapter we study divisible load sheduling for single-round organization ofomputations. Let us start with some general assumptions about the omputingenvironment. In this work we assume that eah proessor omprises a CPU,some memory and a hardware network interfae (e.g. NIC and DMA). The wordsproessor, omputer and proessing element will be used interhangeably, unlesssaid to be otherwise. The CPU and network interfae an work in parallel, sothat simultaneous omputation and ommuniation is possible. Eah omputeran ommuniate with at most one proessor at a time (i.e. so-alled one-portmodel is used).In Chapters 2 and 3 we onsider lassial divisible load sheduling problemsin a star network (see Fig. 2.1). The load to be proessed is initially loated onproessor P0 alled the originator, loated in the enter of the star. The originatoris onneted to a set of m proessors (workers) {P1, . . . , Pm}. The originatordivides the load into piees and sends them diretly to the workers. Suh a logialtopology an represent many parallel systems with di�erent physial topologies,like a grid of multiproessor superomputers, a luster of workstations onnetedvia a loal area network, or a set of proessors sharing a bus in an SMP system.We assume that the originator only dispathes the load to the other proessorsand performs no omputations. In the opposite ase, the omputational powerof the originator an be represented as an additional proessor. For simpliity ofthe mathematial model, the proess of returning results to the originator is not10

Figure 2.1: Star network topology.analyzed. Pratially, it means that the results returning time is short and anbe negleted. It has been shown in [18, 28℄ that this simpli�ation is not limitingthe generality of our onsiderations, as sending results bak an be inluded inthe model.Eah worker Pi is desribed by its omputing rate (inverse of speed, e.g. inseonds per byte), denoted by Ai. Proessing load of size α on Pi takes time αAi.The ommuniation link between Pi and the originator is desribed by startuptime Si (e.g. in seonds) and ommuniation rate (inverse of bandwidth) Ci.Hene, the time required to send load of size α to proessor Pi is Si + αCi. Wewill use the notation Amax = max1≤i≤mAi, Amin = min1≤i≤m Ai, and similarlyfor the other parameters. In the general ase, all parameters Ai, Ci, Si arenonnegative rational numbers.Below we formulate several single-round divisible load sheduling problems.We follow the notation used in [48℄, where di�erent divisible load sheduling prob-lems are denoted by DLS{restriction}. The restrition is the list of additionalassumptions in the analyzed problem. These restritions may be, for example:
• 1Round for single-round sheduling problems,
• Ci = 0 if all the bandwidths are in�nite (Ci = 0 for all 1 ≤ i ≤ m),
• Si = 0 if there are no startup times (Si = 0 for all 1 ≤ i ≤ m).The deision version of the general single-round divisible load sheduling prob-lem an be formulated as follows. 11

Problem 2.1. (DLS{1Round})Given m workers, their parameters Ai, Ci and Si for 1 ≤ i ≤ m, and two rationalnumbers V > 0 and T > 0, is it possible to proess load of size V within time Tfrom the moment when the originator starts sending out the load?We also de�ne the following two optimization problems onneted with prob-lem DLS{1Round}.Problem 2.2. (DLS{1Round}-OptV)Given a rational time T > 0, m workers, their parameters Ai, Ci and Si for
1 ≤ i ≤ m, �nd the greatest rational number VOPT (T), suh that it is possible toproess load of size VOPT (T) within time T .Problem 2.3. (DLS{1Round}-OptT)Given a rational load size V > 0, m workers, their parameters Ai, Ci and Sifor 1 ≤ i ≤ m, �nd the smallest rational number TOPT (V) ≥ 0, suh that it ispossible to proess the whole load V within time TOPT (V).Let us note that we are interested not only in �nding the optimum time
T or the amount of load V , but also in onstruting the optimum shedule.Construting a shedule involves making the following deisions:

• The set P ′ ⊆ P of proessors partiipating in the omputations must behosen. Depending on the parameters of the proessors and ommuniationlinks, it may be unpro�table to use some of them for omputations.
• The ommuniation sequene (also alled ativation sequene), de�ning theorder in whih the proessors reeive load, must be hosen. For single-round proessing, the ommuniation sequene is a permutation of indiesof proessors from the set P ′.
• The sizes of the load parts sent in eah message must be seleted.

12

2.1 Earlier ResultsThe early publiations onerning sheduling divisible loads in a star systemused a simple linear ommuniation model. All ommuniation startup times Siwere assumed to be equal to zero. The analyzed problems were DLS{1Round,
Si = 0} and the adequate optimization problems. It was proved independentlyin [5, 13, 17, 35℄ that if all workers take part in the omputations and �nish workat the same moment, then the problem DLS{1Round, Si = 0} an be solvedby sorting the proessors by nondereasing Ci in the ativation sequene. Thehypothesis that in the optimum solution all workers partiipate in omputationsand �nish work simultaneously was proved in [3℄.The assumption about linear ommuniation osts usually does not hold inpratie. It has a side e�et that all proessors an take part in the omputa-tions, no matter how many of them are available, and no matter how far fromthe originator they are. Hene, a more realisti a�ne ommuniation model, in-luding startup times, was introdued by Bªa»ewiz and Drozdowski in [17℄. Inpubliation [3℄ it was shown that in the optimum solutions of both optimizationversions of the problem DLS{1Round} all proessors taking part in omputations�nish work at the same moment. Additionally, the authors proved that if the loadsize V is large enough, then in any optimum solution all workers partiipate inthe omputations and they should be ativated in the order of nondereasing Ci.The omplexity of single-round divisible load sheduling problem remainedopen until 2007. Finally, in [48℄ it was proved that the problem DLS{1Round,
Ci = 0} isNP-omplete. The proof was done by redution from theNP-omplete2-Partition problem. The authors proposed pseudo-polynomial dynami pro-gramming algorithms solving the problems DLS{1Round, Ci = 0}-OptV andDLS{1Round, Ci = 0}-OptT . However, sine pseudopolynomial algorithms arein fat exponential, it an be more useful to reate polynomial approximation al-13

gorithms for these problems. The strongest polynomial time approximation resultthat an be derived for NP-hard problems (unless P=NP) is a fully polynomialtime approximation sheme (FPTAS). An FPTAS for an optimization problem Πwith ost funtion f is an approximation algorithm A whih for any given ε > 0and an instane I of problem Π

• returns a solution A(I) suh that |f(A(I))−OPT (I)| ≤ ε|OPT (I)|, where
OPT (I) is the optimum ost for instane I, and

• has running time polynomial in the size of I and 1/ε.Construting fully polynomial time approximation shemes for DLS{1Round,
Ci = 0}-OptV and DLS{1Round, Ci = 0}-OptT is the aim of the next twosetions.2.2 FPTAS for Problem DLS{Ci = 0}-OptVLet us start with an observation that if Ci = 0 for 1 ≤ i ≤ m, then nothing anbe gained by sending more then one message to the same proessor. Hene, forthe divisible load sheduling problem with Ci = 0 for all i, there always exists anoptimum solution using one round only. Consequently, we an write DLS{Ci = 0}instead of DLS{1Round, Ci = 0}, beause these two problems are equivalent.We begin our onsiderations with the problem of optimizing the size of theload proessed in a given time T . Similarly as in [48℄, we assume here that Aiand Si are integer numbers. The problem an be formulated as follows.Problem 2.4. (DLS{Ci = 0}-OptV)Given a rational time T > 0, m workers, their integer parameters Ai and Si for
1 ≤ i ≤ m, and provided that the bandwidths are in�nite, �nd the greatest rationalnumber VOPT (T), suh that it is possible to proess load of size VOPT (T) withintime T . 14

Let us note that if Si > T for some proessor Pi, then this proessor annotbe used for proessing load in time T . Therefore, we assume that Si ≤ T for
1 ≤ i ≤ m. Moreover, if Ai = 0 for some proessor Pi, then Pi an reeive andproess an in�nite amount of load in time Si. As Si ≤ T , the sheduling problembeomes trivial in this ase. Hene, we assume that Ai > 0 for 1 ≤ i ≤ m.In order to onstrut an FPTAS solving Problem 2.4, we need to know in whatorder the proessors should be ativated. We will use the following propositiongiven in [48℄.Proposition 2.1. For a given time limit T and a set P ′ ⊆ {P1, . . . , Pm} ofworkers taking part in the omputations, the maximum load is proessed if theworkers are ordered aording to nondereasing values of SiAi for Pi ∈ P ′.Proposition 2.1 an be proved by the interhange argument: ordering theproessors in P ′ aording to nondereasing SiAi does not redue the amount ofload proessed in time T .As it is known from [3℄ that in the optimum solution all proessors takingpart in omputations �nish work at the same moment, it follows from Proposition2.1 that the sheduling problem an be redued to hoosing an optimum subsetof proessors taking part in the omputations. Let us assume, without loss ofgenerality, that S1A1 ≤ . . . ≤ SmAm. We de�ne a binary vetor x = (x1, . . . , xm)as follows: xi = 1 if proessor Pi reeives some load to proess (i.e. Pi ∈ P ′)and xi = 0 in the opposite ase (Pi /∈ P ′). The maximum amount of load whihan be proessed in time T using the subset of proessors indiated by x an beobtained from the formula

VOPT (T,x) =
m
∑

i=1

Txi

Ai
−

m
∑

i=1

m
∑

j=i

xixjSi

Aj
. (2.1)The expression ∑m

i=1
Txi

Ai
is the amount of load whih ould be proessed in time

T by proessors indiated by x if there were no ommuniation delays. Commu-15

niation with proessor Pi takes time xiSi. During this time proessors Pj, where
j ≥ i, annot proess any load beause they did not reeive the input yet. Thus,
∑m

i=1

∑m
j=i

xixjSi

Aj
is the amount of load whih is lost beause of ommuniationdelays (f. [48℄).Our goal is to maximize the size V of load proessed in a given time T as afuntion of a binary vetor x = (x1, . . . , xm). Instead of maximizing V (x), wewill minimize the value of −V (x). Sine xi are binary variables, we have x2

i = xi.Hene we have
−V (x) = −

m
∑

i=1

T − Si

Ai
xi +

∑

1≤i<j≤m

Si
1

Aj
xixj . (2.2)A half-produt [2℄ is a funtion f : {0, 1}m → R of the form

f(x) = f(x1, . . . , xm) = −
m
∑

i=1

pixi +
∑

1≤i<j≤m

qirjxixj , (2.3)where pi, qi, ri are nonnegative onstants for 1 ≤ i ≤ m. Thus, −V (x) is ahalf-produt, with pi =
T−Si

Ai
, qi = Si, rj = 1

Aj
.An FPTAS for minimizing half-produts was proposed by Badis and Borosin [2℄. They assumed that the parameters pi, qi, ri are nonnegative integers for

1 ≤ i ≤ m. In our ase all parameters are nonnegative, but pi = T−Si

Ai
and rj =

1
Ajare not integer. However, the assumption about integrality of pi and ri is usedneither for proving the orretness of the Badis and Boros algorithm, nor forestimating its running time. Therefore, we an use the algorithm proposed in [2℄to minimize the funtion −V (x). The algorithm reeives number m, vetors p, q,

r of length m, and a positive approximation preision ε < 1. It returns a binaryvetor xε = (xε
1, . . . , x

ε
m).For 1 ≤ k ≤ m, let gk(x) = −

∑k
i=1 pixi +

∑

1≤i<j≤k qirjxixj and Qk(x) =
∑k

i=1 qixi. The FPTAS for minimizing half-produts proposed by Badis andBoros is formulated in Algorithm 2.1 (f. [2℄).16

Algorithm 2.1 MINIMIZE-HALF-PRODUCT(m, p, q, r, ε)STEP 0:Let δ > 0 be de�ned by the equation (1 + δ)m = 1 + ε,let Q =
∑m

i=1 qi, N = ⌈2m logQ
ε

⌉, k = 0 and X0 = {()}.STEP 1:Let k = k + 1, Xk = ∅, t = 0, s = 0,
L = {(y1, . . . , yk−1, 0), (y1, . . . , yk−1, 1)|(y1, . . . , yk−1) ∈ Xk−1}STEP 2:while s ≤ N doselet z = (z1, . . . , zk) ∈ L for whih t ≤ Qk(z) < (1 + δ)sand for whih gk(z) is the smallest among all suh z.Let Xk = Xk ∪ {z}, t = (1 + δ)s, s = s+ 1.end whileSTEP 3:if k < m thengoto STEP 1elsegoto STEP 4.end ifSTEP 4:Selet xε ∈ Xm with the smallest gm(xε), return xε.It was proved in [2℄ that

f(xε) ≤ f(x∗) + ε|f(x∗)|, (2.4)where x∗ is a vetor minimizing f , and the running time of the algorithmMINIMIZE-HALF-PRODUCT is O(m2 log(
∑m

i=1 qi)/ε) [2℄.Based on these results, we propose Algorithm 2.2 for Problem 2.4 [6℄.Theorem 2.2. Algorithm 2.2 is a fully polynomial time approximation shemefor Problem 2.4 (DLS{Ci = 0}-OptV).
17

Algorithm 2.2 FPTAS-OPT-V(T,m,A,S, ε)for i = 1 to m do
pi =

T−Si

Ai

qi = Si

ri =
1
Aiend for

xε=MINIMIZE-HALF-PRODUCT(m, p, q, r, ε)return xFPTAS(T, ε) = xε, VFPTAS(T, ε) =
∑m

i=1
Txε

i

Ai
−
∑m

i=1

∑m
j=i

xε
ix

ε
jSi

AjProof. Sine xFPTAS(T, ε) is returned by the MINIMIZE-HALF-PRODUCT al-gorithm for the funtion −V (x), we get from (2.4)
−VFPTAS(T, ε) ≤ −VOPT (T) + ε| − VOPT (T)|. (2.5)As the amount of load VOPT (T) is always nonnegative, this formula an be rewrit-ten as
−VFPTAS(T, ε) ≤ −VOPT (T) + εVOPT (T). (2.6)Hene,

VFPTAS(T, ε) ≥ VOPT (T)(1− ε). (2.7)Moreover, the running time of Algorithm 2.2 is dominated by the running timeof MINIMIZE-HALF-PRODUCT, and is equal to at most O(m2 log(
∑m

i=1 Si)/ε),whih is bounded from above by O(m2(logm+logSmax)/ε). Hene, Algorithm 2.2is an FPTAS for Problem 2.4.2.3 FPTAS for Problem DLS{Ci = 0}-OptTThe seond optimization problem we will analyze is DLS{Ci = 0}-OptT , whihan be formulated in the following way.
18

Problem 2.5. (DLS{1Round}-OptT)Given a rational load size V > 0, m workers, their integer parameters Ai and Sifor 1 ≤ i ≤ m, and provided that the bandwidths are in�nite, �nd the smallestrational number TOPT (V) ≥ 0, suh that it is possible to proess the whole load
V within time TOPT (V).To reate an approximation sheme for Problem 2.5, we will use the dualapproximation algorithm approah proposed in [34℄. As stated in [34℄, a dualapproximation algorithm is an algorithm whih �nds a superoptimal infeasiblesolution of a given optimization problem. The performane of the algorithm ismeasured by the degree of the infeasibility of the solution, ontrolled by a givenvalue ε > 0. We will onstrut a dual approximation algorithm for Problem 2.4(DLS{Ci = 0}-OptV). This algorithm should aept a period of time T andauray ε (0 < ε < 1), and deliver a shedule proessing the load of size at least
VOPT (T) in time not longer than T (1 + ε). We propose the following Algorithm2.3 [6℄.Algorithm 2.3 DUAL-OPT-V(T,m,A,S, ε)all FPTAS-OPT-V(T,m,A,S, ε/2)return xDUAL(T, ε) = xFPTAS(T, ε/2), VDUAL(T, ε) = (1 + ε)VFPTAS(T, ε/2)In order to prove that Algorithm 2.3 is a dual approximation algorithm forProblem 2.4, we will use the following fat.Proposition 2.3. If it is possible to proess load of size V in time T using thesubset of proessors indiated by a binary vetor x = (x1, . . . , xm), then it is alsopossible to proess load of size V (1 + ε) in time at most T (1 + ε), using the samesubset of proessors.

19

Proof. Let V ′ denote the maximum size of load whih an be proessed in time
T (1 + ε) using the proessors indiated by the vetor x. From (2.1) we obtain

V ′ =
m
∑

i=1

T (1 + ε)xi

Ai

−
m
∑

i=1

m
∑

j=i

xixjSi

Aj

(2.8)and
V =

m
∑

i=1

Txi

Ai

−
m
∑

i=1

m
∑

j=i

xixjSi

Aj

. (2.9)Hene,
V ′ = (1 + ε)V + ε

m
∑

i=1

m
∑

j=i

xixjSi

Aj

≥ V (1 + ε). (2.10)
Note that if T = TOPT (V), then by Proposition 2.3 load of size V (1 + ε) anbe proessed in time not longer than TOPT (V)(1 + ε). Hene, as a orollary, wean formulate the following proposition.Proposition 2.4. For any numbers V ≥ 0 and ε > 0 we have

TOPT (V (1 + ε)) ≤ TOPT (V)(1 + ε). (2.11)We will say that an algorithm is a fully polynomial time dual approximationalgorithm for a given problem if it is a dual approximation algorithm for thisproblem with approximation preision ε and its running time is polynomial inboth the problem size and 1/ε.Theorem 2.5. Algorithm 2.3 is a fully polynomial time dual approximation al-gorithm for Problem 2.4 (DLS{Ci = 0}-OptV).Proof. As VDUAL(T, ε) = (1+ ε)VFPTAS(T, ε/2) in Algorithm 2.3, we obtain from(2.7) that
VDUAL(T, ε) ≥ (1 + ε)VOPT (T)(1− ε/2) ≥ VOPT (T), (2.12)20

beause ε < 1. Thus, the obtained solution is superoptimal. The time needed toproess the load of size VDUAL(T, ε) is at most T (1 + ε) by Proposition 2.3, as itis possible to proess load of size VFPTAS(T, ε/2) in time T .The running time of Algorithm 2.3 is determined by the all to algorithmFPTAS-OPT-V, whene it is equal to at most O(m2(logm+ log Smax)/ε).The dual approximation algorithm 2.3 is the key element of the FPTAS solvingProblem 2.5 (DLS{Ci = 0}-OptT), given in Algorithm 2.4.Algorithm 2.4 FPTAS-OPT-T(V,m,A,S, ε)
upper = Smax + V Amax

lower = 0
LoBo = V Amin/mwhile (upper − lower) > ε(1−ε)

(2−ε)
LoBo do

Tp = (upper + lower)/2all DUAL-OPT-V(Tp, m,A,S, ε)if VDUAL(Tp, ε) < V (1 + ε) then
lower = Tpelse
upper = Tpend ifend whileall FPTAS-OPT-V(upper,m,A,S, ε/2)return x = xFPTAS(upper, ε/2), T = upperThe idea of Algorithm 2.4 is to �nd a good approximation of TOPT (V) witha binary searh. The initial searh interval [lower, upper] is de�ned by triviallower and upper bounds for TOPT (V). Then, it is iteratively narrowed to itslower or upper half, depending on the results delivered by Algorithm 2.3 for theurrently examined value Tp. When the searh interval beomes short enough,the searhing proedure is �nished and the vetor x representing the subset ofproessors whih should be used for omputations is obtained by Algorithm 2.2.Below we prove that Algorithm 2.4 is an FPTAS solving Problem 2.5.21

Theorem 2.6. Algorithm 2.4 is a fully polynomial time approximation shemefor Problem 2.5 (DLS{Ci = 0}-OptT).Proof. Let us start with the observation that at the beginning of the algorithm
upper and lower are trivial upper and lower bounds for TOPT (V). LoBo is alsoa lower bound on TOPT (V) and it is positive, sine we assumed that Ai > 0 for
1 ≤ i ≤ m.First, we will analyze the variable upper in order to prove that the algorithmalways returns a feasible solution. At the beginning of the algorithm we have
upper = Smax + V Amax. If this value is not hanged in the binary searh whileloop, then the algorithm FPTAS-OPT-V is alled for parameters T = upper =

Smax+V Amax and approximation preision ε/2 at the end of exeuting Algorithm2.4. The obtained shedule allows for proessing the load of size at least V , asit is enough to hoose any nonempty subset of the set {P1, . . . , Pm} to proess Vunits of load in time T = Smax + V Amax.Now let us assume that the value of upper is hanged at least one to Tp. Thishappens only if VDUAL(Tp, ε) ≥ V (1+ ε). Therefore, as we have in Algorithm 2.3
VDUAL(T, ε) = (1 + ε)VFPTAS(T, ε/2), (2.13)there holds

VFPTAS(upper, ε/2) = VDUAL(upper, ε)/(1 + ε) ≥ V (2.14)at any time during the exeution of Algorithm 2.4. Hene, the solution obtainedby the algorithm FPTAS-OPT-T is always feasible.Now let us estimate the quality of the obtained solution. We will show that
lower < TOPT (V)(1 +

ε

2− ε
) (2.15)22

throughout the exeution of the program. Sine initially lower = 0, this onditionis true before entering into the while loop. The value of variable lower is hangedto Tp only when VDUAL(Tp, ε) < V (1 + ε). It follows from (2.13) that
(1 + ε)VFPTAS(lower, ε/2) < V (1 + ε). (2.16)Furthermore, from (2.7) we get

(1 + ε)VOPT (lower)(1− ε/2) < V (1 + ε), (2.17)
VOPT (lower) < V/(1− ε/2) (2.18)and �nally
VOPT (lower) < V (1 +

ε

2− ε
). (2.19)Thus, it is impossible to proess load V (1 + ε

2−ε
) in time lower. Hene,

lower < TOPT (V (1 +
ε

2− ε
)). (2.20)By Proposition 2.4 we have

TOPT (V (1 +
ε

2− ε
)) ≤ TOPT (V)(1 +

ε

2− ε
), (2.21)what proves that (2.15) is true during the binary searh.The binary searh is �nished when upper ≤ lower+ ε(1−ε)

(2−ε)
LoBo. Sine LoBo ≤

TOPT (V), by (2.15) we get
upper ≤ TOPT (V)(1 +

ε

2− ε
) +

ε(1− ε)

(2− ε)
TOPT (V) (2.22)and onsequently

upper ≤ TOPT (V)(1 + ε). (2.23)23

Thus, Algorithm 2.4 delivers the desired approximation of the optimum solutionof the problem.The number of iterations in the binary searh is at most equal toO(log((Smax+

V Amax)/(
ε(1−ε)
(2−ε)

V Amin/m))), whih is bounded from above by O(logm+log Smax

+ logAmax+log(1/ε)+max(log V, log(1/V))). The exeution time of eah iterationis O(m2(logm+logSmax)/ε) due to alling Algorithm 2.3. Thus, the running timeof the whole algorithm FPTAS-OPT-T is at most O((logm+logSmax+logAmax+

log(1/ε) + max(log V, log(1/V)))m2(logm+ log Smax)/ε).2.4 Communiation Sequene for ProblemDLS{1Round}It would be desirable to extend the approximability results presented in the pre-eding setions to problems DLS{1Round}-OptV and DLS{1Round}-OptT . Notethat DLS{1Round,Ci = 0} is a seletion problem. This means that it is ompu-tationally hard to selet the set P ′ of partiipating proessors, but for a given
P ′ the optimum ativation sequene is known. Moreover, this feature allowed foronstrution of an FPTAS seleting the set P ′ of partiipating proessors. Themain di�ulty in problem DLS{1Round} is that for instanes with Ci > 0, theoptimum order of ativating the proessors is not known. Therefore, the shedul-ing problems annot be redued to just hoosing the proessors whih should takepart in omputations. Let us remind that a general method of ordering proessorsshould over speial ases:

• ordering proessors aording to nondereasing values SiAi if all Ci areequal to zero,
• ordering proessors aording to nondereasing values Ci if all Si are equalto zero,
• ordering proessors aording to nondereasing values Ci if the load V to24

be proessed or the time T used for proessing is large enough.Let us analyze the ativation sequene for problem DLS{1Round}-OptV in-stane with m = 3. We will ompare the amounts of load whih an be proessedfor ativation sequenes σ′ = (1, 2, 3) and σ′′ = (2, 1, 3). In both ases we assumethat all proessors �nish omputations at time T , as this is true in the opti-mum shedule. It is also assumed that the time T is so large that all proessors
P1, P2, P3 should take part in the omputations in the optimum shedule.Let α′

i, α′′
i denote the sizes of the i-th piee of load sent for ativation sequenes

σ′ and σ′′, orrespondingly. The sizes of the �rst two parts of load, sent toproessors P1 and P2 for ommuniation sequene σ′, are equal to
α′
1 =

T − S1

C1 + A1
(2.24)and

α′
2 =

T − S1 − C1α1 − S2

C2 + A2
, (2.25)whih gives

α′
2 =

A1(T − S1)

(C1 + A1)(C2 + A2)
−

S2

C2 + A2

. (2.26)Similarly, for ommuniation sequene σ′′, the sizes of the �rst two piees of load,sent to proessors P2 and P1 orrespondingly, are equal to
α′′
1 =

T − S2

C2 + A2
(2.27)and

α′′
2 =

A2(T − S2)

(C1 + A1)(C2 + A2)
−

S1

C1 + A1
. (2.28)Let us observe that the time needed for sending the �rst two piees of loadmay be di�erent for ativation sequenes σ′ and σ′′. Therefore, the amount ofload proessed by omputer P3 may also be di�erent in these two ases. The �rst25

two hunks of load are sent in time
t′ = S1 + S2 + C1

T − S1

C1 + A1
+ C2(

A1(T − S1)

(C1 + A1)(C2 + A2)
−

S2

C2 + A2
) (2.29)if ativation sequene is σ′, and in time

t′′ = S1 + S2 + C2
T − S2

C2 + A2
+ C1(

A2(T − S2)

(C1 + A1)(C2 + A2)
−

S1

C1 + A1
) (2.30)if ativation sequene is σ′′. From (2.29) and (2.30) we obtain

∆t = t′ − t′′ =
C1A2S2 − C2A1S1

(C1 + A1)(C2 + A2)
. (2.31)Let t′3 and t′′3 be the amounts of time used for ommuniation and omputationsof proessor P3 for sequenes σ′ and σ′′. Note that

t′′3 − t′3 = ∆t. (2.32)Therefore,
α′′
3 − α′

3 =
∆t

C3 + A3
. (2.33)From equations (2.24)-(2.28) and (2.33), we an ompute the di�erene betweenthe amounts of load proessed in both shedules:

∆V =

3
∑

i=1

α′′
i −

3
∑

i=1

α′
i =

T (C1 − C2) + A1S1 − A2S2

(C1 + A1)(C2 + A2)

+
C1A2S2 − C2A1S1

(C1 + A1)(C2 + A2)(C3 + A3)
. (2.34)It an be seen that the sign of ∆V depends not only on the parameters of proes-sors P1 and P2, but also on A3 and C3. Similarly, for m > 3 the order in whihthe �rst two proessors should be ativated depends on the parameters of all theremaining proessors. Hene, it an be very di�ult to deide in what order to26

ativate the proessors, beause the deision how to sequene, e.g., P1, P2 annotbe on�ned to just P1, P2. The �rst summand in formula (2.34) may suggestsorting the proessors aording to nondereasing values of TCi +AiSi. Suh analgorithm would handle properly the speial ases mentioned at the beginning ofthis setion.However, onsider the following ounterexample. Let T = 700, m = 4, andlet the parameters of the proessors be as given in Table 2.1.Table 2.1: Proessor parameters for the ounterexample.
i Ai Ci Si TCi + AiSi for T = 7001 0.051 0.129 137.084 97.2912842 2.146 0.050 34.487 109.0091023 0.654 0.458 31.565 341.2435104 1.838 0.152 32.747 166.588986The amounts of load whih an be proessed for all ativation sequenes aregiven in Table 2.2. If the proessors are sorted aording to nondereasing valuesof TCi + AiSi, we obtain ommuniation sequene (1,2,4,3) and the size of pro-essed load is about 3275.0461. On the other hand, the optimum ommuniationsequene is (2,1,4,3), whih allows for proessing the load of size approximately3276.4212. Thus, the analyzed algorithm does not deliver the optimum ommu-niation sequene.Another approah to seleting the best ommuniation sequene is to startfrom the initial sequene (1, 2, . . . , m), and improve it by hanging the positionsof some proessors. Let us assume that it is allowed to perform two operations onthe ommuniation sequene: swap a pair of proessors or move a single proessorto another plae in the sequene. Only the moves inreasing proessed load Vfor the given shedule length T an be made. However, for the instane givenabove, the amount of load proessed for ommuniation sequene σ1 = (1, 2, 3, 4)is approximately 3276.0243 (see Table 2.2). The only ommuniation sequene27

Table 2.2: The size V of load proessed for di�erent ativation sequenes in the oun-terexample (rounded to 4 digits after deimal point).Sequene Proessed load V Sequene Proessed load V(1,2,3,4) 3276.0243 (1,2,4,3) 3275.0461(1,3,2,4) 3264.4671 (1,3,4,2) 3265.8734(1,4,2,3) 3272.7902 (1,4,3,2) 3275.0848(2,1,3,4) 3274.1818 (2,1,4,3) 3276.4212(2,3,1,4) 2135.6348 (2,3,4,1) 1963.7528(2,4,1,3) 3102.9726 (2,4,3,1) 2097.1445(3,1,2,4) 2040.9951 (3,1,4,2) 2044.6016(3,2,1,4) 1963.8495 (3,2,4,1) 1792.8317(3,4,1,2) 1879.3648 (3,4,2,1) 1776.3430(4,1,2,3) 3104.2910 (4,1,3,2) 3103.4595(4,2,1,3) 3078.8408 (4,2,3,1) 2076.1120(4,3,1,2) 2021.0451 (4,3,2,1) 1920.2297for whih it is possible to proess larger load, is the optimum sequene σ2 =

(2, 1, 4, 3). Yet, it is impossible to obtain this solution by the moves desribedabove, as any allowed hange to σ1 results in dereasing the amount of proessedload, and hene annot be aepted.The above ounterexample proves not only that the desribed type of greedyalgorithms is not apable of solving our problem, but also that it is impossible to�nd the optimum ativation sequene by simply sorting the proessors aordingto some ombination of instane parameters. Indeed, note that the ommunia-tion sequene (1,2,3,4) is better than (1,2,4,3) and the sequene (2,1,4,3) is betterthan (2,1,3,4). This shows that depending on the amount of time left for pro-essing on P3 and P4, it is better to ativate one or the other proessor earlier.Thus, the order in whih proessors P3 and P4 should be ativated depends on theparameters of proessors ativated before them. Consequently, it is not possibleto determine the ommuniation sequene loally, without taking into aountthe sequene of other proessors.Moreover, for the above instane, the load proessed by P1 if it is ativated�rst is muh greater than the load proessed by P2 in the ase when the ativation28

sequene starts with 2. Still, in the optimum solution proessor P2 should reeiveload before P1. Thus, a greedy algorithm, always appending to the ommunia-tion sequene the proessor whih an proess the greatest amount of load, alsodoes not deliver optimum solution.Finally, it an be onjetured that DLS{1Round} is not a seletion problem.2.5 Approximation Algorithms for ProblemDLS{1Round}Without knowing how to order the proessors taking part in the omputations forproblem DLS{1Round}, we are not able to reate similar approximation shemesas for problem DLS{Ci = 0}. Therefore, we present several algorithms withapproximation ratio bounded but dependent on the instane parameters.2.5.1 Problem DLS{1Round}-OptVThe simplest method of reating a solution of problem DLS{1Round}-OptV isto send the whole load to a single proessor only. The size of the load proessedby a single proessor Pi in time T is equal to (T −Si)/(Ai +Ci). Thus, we seletthe proessor for whih this value is the greatest, as it is shown in Algorithm 2.5.Algorithm 2.5 SINGLE-PROCESSOR-OPT-V(T,m,A,C,S)
j = 1for i = 2 to m doif (T − Si)/(Ai + Ci) > (T − Sj)/(Aj + Cj) then

j = iend ifend forreturn σ = (j), V = (T − Sj)/(Aj + Cj)

29

Note that in the optimum shedule at least one proessor Pi must proessload of size at least VOPT (T)/m (in given time T). Hene, Algorithm 2.5 deliversa solution proessing load of size at least VOPT (T)/m and is an approximationalgorithm with relative performane guarantee m. Note that this bound is tight.Consider an instane with Ai = 1, Ci = Si = 0 for i = 1, . . . , m. In the optimumsolution, all proessors are ativated and they proess load of size mT . In thesolution delivered by Algorithm 2.5 only one proessor is ativated and the sizeof the load is T . The running time of Algorithm 2.5 is O(m).The above approah an be extended by analyzing all ommuniation se-quenes of length k for some onstant k ≤ m. Similarly as before, we observethat if the optimum solution of the problem ativates at least k proessors, thenit must ontain a group of k proessors whih together proess load of size at least
kVOPT (T)/m. Hene, an algorithm enumerating all possible ommuniation se-quenes of length k delivers a solution with relative performane guarantee m/k,provided that the optimum solution of the instane of the problem uses at least
k proessors. Unfortunately, the omplexity of suh an algorithm is O(mk) andit grows exponentially with the relative performane guarantee.Algorithm 2.5 an be also extended to a greedy Algorithm 2.6, seleting theproessors in the ommuniation sequene one by one. As long as it is possibleto append a proessor to the ommuniation sequene, the proessor whih anproess the greatest load is hosen.The running time of Algorithm 2.6 is O(m2). The results delivered by thisalgorithm are not worse then for Algorithm 2.5. Still, the performane guarantee
m is tight. Indeed, onsider the following problem instane. Let A1 = 1 − ε,
C1 = T −1, S1 = 0, and Ai = T , Ci = 0, Si = 0 for i = 2, . . . , m, where 0 < ε < 1is a small onstant. Proessor P1 an proess load of size T

A1+C1
= T

T−ε
> 1 intime T . For i ≥ 2, proessor Pi is apable of proessing load of size T

T
= 1 intime T . Hene, Algorithm 2.6 will hoose proessor P1 to obtain the �rst load30

Algorithm 2.6 GREEDY-OPT-V(T,m,A,C,S)
σ = ()

V = 0

j = 1while j 6= 0 do
j = 0for i = 1 to m doif Si < T and i is not ontained in σ thenif j = 0 or (T − Si)/(Ai + Ci) > (T − Sj)/(Aj + Cj) then

j = iend ifend ifend forif j 6= 0 then
σ = σ|j {onatenation of σ and j}
V = V + (T − Sj)/(Aj + Cj)

T = T − Sj − Cj(T − Sj)/(Aj + Cj)end ifend whilereturn σ, Vhunk. Sending data to proessor P1 will take time T1 = C1
T

T−ε
= (T − 1) T

T−ε
.The remaining proessors Pi will be ativated afterwards and eah of them willobtain the load of size (T − T1)/Ai =

(T−(T−1) T
T−ε

)

T
= 1 − T−1

T−ε
= 1−ε

T−ε
. Thus, thetotal size of the proessed load will be V1 =

T+(m−1)(1−ε)
T−ε

.On the other hand, if proessor P1 is ativated as the last one, then eah ofproessors P2, . . . , Pm reeives load of size 1. The time left for ommuniationand omputation on P1 is still T , and P1 proesses load of size T
T−ε

. The wholeproessed load has size V2 = m− 1 + T
T−ε

. Thus, we have V2

V1
= mT−ε(m−1)

(m−1)(1−ε)+T
and

limT→∞
V2

V1
= m.The quality of the results obtained by Algorithm 2.6 in omparison to Algo-rithm 2.5 strongly depends on the proessor parameters. To analyze the di�erene31

a)1

6

11

16

21

26

1E0 1E1 1E2 1E3 1E4

AVG

MAX

b)0.00

0.05

0.10

0.15

1E0 1E1 1E2 1E3 1E4

Alg. 2.5, AVG Alg. 2.5, WRST

Alg. 2.6, AVG Alg. 2.6, WRST

Figure 2.2: Experimental results for the �rst set of instanes (slow ommuniation). a)Number of proessors used by Algorithm 2.6. b) Quality of the solutions obtained byAlgorithms 2.5 and 2.6.between the two algorithms we tested them on sets of random instanes. Eahinstane in the �rst set had m = 100 proessors, and their parameters Ai, Ci, Siwere hosen randomly from the interval [0, 1]. For eah generated set of proes-sors, 5 instanes were reated, with T = 1, 10, 100, 1000, 10000. The quality of theobtained solutions was measured as the quotient Va

UpBo
, where Va is the amount ofload returned by the tested algorithm, and UpBo is the upper bound on the sizeof proessed load, alulated as ∑m

i=1
T−Si

Ai+Ci
. The results of the experiments arepresented in Fig. 2.2. The number of proessors used by the greedy Algorithm 2.6depends on T (see Fig. 2.2a). Although for eah value of T there were instanesfor whih only one proessor was used, the average and the maximum numberof used proessors (denoted by AVG and MAX in Fig. 2.2a, orrespondingly)inreases with T . Despite this, the performane of Algorithm 2.6 does not hangemuh with growing T (f. Fig. 2.2b), both on average (denoted AV G) and in theworst ase (denoted WRST). This an be explained by the fat that the proes-sors ativated as the last ones reeive only very small amounts of load. Moreover,when startup times Si are small in omparison to T , then the amounts of loadproessed by a single proessor or a �xed group of proessors inrease roughly lin-early with T . The upper bound on the total size of proessed load also inreases32

Table 2.3: The quality of the solutions obtained by Algorithms 2.5 and 2.6 for theseond set of instanes (fast ommuniation), T = 10000.Algorithm 2.5 Algorithm 2.6AVG WRST AVG WRST0.271073 0.061405 0.855082 0.598274linearly with T . Hene, the quality of the results obtained by both algorithms isalmost onstant in relation to the upper bound when T grows beyond 100. Notethat it is muh better than the worst-ase estimate 1
m

= 0.01. It an be alsoseen in Fig. 2.2b that on average Algorithm 2.6 delivers solutions about 1.5 timesbetter than Algorithm 2.5.The above results an be explained by the fat that the ommuniation pa-rameters Ci, Si were hosen from the same range as Ai. The time neessary tosend a hunk of data was quite big and only a small number of proessors ouldbe ativated. Therefore, we reated another set of instanes, where parameters Ciand Si were hosen randomly from the interval [0, 0.001]. The remaining param-eters were seleted as in the previous set. Sine the startup times Si were verysmall in omparison to all used value of T , the quality of the obtained solutionswas almost not hanging with T . Therefore, we present only the average and theworst performane of both algorithms for T = 10000 in Table 2.3. The numberof proessors used by Algorithm 2.6 was m = 100 for all instanes in this set.Therefore, the di�erene between the results obtained by Algorithms 2.5 and 2.6is greater than for the previous set of instanes, for whih at most 26 proessorswere used by the greedy algorithm. The quality of the results of both algorithmsis better than for the previous instane set. On average, Algorithm 2.5 allows forproessing load of size greater than 27% of the upper bound and Algorithm 2.6greater than 85%.We onlude that the di�erene in the quality of the results obtained by Algo-rithms 2.5 and 2.6 depends on the ommuniation parameters of the proessors.33

If ommuniation is slow, then the quality of the obtained results is not verygood. However, this an be the e�et of the used measure of quality. When om-muniation is slow, the upper bound we alulated may be muh greater thanthe optimum solution. If ommuniation is fast in omparison to omputations,then the results obtained by both algorithms get better. The di�erene betweenthe results of Algorithms 2.5 and 2.6 is inreasing and the greedy Algorithm 2.6delivers solutions of very good quality.2.5.2 Problem DLS{1Round}-OptTIn order to reate an approximation algorithm for problem DLS{1Round}-OptT ,we an, similarly as in Algorithm 2.5, onsider only ommuniation sequenes oflength 1. This approah is used in Algorithm 2.7.Algorithm 2.7 SINGLE-PROCESSOR-OPT-T(V,m,A,C,S)
j = 1for i = 2 to m doif Si + (Ai + Ci)V < Sj + (Aj + Cj)V then

j = iend ifend forreturn σ = (j), T = Sj + (Aj + Cj)VNote that if proessor Pi needs time T to proess the load of size V , then itannot proess the load of size V/m faster than in time T/m. As in the optimumsolution at least one proessor has to reeive load of size at least V/m, Algorithm2.7 returns time T ≤ mTOPT (V). Observe that this bound is tight. Consider aninstane with Ai = 1, Ci = Si = 0 for i = 1, . . . , m. In the optimum solution,all proessors are ativated and they proess load V in time V
m
. In the solutiondelivered by Algorithm 2.7 only one proessor is ativated and it needs time Vto proess the whole load. The running time of Algorithm 2.7 is O(m).34

2.6 ConlusionsIn this hapter we analyzed single-round divisible load sheduling in star net-works. We proposed fully polynomial time approximation shemes for problemsDLS{Ci = 0}-OptV and DLS{Ci = 0}-OptT . As a by-produt, a fully poly-nomial time dual approximation algorithm was designed for the �rst problem.We also analyzed the sheduling problems in the system with �nite bandwidths(i.e. when Ci > 0). The order in whih the proessors should be ativated wasstudied as the main obstale in reating approximation algorithms for this ase.Unfortunately, we showed that some lasses of proessor sequening algorithmsannot be used to solve this problem. We onjeture that onstruting the opti-mum sequene an be omputationally hard, and DLS{1Round} is not a seletionproblem. Finally, we proposed simple approximation algorithms giving tight rela-tive performane guarantee m for problem DLS{1Round}-OptV and for problemDLS{1Round}-OptT .

35

3 Multi-Round Proessingwith Limited Memory
The single-round organization of omputations has several disadvantages. Firstly,the ommuniation delays may be very long, while no omputations an be starteduntil the �rst proessor reeives the whole amount of load assigned to it. Seondly,in pratie the whole load V is often too big to be stored in the memories of workerproessors at the same time. In suh a ase it is impossible to reate a single-round shedule. It would be more pro�table to send the load in many smallpiees (hunks), so that omputations start earlier and �t in omputer memories.Consequently, omputations ould interleave with ommuniations.In this hapter we study multi-round divisible load sheduling in systems withlimited memory. We analyze the star network topology desribed in Chapter 2.To take into aount memory limitations, we introdue one more parameter har-aterizing eah proessor Pi. Namely, Bi is the size of memory bu�er availableon Pi (e.g. in bytes). Our goal is to �nd a shedule proessing the load of a givensize in the shortest possible time. As eah proessor an reeive many messages,there are more sheduling deisions to be made than in the ase of single-roundproessing:

• The set P ′ ⊆ P of proessors partiipating in the omputations must behosen.
• The length n of the ommuniation sequene must be seleted. It may be36

muh larger then the number of proessors m.
• The ommuniation sequene must be hosen. For multi-round proessing,the ommuniation sequene is an arbitrary sequene whose elements areindies of proessors from the set P ′.
• The sizes of the load parts sent in eah message must be seleted.We start our onsiderations with a short summary of the previous work onmulti-round divisible load sheduling. In Setion 3.2 we desribe the mathe-matial model used in this hapter. As our sheduling problem is known to beomputationally hard, we propose an exponential Branh&Bound algorithm anda geneti algorithm in Setion 3.3. We use the geneti algorithm not only asa metaheuristi solving the sheduling problem, but also to gather informationabout the features of good quality solutions. The results obtained from an ex-tensive experimental study, as well as some analytial results, are presented inSetion 3.4. Based on this information, in Setion 3.5 we propose several lasses ofsheduling heuristis. We analyze and ompare them, exposing their advantagesand weaknesses.3.1 Earlier ResultsSheduling divisible loads in systems with limited memory was �rst analyzed in[37℄. The authors onsidered single-round shedules only, hene they assumedthat the whole load �ts in the memory bu�ers of the workers. Other assumptionswere that all proessors take part in the omputations and that the ativationsequene is given. The ommuniation delay model was linear (Si = 0 for 1 ≤ i ≤

m). A fast heuristi alled Inremental Balaning Strategy was proposed. Thisalgorithm did not always deliver optimum solutions, what was shown in [30℄.A more general a�ne ommuniation delay model was studied in [30℄. Alinear programming formulation of the sheduling problem was designed for a37

given ativation sequene. Choosing the optimum set P ′ of proessors taking partin the omputations in systems with limited memory and a�ne ommuniationmodel has been shown to be NP-hard in [31℄ and strongly NP-hard in [4℄. In [31℄the authors proposed and evaluated experimentally a Branh&Bound algorithmand several heuristis for single-round sheduling with limited memory.Multi-round divisible load sheduling with limited memory was �rst studiedin [29℄. Only the size of the hunk urrently proessed by a given proessor wassubjet to the memory limit. The sizes of load parts arriving in the bakgroundof omputations were not taken into aount. A more detailed memory model,in whih memory limits a�eted all hunks of data existing at a given proessor,was used in [26℄. A Branh&Bound algorithm and a geneti algorithm solving theanalyzed sheduling problem were proposed. However, the mathematial model ofmemory management was simpli�ed to make the problem more tratable. It wasassumed that memory oupation is dereasing linearly during the omputations.This simpli�ation has been removed in [27℄. We disuss it in more detail in thenext setion.3.2 Problem FormulationBefore we present the mathematial model used in this hapter, let us brie�yanalyze di�erent models of memory management. The simplest approah is toassume that only one load hunk may be present in the memory of a omputer ata time [31, 37℄. The size of a piee of data sent to proessor Pi annot exeed thelimit Bi (f. Fig. 3.1a). Thus, a proessor annot perform omputations whilereeiving a new piee of load. This results in long idle times and dereases thee�ieny of proessing.In [26℄ it was assumed that eah proessor an store multiple load hunksat the same time and the size of these hunks together annot exeed the limit38

Figure 3.1: Memory management: a) eah hunk uses whole bu�er, b) memory graduallyreleased,) blok memory releases.
Bi. It was possible to gradually upload the data without stopping the omputa-tions. Consequently, the omputations ould be started quikly by sending shortinitial hunks, and performed ontinuously by uploading data while omputing.However, to make the problem more tratable, it was also assumed in [26℄ thatmemory is released to the operating system with very �ne granularity. The sizeof alloated memory was dereasing linearly during the omputations, as shownin Fig. 3.1b, and it was possible to ompute the optimum load hunk sizes us-ing linear programming for a given ommuniation sequene. However, this wayof releasing memory is rather unusual, beause releasing memory in many smallpiees would also require alloating memory in very �ne piees. Obtaining suf-�ient memory for a piee of load would onsist of multiple mallo/new alls tothe runtime environment. Consequently, aquiring memory would be ompliatedand time-onsuming.Therefore, in this work we assume that memory alloation and release haveblok nature. When a load hunk of size α is about to arrive at a proessor, ablok of memory of size α is requested from the operating system. This blok is re-leased immediately after �nishing proessing the orresponding hunk of data (f.Fig. 3.1). The sum of sizes of memory bloks oexisting at proessor Pi annotexeed the limit Bi. In other words, for eah moment t, we have ∑l∈H(i,t) αl ≤ Bi,where H(i, t) is the set of hunks reeived by Pi and not ompleted by time t. Wewill be saying that hunks simultaneously existing in the memory bu�er overlap.Let us introdue the assumptions and notations neessary to formulate our39

sheduling problem as a mixed nonlinear mathematial program. The load isdelivered to the proessors in a sequene of ommuniations. The ativation se-quene may be arbitrary. In partiular, some proessors may reeive no load,while some other proessors reeive multiple data hunks. If the message is re-eived by a proessor without any load in the bu�er, then the omputations startimmediately after the end of ommuniation. If the bu�er already stores someunproessed hunks, then the proessor swithes from omputing one load hunkto the next one without idle time in the omputations. If the whole memory bu�erof a proessor is oupied, then no more load an be uploaded and, onsequently,idle times in ommuniation may appear. We assume that the load hunks as-signed to a given worker are proessed in the order in whih they were reeived.Let us assume that the sequene σ = (σ(1), . . . , σ(n)) of the ommuniations tothe proessors is given, where σ(i) is the index of the proessor reeiving the i-thhunk. The size of this hunk is αi. The numbers of the load hunks as they aresent o� the originator will be alled global numbers. For simpliity of notationwe will also use a loal numbering of the hunks reeived by a ertain proessor.We de�ne a funtion ρ(i, j) as a mapping from proessor Pi loal hunk number
j to the global numbering. The number of load piees reeived by proessor Piwill be denoted by ni. In the mathematial program we want to onstrut, itmust be guaranteed that hunks simultaneously existing in a proessor bu�er donot exeed the memory size. To formulate suh a onstraint we have to know thesets of overlapping load hunks. However, this depends on the ommuniation se-quene, hunk ommuniation and omputation times, and hene, on the hunksizes, whih are unknown. Let us de�ne binary variables xijk for 1 ≤ i ≤ m,
1 ≤ j < k ≤ ni in the following way. Variable xijk is equal to 1 if the j-th hunkon proessor Pi overlaps with hunk k on this proessor, and equal to 0 otherwise.In other words, xijk = 1 means that proessor Pi started reeiving hunk k beforeomputing the j-th hunk was �nished. Both k and j are loal hunk numbers.40

Our sheduling problem an be formulated in the following way [11, 27℄.minimize Tmaxsubjet to
t1 = 0 (3.1)
ti ≥ ti−1 + Sσ(i−1) + Cσ(i−1)αi−1 i = 2, . . . , n, (3.2)

fik ≥ tρ(i,k) + Si + Ciαρ(i,k) + Aiαρ(i,k) (3.3)
i = 1, . . . , m, k = 1, . . . , ni,

fik ≥ fi,k−1 + Aiαρ(i,k) (3.4)
i = 1, . . . , m, k = 2, . . . , ni,

fij ≥ tρ(i,k) − (1− xijk)M i = 1, . . . , m, (3.5)
j = 1, . . . , ni − 1, k = j + 1, . . . , ni

fij ≤ tρ(i,k) + xijkM i = 1, . . . , m, (3.6)
j = 1, . . . , ni − 1, k = j + 1, . . . , ni

xijk ≤ xilk i = 1, . . . , m, j = 1, . . . , ni − 1, (3.7)
k = j + 2, . . . , ni, l = j + 1, . . . , k − 1

xijk ≥ xijl i = 1, . . . , m, j = 1, . . . , ni − 1, (3.8)
k = j + 1, . . . , ni, l = k + 1, . . . , ni

αρ(i,j) +

ni
∑

k=j+1

xijkαρ(i,k) ≤ Bi i = 1, . . . , m, j = 1, . . . , ni (3.9)
V =

n
∑

i=1

αi (3.10)
Tmax ≥ fini

i = 1, . . . , m (3.11)
xijk ∈ {0, 1} (3.12)In the above formulation variables αi de�ne the load partitioning resultingin the minimum shedule length for the ommuniation sequene σ. Inequalities(3.1), (3.2) determine the moments ti when the originator starts sending the i-thhunk. Constraints (3.3),(3.4) determine the moment fik when proessing hunk

k of Pi �nishes. Inequalities (3.5), (3.6) guarantee that proessing of hunk j is�nished before starting sending message k if xijk = 0, or that it is not �nished41

before starting sending message k if xijk = 1. Due to inequalities (3.7), if hunk jis not proessed when hunk k arrives, then the hunks between j and k are alsounproessed. Inequalities (3.8) ensure that if hunk j is �nished before arrivingof some hunk k, then j annot beome unproessed again. By inequalities (3.9)memory limits are observed. The whole load is proessed by (3.10). The shedulelength is not shorter than the ompletion time on any proessor by onstraints(3.11). Formulation (3.1)-(3.12) is a mixed quadrati mathematial program, asit uses binary variables (xijk), ontinuous variables (αi, fik, ti, Tmax), and mul-tipliation of variables in onstraints (3.9). Solving mixed quadrati programsis omputationally hard. Thus, it an be expeted that solving the program(3.1)-(3.12) using general-purpose methods is omputationally hard although theativation sequene σ is given. This is in sharp ontrast with the omplexity ofmemory management models used in [26, 31℄, for whih linear programs were suf-�ient to obtain the optimum load partition for a given ommuniation sequene
σ. It an be seen that a more areful representation of memory managementand hunk overlap made the mathematial model muh more involved. Note that(3.1)-(3.12) is very general and may over various senarios of optimum memorymanagement. For example, it is apable of representing a number of independentbu�ers of equal or di�erent sizes swapped on the proessors.Let us note that for given xijk the formulation (3.1)-(3.12) beomes a linearprogram (LP). Hene, we will split our problem into two parts. The �rst, om-binatorial part is to hoose not only the ommuniation sequene, but also todeide whih hunks overlap with eah other. The seond, algebrai part is to�nd the optimum load distribution using the linear program for a given ommuni-ation sequene and overlap information. In the following disussion, we will usea simpler overlap enoding. Instead of binary variables xijk we will use integervariables zij , where zij is the loal number of the last hunk overlapped by hunk
j on proessor Pi. Intuitively, zij denotes the end of the range of overlapping42

hunks omprising hunk j on Pi.The mathematial program omputing the optimum load distribution for agiven ommuniation sequene σ and overlap information enoded by values zij,may be formulated as follows [12℄.minimize Tmaxsubjet to
t1 = 0 (3.13)
ti ≥ ti−1 + Sσ(i−1) + Cσ(i−1)αi−1 i = 2, . . . , n, (3.14)

fik ≥ tρ(i,k) + Si + Ciαρ(i,k) + Aiαρ(i,k) (3.15)
i = 1, . . . , m, k = 1, . . . , ni,

fik ≥ fi,k−1 + Aiαρ(i,k) (3.16)
i = 1, . . . , m, k = 2, . . . , ni,

fij ≥ tρ(i,zij) i = 1, . . . , m, j = 1, . . . , ni − 1 (3.17)
fij < tρ(i,zij+1) i = 1, . . . , m, j = 1, . . . , ni − 1 (3.18)

zij
∑

k=j

αρ(i,k) ≤ Bi i = 1, . . . , m, j = 1, . . . , ni (3.19)
V =

n
∑

i=1

αi (3.20)
Tmax ≥ fini

i = 1, . . . , m (3.21)In the above formulation onstraints (3.13)-(3.18) orrespond to (3.1)-(3.6),and onstraints (3.19)-(3.21) orrespond to (3.9)-(3.11).3.3 Branh&Bound Algorithm and GenetiAlgorithmIn this setion we propose two basi algorithms solving our sheduling problem.We start with an exponential Branh&Bound algorithm. Sine its running time43

a) b)Figure 3.2: Enoding overlaps on Pi using a) zij , b) δij .is unaeptable for pratial use, we onstrut a geneti algorithm. We tuneits parameters based on the results delivered by the Branh&Bound algorithm.Both algorithms solve the ombinatorial part of the problem and use the linearprogram (3.13)-(3.21) to solve the algebrai part.Before we present the algorithms, let us introdue a more pratial overlapenoding, whih was used in the atual implementation. The last hunk zijoverlapping with hunk j annot be sent before j. Thus, values zij < j areinfeasible. Note that if hunk j on proessor Pi overlaps with hunk k > j, thenit must also overlap with all hunks between j and k. Moreover, hunks withnumbers greater then zij annot overlap with j anymore. Hene, there is a lineseparating the overlapping and the non-overlapping hunks. Instead of zij we anuse integer variables δij denoting by how many hunks the overlapping front isshifted ahead with hunk j on proessor Pi (f. Fig. 3.2). For given values of
δij we an ompute values zij = min{ni,max{zi,j−1, j} + δij}, where zi0 = 1. Inother words, δij is enoding inrements zij − zi,j−1. For example, if ∀i, j, δij = 0,then hunks do not overlap, if ∀i, j < ni, δij = 1, then eah pair of onseutivehunks overlap. This overlap enoding is used in all the following algorithmswhih diretly refer to overlap values.

44

3.3.1 Branh&Bound AlgorithmA Branh&Bound algorithm (B&B) is a standard tehnique used to solve hardombinatorial optimization problems. The algorithm is de�ned by a branhingrule and a bounding rule. The branhing rule divides the set of possible solutionsuntil distinguishing unique solutions. The bounding rule eliminates the solutionswhih are infeasible or their quality is ertainly not better than the quality ofsome already known solution.In our sheduling problem the Branh&Bound algorithm has to �nd a om-muniation sequene σ and determine hunk overlapping. The ommuniationsequenes are built by appending a new proessor to an already onstruted lead-ing sequene. Thus, any partial sequene σ represents all sequenes starting with
σ. This set of sequenes is branhed into subsets of sequenes beginning with
(σ, P1), . . . , (σ, Pm). For eah analyzed ommuniation sequene σ hunk overlap-ping must be hosen. This is done by the seond branhing sheme. For proessor
Pi the overlap is determined by a vetor (δi1, . . . , δini

). A sequene (δi1, . . . , δij)enoding the overlap for the �rst j hunks reeived by Pi, is branhed into overlapenoding strings (δi1, . . . , δij , 0), . . . , (δi1, . . . , δij, ni −max{j + 1, zij}).The enumeration of possible solutions is bounded by two methods. For agiven sequene σ a lower bound LB(σ) on the shedule length is omputed asfollows. The startup times in σ are summed up: τ1 = ∑n
i=1 Sσ(i). The maximumload V ′ that ould be proessed during the ommuniation startup times is V1 =

∑

i∈σ(τ1 −
∑g(i)

j=1 Sσ(j))/Ai, where g(i) is the index of the �rst ommuniation toproessor Pi in σ. The notation ∑

i∈σ means that if i ∈ σ, then it is ounted onlyone, like a member of a set. The load must be sent from the originator in time atleast τ2 = V Cmin. In parallel with this ommuniation, at most V2 = τ2
∑m

i=1
1
Aiunits of load ould be proessed. If V3 = V − V1 − V2 > 0, then this remainingload V3 will be proessed in time at least τ3 = V3/(

∑m
i=1

1
Ai
). The lower boundis equal to LB(σ) = τ1 + τ2 + max{0, τ3}. Let T be the length of the best45

already known solution. If T ≤ LB(σ) then the suessors of σ are disarded.The seond mehanism used for sequene elimination is based on the maximummemory MEM(σ) =
∑n

i=1Bσ(i) whih ould possibly beome available in σ. If
MEM(σ) < V , then the memory available for holding the load is insu�ient,the ommuniation sequene is too short and must be expanded. In suh aase the enumeration of the various overlap sequenes was not attempted for thegiven σ. Note that there are O(mn) ommuniation sequenes of length n for
m proessors, and for eah proessor the number of possible ways of overlappingthe ommuniation hunks is also exponential in ni. Hene, due to the highomputational omplexity, an upper bound nMAX on the length n of generatedsequenes was also imposed. This was done to make the B&B algorithm moreusable, and it was not needed to properly de�ne the algorithm. Consequently,beause of the onstraint nMAX , in some ases B&B was not able to deliver anoptimum, or even a feasible solution.3.3.2 Geneti AlgorithmA geneti algorithm (GA), similarly as B&B, is a standard tehnique used to solvehard ombinatorial optimization problems. The idea of the geneti algorithmis to mimi the proess of evolution in nature. GA is a randomized algorithmwhih maintains a population of solutions (alled hromosomes) instead of a singlesolution only. Geneti operators are used to transform the population in thediretion of improving solutions quality. To de�ne a geneti algorithm, one hasto determine solution enoding, the set of geneti operators, algorithm stoppingriteria and several implementation-dependent tunable parameters.In our implementation of GA we enode solutions as pairs of sequenes ofequal length. The �rst of them is the ommuniation sequene σ. The seondsequene O is used to represent the overlap. More preisely, O(i) is the value of
δσ(i)j , where j is the number of load hunks sent to proessor Pσ(i) up to the i-th46

hunk sent o� the originator. The (equal) lengths of σ and O an be adjustedby GA to onstrut the best solution. Knowing the sequenes σ and O, we anformulate the linear program (3.13)-(3.21) alulating values αi and Tmax de�nedin Setion 3.2. The �tness (quality) of the solution is measured as the inverse ofthe shedule length Tmax obtained from the linear program.We apply three geneti operators: seletion, rossover and mutation. Theseletion of the solutions for the new population is done by a ombination ofelitist and roulette wheel method and is strongly onneted with the rossoveroperation. First, hromosomes whih should undergo rossover operation arehosen. Chromosomes are seleted with probability 1

T j
max

/
∑G

j=1
1

T j
max

, where T j
maxdenotes the shedule length for hromosome j, and G is the size of the population.The total number of seleted parents is GpC , where pC is a tunable algorithmparameter alled rossover probability. In the rossover operation the seletedparents are randomly paired and ombined. For example, let

[(σ1(1), . . . , σ1(n
′)), (O1(1), . . . , O1(n

′))]and
[(σ2(1), . . . , σ2(n

′′)), (O2(1), . . . , O2(n
′′))]be two parent solutions, with ommuniation sequene lengths n′, n′′, respetively.Let k ≤ n′, l ≤ n′′ be two randomly hosen rossover points. The two o�springsolutions are enoded in strings

[(σ1(1),. . . , σ1(k), σ2(l + 1),. . . , σ2(n
′′)), (O1(1),. . . , O1(k), O2(l + 1),. . . , O2(n

′′))],and
[(σ2(1),. . . , σ2(l), σ1(k + 1),. . . , σ1(n

′)), (O2(1),. . . , O2(l), O1(k + 1),. . . , O1(n
′))].The o�spring replaes the parents in the new population. Note that beause ofhoosing two rossover points l and k the o�spring string lengths may be di�erentthan in their parents. The rest of the new population is seleted by the elitistmethod, so that the best (1 − pC)G hromosomes from the old population arealways preserved. The elitist omponent in the seletion is neessary beause the47

di�erenes in the solution �tness are often very small, and the best solutions maybe lost in the randomized seletion.Mutation operator hanges randomly hosen genes (i.e. pairs (σ(i), O(i))) inthe population to di�erent values. Eah gene is hosen for mutation with proba-bility pM . Here pM is a tunable algorithm parameter alled mutation probability.When gene (σ(i), O(i)) is mutated, the number σ(i) is hanged to a randomlyhosen proessor index between 1 and m, and the value O(i) is hanged by atmost 1.The algorithm stops after a �xed number of iterations it1. There is also alimit it2 on the number of iterations without an improvement in the quality ofthe best solution found so far. If the iteration limit it2 is reahed before it1, thenthe population is replaed with randomly generated hromosomes and the searhis restarted (the best solution found so far is reorded).GA is a randomized algorithm whose parameters must be tuned. The follow-ing proedure was applied. A set of 200 random instanes with m = 3, . . . , 6, V =

20, Bi uniformly distributed in [0, 10], Ai, Ci, Si uniformly distributed in [0, 1],were generated and solved to the optimum by B&B. The average relative dis-tane of the shedule length Tmax from the optimum length was the measure ofthe tuning quality. The tunable parameters were seleted one by one. The pro-ess of seleting the tunable parameters is illustrated in Fig. 3.3. Intuitively, abig population size G should allow for �nding good solutions in small number ofiterations. However, maintaining big populations is omputationally expensive.The population size G = 20 was seleted as a ompromise between the speed ofonvergene to the near-optimum solutions, and the omputational omplexity(f. Fig. 3.3a). To selet the rossover probability, the mutation operator wasswithed o�. Crossover probability pC = 0.8 was seleted (Fig. 3.3b). It turnedout that the majority of the population (80%) are o�spring. Thus, it an be on-luded that rossover is an e�etive optimization operator. After �xing G and pC ,48

a)1.00

1.04

1.08

1.12

1.16

1.20

1E1 1E2 1E3 b)1.03

1.04

1.05

1.06

1.07

1.08

1.09

0.01 0.1 0.3 0.6 0.8

)1.000

1.010

1.020

1.030

1.040

1.050

0.001 0.01 0.03 0.1 0.3 0.5 d)1.000

1.001

1.002

1.003

1.004

1.005

1.006

100/10 250/25 500/50 750/75 1000/100

0

20

40

60

80

100

120

140

160

Figure 3.3: GA tuning. a) Solution quality vs. population size G, b) solution quality at100th iteration vs. pC ,) solution quality at 100th iteration vs. pM , d) solution qualityand exeution time for various iteration limits it1/it2.mutation probability pM = 0.1 was hosen (Fig. 3.3). In Fig. 3.3d the qualityof tuning is shown for various ombinations of maximum number of iterationsand iterations without quality improvement. Note that improving the averagesolution quality by 0.4% requires nearly 6-fold inrease of the exeution time.Hene, it1 = 100 and it2 = 10 were seleted as a ompromise between quality andomplexity.3.3.3 Comparison of B&B and GALet us now disuss the advantages and weaknesses of B&B and GA algorithms.In general, B&B guarantees obtaining optimum solutions, but at very high om-putational ost. Therefore, we had to impose a limit nMAX on the maximum49

a)1E-2

1E-1

1E0

1E1

1E2

1E3

1E4

1E5

0 10 20 30 40 50 b)1E0

1E1

1E2

1E3

1E4

1E5

1E6

1 2 3 4 5 6 7 8 9 10Figure 3.4: GA and B&B exeution times, a) vs. sequene length, b) vs. proessorsnumber m.number of ommuniations in the shedule. This modi�ed B&B algorithm andeliver optimum solutions only for suh instanes, for whih the optimum om-muniation sequene is short enough. In Fig. 3.4 we ompare average exeutiontime of B&B and GA on a Pentium IV 1 GHz CPU. In the ase of B&B the ex-eution time is shown as a funtion of nMAX (Fig. 3.4a). We use nMAX beauseit turned out that this parameter is the main fator determining the size of thesearh tree in B&B. The minimum possible ommuniation sequene length is
nMIN = ⌈ V

Bmax
⌉. It is hardly ever the length of the best sequene, or the depthof the B&B searh tree. To be ertain that the best ommuniation sequeneobtained in B&B is indeed optimum, it must have length at most nMAX − 1.Instanes satisfying this ondition are easier to solve than the instanes whihfore B&B to searh a tree as deep as nMAX , and presenting the exeution timesas a funtion of the guaranteed optimum ommuniation sequene length wouldnot represent the real exeution time of B&B. As it an be seen, even average ex-eution time of B&B for nMAX = 7, m = 8 is of order of one day on a Pentium IV1 GHz CPU. Hene, B&B is not an aeptable tool for studying features of greatnumbers of even moderate size instanes. For GA, the exeution time is shownvs. the length n of the best obtained ommuniation sequene. In Fig. 3.4b the50

exeution time vs. the number of proessors m is shown.From the tuning proess desribed in the previous setion we onlude thatGA is apable of delivering high quality solutions on average. The running timeof GA is muh shorter than for B&B, what an be seen in Fig. 3.4. The maindisadvantage of GA as a tool for analyzing the problem properties is that it isa randomized algorithm. In the limit of in�nite iteration number, all feasiblesolutions are reahable in a proess of random transformations of the solutions.However, for a �nite number of iterations we have no guarantee that the algorithm�nds a near-optimum solution. Solutions whih are not optimum may be tooeasy to �nd by GA, what may give wrong indiations on the nature of the solvedproblem. Another feature of GA is that solutions whih have omplex struturemay be too improbable to be built in a �nite number of iterations. For example,the ommuniation sequene may inlude some proessor whih is not present inthe optimum solution, beause the probability of seleting any proessor at leastone in the sequene is high. Conversely, it is very unlikely that GA builds along repetitive pattern of ommuniations beause the probability of generatinga ertain pattern dereases exponentially with its length. Another onsequeneof randomness is that for the same instane GA often returns di�erent solutionsin onseutive runs. For example, for a set of 45 random instanes eah solved20 times, the quotient Tmax

Tmax
where Tmax is the average shedule length in all runsfor a single instane, had the oe�ient of variation 6%, and the average (overall quotients Tmax

Tmax
) was 0.9997.We have to onlude that B&B is nearly unusable even on very moderate sizeinstanes. GA has muh shorter exeution time, and in the range in whih itould be ompared against B&B, the quality of the GA solutions is very good.Hene, despite the limitations of GA, we will use this algorithm as a replaementof B&B in the analysis of the sheduling problem features.

51

3.4 Properties of the SolutionsIn this setion we analyze the harateristis of the near-optimum solutions ofour sheduling problem. As the algebrai part of the problem is solved optimallyfor given sequenes σ and O, we onentrate on the features in the ombinatorialpart of the solutions. The following properties are studied:
• the need and the extent of the overlap,
• the length of the ommuniation sequene,
• the number of used proessors,
• the set of used proessors,
• hunk sizes,
• parameters of instanes whih make them easy or hard to solve.We draw onlusions both analytially and on the basis of experimental results.Both GA and B&B were implemented in GNU C++. Linear programs were solvedusing lp_solve pakage [41℄. Over 30000 test instanes were generated and solvedby GA on Pentium IV 1 GHz CPU with Linux. Unless stated otherwise, the testdata were generated in the following way. In the experiments involving analysis ofthe in�uene of the system parameters A,B,C, S on solution harateristis, theinstane parameters Ai, Bi, Ci, Si were generated from U(0, 1], i.e. the uniformdistribution within range (0,1℄. The number of proessors was generated from

U [1, 10], and all experiments were repeated for V ∈ {2, 5, 10, 20, 50}. In theexperiments onerning a ertain parameter (say A), this parameter was �xed toa given value on all proessors (e.g. ∀i, Ai = 0.01), and the remaining parameterswere generated as desribed above. For eah ombination of V and a ertainvalue of the parameter (e.g. Ai = 0.01), 1000 instanes were generated.Before we start the analysis of the properties of the solutions, let us pointout an important di�erene in the shedule struture between the divisible loadsheduling problem with and without memory limitations. It has been shown52

in [48℄ that if there are no memory limitations, then in the optimum solution ofthe problem there are no idle times in omputations and in ommuniations. Weprove below that it is not the ase when memory limits are present.Proposition 3.1. The optimum solution of an instane of the divisible loadsheduling problem with limited memory may ontain idle times in the ompu-tations and in the ommuniation.Proof. Suppose m = 1, A1 = 1, B1 =
V
2
, C1 = 0, S1 = M , where M ≫ V is a bigonstant. The minimum number of ommuniations is nMIN = V

B1
= 2, for whihthe shedule length is Tmax = 2M + V . There is an idle interval of length V

2
inthe ommuniations, and an idle interval of length M in the omputations. Idletimes in the omputations annot be losed beause any load whih �ts in memorysize B1 = V

2
is proessed in shorter time than the startup time S = M ≫ V .Suppose that we want to lose the idle interval in the ommuniations by sendingmessages shorter than V

2
. However, in this ase at least three hunks would haveto be sent from the originator. Then shedule length would be at least 3M . Sine

M an be arbitrarily big in relation to V , the di�erene between the length ofa shedule with idle times and the length of the shedule without idle times inommuniation an be arbitrarily big in absolute terms.3.4.1 Depth of OverlapThe depth of overlap, de�ned by numbers δij , shows how many hunks interferewith eah other. The existene of non-zero overlaps means that the proessormust aumulate the load to be proessed. It is of pratial importane to verifyif the aumulation of the load is atually neessary, and to what degree.Let us start with single proessor onsiderations. When m = 1, the shedulingproblem may seem simple, but it is not trivial, sine to onstrut a shedule onehas to deide on the overlap and the sizes of load hunks. It is also of pratial53

importane beause it indiates how a very powerful server should ooperate witheah of the worker omputers.We will be saying that solutions for whih hunks overlap by not more than
1, i.e. ∀i, j, δij ≤ 1, have overlap at most 1. If ∀i, j < ni, δij = 1, then wewill be saying that a solution has overlap 1. Let us analyze a spei� overlapon�guration. Assume that a shedule has overlap 1 (∀j < n1, δ1j = 1), so thatthe hunks overlap with their diret predeessor and diret suessor (if any). Ifhunk 1 has size α1, then by (3.19) hunk 2 has size at most α2 ≤ B1−α1, hunk3 has size at most α3 ≤ B1 − α2, et. Thus, if all pairs of hunks have theirmaximum sizes, then the sizes of all hunks are in fat determined by a singlevariable α1. The size of proessed load is n

2
B1 if ommuniation sequene haseven number n of messages, or it is n−1

2
B1+α1 if n is odd. Hene, it is possible toonstrut suh a shedule if the number of messages is at least n = ⌈2V

B1
⌉. We willsay that solutions for m = 1 with n = ⌈2V

B1
⌉ and overlap 1 are oupled, beauseonseutive hunks reate ouples oexisting in memory.Proposition 3.2. The oupled solutions are not arbitrarily bad.Proof. For the optimum solution we have T ∗

max ≥ ⌈ V
B1
⌉S1+C1V = nMINS1+C1Vand T ∗

max ≥ A1V . For a oupled solution, Tmax ≤ ⌈2V
B1

⌉S1 + C1V + A1V =

nCPLS1 + C1V + A1V and nCPL ≤ 2nMIN .1. If A1V ≤ nMINS1 + C1V then
Tmax

T ∗
max

≤
nCPLS1 + C1V + A1V

nMINS1 + C1V
≤

3nMINS1 + 2C1V

nMINS1 + C1V
≤ 3.2. If nMINS1 + C1V ≤ A1V then

Tmax

T ∗
max

≤
nCPLS1 + C1V + A1V

A1V
≤

2(nMINS1 + C1V) + A1V

A1V
≤ 3.

54

-8 -6 -4 -2 0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.5: m = 1, quality of the solutions with various ommuniation sequene lengthsand the best overlap, relative to oupled solutions.The above proposition gives an indiation on the quality of oupled shedulesin the worst ase. The average quality of suh solutions was tested experimen-tally. In Fig. 3.5 the quality of shedules for m = 1, various sequene lengths,and the best overlap hosen by B&B algorithm is shown. The oupled solutionquality is used as a referene, and is represented by the point at the oordi-nates (0, 1). Solutions with fored shorter sequenes are shown on the negativepart of horizontal axis and solutions with fored longer sequenes on the positivepart. The best, the worst, and the average distane from the oupled solution isshown. The results in Fig. 3.5 represent 888 randomly generated instanes with
A1, C1, S1 ∼ U [0, 1], B1 ∼ U(0, 10), V = 10. It an be seen that typially the bestsolutions are not very muh better than the oupled ones. Inreasing n beyond
⌈2V
B1

⌉ is not reduing shedule length by more than approximately 13%. Thus,on average oupled solutions provide a simple and e�ient method of solving theombinatorial part of our problem on a single proessor. Let us note that theoptimum ommuniation sequene length n may be smaller or greater than ⌈2V
B1

⌉depending on the instane.Now we will move to analyzing the overlap for larger numbers of proessors.Let us start with an observation that arbitrarily deep overlaps may be neessary.
55

Figure 3.6: An instane with arbitrarily big overlap in Theorem 3.3.Theorem 3.3. There exist instanes whose optimum solutions ontain arbitrarilybig overlap.Proof. Let k,M be two integers, where k > 5 is even, and 2k−3k−1 > M > 3k+1.Consider the following example: m = 3, V = 22k + k2k + 1,

A1 =
1

22k
, B1 = 22k, C1 = 0, S1 = M,

A2 =
1
2k
, B2 = 2k, C2 = 0, S2 = 2,

A3 = M + 3k − 3, B3 = V, C3 = k − 1, S3 = 0.We want to build a shedule of length T = M +3k. We will show that no shortershedule may exist.To proess V , one ativation of P1 is neessary. Proessors P2 and P3 annotproess the load V in time T . Indeed, note that in time T proessor P3 is apableof proessing at most T
A3

= M+3k
M+3k−3

= 1 + 3
M+3k−3

< 2 units of load. Hene,if proessor P1 was not ativated, then P2 would have to proess more than 22kunits of load. This would require sending more than 22k

B2
= 2k messages to P2,and would take time longer than 2kS2 = 2k+1 > T . Thus, proessor P1 must takepart in omputations. Moreover, P1 annot be ativated more than one beause

2S1 = 2M > T .Now we will prove that proessor P2 must reeive k messages, proessing ofwhih is not overlapping.Consider the minimum load V − B1 = k2k + 1 remaining to be proessed by56

P2, P3. As we noted above, in time T proessor P3 is apable of proessing lessthan 2 units of load. Thus, to proess the remaining load, P2 must reeive atleast k messages. If in the k messages eah one arries load B2, then the wholeommuniation to P2 and omputation on P2 an be feasibly performed in time
3k as shown in Fig. 3.6. Note that if k hunks are sent to P2, then none of themmay overlap. Were it otherwise, the maximum load whih ould be sent to P2would be (k − 1)B2, and P3 would have to proess load of size at least 2k + 1,what is impossible in time T .On the other hand, assume that P2 reeives at least k+1 messages. Then, thetime of ommuniation with P1 and P2 is at least M + S2(k + 1) = M + 2k + 2.There remain k−2 time units for ommuniation with P3. The maximum amountof load whih an be sent to P3 in this time is k−2

k−1
. Hene, P2 must reeive loadof size at least k2k + 1− k−2

k−1
= k2k + 1

k−1
.Consider the overlapping of hunks sent to P2. A full bu�er B2 of data on P2is proessed in time A2B2 = 1 < S2. Hene, proessing of eah hunk is �nishedbefore reeiving the next hunk is ompleted. This means that the maximumpossible overlap on P2 is 1. We will divide the set of all hunks sent to P2 inthe following way. Let the �rst load hunk i overlap with the next δi hunks(δi ∈ {0, 1}). To obey memory limits, the group of δi + 1 onseutive hunks

i, . . . , i + δi may ontain load of size at most B2. The next group of hunksstarting with hunk i+ δi + 1, and ontaining δi+δi+1 +1 hunks, is independent,in the sense that they may arry another volume of size at most B2. Thus, theset of messages sent to P2 an be divided into groups, eah of whih ontains 1or 2 hunks and arries load of size at most B2. Let l0 be the number of groupswith overlap 0 (single, non-overlapping hunks) and l1 be the number of groupswith overlap 1 (pairs of overlapping hunks). The total number of messages sentto P2 is l0+2l1 ≥ k+1. The number of groups is l0+ l1 ≥ k+1, beause the loadsent to P2 is greater than kB2. Let V0 denote the total amount of load ontained57

in the groups with overlap 0. As the maximum load whih an be ontained inthe groups with overlap 1 is l1B2 = 2kl1, we have V0 ≥ (k − l1)2
k + 1

k−1
.Consider the minimum time of ommuniation and omputations on P2 andommuniation with P1. Sending a hunk of data to P2 takes time S2. The om-putations of load ontained in groups with overlap 0 sent to P2 are not overlappedby ommuniations with P2 and they are exeuted in total time A2V0. Compu-tations of at most B2 load units an be performed in parallel with startup S1on P1. Hene, omputation and ommuniations of P2 together with the startuptime S1 take at least time

S2(l0 + 2l1) + A2V0 + S1 − A2B2 =

2l0 + 4l1 +
V0

2k
+M − 1 ≥

2l0 + 4l1 + k − l1 +
1

2k(k−1)
+M − 1 =

M + k + (l0 + l1) + (l0 + 2l1) +
1

2k(k−1)
− 1 ≥

M + k + (k + 1) + (k + 1) + 1
2k(k−1)

− 1 =

M + 3k + 1 + 1
2k(k−1)

> M + 3k = T .We proved that it is infeasible to send more than k messages to P2. Therefore,
P2 must reeive exatly k messages, proessing of whih must not overlap.There are at most k + 2 free intervals in ommuniations with P1 and P2, oftotal length k. We will show now that the length of eah suh interval must besmaller than 3. Indeed, onsider the minimum load whih must be proessed by
P2, equal to k2k − 3

M+3k−3
. As hunks sent to P2 do not overlap, only one bu�erof data may be proessed in parallel with ommuniations to P1 and P2, in timeat most 1. The remaining load must be proessed during the intervals with noommuniations to P1 and P2. Thus, the maximum time available for proessingon P2 is k+1. In eah interval with no ommuniations to P2 at most one bu�erof data an be proessed. Hene, if the length of any suh interval is at least 3,then the time whih an be used for proessing the load on P2 dereases to k−1,whih is insu�ient to proess load of size k2k − 3

M+3k−3
. Hene, the length of58

Table 3.1: Relative frequeny of the overlaps in all hunks.overlap 0 1 2 > 2frequeny 0.835 0.154 0.010 0.001eah interval whih an be used for ommuniations with P3 is smaller than 3.Sine P1 reeives one message and P2 reeives k messages, at most 22k +

k2k units of load are proessed on P1 and P2. Proessor P3 must ompute theremaining amount of at least V −B1 − kB2 = 1 unit of load, what takes time atleastM+3k−3. Thus, there may be at most 3 idle time units in proessing on P3,whih means that in parallel with startup time S1 proessor P3 must ompute atleast load of size M−3
M+3k−3

. As eah hunk of data must be sent to P3 in an intervalof size smaller than 3, the size of a hunk reeived by P3 is at most 3
k−1

. Hene,the number of messages waiting to be proessed on P3 when ommuniation to
P1 starts must be at least (k−1)(M−3)

3(M+3k−3)
, whih tends to k−1

3
as M tends to in�nity.We onlude that it is possible to onstrut an instane whose optimum shedulerequires arbitrarily deep overlap.Although arbitrarily deep overlap is possible in the worst ase, the experi-mental results show that it is not ommon in pratie. The data were gatheredfrom the solutions delivered by GA for 19953 randomly generated instanes with

Ai, Bi, Ci, Si ∼ U [0, 1], m ∼ U [1, 10] and V ∈ {2, 5, 10, 20, 50}. The depth of theoverlap of all hunks in all sequenes of the solutions generated by GA for theabove instanes is presented in Table 3.1.A more detailed view of the hunk overlaps is shown in Fig. 3.7. The vertialaxis is the relative frequeny of instanes with a ertain fration of hunks witha ertain overlap. For example, (see the rightmost box "1" for overlap O = 0),approximately 36% of all instanes have only hunks with overlap 0. The abseneof a point in box "0" for overlap 0 means that there were no instanes without59

1E-5

1E-4

1E-3

1E-2

1E-1

1E0

1[0.9,1)[0.8,0.9)[0.7,0.8)[0.6,0.7)[0.5,0.6)[0.4,0.5)[0.3,0.4)[0.2,0.3)[0.1,0.2)(0,0.1)0Figure 3.7: Histogram of overlap frequenies in the instanes.a hunk with overlap 0. The number of solutions for whih the hunks withoverlap 1 are 90% to 99.99% of all the hunks in the ommuniation sequene isapproximately 0.4% of all instanes (box "[0.9,1)" for overlap O = 1). On theother hand, approximately 36% of all instanes have no hunk with overlap 1.Finally, overlaps 2 and bigger are very rare: approximately 87% solutions haveno hunk with overlap 2 or greater, and only 0.005% instanes have solutions withoverlap at least 2 in more than 40% of all the hunks in the solution. Thus, it anbe seen that overlap deeper than 1 is rare, beause it onstitutes approximately1% of all hunks in all solutions.The analysis of the depth of the overlap leads to the following onlusions.On a single proessor the solutions with n = ⌈2V
B
⌉ and overlap 1 are good onaverage. For multiple proessors (m > 1) the overlap may be arbitrarily deep ingeneral. Still, overlaps greater than 1 are rare in pratie.3.4.2 Length of the Communiation SequeneThe number of ommuniations n is a very important harateristi of the solu-tion, beause it is a key determinant of the omplexity of the algorithms solvingthe problem. The minimum required length of the ommuniation sequene de-60

pends on V and Bis. Therefore, it seems reasonable to use this minimum number
nMIN = ⌈ V

Bmax
⌉ of ommuniations as a referene. We start with an observationfor the ase of m = 1.Proposition 3.4. For m = 1 the shedule for sequene of length nMIN an be atmost twie as long as the optimum shedule.Proof. Shedule length Tmax for a sequene with the smallest possible length

nMIN is not greater than nMINS1 + C1V + A1V . On the other hand, for theoptimum solution, T ∗
max ≥ nMINS1 + C1V and T ∗

max ≥ A1V .1. If A1V ≤ nMINS1 + C1V then
Tmax

T ∗
max

≤
nMINS1 + C1V + A1V

nMINS1 + C1V
≤ 2.2. If A1V ≥ nMINS1 + C1V then

Tmax

T ∗
max

≤
nMINS1 + C1V + A1V

A1V
≤ 2.Let us also note that for a shedule with the number of ommuniations notgreater than nMINk, we have Tmax ≤ nMINkS1+C1V +A1V . Hene, onsideringthe two above ases it an be proved that Tmax

T ∗

max
≤ k + 1.We show below that the above result annot be transferred to the ase m > 1.Proposition 3.5. A ommuniation sequene with the minimum possible numberof hunks nMIN an be arbitrarily bad for the shedule length. The length of theoptimum ommuniation sequene an be arbitrarily big in relation to nMIN .Proof. Consider an example: m = 2, A1 = 1, B1 = 1, C1 = 0, S1 = 1, A2 =

1
V
, B2 = V, C2 = 0, S2 = M, where M is a big onstant. The minimum numberof ommuniations is nMIN = 1, and it results in a shedule of length M +1. On61

the other hand if P1 is used only and no hunks overlap, then the shedule lengthis ⌈V ⌉+ V , and the number of ommuniations is n = ⌈V ⌉. The ratio of the twoshedule lengths is M+1
⌈V ⌉+V

, whih an be made arbitrarily big by seletion of Mand V .For the seond part of the proposition, note that the number of messages inthe optimum ommuniation sequene proposed in the previous part of the proofan be arbitrarily big.Let us now analyze the length of ommuniation sequenes generated by GA.The values of the relative ommuniation sequene lengths n
nMIN

are shown inFig. 3.8. Eah of the harts shows the average (AVG) and the largest (MAX)relative ommuniation sequene lengths. In Fig. 3.8a the ommuniation lengthsare shown for various A values. It an be seen that usually n
nMIN

is not very big.On average n ≈ 1.39nMIN , whih is alulated over all instanes with hanging
A. The length of the sequene grows with A, what is most evident for the largestregistered relative lengths. This phenomenon an be attributed to the way ofalulating nMIN . For example, for V = 2 and Bi ∈ (0, 1], the expeted nMIN is4, and in extreme ases it an be just nMIN = 2. On the other hand, as proessorsget slower (A is inreasing), it is more and more pro�table to use all m availableproessors. Thus, n

nMIN
grows with A. This inrease is stronger for small V , andweaker for bigger V .In Fig. 3.8b a similar dependene is shown for hanging B

V
. The length ofthe ommuniation sequene quikly inreases with B

V
. This an be explained bythe following two fats. On the one hand, for B

V
approahing 1, nMIN is alsoapproahing 1, but as in Proposition 3.5, other parameters of the system make itpro�table to build sequenes with n ≫ 1. On the other hand, as B

V
approahes0, more short ommuniations must be made to send the load o� the originator.Eah message arries ost of some startup Si. Therefore, ommuniation startuposts dominate in the shedule length. To minimize this ost, it is advantageous to62

a)1

2

3

4

5

6

7

8

9

1E-3 1E-2 1E-1 1E0 b)1E0

1E1

1E2

1E-3 1E-2 1E-1 1E0

)1

5

9

13

17

21

1E-3 1E-2 1E-1 1E0

1.44

1.45

1.46

1.47

1.48

1.49

1.50

1.51

1.52

d)1E0

1E1

1E2

1E-3 1E-2 1E-1 1E0Figure 3.8: Relative sequene length n
nMIN

in the solutions of GA, a) vs. A , b) vs. B
V ,) vs. C, d) vs. S.send as few messages as possible. Hene, n tends to nMIN when B

V
is dereasing.Similar observations an be made for big values of S (f. Fig. 3.8d). For big S it ispro�table to send as few messages as possible. This, in turn, exposes the need forbig ommuniation bu�ers. The behavior of n

nMIN
for small S must be ontrastedwith Fig. 3.8a. When S ≈ 1

2
on average, as in Fig. 3.8a, then n

nMIN
≈ 1.39. If

S = 0.001, as in Fig. 3.8d, then n
nMIN

≈ 8. This means that big startup time is aonsiderable disinentive to building long ommuniation sequenes.In Fig. 3.8 the dependene of n
nMIN

on C is shown. Note that this �gurehas two vertial axes. The shapes of MAX and AV G are similar, but for theaverage ase the hanges are in the range of approximately 5%. This should besurprising beause multi-installment divisible load proessing was introdued toredue the time of initial waiting for load. Growing value of C should be an63

inentive to build shorter messages and longer ommuniation sequenes. Thistendeny an be seen only for small values of C. Yet, in our setting of theexperiments the expeted value of the startup times is 1
2
. This is a disinentive tobuild long ommuniation sequenes as explained on the example of Fig. 3.8a andFig. 3.8d. Hene, the dependene of average n

nMIN
on C is very weak. Moreover,with growing C the algorithm tends to ompensate inreasing ommuniationosts by sending fewer messages. Thus, initial waiting for the load is meaninglessompared to the whole ommuniation ost.From the above analysis of the ommuniation sequene length we draw thefollowing onlusions. Startup times Si are an important element of ommuni-ation time and they onstitute the main disinentive to building long ommu-niation sequenes. For startup times of the same order as ommuniation timeper unit of load (C), or omputation time per unit of load (A), ommunia-tion sequenes have lengths about 1.4nMIN . For small S the sequenes an beapproximately 8-10 times longer than nMIN on average. Moreover, Si and Biare in a sense oupled in determining the system performane: small Bis exposeosts of ommuniation startups, big Sis expose the need for proessors with bigommuniation bu�ers.3.4.3 Number of Used ProessorsIn this setion we study the number m′ of proessors from the set {P1, . . . , Pm}whih take part in the omputations. This harateristi of a solution is of pra-tial importane. In ontemporary grid and luster systems very large numbersof proessors are available. It is neessary to know how many of them shouldbe used and how to adjust their number for di�erent appliations. Is is easyto onstrut biased instanes, for whih only one proessor should be used (e.g.beause all other proessors have very large startup times Si), or for whih allproessors should be used. It is known [3℄ that if there are no startup times64

a)0.0

0.2

0.4

0.6

0.8

1.0

1E0 1E1 1E2 b)0.0

0.2

0.4

0.6

0.8

1.0

���� ���� ���� 1E0

)0.0

0.2

0.4

0.6

0.8

1.0

���� ���	 ���� 1E0 d)0.0

0.2

0.4

0.6

0.8

1.0

��
���
��
 1E0Figure 3.9: Relative number m′

m of di�erent used proessors in the solutions of GA, a)vs. V , b) vs. A) vs. B
V , d) vs. S.(Si = 0 for all i), then omputations an be started on any number of proessors.On the other hand, if ommuniation startup times are present, then in single-installment proessing using all proessors is a matter of su�iently large volumeof load V [3℄. Hene, it may be expeted that the number of used proessorsin multi-installment proessing should grow with dereasing startup times andinreasing volume of the load.The relations between the relative number m′

m
of used proessors and the valuesof seleted parameters in the solutions found by GA are presented in Fig. 3.9.Fig. 3.9a shows that with growing amount of load V the number of di�erentused proessors is inreasing, as ould be intuitively expeted. This result wason�rmed in all the experiments we performed. This has a pratial onsequene,65

that for larger problems it is pro�table to use more proessors (even not verye�etive) instead of sending bigger number of load hunks only to a smaller setof more e�etive proessors.The dependene of m′

m
on A is shown in Fig. 3.9b. It an be seen that m′inreases with A only for small problem sizes (small V). For small V only afew hunks need to be sent. Therefore, for small A the algorithm minimizes theshedule length by seleting only a few proessors with big memory bu�ers andfast ommuniation links. If A as big, then omputing time dominates in theshedule length and it is pro�table to distribute and parallelize omputations.Hene m′

m
is growing in this ase. For big V the number of hunks must be bigindependently of the value of A, ommuniation time (mainly startup times Si)is dominating over omputation time, and A is less important in determining theshedule length. Therefore, A does not in�uene m′ for big V .In Fig. 3.9 we present the dependene of m′

m
on B

V
. In our method of testinstane generation the average number of proessors is lose to 5. Hene, for

B
V

< 1
5
the memory spae neessary to proess load V is reated by using manyload hunks, and many proessors working in parallel. On the other hand, when

B
V
> 1

5
, the size of the memory is often su�ient to proess the whole load in justone installment. Therefore, good solutions typially use only a few proessorswith fast ommuniation and omputation.Fig. 3.9d shows the relation between S, V and m′

m
. With growing amountof load V the number of di�erent used proessors is inreasing as in previouslydesribed experiments. For small V the number of di�erent used proessors de-reases with S, whih is in aord with our earlier expetations. However, for big

V the inreasing S results in inreased m′

m
. This ounterintuitive behavior anbe partially explained by the way of generating test instanes. Note that startuptimes of all proessors are equal in the experiments depited in Fig. 3.9d. When

V is big, then the number of sent hunks must also be big. With growing S,66

startup times dominate in the shedule length and other parameters, by whihthe proessors di�er, beome meaningless. Therefore, GA beomes myopi to thedi�erenes in proessor parameters, and hene more proessors are drawn to thesolutions.The dependene of m′

m
on C (not shown here) is very weak. This is a verysurprising situation beause in many DLT papers the ommuniation rate C wasonsidered ruial for the system performane. Only for small V and big C (loseto 1) is the number of used proessors slightly dereasing with growing C. This isa onsequene of the startup time domination in the ommuniation time. Onlyfor small V the number of messages is small and hene the total startup ostis small. Then, GA optimizes the shedule by using a small number of e�ientproessors. This result does not eliminate C as an important shedule struturedeterminant, as will be shown in the following setions.We �nish this setion with the following onlusions. The number of di�erentused proessors di�ers depending on the settings. In general it is inreasingwith V . In our experiment setting startup times dominated the shedule length,espeially when the number of hunks had to be big beause V was big or B wassmall. When A is big and the omputation time is at least omparable with theommuniation time, then it is pro�table to use many proessors to parallelizeomputations. When C is big and its ontribution to the ommuniation timeis omparable or greater than the ontribution of the startup times, then it ispro�table to hoose only a small number of fast proessors.3.4.4 Dominating Set of ProessorsIn the previous setion we onsidered only the number of proessors whih re-eive any load, not the degree of their partiipation in the omputations. Herewe analyze the distribution of the load between the proessors. Our goal is todetermine if there is any inequality in the load distribution, and if this is the ase,67

then what kind of proessors dominate in the omputations.The �rst tool we applied in analyzing inequality in the load distribution is theGini index [33℄. It is an indiator of some parameter deviation from the uniformdistribution and is ommonly used in eonomis to quantify inequality in wealthdistribution. The loser the Gini index is to 0, the more equal and uniform thedistribution of the load is. The loser the Gini index is to 1, the more unequal thedistribution of the parameter is. The value of the Gini index for a set of values
{yi : i = 1, . . . , n} an be alulated from the formula

G =

∑n
i=1

∑n
j=1 |yi − yj |

2n
∑n

i=1 yi
. (3.22)We alulated the Gini indies for the amount of the load reeived by the proes-sors (whih we will denote GiL), and for the number of reeived messages (whihwe will refer to as Gi#). For example, GiL = 1 implies that the whole load V isproessed by a single proessor, and GiL = 0 means that eah proessor reeivesthe same amount of load. Seleted results are presented in Fig. 3.10. The generalobservation is that GiL and Gi# demonstrate the same tendenies.It an be seen in Fig. 3.10a that GiL is dereasing with inreasing V , whihmeans that with growing size of the load its distribution beomes more equal.This situation has been observed in all experiments. The dependene of GiL on

A is shown in Fig. 3.10b. Only for small V does A in�uene the load distribution.For small V the number of used proessors is small and it is pro�table to seletthe best of them, while for big V the number of load hunks must be big anyway,whih means that the ommuniation time is long and the omputation time(hene A) has a little in�uene on the shedule length. Consequently, for big Vthe values of GiL do not depend on A. This situation is similar to Fig. 3.9bdepiting m′

m
vs. A. A strong hange of GiL with B

V
is observed in Fig. 3.10when B

V
≈ 1

5
. For smaller values of B

V
the load distribution is more equal, forbigger B

V
the load distribution is more unequal. This is aused by the fat that68

a)0.0

0.2

0.4

0.6

0.8

1E0 1E1 1E2 b)0.0

0.2

0.4

0.6

0.8

���� ���� ���� 1E0

)0.0

0.2

0.4

0.6

0.8

���� ���	 ���� 1E0 d)0.0

0.2

0.4

0.6

1E-3 1E-2 1E-1 1E0Figure 3.10: Gini index of the GA solutions, a) GiL vs. V , b) GiL vs. A,) GiL vs.
B
V , d) Gi# vs. S.for B

V
> 1

5
only one installment is su�ient to proess the whole load. Theseresults onform with the results depited in Fig. 3.9. In Fig. 3.10d Gi# is shownfor hanging S. Again, similarly to Fig. 3.9d, with growing S the diversity ofused proessor sets depends on V . For small problem sizes it is pro�table touse fewer proessors, hene Gi# is big, what signi�es inequality. For big V thenumber of used proessors is big, ommuniation startup times dominate in theshedule length, and the algorithm does not distinguish proessors with di�erentparameters well, hene more of them are inluded in the ommuniation sequene,and the messages are distributed more equally.Unfortunately, the Gini index is hard to interpret. For example, it is hardto say if a ertain value of GiL, Gi# already represents inequality or not. Only69

general tendenies of hanging inequality an be observed. Here, the tendeniesof Gini index only on�rm the analysis of the number of used proessors. More-over, one annot determine, using GiL, Gi#, what proessors dominate in theload distribution (if any). Therefore, we applied one more indiator of the loaddistribution inequality.The seond measure of proessor domination in the omputations is basedon the analysis of the sets of proessors reeiving the largest amount of load.Let Vmax be the greatest total load reeived by any proessor. We all a set ofproessors load frequent if it inludes all proessors whih reeive at least Vmax

2units of load. The proessors in the load frequent set are alled load frequent, orjust frequent.We want to examine how muh load and how many messages are sent to thefrequent proessor set. The results of this study are shown in Fig. 3.11. All valuespresented in this �gure are relative: proessor numbers are shown with respetto m, and the loads are shown relative to V . In Fig. 3.11,d, the horizontal axesrepresent all parameters A, B
V
, C, S, in range [0, 1] for four di�erent relations. Ageneral observation is that the funtions of the number of load frequent proessorsin A (Fig. 3.11a), and in B

V
, C, S (not shown here) have very similar tendenies asthe funtions of m′

m
in the above parameters (see Fig. 3.9). However, the range ofhanges of the number of frequent proessors vs. V is narrower than the range ofhanges in m′

m
. For example, in Fig. 3.9a the number of used proessors hanges inrange approximately [0.4,1℄. Here, the range of hanges is approximately [0.3,0.5℄(f. Fig. 3.11b). In the experiments with hanging B

V
, C, S even smaller rangeswere observed. It an be onluded that the size of the frequent set of proessorsis growing with V , but not as quikly as the number of di�erent used proessors

m′. This is beause only a seleted set of proessors is frequently used while manyother proessors get to the solution due to the randomized seletion.In Fig. 3.11 the load of the proessor reeiving the greatest amount of data is70

a)0.0

0.2

0.4

0.6

1E-3 1E-2 1E-1 1E0 b)0.3

0.4

0.5

0.6

1E0 1E1 1E2

)0.0

0.2

0.4

0.6

0.8

���� ���� ���� 1E0 d)0.7

0.8

0.9

1.0

1E-3 1E-2 1E-1 1E0Figure 3.11: Load frequent proessor sets in GA solutions. a) Number of frequentproessors vs. A, b) number of frequent proessors vs. V ,) load of the most loadedproessor and d) load of all the frequent proessors vs. A, BV , C, S.depited vs. hanging A, B
V
, C, S. Independently of the type of hanges, the mostloaded proessor reeives 0.6V -0.75V on average. With growing A omputationtime starts dominating in the shedule length, the proessor seletion methodtends to build more omputing power, and more proessors are appended to thefrequent set. Hene, the size of the greatest part of load sent to a single proessoris dereasing. Growing B

V
allows for using fewer proessors and for eonomizingon the ommuniation time by sending smaller number of larger piees of data.Hene, for big B

V
the most loaded proessor reeives load of size almost 0.75V .For small B

V
a big number of ommuniations must be made anyway, what ex-poses the ost of ommuniation startup times dominating in the shedule length.Consequently, GA beomes myopi to other proessor parameters, the frequent71

set has more proessors, and the load is more dispersed between the proessors.The dependene on S, shown in Fig. 3.11, is very weak. However, this is anaverage over many sizes V . A more detailed piture exposes diversity with Vsimilar to the one shown in Fig. 3.9d, though in muh narrower range. Unlike inFig. 3.9d, the load sizes are generally dereasing with inreasing S, even for bigloads V . Similarly to the results in Setion 3.4.3, the size of the biggest part ofthe load reeived by a single proessor does not depend on C.The total amount of load assigned to all frequent proessors is shown inFig. 3.11d. It an be seen that the frequent proessor set ollets more than0.8V on average. The funtion of the total load reeived vs. B
V
has a minimum.This unexpeted phenomenon an be explained in the following way. For bigvalues of B

V
only a few proessors take part in the omputation beause a sin-gle installment is su�ient to proess the whole load. Therefore, the number ofmessages is small, load hunks have sizes lose to proessor memory bu�er sizes,the frequent set has small ardinality and reeives almost the whole load. Withdereasing B

V
more and more proessors reeive some load, and the ontributionof the most loaded proessors is dereasing as depited in Fig. 3.11. However,when B

V
beomes extremely small, the ommuniation startup ost is dominatingthe shedule length, GA beomes unaware of proessor parameters, and more ofthe proessors are randomly inluded in the frequent set. Therefore, the ardi-nality of the frequent set is growing and also the total load in the frequent set isgrowing.Similar results were obtained for the set of proessors reeiving the greatestnumber of messages (instead of the greatest amount of load). We �nish the aboveonsiderations with a onlusion that the frequent set of proessors really exists.With the exeption of the instanes biased by small B

V
or big S, when almostall proessors are frequent, the frequent set ontains approximately 40 − 50% ofall available proessors. They reeive 80-85% of the whole load, again with the72

a)0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0 b)0.00

0.05

0.10

0.15

0.20

0.25

0.0 0.2 0.4 0.6 0.8 1.0Figure 3.12: Reeived load and number of messages vs. proessor rank in GA solutions.a) Load vs. rank, b) number of hunks vs. rank.exeption of the ases biased by small B
V
or big S.The results in Fig. 3.10 and Fig. 3.11 on�rm the existene of the sets ofproessors reeiving more load, and hene dominating in the omputations. Yet,in our test instanes, when studying in�uene of a ertain parameter, all proes-sors had this parameter equal. We learned on the importane of the onsideredparameter via the onsequenes of its low or high values. However, the e�ets ofthe diversity of the given parameter were swithed o�. We did not verify howimportant a parameter ould be if it had di�erent values in the proessor set.Therefore, another set of 1000 instanes were generated with V = 100, m gener-ated from U [1, 100], and Ai, Bi, Ci, Si generated from U [0, 1]. We examined thefration of the whole load and the number of reeived messages against the rankof proessors in the order of a ertain parameter value. The results of this studyare shown in Fig. 3.12.In Fig. 3.12 the proessors were grouped into sets omprising 10% of theproessors ranked aording to a ertain parameter. For example, value 0.2 onthe horizontal axis in Fig. 3.12 represents proessors with relative rank i

m
in therange (0.1, 0.2]. The values on the vertial axes are relative: the size of the load isshown with respet to V and the number of reeived messages with respet to thetotal number of messages. The four funtions depited in Fig. 3.12 orrespond to73

four di�erent rankings: aording to A,B,C, S. Let us remind that for A,C, Ssmaller values represent better performane, and for B bigger values are better.The relationships are similar for the reeived load (Fig. 3.12a) and for the numberof messages (Fig. 3.12b). Therefore, we will disuss only the load distribution.The distribution of the load is tightly onneted with all proessor parameters.It is evident that proessors whih have best ommuniation links with respetto C or S, or the biggest memory bu�ers reeive more load to proess. Theproessors with small B or big S, C reeive almost no load. For parameter Athe relationship is weaker but it is still notieable (the oe�ient of orrelationbetween A and the upper limit of rank box interval is approximately −0.84).We �nish the study of the dominating set of proessors with the followingobservations based on the omputational experiments. The dominating proessorset exists. The frequent proessor set, as we de�ned it, omprises approximately40-50% of all proessors. In the biased ase of big S or small B
V

the load isdistributed almost equally and the frequent proessor set may inlude nearly allproessors. There is a strong orrelation between proessor parameters and theamount of load reeived for proessing. This e�et is strongest for parameter Cand weakest for parameter A.3.4.5 Chunk Size SaturationThe next element of the shedule struture we want to analyze are the sizes ofload hunks. After determining the sequene of ommuniations and the overlaps,a linear program was used to �nd the load distribution. Sine the omputationalost of linear programming may be onsidered high, it would be pro�table toeliminate it in onstruting good quality solutions. To examine the struture ofthe load partitioning we analyzed the number of hunks whose sizes are equal tothe size of the target proessor bu�er, i.e. αi = Bσ(i). We will all suh hunksfull hunks. It would be a very attrative solution to use just the proessor bu�er74

a)0.0

0.2

0.4

0.6

0.8

1.0

1E0 1E1 1E2 b)0.0

0.2

0.4

0.6

0.8

1.0

���� ���� ���� 1E0

)0.0

0.2

0.4

0.6

0.8

1.0

���� ���	 ���� 1E0 d)0.0

0.2

0.4

0.6

0.8

1.0

��
���
��
 1E0Figure 3.13: Average number of full hunks in GA solutions, a) vs. V in experimentswith hanging A, b) vs. A,) vs. B
V , d) vs. S .size as the hunk size, thus eliminating the need for linear programming. Still,suh an approah eliminates the possibility of hunk overlapping. The results ofthe experiments on load hunk sizes are shown in Fig. 3.13.In all the pitures shown in Fig. 3.13 the number of full hunks is shown inrelation to the total number of hunks n. The number of full hunks is almost al-ways high or notieable, but not all hunks are full. It an be seen in Fig. 3.13a,b,dthat with growing load size V the number of full hunks is also growing. This isintuitively reasonable beause bigger load V requires more messages whih exposethe osts of startup times. These an be redued by using as few messages aspossible, and onsequently �lling the bu�ers more ompletely. This is also on-�rmed in Fig. 3.13 where the number of full hunks is shown against hanging75

B
V
and various values of V . When B

V
is small, then the number of messages mustbe big, hene the startup times dominate in the shedule length, and to reduetheir ontribution, the bu�ers are more fully �lled. This situation is repeated inFig. 3.13d where the number of full hunks inreases with the startup times. Withgrowing A (Fig. 3.13b) the number of full hunks is dereasing beause the om-putation time, and not the startup times, inreasingly dominates in the shedulelength. Observe that in Fig. 3.13 the number of full hunks dereases with V ,what may be attributed to the randomized nature of GA. When V is growing,but B

V
remains onstant, the omputation time and the part of ommuniationtime determined by parameter C dominate over the startup times. Thus, it ispro�table to send more smaller messages in order to parallelize the omputationsin a greater degree. Hene, with growing V the fration of hunks whih are notfull is also growing.3.4.6 When Is It Hard to Find a Good Solution?To summarize the analysis of the features of the obtained solutions, we studywhat makes an instane of our problem easy or hard to solve. Let us introduethe goal of this setion in more detail. Heuristis build good quality solutionsfor many ombinatorial optimization problems. However, this good performanemay sometimes be attributed to the nature of the problem, not a heuristi. Thus,it is possible that our geneti algorithm builds good solutions not beause it iswell designed, but beause in some ases our sheduling problem may be easy tosolve. If we learn whih instanes are easy or hard to solve, then we will gainsome new insights into the nature of the problem, and real merits of GA.We have to deide how to verify whih instanes are easy, and whih ones arehard to solve. We will ompare the quality of the solutions obtained in three waysfor various types of instanes. The worst solution observed provides an indiationon how bad a solution may be. The random solutions are not biased to being good76

or bad. GA solutions are optimized and supposed to be good. The three solutiontypes indiate what an be ahieved in the worst ase, without great e�orts(random solutions), and at onsiderable ost of optimization. If GA solutions didnot di�er muh from the random solutions, then it would signify bad GA design.All the three types of solutions were obtained using the GA infrastruture. Therandom solution is the best one in the initial GA population of G = 20 solutions.The worst solution is the worst one observed in the ourse of solving given instaneby GA. In all the three ases linear programming was used to obtain the besthunk sizes αi and the shedule length for a given ombinatorial part of thesolution. The quality of the solutions is measured as the relative distane fromthe lower bound alulated in the following way. The minimum ommuniationtime is τ1 = nMINSmin + V Cmin. In this time at most V0 = (τ1 − Smin)
∑m

i=1
1
Aiload ould be proessed. The remaining load V − V0 is proessed in time at leastequal to max{0, V∑m

i=1
1/Ai

− τ1 + Smin}. Thus the lower bound is equal to
LB = τ1 +max{0,

V
∑m

i=1 1/Ai
− τ1 + Smin}. (3.23)In Fig. 3.14 we show the in�uene of the system parameters on the qualityof the above three solution types. The points on these harts represent averagequality over the set of used test instanes. Fig. 3.14a,b, show the results forthe �rst set of random instanes and V = 20. It is striking that the worst asesolutions (denoted WRST) an be over one order of magnitude further from thelower bound than the random solutions (denoted RND) or the solutions of thegeneti algorithm (denoted GA). Moreover, GA solutions are substantially betterthan RND solutions, whih means that GA really works. Now let us analyze thetendenies in Fig. 3.14a,b,. As it an be seen in Fig. 3.14a, with growing C allthe lines tend to 1. This means that as the ommuniation speed dereases, theshedule length beomes dominated by the time of sending load o� the originator.Hene, in suh a biased ase it is easier to obtain good solutions. Similar tendeny77

a)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0 b)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0

)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0 d)1E0

1E1

1E2

1E3

1E-3 1E-2 1E-1 1E0Figure 3.14: Quality of the solutions with referene to the lower bound for V = 20, a)vs. C, b) vs. B
V ,) vs. S, d) vs. the dispersion of S.was observed for growing parameter A (not shown here).In Fig. 3.14b the dependene of the solutions quality on hanging B

V
is shown.With growing B

V
all the three types of solutions get loser to the lower bound.It is intuitively attrative to onlude that with growing B

V
the solutions are lessdominated by hoosing proessors with small startups Si, and good solutions areeasier to obtain beause we are less limited with the hoie of the proessor. Notdisregarding this growing �exibility, it should not be forgotten that the onstru-tion of the lower bound (3.23) in�uenes the results presented here. The lowerbound is based on the assumption that the smallest Si oinide with the biggest

Bi, whih is rarely true. Hene, for small B
V
and a big number of the startupsthe error resulting from this simpli�ation may be signi�ant. This may result78

in the big distane of the solutions from the lower bound. With inreasing B
V
thedomination of the startup osts in the shedule length dereases, the ontribu-tion of the transfer and the omputation time inreases, and the lower bound isrepresenting this situation better. Thus, the results in Fig. 3.14b indeed on�rmthat with growing B

V
it is getting easier to obtain solutions loser to the lowerbound, but it is ahieved by using fewer messages and ommuniation startuptimes. Moreover, for the biggest B

V
solutions WRST,RND get slightly worseand GA solutions do not. This means that even if memory bu�ers are big, it isneessary to adjust the set of used proessors. The geneti algorithm handles thisbetter than in the RND solutions.In Fig. 3.14 the dependene of the three types of solutions on hanging pa-rameter S is shown. A ounterintuitive tendeny of improving WRST solutionquality with growing S an be observed. With growing S the ontribution of thestartup times to the shedule length is growing, independently of the hosen setof proessors. Therefore, the di�erene between the worst solution and the lowerbound is dereasing with growing S. The geneti algorithm performs better than

RND beause it is able to build solutions with relative quality improving evenwith inreasing domination of the startup time.In Fig. 3.14d the quality of the solutions for growing dispersion of S is shown.The test instanes for Fig. 3.14d were generated as in the �rst set of instaneswith V = 20, exept for parameter S, whih was generated with uniform distri-bution from range [1−δS
2

, 1+δS
2

]. The value of δS is shown on the horizontal axisin Fig. 3.14d. As it an be seen, with growing δS, and hene growing heterogene-ity of the system, the quality of all three types of solutions is worsening. Thismeans that our problem beomes harder to solve with growing heterogeneity ofthe omputing environment. Similar experiments were performed for ontrolleddispersion δA, δB, δC of parameters A, B
V
, C, respetively. In all these experimentsthe dependene of the quality of the solutions on the range of diversity has a very79

similar shape as in Fig. 3.14d. This on�rms one again that in heterogeneoussystems good quality solutions are harder to obtain. Let us use the range of thehanges of the worst-ase solutions quality as an indiator of the sensitivity to thedispersion of a ertain parameter. For δS hanging from 1E-3 to 1, the distanefrom the lower bound grew ≈ 34 times. For similar hanges of: (1) δC the dis-tane hanged ≈ 14 times, (2) δA it hanged ≈ 1.8 times, (3) δB it hanged ≈ 1.3times. This means that the diversities of S and C have the strongest in�ueneon the di�ulty of obtaining good solutions, and the diversity of A and B
V
thesmallest.We �nish these onsiderations with the following onlusions.

• It is easier to obtain good quality solutions when the ommuniation timeor the omputation time dominates in the shedule length.
• It is easier to obtain good quality solutions for big memory bu�ers.
• It is easier to obtain good solution quality for homogeneous systems. So-lution quality is partiularly sensitive to the dispersion of ommuniationparameters S, C, and less to the dispersion of A, B

V
.

• The geneti algorithm really works, beause it builds onsiderably bettersolutions than RND. Moreover, in some ases it is able to ounterat thegeneral tendenies of the solution quality represented in RND,WRST .3.4.7 ConlusionsOverall, the experiments performed in Setion 3.4 revealed a omplex and some-times ounterintuitive interation of the system parameters in determining goodquality solutions. The following observations have been made.
• In the worst ase an arbitrarily big number of messages may have to beaumulated on a proessor in the optimum solutions. However, it turnedout that in the near-optimum solutions obtained by the geneti algorithmhunk overlap is rare. 80

• There is a minimum number of messages that must be sent anyway. Usingthis number of ommuniations may result in arbitrarily bad solutions. Inthe omputational experiments it has been established that the numberof messages is a small multiple of the minimum possible number. Theommuniation startup time is the main disinentive to using great numbersof messages in delivering the load to the proessors.
• There are inequalities in the load distribution and there exists a dominatingset of proessors whih reeives most of the load. The size of the dominat-ing set of proessors is growing with the load size V . There is a strongorrelation between the parameters of a proessor and its ontribution inthe load proessing. Proessors with faster ommuniation links, biggermemory bu�ers, and omputing faster reeive more load. It appears thatthe order of parameter importane in the load distribution is Ci, Bi, Si, Ai.
• A majority of load hunks, although not all, arry maximum possible load(equal to the size of the reeiver's memory bu�er). The number of fullhunks grows with V , and is strongly orrelated with parameters Si, Bi.
• The problem has a natural tendeny to beome easier to solve when oneparameter dominates in the shedule length. For example, big values of all
Ai in relation to Ci, Si simplify obtaining good solutions.

• Another side of the above observation is that it is relatively easy to buildbiased instanes whose solutions are ditated by extreme values of a ertainparameter, e.g. extremely slow ommuniation or omputation, or verysmall memory bu�ers.
• In a sense, parameters Bi and Si work together when building a biasedinstane. Small memory bu�ers Bi inur many ommuniations, whihexpose the ost of the startup times Si. Conversely, big startup times may81

be ompensated by the use of long messages whih require big memorybu�ers.
• Good quality solutions are harder to obtain in heterogeneous systems.3.5 HeuristisThe aim of the researh presented in Setion 3.4 was to gather information aboutdesirable properties of the solutions of our problem. Based on this information,we propose several groups of heuristis. We also present the algorithms knownfrom earlier literature. We start with very simple algorithms, whih do not usethe information about the nature of the problem. They are meant to verifyif the algorithms presented later perform well or not. The most omplex of thealgorithms solving our problem is the geneti algorithm desribed in setion 3.3.2.We ompare the quality and the running time of all the proposed algorithms ina series of omputational experiments. We examine how the system parametersin�uene the relations between the solutions generated by the algorithms. Theseexperiments not only show whih heuristi is better, or worse, to use for a giventype of instane of the problem, but may also be used to verify the onlusionsdrawn from the experiments presented in the previous setion.3.5.1 Random HeuristisThe �rst group of algorithms we present are random heuristis. They were de-signed mainly to verify the performane of other algorithms by omparing theobtained solutions with what an be gained without e�ort, by random algorithms.Analyzing several di�erent types of random heuristis may be helpful for distin-guishing the most important elements in the proess of reating a solution.The �rst three random heuristis, introdued in [27℄, use two-step approah.They hoose a ommuniation sequene and overlap values in a random pro-82

ess, but afterwards the optimum hunk sizes are omputed by LP (3.13)-(3.21).Heuristi Rnd1 appends random proessors to the ommuniation sequene untilthe aumulated memory is not smaller than the load size V . All hunk over-laps δij are set to 0 (no hunks overlap). This onstrution implies that theommuniation sequenes reated by Rnd1 will be short.Heuristis Rnd2 and Rnd3 are strongly onneted with Rnd1, as they use theommuniation sequene delivered by Rnd1. Heuristi Rnd2 doubles this om-muniation sequene and applies overlap 1 to all hunks. Overlap 1 means thateah two onseutive hunks sent to the same proessor overlap. The ommuni-ation sequenes reated by Rnd2 are up to twie as long as in the ase of Rnd1.However, they do not have to be exatly twie longer, as it is possible that somehunk sizes omputed by the LP will be equal to 0.Heuristi Rnd3 lengthens the ommuniation sequene obtained from Rnd1,appending a random number of hunks sent to random proessors. The maximumlength of the appended sequene is 3 times the original sequene length. Theoverlap values δij are hosen randomly from values 0 and 1. Sine some hunksoverlap and their sizes together annot exeed memory limits, the total memoryolleted may be smaller than the load size V . Therefore, some solutions deliveredby Rnd3 may be infeasible. The ommuniation sequenes generated by Rnd3are usually muh longer than the sequenes delivered by Rnd1.Heuristis Rnd1 � Rnd3 randomize only the solution of the ombinatorialpart of the problem while still using LP (3.13)-(3.21) to �nd the hunk sizes.Therefore, we introdue another random heuristi Rnd4 [9℄. This algorithmis substantially di�erent beause it does not use LP to hoose the hunk sizes.Rnd4 not only sends load to random proessors, but also hooses hunk sizesrandomly between 0 and memory bu�er size for a given proessor. If the sizeof the urrently free memory on the reeiver proessor is not su�ient, sendingthe hunk is postponed until enough memory is released. The originator remains83

idle during this time. The whole proess is repeated until all the load is sent.Computing overlap values is unneessary in this algorithm, but it is possible toalulate them from the generated shedule.The solution obtained by Rnd4 an be further improved by heuristiRnd4LP.This algorithm uses the ommuniation and overlap sequenes delivered by Rnd4,but the hunk sizes are omputed using LP (3.13)-(3.21).3.5.2 First Free HeuristiThe next heuristi we reated is alled �rst free (FF) heuristi. This is one moresimple algorithm designed mainly to test the quality of the other algorithms andthe di�ulty of test instanes. In this algorithm eah hunk has the maximumpossible size (equal to the memory limit of the proessor reeiving this hunk).Hene, no hunks may overlap and all overlap values δij must be 0. At thebeginning, eah of the proessors P1, . . . , Pm reeives one hunk. Eah proessorwhih �nishes proessing a hunk is added to a queue of free proessors. Messageswith new load are always sent to the �rst proessor in this queue (i.e. the onewhih �nished previous omputations at the earliest moment). Note that FF doesnot order the proessors in the �rst load distribution round. Thus, the sequeneof the �rst m ommuniations an be onsidered random. This may result inlow quality solutions, espeially when the number of neessary ommuniationsis low.3.5.3 Appender HeuristisThe idea of appender heuristis (or appenders for short) �rst emerged in [27℄.The appenders are meant to mimi the onstrution of the ommuniation se-quene σ and overlaps O as in B&B algorithm. For the purpose of onstrutingthe ommuniation sequene it is assumed that eah hunk has (phantom) sizeequal to the memory bu�er size on the hosen reeiver proessor. A message84

is always sent to the �rst free proessor. In the searh for a free proessor, theworkers are always heked in the same order, depending on a partiular appenderheuristi. Proessors are appended to the ommuniation sequene until the sent(phantom) load is at least three times greater than V . This exessive reservationof apaity for load proessing is made to give some freedom in seleting hunksizes. Afterwards, overlap δij = 1 is applied to all hunks. This hoie is moti-vated by the observations that hunk overlaps often allow for better performane,but big overlaps do not seem neessary in most ases. The optimum hunk sizesare omputed by LP (3.13)-(3.21).The four basi appender heuristis apA, apC, apS and apB, searh for areeiver of eah hunk, heking one parameter only. The hunk will be sent to afree proessor with the best value of this parameter (i.e. the smallest Ai, Ci, Siand the greatest Bi, orrespondingly). The heuristi apA, as the only algorithmfrom these four, was introdued and tested in [27℄. Still, on the basis of the resultsfrom Setion 3.4, we expet that parameter A should not be used as the mainfator in hoosing the proessor. Thus, we want to ompare this algorithm withthe algorithms using di�erent parameters.A little more sophistiated approah was used in appenders apSBC and apS-BCA. Heuristi apSBC, introdued in [27℄, searhes for a free proessor whihan reeive a whole bu�er of data in the shortest time (i.e. the one with the small-est value of Si + BiCi). Heuristi apSBCA is similar, but it takes into aountthe time of both ommuniation and omputation. Therefore, the proessor withthe smallest value of Si +Bi(Ci + Ai) is hosen.Note that in algorithms apSBC and apSBCA proessors with small mem-ory bu�ers may be preferred, what is probably disadvantageous for the solutionquality. Therefore, we propose the last two appender heuristis, apSBCr andapSBCAr, whih use a modi�ed idea of apSBC and apSBCA (f. [8, 9℄). Insteadof the ommuniation time or ommuniation and omputation time they take85

into aount the time per unit of load. The proessors are heked in the order ofinreasing values of Si/Bi+Ci (for apSBCr) or Si/Bi+Ci+Ai (for apSBCAr). Inthis way, the proessors with large, and not small memory bu�ers are preferred.3.5.4 Best Rate HeuristisThe heuristis in the last group are alled best rate heuristis [8, 9℄ and denotedby BRx, where x ∈ {1, . . . , 6}. In heuristis BRx it is assumed that the sizeof eah hunk sent to proessor Pi is equal to βi = Bi/x. In order to hoose areeiver of a hunk of data, for eah proessor Pi we ompute the time Ti neededto proess this hunk, were it sent to this proessor:
Ti = max{max{t0, τi}+ Si + βi(Ci + Ai), ti + βiAi} − t0, (3.24)where:

• t0 is the time when the originator an start sending the hunk,
• τi is the time when enough memory beomes available at proessor Pi,
• ti is the moment when proessor Pi ompletes proessing the preedinghunks and an start proessing the urrent hunk.The load is always sent to the proessor with the best urrent proessing rate,i.e. with the minimum value of Ti/βi. This proess is repeated as long as there issome unproessed load. The onstrution of the algorithm prevents using morememory than available. The values of hunk overlaps do not have to be omputedin this algorithm, but they an be obtained from the generated shedule. As thehunk sizes are equal to Bi/x in heuristi BRx, the possible overlap values δijare 0, . . . , x − 1. Thus, there is no hunk overlap in the solutions generated byBR1, but the remaining algorithms from this group an reate solutions withoverlapping hunks. 86

The result of eah of the BRx heuristi may be improved by BRxLP heuristi.BRxLP uses the ommuniation sequene and overlap values delivered by BRx,while the hunk sizes are omputed using LP (3.13)-(3.21). Our experimentsshowed that the di�erene between the results obtained by BRx and BRxLPheuristis is very small, espeially for larger values of x. Hene, in the nextsetion we will present the results obtained by BRxLP heuristis only for x = 1and x = 2.3.6 Comparison of the Heuristi AlgorithmsIn this setion we present the experimental results onerning the quality of thesolutions and the omputational osts of the heuristis presented in Setion 3.5and the geneti algorithm desribed in Setion 3.3.2. Assessing quality of thealgorithms is essentially a biriterial problem, beause the quality of the solu-tions is bought at some omputational ost. The goal of this study is to analyzethe quality of the solutions and the omputational ost of obtaining them. Theworst ase estimations of the approximability ratios tend to be exessively pes-simisti. Algorithms with high order of the worst ase omplexity sometimeshave aeptable runtime. Hene, worst ase estimations of the approximationratio or the omplexity do not seem to be a good tool to ompare the pratialtrade-o� between the quality and the ost. Therefore, experimental analysis isapplied here. We use the same set of instanes as in Setion 3.4. We will examinethe performane results of over 20 algorithms, demonstrating their advantagesand weaknesses for di�erent system parameters. As it was not possible to obtainthe optimum results for the generated instanes, the lower bound (LB), de�nedin Setion 3.4.6 by formula (3.23), was used as a referene. The quality of allalgorithms was measured as the average relative distane of the solutions fromthe lower bound. 87

In the following disussion the performane of the algorithms is shown ondiagrams in whih the horizontal axis is the average exeution time, and thevertial axis is the average relative distane from the lower bound. For example,in Fig. 3.15 a good algorithm should be represented by a point as lose as possibleto the lower-left orner of the diagram whih represents good quality and shortexeution time. In the sense of omputational ost an algorithm dominates all thealgorithms positioned to the right of it in the diagram. In the sense of solutionquality an algorithm dominates all the algorithms positioned above it. Somealgorithm may have the shortest exeution time for a given quality, and vieversa, the best quality at a given omputational ost. Thus, it is possible toonsider some algorithms Pareto-optimal as non-dominated with respet to thequality and the run time.3.6.1 Load SizeIn the �rst series of experiments we examined the in�uene of the load size Von the quality of the results obtained by di�erent algorithms. We present herethe results obtained for the extreme values V = 2 and V = 50. Let us remindthat in our problem the load is arbitrarily divisible, and even for V = 2 hundredsof ommuniations may be performed. To ontrol the running time of GA, weassumed that the number of ommuniations in a shedule must be smaller than1000. The same upper bound was applied to all other algorithms.The relationship between the performane of di�erent algorithms for V = 2is presented in Fig. 3.15a. The analyzed algorithms an be divided into threegroups based on their exeution times. The fastest group are the algorithmsnot using LP (FF, BRx and Rnd4). The seond group are heuristis omputingoptimal hunk sizes with LP (Rnd1 - Rnd3, Rnd4LP, appenders, BRxLP). Theslowest of all algorithms is GA, as it reates many solutions and uses LP. Notethat GA an be stopped after some number of iterations. Hene GA may be rep-88

a)
1

5

9

13

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

5

9

13

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.15: Solution quality vs. exeution time for di�erent problem sizes V , a) V = 2,b) V = 50.resented by a dependene of quality versus time in Fig. 3.15. Sine the existeneof suh a dependene does not hange our onlusions, we deided to representthe performane of GA with just one point to make the piture more readable.The best solutions are obtained by GA and then by heuristis BR1LP, BR2LP.Algorithms BR1 and BR2 are only slightly worse. The quality of BRx heuristisdereases with inreasing x. This an be explained by the fat that dividingthe memory bu�ers into more parts leads to sending a bigger number of smallerhunks. When there are too many messages, the ontribution of startup timesbeomes too big and makes the whole shedule longer.Most of the appender heuristis perform similarly to the random algorithmsand are worse than our simplest heuristi FF. Thus, appenders are not good forsolving our sheduling problem. This situation is similar for most of the testinstanes. The best of all appender heuristis are apSBCr and apSBCAr. Thus,we an onlude that our modi�ation to appenders apSBC, apSBCA lead to a bigimprovement in the results in omparison to the appender heuristis proposed inthe earlier literature. Appender apA delivers the worst solutions of all the studiedalgorithms. This on�rms the observation from Setion 3.4, that the omputationspeed alone annot be the most important parameter to determine the order of89

sending data hunks.The results obtained by the analyzed algorithms for V = 50 are presented inFig. 3.15b. It an be seen that the quality and the exeution time of almost allalgorithms beome worse for bigger V . This behavior is understandable, beauselarger instanes intuitively should be harder to solve. For V = 50 the genetialgorithm is outperformed by heuristis BR1 and BR2 (even the variants with-out LP). Indeed, when there is more load to be proessed, longer ommuniationsequenes are needed, and the searh spae of GA beomes muh larger. Con-sequently, the hanes of �nding a good solution derease, sine the number ofiterations performed in GA remains the same. There is no suh e�et on simpleheuristis, and exept for GA, there are no important hanges in the relationshipsbetween the performane of the algorithms ompared to V = 2.We an onlude this setion with an observation that the growing load sizemakes the problem harder from the point of view of the running time and qualityfor all proposed algorithms. Its impat on the geneti algorithm seems strongerthan on other heuristis. However, mutual relationships in the performane ofthe heuristis remain almost unhanged for di�erent values of V .3.6.2 Startup TimeThe results obtained for the extreme values of startup times (S = 0.001 and
S = 1) are presented in Fig. 3.16. For small S the best results are obtainedby GA. The seond best algorithms are apC and apSBCr (their points overlapin Fig. 3.16a). This may be surprising, beause we stated earlier that appenderheuristis do not work well in general. However, when startup times are very smallin relation to the other parameters, there is no need to keep the ommuniationsequene short. Moreover, sine in the analyzed instanes parameter S is thesame for all proessors, only the other parameters are important. Parameter Cseems to play the main role in this ase. The results obtained by apSBCr are very90

a)
1

3

5

7

9

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

3

5

7

9

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.16: Solution quality vs. exeution time for di�erent ommuniation startuptimes, a) S = 0.001, b) S = 1.similar to the ones delivered by apC, beause the values of Si/Bi + Ci are loseto Ci for very small Si. This onforms with the earlier results in DLT [3, 14, 17℄stating that ommuniation rate C is a key performane parameter in divisibleload proessing when Si = 0 for all i.The results of all BRx heuristis are similar, beause the main di�erenebetween them is the number of messages sent and hene the ontribution of thestartup times, whih has almost no importane for very small S. Heuristissending always a full bu�er of data (FF, Rnd1, BR1, BR1LP) perform badly,beause they do not use overlapping, reate longer waiting intervals during theommuniation and bigger imbalane in the omputation ompletion times. Thisan be avoided at a little ost by sending many short messages if startup timesare short. There are almost no di�erenes in the results of BR2 - BR6. Thus,dividing the memory bu�ers into two parts (and hene overlap at most 1) seemsenough to take the advantage of aumulating the load on proessors.The situation beomes ompletely di�erent for S = 1. The main objetive isnow to minimize the ontribution of startup times whih dominates the shedulelength. Therefore, algorithms reating the shortest ommuniation sequenesonstrut the best solutions. Even a very simple algorithm FF delivers solutions91

of good quality, beause it always sends a full bu�er of data. The di�erenesbetween BRx heuristis beome expliit. Splitting the ommuniation into moreparts leads to a big derease in the solution quality. Heuristi BR1 works well,but with inreasing x eah BRx is getting worse, up to BR5 and BR6 beingthe worst of all BRx algorithms. It is worth mentioning that GA an handlethis situation, reating shorter sequenes and obtaining as good results as BR1.Appenders apA and apC do not perform well, beause they do not take intoaount memory bu�er sizes. As it is better to send a smaller number of messages,proessors having big memory bu�ers should be preferred. Therefore, appendersapB, apSBCr and apSBCAr are better. Heuristis apSBC and apSBCA reateextremely bad solutions. As all startup times are equal, the proessors withsmaller memory bu�ers may be preferred by these algorithms, what leads toonstruting very long ommuniation sequenes and reinfores the ontributionof startup times in the shedule length.Exept for the algorithms reating very long ommuniation sequenes, thesolutions obtained for S = 1 have generally higher quality than for S = 0.001.This may be attributed to two fats. When big startup times dominate the wholeshedule length, the other proessor parameters are not very important anymore.Therefore, it is easier to onstrut good solutions, taking into aount only oneparameter instead of some ombination. The seond reason is that if startuptimes are big and equal, the lower bound LB better oinides with the atualoptimum shedule length.3.6.3 Communiation RateThe harts onerning parameter C (Fig. 3.17) show that for C = 1 our problemis muh easier to solve than for small C. The shedule length is dominated bythe ommuniation time and it is not di�ult to �nd a solution with the shedulelength lose to the lower bound. After magnifying Fig. 3.17b we ould observe92

a)
1

9

17

25

33

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

9

17

25

33

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.17: Solution quality vs. exeution time for di�erent ommuniation rates, a)

C = 0.001, b) C = 1.that the relationships between di�erent algorithms remain similar for C = 0.001and for C = 1, with the best solutions delivered by heuristis BR1, BR1LP andvery similar results of GA. This suggests that the onstrution of our algorithmsis not sensitive to hanging values of ommuniation rate. The observed improve-ment in the solution quality for C = 1 in omparison to C = 0.001 is due to thenature of the problem, whih is easier to solve for big ommuniation rate C.3.6.4 Memory LimitLet us remind that we annot analyze the in�uene of parameter B only, whileusing instanes with di�erent load sizes V . The parameter we should ratherexamine is the relative bu�er size, i.e. B/V . This value determines the numberof ommuniations needed in a shedule and is a natural parameter of the probleminstane.For B/V = 1, it is possible to send the whole load as one message, and thereis no need to reate long ommuniation sequenes. Therefore, all the algorithmswork faster than for smaller memory bu�ers (f. Fig. 3.18a). The best solutionsare ahieved by GA, whih beomes very e�etive when it does not have to reate93

a)
1

6

11

16

21

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

6

11

16

21

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR1LP BR2LP FF GA
Rnd1 Rnd2 Rnd3 Rnd4
Rnd4LP apA apC apS
apB apSBC apSBCA apSBCr
apSBCArFigure 3.18: Solution quality vs. exeution time for di�erent memory limits, a) B/V =

1, b) B/V = 0.005.and ombine long sequenes. Good results are also provided by heuristi BR2and appenders apSBCr, apSBCAr. Heuristi BR1 is now a little worse than BR2beause it sends only one message in the whole shedule and annot balane theuse of omputers performing fast omputations and fast ommuniation.The smallest value of B/V whih ould be reliably solved by all algorithms(espeially GA) without restriting the instane parameters was 0.005. Heuris-tis BR5 and BR6 had to produe ommuniation sequenes longer than the �xedlimit we used (1000 and 1200 messages orrespondingly). Therefore, they are notpresented in Fig. 3.18b. For B/V = 0.005, eah ommuniation sequene lengthhad to be at least equal to 200. With so many messages sent, startup timesdominate the shedule length. Therefore, the best results are obtained by algo-rithms BR1 and BR2, reating short sequenes and minimizing the ontributionof startup times. Creating and ombining very long sequenes is a barrier forGA e�etiveness, whih performs similarly to appenders apS, apSBC, apSBCA,apSBCr and apSBCAr. These �ve algorithms deliver almost the same results (thepoints overlap in Fig. 3.18b) beause small values of B expose the signi�ane ofparameter S in the last four appenders.94

a)
1

7

13

19

25

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

7

13

19

25

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.19: Solution quality vs. exeution time for di�erent dispersions of startuptime, a) δS = 0.001, b) δS = 1.3.6.5 Computation RateIt seems that hanging the value of parameter A does not a�et the relationsbetween the solutions delivered by di�erent algorithms. In both ases, A =

0.001 and A = 1, the hart obtained (not shown here) is very similar to the onepresented in Fig. 3.15a. Inreasing A leads to a slight improvement of all obtainedresults. This is an intuitively expeted e�et of a single parameter dominatingthe shedule length. It ould be also observed for big values of C (Fig. 3.17b).3.6.6 Parameters DispersionIn this setion we examine the in�uene of system heterogeneity, i.e. of thedispersion of the proessor parameters. The method of generating test instaneswas desribed in Setion 3.4.6.The results for the dispersion of startup times are shown in Fig. 3.19. Forlarger dispersion algorithm FF loses quality in relation to BRx algorithms. Thereis also a reshu�ing among appender algorithms. All the results get muh worsewhen parameter S is hosen from a wider range. This phenomenon was observedfor the dispersion of all parameters. However, the sale of the e�et is di�erent for95

a)1

5

9

13

17

21

1E-3 1E-2 1E-1 1E0

BR1 GA Rnd1
Rnd4 apA apSBCr
FF

b)1

5

9

13

17

21

1E-3 1E-2 1E-1 1E0

BR1 GA Rnd1
Rnd4 apA apSBCr
FF

Figure 3.20: Average solution quality vs. parameter dispersion, a) δC , b) δA.di�erent parameters. It seems that the most important fator is the dispersionof S, then C, B/V , and �nally A has the smallest impat. Thus, by its natureour problem is more di�ult in a more heterogeneous system.The relations between the solutions quality and the dispersion of parameters
C and A are shown in Fig. 3.20. These harts on�rm the di�erene between theimportane of the dispersion of these two parameters. Changing δA has a smallin�uene on the solutions quality. On the other hand, dereasing the dispersionof parameter C leads to a big improvement in the obtained results. Note thatthe quality of the solutions obtained in experiments on δA is similar to the oneswith big dispersion of parameter C (the right end of Fig. 3.20a). This means thatsmaller di�erenes between the ommuniation speed of the proessors make theproblem easier to solve, but smaller di�erenes in the omputation speed do nothelp. The harts obtained for hanging δS and δB (not shown here) are similar toFig. 3.20a, although the hanges in the solutions quality are smaller. We onludethat narrowing the range of A has almost no e�et, when the dispersion of theother parameters is still big. Narrowing the range of the other parameters makesobtaining quality solutions easier.

96

a)
1

6

11

16

21

26

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCAr b)

1

6

11

16

21

26

1E-7 1E-5 1E-3 1E-1 1E1 1E3

BR1 BR2 BR3 BR4
BR5 BR6 BR1LP BR2LP
FF GA Rnd1 Rnd2
Rnd3 Rnd4 Rnd4LP apA
apC apS apB apSBC
apSBCA apSBCr apSBCArFigure 3.21: Standard deviation of the solution quality vs. standard deviation of exe-ution time, a) V = 2, b) V = 50.3.6.7 Performane DispersionIn the last group of experiments we analyze the dispersion of the solution qualityand exeution times for a set of test instanes. The purpose of this setion is tohek if the algorithms good on average are also stable in ost and in quality.In Fig. 3.21 the standard deviation of the solution quality is shown againstthe standard deviation of exeution times. Before disussing the results let usomment on this way of the result depiting. In a set of test instanes thedispersion of the exeution times naturally exists for any algorithm. An algorithmsolving our problem to optimality (e.g. B&B) has no dispersion of the relativedistane from the optimum solution, but it has some dispersion of the distanefrom the lower bound. Thus, if we ompare the dispersion of the solution qualityrelative to the lower bound, then some dispersion also naturally exists. Still, it ispossible to ompare algorithms with eah other. An algorithm with very stableperformane would be loated in the lower-left orner of Fig. 3.21.From Fig. 3.21 we onlude that with respet to the stability of the solutionquality, the piture is very similar as for the average values. Algorithms thatdeliver best solutions on average also have the smallest standard deviation of thesolution quality. As for the standard deviation of the exeution time, it an be97

onluded that the deviation inreases with the omplexity of the algorithms.Thus, FF, Rnd4, BRx have the smallest standard deviation, then the algorithmsusing linear programming, and �nally, GA has the biggest exeution time stan-dard deviation. We also analyzed dispersion in the relative sense and appliedoe�ients of variation (not shown here). For small problem sizes (V = 2) thepiture is very similar to Fig. 3.21. For bigger problem sizes (V = 50) oe�ientsof variation for all algorithms are lustered around 1, and hene points represent-ing all the algorithms are very lose to eah other. In this ase algorithm BR6dominates all other algorithms, while BR1LP and BR2LP have the two biggestoe�ients of variation for the exeution time.We �nish this setion with a onlusion, that algorithms whih are not dom-inated in the sense of average quality and average exeution times are also non-dominated in the sense of dispersions of these values. Thus, good algorithms inthe average sense have also stable performane.3.7 SummaryThe hoie of a pratial algorithm solving our problem depends on the budgetof time to onstrut a solution and on the system parameters. A series of exper-iments showed that in a non-biased ase the best quality results are ahieved bythe geneti algorithm and by heuristis BR1, BR2. Best rate heuristis (BR1,BR2) seem to o�er good quality and very low ost. Thus, BR1, BR2 an bereommended as a universal solution. The geneti algorithm o�ers quality so-lutions, but at onsiderable ost. The number of ommuniations is the fatordetermining omplexity of GA. Hene, GA an be reommended only if the timebudget is su�iently big or V/B ≈ 1.The simplest heuristi FF may also be interesting as it is the fastest method,and its quality is not the worst. The lass of appender heuristis in almost all98

tests turned out to be dominated both in the exeution time and in the quality.Hene, we do not reommend the use of appender heuristis proposed in [27℄.There seems to be no apparent advantage in heuristis using LP as a re�nementafter hoosing the ommuniation sequene and the load hunk overlap. It maybe onluded that the ombinatorial part of the problem determines the qualityof a solution in a greater degree than the algebrai part.We also reon�rmed the observations on the nature of the problem itself gath-ered in Setion 3.4. The problem is easier to solve if one of the parameters A or Cis big and determines the shedule length. Changing ommuniation startup time
S from lose to zero to a dominating omponent of the shedule length hangesthe problem qualitatively. The memory size and the ommuniation startup timeare onneted. On the one hand, small memory sizes impose numerous om-muniations, and hene, expose the ost of startup times. On the other hand,the ost of big ommuniation startup times may be redued by sending as fewmessages as possible to proessors with big memory bu�ers. It appeared easyto reate biased test instanes hard to solve by some type of heuristis. Systemheterogeneity makes the problem more di�ult to solve for all proposed algo-rithms. Therefore, it is not advantageous to use very heterogeneous omputingplatforms. It seems advisable to group omputing lients into lasses aordingto, e.g., similar values of ommuniation speeds, and to dediate separate serversfor eah suh lass. Then, good shedules should be easier to build by the natureof the problem itself.

99

4 MapRedue Computations
In this hapter we analyze a new type of distributed omputations embodied in theso-alled MapRedue paradigm. In the previous hapters we analyzed shedul-ing one load volume in a star network topology. Now we move to analyzing twooperations, mapping and reduing, interpreted as two divisible appliations withpreedene onstraints. We start this hapter with the desription of MapRe-due paradigm and the distributed proessing environment. Then we formulatethe mathematial model of MapRedue omputations and propose sheduling al-gorithms. The algorithms are tested in a series of omputational experiments.Performane limits of MapRedue are also investigated. The results presentedin this hapter are the �rst appliation of divisible load theory to proessingappliations with preedene onstraints.4.1 Outline of MapRedueMapRedue is a programming model for proessing large data sets on big numbersof omputers. It an be implemented in many ways, and indeed it has variousimplementations [23, 40, 42, 44℄. Notably, MapRedue has been applied as aprodution system at Google for proessing Internet data [23℄. Hene, it is verypratial to analyze sheduling and performane of MapRedue. Here, we willoutline MapRedue as desribed in [23℄. In short, MapRedue omputations on-sist in proessing input data set by reating a set of intermediate key/value pairs,100

and then reduing them to yet another list of key/value pairs. The omputationsare performed in parallel.In more detail, MapRedue appliations are divided into two steps and de�nedby two funtions: Map and Redue. In the �rst step a Map funtion proessesthe input data set (e.g. a text or HTML �le), and generates a set of intermediate(key1, value1) pairs. In the seond step these intermediate pairs are sorted by
key1, and a Redue funtion merges the intermediate pairs with equal values of
key1, to produe a list of pairs (key1, value2). In this way, the input data set istransformed into a list of key/value pairs.Let us onsider two examples given in [23℄. Counting ourrenes of wordsin a big set of douments an be organized in the following way. The Mapfuntion generates an intermediate pair (word, 1) for eah word in the input�le(s). The intermediate pairs are redued by summing ones, and thus produingpairs (word, count). In the inverted index omputation all douments omprisingertain words must be identi�ed. The Map funtion emits pairs (word, docID)for eah word in the input �le(s), where docID is a doument identi�er (e.g. aURL of a web page). In the Redue funtion all (word, docID) pairs are sortedby word, and pairs (word, list_docIDs) are emitted, where list_docIDs is asorted list of docIDs. There are many types of pratial appliations whih anbe expressed in the MapRedue model. More detailed and advaned examplesan be found in [23℄.Both map and redue operations are performed in parallel in a distributedomputer system. Proessing a MapRedue appliation starts with splitting theinput �les into load units, alled splits in [23℄ (see Fig. 4.1). Many opies of theprogram start on a luster of mahines. One of the mahines, alled the master,assigns work to the other omputers (workers). There are m map tasks and rredue tasks to assign. In the further disussion the map tasks will be alledmappers, and the redue tasks reduers. A worker whih reeived a mapper reads101

Network
file system

Input load Map phase Reduce phaseintermediate files
(on mapper disks)

.
.

.
.

.
.

.
.

.
.

.
.

....

....split 1

split V

Mapper 1 Reducer 1

fileforReducer 1

outputfile 1

outputfile 2

outputfile r

fileforReducer 1

fileforReducer 2

fileforReducer r

fileforReducer r

Mapper 2 Reducer 2

Mapper m Reducer r

(on reducer disks)Figure 4.1: MapRedue exeution overview.the orresponding input load unit and proesses the data using the Map funtion.The output of this funtion is divided into r parts by a partitioning funtion andwritten to r �les on the loal disk. Eah of these r �les orresponds to one of thereduers. Usually the partitioning funtion is of the form hash(key1) mod r. Theinformation about loal �le loations is sent bak to the master, whih forwardsit to the redue workers.When a redue worker reeives this information, it reads the bu�ered datafrom the loal disks of the map workers. After reading all intermediate data, theredue worker sorts them by the intermediate keys in order to group together allourrenes of the same intermediate key. Eah key and the orresponding set ofvalues are then proessed by the Redue funtion. The generated output is ap-pended to a �nal output �le for a given reduer. Thus, the output of MapRedueis available in r output �les. The exeution of MapRedue is ompleted when allreduers �nish their work.4.2 Mathematial Model of MapRedueIn this setion we formulate a mathematial model of MapRedue omputations[7, 10℄. We will pass from the "mirosopi" view of the omputations to a102

oarser "marosopi" model used in the following setions. We simplify the per-eption of MapRedue omputations to build a mathematially and oneptuallytratable representation of the omplex omputing platform and the distributedappliation. Notation introdued in this setion is summarized in Table 4.1.Let us start with the model of the ommuniation network. The struture ofthe network is unknown in general, but it is known that the bandwidth of theunthrottled ommuniation hannels whih an be simultaneously used is limited.We will represent this limitation as the number l of ommuniation hannels whihan be simultaneously in use without reduing the hannel ommuniation speed.Thus, if two proessors an ommuniate with speed 1/C in the otherwise unusednetwork, then the bandwidth limitation for the onurrent hannels in the wholenetwork is l/C. When referring to the above limit on the number of onurrenthannels we will be talking about the bisetion width limit.We pereive the mappers and the reduers in a more oarse way than in [23℄.In [23℄ a mapper is an appliation exeuting the Map funtion for one load unit.The size lu of a load unit is 16-64MB, and a proessor reeives approximately100 load units [23℄. Here we will assume that a single mapper is an appliationexeuting the Map funtion for all the load (i.e. all load units) assigned to aertain proessor. Similarly, we unify all reduer omputations assigned to aertain proessor to a single (ompound) reduer. Let m denote the number ofmappers (onsequently, also proessors exeuting them), and let r denote thenumber of reduers. We assume that a mapper and a reduer an be exeutedon the same proessor, but a reduer starts work only after the mapper �nishesomputations. Thus, the mapper and the reduer omputations do not interleaveon the same proessor. It is usually assumed that m ≥ r, but it is also possibleto represent m < r in our model. We exlude simultaneous exeution of severalmappers, or reduers, on the same omputer. Were suh oalloation possible, itan be represented in our model as several proessors, eah running a di�erent103

Table 4.1: Summary of notation for sheduling MapRedue appliations.
αi size of the load proessed by mapper i; in bytes;
amap, ci, si mirosopi omputing rate, ommuniation rate,ommuniation startup time for proessor Piexeuting mapper i, respetively; expressed inseonds per byte (amap, ci) and in seonds (si);
ared, sred mirosopi omputing rate and omputationstartup time for reduer appliation, equal for allproessors, respetively; expressed in seonds perbyte (ared) and in seonds (sred);
Ai =

si
lu
+ amap + ci marosopi omputing rate of proessor Piexeuting a mapper appliation;

C ommuniation rate for reading mapper results bythe reduers; expressed in seonds per byte;
γ0 mapper result multipliity fration;
l bisetion width limit, expressed in parallel han-nels;
lu size of the load unit, in bytes;
m number of mappers;
Pi proessor exeuting mapper i;
r number of reduers;
S omputation startup time, equal for all proessors;
T (m, r) shedule length on m mappers and r reduers;
T shedule length, simpli�ed notation for given m, r;
τ(x) reduer omputing time funtion in load size x;
tred = sred + τ(γ0V/r) exeution time of a reduer;
V the whole load size, in bytes;

104

Figure 4.2: General view of MapRedue shedule struture.mapper or reduer. The total size of the load to be proessed is V .A rough shedule struture of MapRedue omputations is shown in Fig. 4.2.Detailed shedule strutures are analyzed in the following setions. MapRedueomputations are divided into several phases whih may partially overlap. In the�rst stage the ode for the mapper and reduer appliations is loaded on the pro-essors. For the sake of simpliity of presentation we assume that the mapper andreduer odes are uploaded together. We assume that most of the proessors readthe ode from the network �le system. The ode may inlude virtual mahines,libraries, the mapper and the reduer odes themselves. Thus, the omputa-tion startup time S may be quite long. The omputation startup time elapsesonly one beause when proessing the following load hunks the ode alreadyresides on the exeuting proessor. The di�erenes in the startup time betweenthe proessors are negligible. We assume that proessors read the ode one byone. Although a more e�etive organization of the ode broadast is possible, wehoose this simple distribution sheme to avoid more spei� assumptions on thenetwork struture and on the implementation of MapRedue.In the seond stage eah mapper reads load units from the network �le sys-tem, proesses them, and stores the results in r loal �les for r reduers. Amirosopi view of proessing a single load unit of size lu (e.g. in bytes) bymapper i is shown in Fig. 4.3. Proessor Pi (running mapper i) reads lu bytes105

..........Figure 4.3: Mirosopi view of Map omputations for a single load unit.of input in time si + ci · lu. Although omputers are idential, the load may beread from loal or from remote loations. Consequently, si, ci are di�erent fordi�erent proessors. The �xed time delay si inludes both ommuniation andomputation startup times needed in pratie to start the omputations and readthe next load unit. The lu bytes of input are proessed in time amap ·lu. This timeomprises both omputations and storing the results in loal �les. Thus, we as-sume that from the point of view of omputations only, proessors are essentiallythe same, beause loal omputing rate amap is the same for all proessors. Thetotal time of proessing a load unit is si + (ci + amap)lu. Sine the load reading,proessing and storing operations are repeated many times (for hundreds of loadunits [23℄), we simplify the representation of these operations to proessing withrate Ai. It follows from the above disussion that Ai · lu = si+(ci + amap)lu, andthe operations performed by a mapper may be pereived as if proessing the loadwith the average rate Ai = si/lu+ ci+ amap. Here Ai depends on lu, but the sizeof the load unit is �xed for a MapRedue exeution, hene also Ai is onstant. Inthe following disussion we will use this oarse representation of mapper ompu-tations as performed with rate Ai. Let αi denote the total size of load assigned tomapper i. Aording to the methodology of DLT we assume that αi is a rationalnumber. This simpli�ation implies that the load assignment obtained in ourmodel needs rounding to load units used in pratial MapRedue. We assumethat the e�ets of suh load rounding are negligible. It will be assumed that theamount of results produed by the mappers is proportional to the input size. For
αi bytes of input γ0αi bytes of output are produed.106

In the third stage (f. Fig. 4.2) the results stored on the mappers are read bythe reduers. We assume that the partitioning funtion divides the spae of keyvalues into r equal parts. This is ahieved by the use of hashing in distributingthe mapper output as desribed in Setion 4.1. Consequently, the size of the inputfor eah reduer is equal to γ0V/r bytes in m hunks of sizes γ0α1/r, . . . , γ0αm/r.Eah hunk omes from a dediated �le on a di�erent proessor. We assumethat the reduers read the load from the mappers with equal rate C. Theremay be some advantages in the ommuniation speed if a mapper and a reduerare exeuted on the same proessor. Still, eah reduer has to read its inputfrom all mapper workers and suh advantages anel out when averaged over allthe inputs. Moreover, the advantage of the loal read in relation to the wholereading time diminishes with the inreasing number of mappersm. Consequently,we assume that the di�erenes in the ommuniation rate for the transfers fromthe mappers to the reduers are negligible. Eah of r reduers reads its inputfrom mapper i in time γ0αiC/r unless there is bandwidth limitation. At mostone hannel an be opened to a mapper with transfer rate C. The methods ofinorporating bandwidth limitations in the ommuniation model are desribedin the following setions.In the fourth stage r reduers sort the input data, perform redue operations,and �nally in the �fth stage store the results in the network �le system. Let
sred denote the reduer omputation startup time, and ared (in seonds per byte)the reduer proessing rate. Parameter ared represents omputations, transfers toloal disks and storing the results in the network �le system. All reduers reeiveinput of roughly the same size γ0V/r. Consequently, all reduers have equalexeution time tred = sred+τ(γ0V/r), where τ(x) is the running time of a reduervs. the size x of the input. We will assume that the reduer exeution time is
τ(x) = ared(x log2 x), whih orresponds to the omplexity of sorting. Here weassumed that writing the reduer results in the last stage is ontention-free. This107

may not be true in general. Preautions to avoid reduers writing ontention arementioned in the further setions and in Chapter 5.We assume that if there are other bakground servies exeuted by the pro-essors (e.g. for the network �le system), then they in�uene the proessor per-formane in a onstant way. In other words, simultaneous omputation andommuniation is possible, but performane parameters amap, ared, ci, S, si, sredremain onstant.MapRedue implementation inludes proedures to tolerate failures. We donot inlude them expliitly in our model. However, a simple optimisti model offailure handling an be assumed for the purposes of performane modeling. Sinethe fault tolerane methods are based on retrying failed omputations, thesefeatures an be represented as proessing load greater than V (for mapping) orrunning additional mappers and reduers. The size of the additional load an beestimated using historial data on the failures.Our goal is to partition the input load of size V into mapper hunks α1, . . . , αmand shedule mapper to reduer ommuniations so that the total shedule length
T is as short as possible.4.3 Shedule Dominane PropertiesIn this setion we analyze shedule dominane properties for MapRedue ompu-tations. We start with presenting the optimum sheduling strategy for the asewhen only one reduer takes part in proessing. Afterwards, we study sheduledominane properties for proessing with many reduers.4.3.1 Proessing with a Single ReduerWe will say that the order of reading the results from the mappers by a redueris the FIFO order if a reduer reads its inputs (mapper outputs) in the order108

a)
b)Figure 4.4: Reduer read orders. a) FIFO shedule struture, b) LIFO shedule stru-ture.of starting omputations on the mapper proessors (Fig. 4.4a). The oppositesequene of reading the results, starting from the last ativated mapper proessor,and �nishing with the mapper ativated as the �rst one, will be alled the LIFOorder (Fig. 4.4b). The results an be read from the mappers sequentially. Thismeans that only after reading the whole �le from mapper i an a reduer startreading the �le from mapper i+1 (in the given sequene, e.g. FIFO or LIFO). Inthe opposite ase a reduer may open two ommuniation hannels to mappers iand i+1 and read the �les onurrently. In the latter ase the bandwidth 1/C ofthe input to the proessor running a reduer is shared by both hannels. Below weargue that faster proessors should start omputations �rst, and that the resultsshould be read sequentially in the FIFO order.Proposition 4.1. When there is only one reduer (r = 1), a MapRedue sheduleativating mapper proessors in the order of nondereasing Ai, with sequentialFIFO reduer reads, is optimum.Proof. We will show that the above shedule struture is optimum by omparingthe amounts of load proessed by the mapper proessors in a given time T againstdi�erent shedule organizations. The shedule struture proposed above allowsfor proessing bigger load in time T than in other shedules. Therefore, it alsoallows for proessing given load V in the shortest time. Let us analyze the ase109

with two mappers (m = 2).Let us �rst analyze the FIFO struture (see Fig. 4.4a) with bandwidth sharing.The reduer reads from the �rst mapper the load of size γ0α1. Let 0 ≤ γ0β1 ≤

γ0α1 be the part of load read from the �rst mapper while the seond mapper is stillomputing. The remaining part γ0(α1 − β1) is read in parallel with the resultsfrom the seond mapper. The speed of reading mapper results is determinedby the shared bandwidth 1
C
of the reduer input interfae. Thus, we have thefollowing relationships in the omputing and ommuniation times:

P1 : S + α1A1 + β1γ0C + (α1 − β1 + α2)γ0C = T (4.1)
P2 : 2S + α2A2 + (α1 − β1 + α2)γ0C = T, (4.2)from whih we obtain
P1 : S + α1(A1 + γ0C) + α2γ0C = T (4.3)
P2 : 2S + α2(A2 + γ0C) + (α1 − β1)γ0C = T. (4.4)From (4.3) we obtain

α2 = (T − S − α1 (A1 + γ0C)) /γ0C (4.5)whih substituted in (4.4) yields
α1 =

TA2 + Sγ0C − SA2 − β1γ
2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.6)Returning with α1 to (4.5), the load α2 is

α2 =
TA1 − 2SA1 − Sγ0C + β1γ0CA1 + β1γ

2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.7)

110

Together we have
α1 + α2 =

(T − S)(A1 + A2)− SA1 + β1γ0CA1

A1A2 + A1Cγ0 + A2Cγ0
. (4.8)Note that the above load is inreasing with β1. Hene, it is biggest if β1 = α1.This means that the bandwidth is not shared while reading the results from theseond mapper. Therefore, the equation system (4.3)-(4.4) gets the followingform:

P1 : S + α1A1 + (α1 + α2)γ0C = T (4.9)
P2 : 2S + α2(A2 + γ0C) = T. (4.10)From (4.10) we obtain

α2 =
T − 2S

A2 + γ0C
, (4.11)and by observing that S + A2α2 = α1(A1 + γ0C) (f. Fig. 4.4a) we get

α1 =
TA2 + Sγ0C − SA2

(A1 + γ0C)(A2 + γ0C)
. (4.12)The total size of the proessed load is

α1 + α2 =
T (A1 + A2) + Tγ0C − 2SA1 − SA2 − Sγ0C

(A1 + γ0C)(A2 + γ0C)
. (4.13)Let us now analyze the LIFO result reading order (f. Fig. 4.4b). First letus hek if bandwidth sharing while reading mapper results is pro�table. Let

0 ≤ γ0β2 ≤ γ0α2 be the part of the results read by the reduer from P2 while P1is still omputing. Analogously to (4.3), (4.4) we obtain in the LIFO ase:
P1 : S + α1(A1 + γ0C) + (α2 − β2)γ0C = T (4.14)
P2 : 2S + α2(A2 + γ0C) + α1γ0C = T. (4.15)111

From (4.15) we derive α1 and substitute it in (4.14), from whih we obtain
α2 =

TA1 − Sγ0C − 2SA1 − β2γ
2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.16)By substituting α2 in (4.15) we have

α1 =
TA2 − SA2 + Sγ0C + β2A2γ0C + β2γ

2
0C

2

A1A2 + A1Cγ0 + A2Cγ0
. (4.17)Together the proessed load is

α1 + α2 =
(T − S)(A1 + A2)− SA1 + β2A2γ0C

A1A2 + A1Cγ0 + A2Cγ0
. (4.18)As in (4.8), it is a funtion stritly inreasing with β2. Hene, it is most e�etiveto make β2 = α2, i.e. the maximum possible. Consequently, bandwidth shar-ing while reading the results from two mappers is not pro�table. Now we willalulate what amount of load is proessed in the LIFO mode in given time T ,provided that β2 = α2. From (4.14)

α1 =
T − S

A1 + γ0C
. (4.19)By observing that A1α1 = S + (A2 + γ0C)α2 and using the above value of α1 weobtain

α2 =
TA1 − 2SA1 − Sγ0C

(A1 + γ0C)(A2 + γ0C)
. (4.20)Together the load proessed in the LIFO mode without bandwidth sharing is

α1 + α2 =
T (A1 + A2) + Tγ0C − 2SA1 − SA2 − 2Sγ0C

(A1 + γ0C)(A2 + γ0C)
. (4.21)Comparing (4.13) and (4.21) we see that the FIFO order of the reduer inputreading is more pro�table beause the numerator in (4.13) is bigger by Sγ0C.112

It remains to determine the optimum order of starting the omputations onthe proessors. If we swith the order of ativating the proessors from (P1, P2),to (P2, P1) then the proessor indies in (4.13) get swapped and the proessedload is
α′
1 + α′

2 =
T (A1 + A2) + Tγ0C − 2SA2 − SA1 − Sγ0C

(A1 + γ0C)(A2 + γ0C)
(4.22)Subtrating α1+α2 in equation (4.13) from α′

1+α′
2 in the above equation we get

(α′
1 + α′

2)− (α1 + α2) =
SA1 − SA2

(A1 + γ0C)(A2 + γ0C)
. (4.23)Thus, the load proessed in time T inreases after the swap only if A1 > A2. Thismeans that in the order (P1, P2) we would have started omputations on a slowerproessor �rst. Hene, the faster proessor should start the omputations earlier.We demonstrated that for two mappers, sharing bandwidth while readingoutputs from the mappers is not pro�table both in the LIFO and in the FIFOorder of reading. Of the two orders FIFO is better, and for FIFO the fasterproessor (i.e. the one with the smaller Ai) should be started �rst. This resultan be iteratively extended to more than just two mappers.4.3.2 Proessing with Many ReduersIn this setion we onsider sheduling for more than one reduer. Unfortunately,a generally optimum shedule struture, similar to the one de�ned in Proposition4.1 for a single reduer, does not seem to exist for many reduers. On the on-trary, it will be shown that eah of the alternative shedule strutures with manyreduers an dominate the other under ertain onditions.As suggested by Proposition 4.1, we assume the FIFO order of �nishing theomputations on the mappers and that a single reduer is not reading the resultsfrom two (or more) mappers in parallel. As explained in Setion 4.2, the amountsof load read by all reduers are the same. The atual proessors running the113

a)
.....

.....

b)

.....

)

.Figure 4.5: Many reduers exemplary read shedule strutures. a) Case A, reduersread in parallel, b) ase B, reduers read sequentially,) reduers share bandwidth.reduers an be arbitrary free mahines. For example, P1 an exeute reduer 1after ompletion of mapper 1, or it an be some other proessor from a separateomputer pool if suh a pool exists.The alternative ommuniation shedules are shown in Fig. 4.5. In the �rstshedule type (Fig. 4.5a) the end of reading the results from Pi by the �rstreduer is synhronized with the end of the omputations on Pi+1. Note thatin this shedule di�erent reduers read di�erent mapper results in parallel, whatmay violate the bisetion width limit. For the time being, we assume that thebisetion width is not exeeded. We will all this shedule type ase A. In theseond type of shedule (Fig. 4.5b) the reduers read output from the mapperssequentially. The end of reading the data by the last reduer from mapper Pioinides with the end of omputation on mapper Pi+1. Here all reduer readsare sequential, only one ommuniation hannel is used at a time. Therefore,the speed of ommuniation is the same as in one-to-one ommuniation withoutnetwork ontention. We will refer to the seond type of shedule as to ase B.114

a)

b)
.....

............Figure 4.6: Speial ases of the �rst reduers read orders. a) Case A.1, b) Case A.2.In the third type of shedule (Fig. 4.5) the reduers read the results from themappers one by one, but the bandwidth is equally shared between the reduers.The end of reading from mapper Pi oinides with the end of omputations onmapper Pi+1. This ase is very similar to Case B. Hene, we do not analyze itseparately in the further disussion.To demonstrate the lak of dominane of the above ommuniation shedulestrutures we will alulate the amount of load proessed on two mappers andtransferred to two reduers (m = r = 2) in time T . Note that sine the exeu-tion times of the reduers are equal, the minimization of T is equivalent to theminimization of the whole shedule length.Case A. We an distinguish two sub-ases (Fig. 4.6). In the �rst one (ase A.1)there is an idle time in the ommuniations with P2. This means that readingresults from P1 is longer than from P2. Hene α1 ≥ α2. In the seond sub-ase(ase A.2) ommuniation with P2 is longer than with P1, and α1 ≤ α2.Case A.1. In the �rst sub-ase we have the onditions:
α1(A1 + γ0C/2) = α2A2 + S (4.24)
S + α1(A1 + γ0C) + α2γ0C/2 = T (4.25)115

α1 ≥ α2. (4.26)Hene, we obtain:
α1 =

TA2 − A2S + γ0CS/2

A1A2 + A1γ0C/2 + A2γ0C + γ2
0C

2/4
(4.27)

α2 =
TA1 + Tγ0C/2− 2A1S − 3/2γ0CS

A1A2 + A1γ0C/2 + A2γ0C + γ2
0C

2/4
(4.28)

α1 + α2 =
T (A1 + A2 + γ0C/2)− S(2A1 + A2)− γ0CS

A1A2 + A1γ0C/2 + A2γ0C + γ2
0C

2/4
, (4.29)with an additional requirement α1 ≥ α2 equivalent to:

T (A2 − A1 − γ0C/2) ≥ A2S − 2A1S − 2γ0CS. (4.30)Case A.2. In the seond sub-ase we have the onditions:
α1(A1 + γ0C/2) = α2A2 + S (4.31)
2S + α2(A2 + γ0C) = T (4.32)
α1 ≤ α2. (4.33)Hene, we obtain:

α1 =
TA2 − A2S + γ0CS

A1A2 + A1γ0C + A2γ0C/2 + γ2
0C

2/2
(4.34)

α2 =
TA1 + Tγ0C/2− 2A1S − γ0CS

A1A2 + A1γ0C + A2γ0C/2 + γ2
0C

2/2
(4.35)

α1 + α2 =
T (A1 + A2 + γ0C/2)− S(2A1 + A2)

A1A2 + A1γ0C + A2γ0C/2 + γ2
0C

2/2
, (4.36)with an additional requirement α1 ≤ α2 equivalent to:

T (A2 − A1 − γ0C/2) ≤ A2S − 2A1S − 2γ0CS. (4.37)
116

At least one of the onditions (4.30), (4.37) is always satis�ed. If both aresatis�ed, then the load amounts given by (4.29) and (4.36) are equal.Case B. In the urrent shedule struture we have the onditions (f. Fig. 4.5b):
α1(A1 + 2γ0C/2) = α2A2 + S (4.38)
2S + α2(A2 + 2γ0C/2) = T. (4.39)Thus, we obtain:

α1 =
TA2 −A2S + γ0CS

A1A2 + A1γ0C + A2γ0C + γ2
0C

2
(4.40)

α2 =
TA1 + Tγ0C − 2A1S − 2γ0CS

A1A2 + A1γ0C + A2γ0C + γ2
0C

2
(4.41)

α1 + α2 =
T (A1 + A2 + γ0C)− S(2A1 + A2)− γ0CS

A1A2 + A1γ0C + A2γ0C + γ2
0C

2
. (4.42)Let us now ompare the amounts of load proessed in time T in the aboveanalyzed shedule strutures. By omparing (4.29), (4.36), (4.42) we an see thatnone of the shedule strutures always results in the biggest proessed load fora given time T . Thus, no single ommuniation shedule struture seems to beoptimum in all ases. To build the optimum shedule a more general tool, possiblyinorporating all possible strutures, must be applied. On the other hand, if weonentrate only on the part of (4.29), (4.36), (4.42) whih grows with T , then itan be onluded that for very big T (whih may result from a need for proessingvery big loads) the load proessed in ases A.1, A.2 is larger than in ase B. Forexample, the di�erene between (4.29) and (4.42) in the part proportional to Tis equal to

T (A1+A2+γ0C/2)
A1A2+A1γ0C/2+A2γ0C+γ2

0
C2/4

− T (A1+A2+γ0C)
A1A2+A1γ0C+A2γ0C+γ2

0
C2 =

Tγ0C/2(A2
1
+3/2A1γ0C+A2γ0C/2+γ2

0
C2/2)

(A1A2+A1γ0C/2+A2γ0C+γ2
0
C2/4)(A1A2+A1γ0C+A2γ0C+γ2

0
C2)

> 0 (4.43)117

...

Figure 4.7: The shedule struture for a single reduer.A similar inequality an be derived for (4.36) and (4.42). Therefore, in the furtherdisussion we will be using shedules based on ase A.4.4 Sheduling AlgorithmsIn this setion we propose algorithms for the load partitioning in MapRedueomputations. For proessing with a single reduer, when optimum shedule pat-tern is known, we give an algorithm yielding the optimum load partitioning. Inthe ase of many reduers the optimum shedule struture is not known. Hene,we propose two heuristi sheduling methods, based on the results obtained fora single reduer and inequality (4.43), and onsider their advantages and disad-vantages. A general sheduling algorithm for a sequene of reduing appliations,eah of whih may be exeuted on many proessors, will be presented in Chapter 5.Sine all reduers have equal exeution time tred, we onentrate on minimizingthe length of the partial shedule omprising mapper omputations and mapperto reduer transmissions.4.4.1 Single ReduerLet us remind that it follows from Proposition 4.1 that the mappers should startthe omputations in the order of inreasing Ais and the outputs from the mappersare read sequentially. Let us assume that proessors P1, . . . , Pm running themappers are numbered aording to inreasing Ais, i.e. A1 ≤ A2 ≤ . . . ≤ Am.118

A shedule for the above setting is shown in Fig. 4.7. From Proposition 4.1 andfrom Fig. 4.7 we infer that the time of omputing on proessor Pi and reading itsresults is equal to the time of startup and omputing on proessor Pi+1. Henewe get a system of linear equations determining the load partitioning:
(Ai + γ0C)αi = S + Ai+1αi+1 for i = 1, . . . , m− 1 (4.44)

m
∑

i=1

αi = V . (4.45)The above linear system an be solved in O(m) time for αis by the redution of
αi to a�ne linear funtions of αm, i.e. αi = li+kiαm. More preisely, from (4.44)

lm = 0 km = 1 (4.46)
αi =

S

Ai + γ0C
+

Ai+1

Ai + γ0C
αi+1 =

=
S

Ai + γ0C
+

Ai+1

Ai + γ0C
(li+1 + ki+1αm) =

=

(

S

Ai + γ0C
+

Ai+1li+1

Ai + γ0C

)

+

(

Ai+1ki+1

Ai + γ0C

)

αm =

= li + kiαm for i = m− 1, . . . , 1. (4.47)By substituting αis in (4.45) we obtain
αm =

V −
∑m

i=1 li
∑m

i=1 ki
(4.48)and the remaining αis are obtained from (4.48) and (4.47). Let us note that

αm in (4.48) may be negative. This negative solution is a demonstration that atthe urrent parameters Ai, γ0, C, S, V the number of proessors m is too big touse them all. Therefore, if αm < 0, then the number of proessors m must bedereased.
119

.....

.....

.....

.....

.....

.....

.....

.....Figure 4.8: A shedule for many reduers. The �rst method.If all αi are nonnegative, then the total shedule length is (f. Fig. 4.7)
T = mS + αm(Am + γ0C) + tred = S + α1A1 + γ0CV + tred, (4.49)where tred = sred + τ(γ0V/r).4.4.2 Many ReduersBelow we propose two sheduling methods for MapRedue omputations withmany reduers. Eah of them has its advantages and weaknesses. We summarizethem at the end of this setion.The �rst method of load partitioning for many reduers is a natural extensionof the method for a single reduer. The shedule struture is shown in Fig. 4.8.In this method the end of the read by the �rst reduer from Pi oinides with themapper ompletion time on Pi+1. The method of alulating α1, . . . , αm for r = 1presented in Setion 4.4.1 an be applied here with using the ommuniation time

γ0C/r in plae of γ0C. Thus, the load partitioning is determined by the systemof linear equations:
(Ai + γ0C/r)αi = S + Ai+1αi+1 for i = 1, . . . , m− 1 (4.50)120

m
∑

i=1

αi = V. (4.51)The solution of this system is given by formulas:
αi = li + kiαm for i = m− 1, . . . , 1 (4.52)

lm = 0, km = 1 (4.53)
li =

S+Ai+1li+1

(Ai+γ0C/r)
, ki =

Ai+1ki+1

(Ai+γ0C/r)
for i = m− 1, . . . , 1 (4.54)

αm =
V−

∑m
i=1 li∑m

i=1 ki
. (4.55)None of the mappers is read simultaneously by many reduers and no reduerreads outputs from many mappers in parallel. The bandwidths of the mappers'network output interfaes and the reduers' network input interfaes are notshared. Yet, the bisetion width limitations are not obeyed if l < r. The shedulelength is

T =
m

max
i=1

{iS + αi(Ai + γ0C) +
γ0C

r

m
∑

j=i+1

αj}+ tred, (4.56)where tred = sred + τ(γ0V/r).This shedule may be implemented as follows. Whenever Pi �nishes trans-ferring its results to reduer j, it noti�es Pi+1 to begin a transfer to j. Then
Pi starts transferring results to reduer j + 1, provided that it has been alreadynoti�ed to do it by Pi−1.The seond method assumes that the order of mapper to reduer ommuni-ations is given, and they are preassigned to ertain time intervals. The ommu-niation shedule struture is shown in Fig. 4.9. A mapper to reduer transferappears in exatly one time interval. Hene, in eah interval [ti, ti+1) a ompleteset of results of size γ0αj/r is read from a mapper Pj . All reduers read map-per proessors in the same order: P1, P2, . . . , Pm. The order of reduer reads isthe same for all the read mappers. New ommuniation operations are started121

.....

.....

.....

.....Figure 4.9: A shedule for many reduers. The seond method. Notation i → j meanstransfer of mapper i results to reduer j.as soon as the mappers �nish their omputations and the su�ient number ofommuniation hannels (not exeeding the bisetion width l) is available. Thebisetion width limitation is obeyed, as well as sequential reading of the mapperresults by the reduers. This shedule an be implemented as in the previousmethod with additional preautions not to exeed the bisetion width limit l.For example, whenever the number k of ompleted load transfers on mapper 1 issuh that k mod l = 0, mapper 1 waits to be noti�ed by mapper m that k− l+1transfers from mapper m are ompleted.Let us analyze the number of neessary ommuniation intervals. If l ≥ r,then the bisetion width limit l is not bounding, and the number of intervalsneessary to perform m reads by eah of r reduers is m + r − 1. On the otherhand, if the number of simultaneous hannels is l < r, then after opening l readhannels by l reduers the (l+1)-th reduer shall wait until the ompletion of theread operation of the �rst reduer from the m-th mapper. This requires m − ladditional ommuniations of reduer 1 with mappers Pl+1, . . . , Pm to release a122

ommuniation hannel. Consequently, m − l idle intervals appear in the readsfrom eah mapper. Then, at the end of eah interval [tm, tm+1), . . . , [tm+l, tm+l+1)a new read operation is started by reduers l+1, . . . , l+ l. Thus, after m− l idleintervals, read operations are performed in the following l intervals. The sequenesof m− l idle intervals are inserted in the shedule ⌈ r
l
⌉−1 times. Overall, there are

(⌈ r
l
⌉−1)(m−l)+m+r−1 intervals in the ommuniation shedule. For simpliityof notation let us introdue a funtion itv(i, j) whih returns the number of theinterval in whih reduer j reads output of mapper i (ounting starts with value1 for interval [t1, t2)). The values of itv(i, j) an be alulated as follows:

itv(i, j) =

(⌈

j

l

⌉

− 1

)

m+ i+ (j − 1) mod l (4.57)for i = 1, . . . , m, j = 1, . . . , r. Let vti(i) be the set of mappers whih are read ininterval i, i.e.
vti(i) = {a : itv(a, b) = i, b ∈ {1, . . . , r}} . (4.58)The values of vti(i) an be tabulated in O(mr) time. The partition of the loadan be alulated from the following linear program.minimize titv(m,r)+1 (4.59)

iS + Aiαi = ti for i = 1, . . . , m (4.60)
γ0C

r
αk ≤ ti+1 − ti for i = 1, . . . , itv(m, r), k ∈ vti(i) (4.61)

m
∑

i=1

αi = V (4.62)In the above linear program αi, ti are variables. We minimize the ompletiontime of the last ommuniation titv(m,r)+1. By onstraints (4.60) the omputations�nish before reading from the mappers is started. Inequalities (4.61) guaranteethat all ommuniations �t in the time intervals where they are assigned. Thewhole load is proessed by (4.62). The linear program (4.59)-(4.62) has itv(m, r)+123

1 + m variables, whih is O(mr/l), and at most m + 1 + itv(m, r)l onstraints,whih is O(mr).The above linear program an be further simpli�ed. Let us remind that thereduers read equal size outputs from a ertain mapper. For example, all ommu-niations (i, j) from a �xed mapper i to reduers j = 1, . . . , r have the same size
γ0αi/r. Consequently, intervals [tma+i, tma+i+1), and [tmb+i, tmb+i+1) have equallength beause they omprise read operations from the same set of mappers, forsome positive integers i, a < b suh that mb+i ≤ itv(m, r). The blok of intervals
[tm, tm+1), . . . , [t2m−1, t2m) is repeated (⌈ r

l
⌉ − 1) times. After them (r − 1) mod lintervals follow whih repeat the lengths of some earlier intervals. Namely, thedistane between titv(m,(⌈ r

l
⌉−1)l+1) and titv(m,r)+1 is equal to the distane between

tm and tm+((r−1) mod l)+1. Consequently, the length of the shedule until the endof mapper to reduer ommuniations is
tm + (⌈

r

l
⌉ − 1)(t2m − tm) + (tm+((r−1) mod l)+1 − tm) =

= (⌈
r

l
⌉ − 1)(t2m − tm) + tm+((r−1) mod l)+1. (4.63)The values of variables tam+i for 1 < a ≤ ⌈ r

l
⌉−1 and 0 ≤ i < m an be alulatedas tm + a(t2m − tm) + (tm+i − tm) = a(t2m − tm) + tm+i. Hene, LP (4.59)-(4.62)an be redued tominimize (⌈

r

l
⌉ − 1)(t2m − tm) + tm+((r−1) mod l)+1 (4.64)

iS + Aiαi = ti for i = 1, . . . , m (4.65)
γ0C

r
αk ≤ ti+1 − ti for i = 1, . . . , 2m, k ∈ vti(i) (4.66)

m
∑

i=1

αi = V. (4.67)The funtions of the onstraints in the above LP are the same as in the earlier one.The number of variables is 3m, the number of onstraints is at most 2ml+m+1.124

The objetive funtion (4.64) redues to tm+r if r ≤ l.The above two methods of sheduling have advantages and disadvantages.The �rst algorithm is mathematially simple and easy to implement in pratie.On the other hand it ignores the network bisetion width. The seond one ismore preise in representing bandwidth limitations. Additionally, sine the re-duer omputations start times are spread in time, the reduer writes are alsospread in time, what allows to avoid network ontention while writing the �nalresults. On the other hand, this method makes spei� assumptions (althoughnot unrealisti) on the struture of the shedule, and requires more areful oor-dination (synhronization) of ommuniations.4.5 Performane AnalysisBelow we analyze the in�uene of the system parameters on the performaneof MapRedue omputations. All linear programs were solved using lp_solvelinear programming library [41℄. Unless stated otherwise, we assume the followingreferene system and appliation parameters: lu =16E6, m = 1000, r = l = 100,
S = 1, C = cmap =1E-8, γ0 = 0.1, amap = ared =1E-7, smap = sred =1E-2,
V = 1E15. The above values an be interpreted as follows. The size of a load unitis approximately 16 MB. There are 1000 mappers, 100 reduers, and the bisetionwidth is not bounding. We will study the in�uene of the limited bisetion widthin the further text. The omputation startup time S is 1s. The ommuniationrate, both for the mappers and for the reduers, is 10ns/B. The omputationstartup times for eah unit of load on the mapper, and for the reduers are 10ms.The load size is 1PB.If the bisetion width l is not bounding, then both methods of load parti-tioning presented in Setion 4.4 give similar results (within the range of analyzedparameter values). Therefore, with the exeption of hannel number l onsider-125

Table 4.2: MapRedue phase duration vs. problem size V .mapper to
V startup mapping reduer reduing Ttransfer1E17 2.10E-04% 2.43% 0.231% 97.6% 4.77E081E16 2.25E-03% 2.61% 0.249% 97.4% 4.44E071E15 2.44E-02% 2.83% 0.269% 97.2% 4.10E061E14 0.265% 3.19% 0.291% 96.8% 3.78E051E13 2.87% 4.73% 0.303% 95.3% 3.49E044.383E12 6.65% 6.64% 0.292% 93.3% 1.50E04ations, we will present the results obtained for the �rst method, whih is muhfaster.Let us start with analyzing harateristi shedule features. This will be usefulin understanding the following results. In Table 4.2 we have olleted the relativedurations of the MapRedue phases for various problem sizes. Note that theperentages do not sum to 100% beause the phases partially overlap. The lastline is given for the smallest load for whih m = 1000mappers ould be e�etivelyused. For smaller V some of the αis beome negative. It an be seen in Table 4.2that the shedule length is dominated by the reduing time, and this dominationgrows with the problem size V . This observation remains valid also for higheromplexity funtions than τ(x) = ared(x log2 x), beause then the redution timedominates even more.In Fig. 4.10 the imbalane of the mapper load distribution is presented. Onthe horizontal axis the indies of the mappers are shown. A bigger number meansthat the mapper is ativated later. On the vertial axis the frations αi/(V/m)are shown. The dependenies are depited for instanes with one parameterhanged with respet to the referene system. Instanes with C = 1E-9, γ0 =

0.01, r = 1000 are shown as one line as they all represent equal load partition.It an be seen that for some system on�gurations the load on the mappersinreases, for some other on�gurations the load frations derease. The border126

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0 200 400 600 800 1000Figure 4.10: Skew of mapper loads, for varied system parameters.ases are systems whih satisfy Srm = γ0V C. This formula an be derivedanalytially for a homogeneous system by alulating by how muh the load ina pair of proessors Pi, Pi+1 must di�er to satisfy equation (4.50). Preisely, let
αi = αi+1 +∆, Ai = Ai+1 = A. From equation (4.50) we have

(A+ γ0C/r)(αi+1 +∆) = S + Aαi+1. (4.68)From this it an be derived that
∆ = (Sr − αi+1γ0C)/(Ar + Cγ0). (4.69)By assuming that the load distribution is equal, αi+1 = V/m and ∆ = 0, weobtain the above mentioned formula. We observed that the systems with Srm <

γ0V C have inreasing load distribution α1 < α2 < . . . < αm, while systemswith Srm > γ0V C have dereasing load distribution α1 > α2 > . . . > αm. Theseond ase seems advantageous for the overall performane beause the mapperompletion times are less sattered in time (see Fig. 4.8). Note that the referene127

system has the less advantageous, inreasing load distribution.In the following disussion we use speedup as a performane index. Classially,speedup is alulated as aeleration of omputations on a ertain number ofproessors with referene to the exeution time on a single mahine. However,mapping and reduing an be performed on di�erent numbers of proessors, whatmakes the dependene 2-dimensional, and onsequently harder to understand.For larity of the following harts it is often more onvenient to use di�erentreferene systems than a single-proessor on�guration. Therefore, we de�nespeedup in a slightly more general way:
ς(a, b) =

T (a, b)

T (m, r)
, (4.70)where T (a, b) is the shedule length for the referene system with a mappers and breduers, and T (m, r) is the shedule length for the tested system withmmappersand r reduers. Here m, r are subjet to hange, and a, b remain onstant. Insome tests even m, r remain �xed, and other parameters (e.g. lu, amap, l) arevaried. Aording to equation (4.70), ς(1, 1) is equivalent to the lassi speedup.The above de�nition emphasizes the referene system whih may be di�erent fordi�erent harts.The performane of MapRedue with respet to growing number of mappersmis shown in Fig. 4.11. It an be observed in Fig. 4.11 that for r ≥ 100 the numberof mappers that an be e�etively exploited is smaller than 20000. Moreover,with growing m the speedup ς(1, 1) levels o� around r when m > r, but itgrows with inreasing r. This an be explained in the following way. The wholeproessing time has three main omponents: the time of mapping, the intervalof data transfer from the mappers to the reduers, and the reduing time. Forvariable number of mappers m, and the remaining system on�guration �xed,only the �rst interval is hanging its length with m. If m < r then inreasingmapper number m redues the shedule length, and hene the speedup grows128

1E0

1E1

1E2

1E3

1E4

1E5

1E0 1E1 1E2 1E3 1E4 1E5Figure 4.11: Speedup ς(1, 1) vs. the number of mappers m for various numbers ofreduers r. Load size V = 1E15.nearly linearly. For m > r the mapping time beomes muh smaller than theother two intervals. Hene, the reduing time dominates and determines thespeedup for m > r. The reduing time, in turn, dereases with r even faster thanlinearly beause the omplexity funtion of reduing operations is nonlinear in
V/r. Hene, the speedup inreases with r slightly faster than r when m ≫ r. Letus note that the above observations depend very muh on the amount of results
γ0V produed by the mappers. We disuss it in the further text (f. Fig. 4.13).The performane of MapRedue with respet to hanging number of mappers
m and problem size V , for �xed number of reduers r = 100, is shown in Fig. 4.12.Note that in Fig. 4.12 the speedup ς(1, 100) is shown, i.e. it is alulated aordingto (4.70) with respet to the system with a = 1, b = 100. When alulatedwith respet to a single mahine (i.e. for ς(1, 1)) then with hanging V thespeedups di�er from eah other by not more than 27%, and the lines nearlyoverlap in a setting similar to Fig. 4.11. Therefore, we deided to use ς(1, 100)in Fig. 4.12 to expose better the in�uene of V on the performane. It an beobserved in Fig. 4.12 that for smaller problem sizes (V =1E13, 1E14) the lines end129

0

5

10

15

20

25

30

35

1E0 1E1 1E2 1E3 1E4 1E5Figure 4.12: Speedup ς(1, 100) vs. the mappers number m and problem size V , for
r = 100.before 10000 mappers. This means that a system with a ertain big number ofmappers annot be e�etively exploited beause the load is too small onsideringthe omputation startup times and proessing rates. With growing problem size
V the speedup ς(1, 100) is getting smaller. This is a onsequene of the followingfats. The mapping time and the ommuniation time grow nearly linearly with
V . On the other hand, the omplexity funtion of reduing grows with V fasterthan linearly. Hene, when V grows, the reduing time grows in relation to themapping time and the ommuniation time. When V is big, inreasing m reduesthe shedule length in a smaller degree than when V is small. Consequently, thebigger load sizes V are, the smaller the speedups that are ahievable by hangingmappers number m.In Fig. 4.13 the dependene of speedup ς(1, 1) on the multipliity γ0 of theresults produed by the mappers is shown for hanging m and �xed r = 100. Letus remind that on average for eah input load unit lu the mappers produe luγ0results. Thus, the bigger γ0 is, the more data is transferred from the mappers tothe reduers. When γ0 is very small, the reduing time and the time of transfer130

1E0

1E1

1E2

1E3

1E4

1E0 1E1 1E2 1E3 1E4 1E5

`

Figure 4.13: Speedup ς(1, 1) vs. mappers number m and result multipliity fator γ0,for r = 100.from the mappers to the reduers are very short, and the mapping time dominates.On the other hand, for big γ0 the reduing time dominates in the shedule length.Hene, hanges of γ0 ontrol the speedup in Fig. 4.13 in a two-fold way. The �rstis the speedup for m = 1, and the seond is the maximum speedup for bignumbers of mappers m. Note that here the speedup is shown for a system witha �xed number r = 100 of reduers. Thus, already for m = 1 we have somespeedup with respet to the single-mahine system (where a = b = 1 in equation(4.70)). For m = 1 the bigger γ0 is, the more omputations shift to the reduers,and the more the r = 100 reduers have to do. Consequently, for m = 1 (and
r = 100) bigger γ0 results in bigger speedup. For very big m the mapping timeis already short, and the shedule length is determined by the reduing time. Asa result, when γ0 is big (γ0 = 1, or γ0 = 0.1) the speedup saturates around thenumber of reduers r. On the other hand, when γ0 is small, reduing no longerdominates in the shedule length, while mapping prevails. Then, the mappingtime an be redued by adding mappers, and the speedup is linear in a far widerrange of mapper numbers m, up to nearly m = 1000 for γ0 = 1E-3. It an be131

Table 4.3: Speedup ς(1, 1) vs. load unit size lu, for m = 1000, r = 100.
lu 1E3 1E4 1E5 1E6 1E7 1E8
Ai 1.011E-5 1.110E-6 2.100E-7 1.200E-7 1.110E-7 1.101E-7
ς(1, 1) 749.9 308.9 160.9 142.5 140.6 140.4onluded from Fig. 4.13 that γ0 is a very important parameter for salability ofMapRedue omputations. With small values of γ0 MapRedue sales well with

m, and systems with m ≫ r an be e�etively used.Now let us analyze the impat of the load unit size lu on the performaneof MapRedue. In Table 4.3 we show the relation between load unit size lu,the resulting mapper proessing rate Ai, and speedup ς(1, 1) for the system with
m = 1000, r = 100 and all parameters �xed exept for lu. It an be seen that theimpat of lu is visible only if lu is very small and si/lu is greater than or loseto max{amap, ci}, i.e. when lu is seleted extremely badly. It an be onludedthat for reasonable lu sizes (lu ≥ 1E6) the impat of lu is small. We have anartifat of big speedup when lu is small (lu = 1000). Obviously, bigger speedupfor lu = 1000 does not mean that the omputations are �nished in a shortertime. For lu = 1000 the umulative proessing rates Ai of mappers are very big,mappers work slowly, and mapping time is big in the whole shedule length. Forbig lu, umulative proessing rates Ai of the mappers are smaller (proessors arefaster), the mapping time has a smaller ontribution to the shedule length, andusing m = 1000 mappers redues the shedule length relatively fewer times thanwhen parameters Ai are big. Consequently, for m = 1000 we have better speedupwith lu = 1000 than for lu = 1E8.While reading input for mapping, some mahines may aess their input datafrom loal disks. This results in smaller values of si, ci, what gives some per-formane advantage. Sine the overall in�uene of si is minor (f. Table 4.3),we analyzed the in�uene of ci only. We depit the performane advantages due132

1.0

1.1

1.2

1.3

1.4

1.5

1.6

���

0.01 0.1 1Figure 4.14: Speedup ς(1000, 100) vs. the fration of fast mappers and mirosopiomputing rate amap. Standard ci = 1E-8, fast ci = 1E-10.to the loal reads in Fig. 4.14. Sine the shedule length is dominated by thereduing time, we eliminated it in Fig. 4.14 by showing the speedup with respetto the time by when mapper to reduer ommuniations �nish, for m = 1000,
r = 100. To draw Fig. 4.14 we assumed that reading from a loal �le is 100times faster than reading from the network. Thus, the standard reading rate is
ci = 1E-8, and the fast reading rate is ci = 1E-10. On the horizontal axis thefration of fast proessors in the whole pool of mappers is shown. For example,value 0.1 means that 10% of mappers read their inputs loally. It an be seenthat the smaller the mirosopi mapping rate amap is, the bigger the gain fromhaving some omputers reading their inputs faster. If the mirosopi omputingrate amap is small, then the ommuniation rates are not dominated by the om-puting rate. On the other hand, another e�et an be observed. Note that withhanging amap, the load partition and the shedule proportions also hange. Theload distribution resulting from equations (4.50) and (4.51) is very imbalanedwhen amap is very small. Preisely, if amap is small, then also Ai are small, values
ki in (4.54) quikly derease, while values of li stabilize. Consequently, the load133

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1 10 100Figure 4.15: Speedup ς(1000, 100) vs. the bisetion width l and problem size V .partitioning is very unequal, and the shedule length is not shorter as one ouldexpet. This is an artifat aused by assuming a partiular shedule struture.For example, if amap = 1E-9, or 1E-10 and all mappers (100%) read fast, then thespeedup dereases. For larity, we removed the orresponding two points fromFig. 4.14. Let us note that the speedup from fast loal reading is smaller than0.3% when alulated with inluded reduing time. This means that the reduingtime domination suppresses overall gains from the performane optimizations inother stages of MapRedue.Finally, let us disuss the impat of the limited bisetion width l. As alreadymentioned, if the bisetion width is not bounding, the di�erenes between theload partitioning aording to the two methods of sheduling with many reduersare negligible. However, only the seond method takes into aount the bisetionwidth limit. Thus, in the following we report the results obtained using the lattermethod. The impat of the bisetion width l and problem size V on the speedup
ς(1000, 100) is shown in Fig. 4.15. It an be observed that with inreasing numberof hannels the relative speedup stabilizes. This means that new hannels from134

0

50

100

150

1 10 100Figure 4.16: Speedup ς(1, 1) vs. the bisetion width l and ommuniation rate C.the mappers to the reduers have a gradually dereasing impat on the shedulelength whih beomes dominated by the mapping and the reduing time. Withinreasing problem size V the gains from additional hannels l, and hene biggerbandwidth, are relatively smaller beause the reduing time inreases faster thanlinearly with V , while the ommuniation time inreases only linearly with V .Therefore, speedup ς(1000, 100) in Fig. 4.15 dereases with problem size V .In Fig. 4.16 the impat of the bisetion width l and the ommuniation rate Cis presented. As it an be seen, the faster the ommuniation is (i.e. the smaller
C is), the smaller the impat of the bisetion width. Intuitively, this behavior isexpeted. When the speed of ommuniation from the mappers to the reduersis small, then adding new hannels inreases the bandwidth and redues the loadtransfer time signi�antly. Hene, for C = 1E-6 the speedup inreases withthe bisetion width l. On the other hand, if the ommuniation speed is high(C = 1E-9, C = 1E-10), then the bandwidth from the mappers to the reduersis su�ient, and adding new hannels has no impat on the performane whihis determined by the mapping and the reduing time.135

4.6 SummaryIn this hapter we proposed a mathematial model of MapRedue appliation.We proposed two sheduling algorithms of mapper to reduer transfers. The�rst one is mathematially simple, but it does not take into aount the bise-tion width limitations of the data enter network. The seond method obeysthe bisetion width limitation, but requires more areful organization of datatransfers. When the bisetion width was not a limiting fator, then the resultsobtained from both methods were very similar. Then, we analyzed the in�ueneof the system parameters on the performane of MapRedue omputations. Thefollowing observations have been made:
• The omplexity of reduing operation is higher than the other omponentsof MapRedue omputations. This has the following onsequenes.� MapRedue omputations sale well with the number of reduers r.However, eah reduer produes one output �le and a large number ofoutput �les may be impratial in some appliations.� The amount of results γ0V produed by the mappers is a key parameterontrolling the performane of MapRedue, as γ0V shifts the bulk ofthe omputation ost between mapping and reduing. The bigger γ0Vis, the smaller the ontribution of the mapping time, and the less thenumber of mappers m deides about the performane. If γ0 ≈ 1, thenthe number of mappers m need not be greater than the number ofreduers r.� Reduing time domination an override gains from some optimizations,e.g. from reading load from loal disks by some mappers.It seems that the reduing operation shall beome a bottlenek for theperformane of MapRedue. 136

• Inreasing the number of hannels l or the ommuniation speed 1/C om-pensate eah other beause they both inrease the bandwidth between themappers and the reduers.
• The in�uene of the load unit size lu on the performane is marginal.

137

5 Multilayer Divisible Appliations
In the previous hapter we introdued a mathematial model and two shedulingalgorithms for MapRedue appliations. A MapRedue appliation onsists oftwo omputational stages: mapping and reduing. It is stated in [23℄ that theoutput of a MapRedue is often the input to another suh appliation. Hene,it is justi�ed to treat a hain of suh divisible omputations proessing the loadone after another as one appliation onsisting of many stages whih we will alllayers. Therefore, in this hapter we study multilayer divisible appliations. Inthe following, we generalize the mathematial model proposed in the previoushapter to handle multilayer appliations. The generalization onsists, e.g., inallowing for unequal load distribution in all layers. Then, we propose shedulingalgorithms whih make fewer assumptions on the shedule struture than in theprevious hapter. Afterwards, the quality and the features of the shedules gen-erated by our algorithms are analyzed in a series of omputational experiments.5.1 Model of Multilayer AppliationsIn this setion we formulate a mathematial model of multilayer omputations.The notation is summarized in Table 5.1.In a MapRedue appliation the mapper layer interleaves reading the datafrom some plae in the network with omputing, while the reduer layer �rst ob-tains the whole input from the mapper layer. Thus, there is a signi�ant di�erene138

Table 5.1: Summary of notation for sheduling multilayer appliations.
αi the load size proessed by mapper i; in bytes;
aredp , sredp the omputing rate and the omputation startuptime for reduers in layer p; in seonds per byte(aredp) and in seonds (sredp);
βijk the size of the load sent in interval [ti, ti+1) fromsender j to reeiver k;
A omputing rate of a proessor exeuting mapperappliation;
C ommuniation rate for reading data by the redu-ers and storing the �nal results;
l bisetion width limit, expressed in parallel hannels;
m number of mapper proessors;
Pi proessor i;
R number of reduer layers;
γ0 mapper result multipliity fration;
γp layer p reduer result multipliity fration;
δpk load fration reeived by reduer k in layer p;
rp number of reduer proessors in layer p;
S omputation startup time, equal for all proessors;
T shedule length;
[ti, ti+1) the i-th ommuniation interval in a given layer;
τp(x) = aredp x log2 x layer p reduer omputing time funtion in loadsize x;
V the whole load size, in bytes;

139

Figure 5.1: General view of multilayer appliation shedule struture.in the way of reading the input load. In a sense, the mappers read "ambient"data, while the reduers obtain their inputs from spei� mappers taking part inthe omputations. The mappers data delivery needs no speial sheduling, whilethe reduers load delivery does need it. Similarly, in a multilayer appliationonly the initial layer obtains the load from distributed network loations and anproess a part of the data before reading the rest of input. The proessors in allthe remaining layers obtain data from the preeding layer. They need to readall the data and only after that an they start proessing. Let us remind thatthe reduers have to reeive the whole data set before starting the omputationsbeause usually sorting is involved. In the following, we will be saying that amultilayer appliation onsists of one mapper layer and R ≥ 1 reduer layers.The number of mappers will be denoted by m, as in Chapter 4. The numberof reduers in layer p, 1 ≤ p ≤ R, will be denoted by rp. For onveniene, themapper layer will be also referred to as layer 0.A rough shedule struture of multilayer omputations is shown in Fig. 5.1.Multilayer omputations are divided into 2R+ 3 stages, whih partially overlap.The �rst two stages are the same as in MapRedue omputations (see Setion4.2). In the startup stage, the ode for all appliations is loaded on the proessors.The omputation startup time of eah mapper proessor is S.In the seond stage, eah of the mappers reads the load, performs omputa-140

tions and saves the results in r1 loal �les for r1 reduers from the �rst reduerlayer. In the previous hapter we pereived mapper i operations as proessingload with some average rate Ai. The mapper proessing rates were di�erent, re-sulting from reading the load loally or from remote loations. However, it turnedout in Setion 4.5 that the in�uene of di�erenes in the mapper parameter siwas marginal. The in�uene of di�erenes in ci was so small, that to make itmore signi�ant we restrited our onsiderations to the mapper layer only (f.Fig. 4.14). Otherwise, the in�uene of heterogeneity in ci was suppressed by thereduing duration. For multilayer omputations, there are many reduer layersand the duration of their omputations makes an even bigger ontribution in theoverall shedule length. It an be expeted that also here the in�uene of themapper heterogeneity is small. Hene, for simpliity of presentation, we assumehere that the proessing rates of all mappers are equal to A. As before, by αiwe denote the size of the load assigned to mapper i, and by γ0 the mapper resultmultipliity fration.In the following 2R stages the reduing operations take plae in the onse-utive reduer layers. More preisely, in stage number 1 + 2p, 1 ≤ p ≤ R, thereduers in layer p read load from the mappers (if p = 1) or the reduers in layer
p−1 (f. Fig. 5.1). The partitioning funtion used in layer p−1 divides the spaeof key values into rp not neessarily equal parts. We assume that the partitioningfuntions used in all layers of omputations are, in a sense, sender-independent.The proportions between the amounts of load sent to the reeivers in the nextlayer should be the same for eah sender. Were it otherwise, di�erent senderswould distribute the data with the same key to di�erent reeivers, thus violatingthe integrity of the results. Therefore, we determine the load distribution in agiven layer p ≥ 1 by the frations of load whih should be reeived by eah om-puter. Let δpk denote the fration of results assigned to reduer k from layer p.The amount of results produed by the reduers in layer p for the input of size α141

is γpα. The total amount of load sent to layer p is V ∏p−1
i=0 γi. Hene, reduer kin layer p reeives input of size roughly equal to δpkV

∏p−1
i=0 γi. All reduers readthe load with equal rate C. The bisetion width limit is denoted by l.In stages number 2 + 2p, 1 ≤ p ≤ R, the reduers from layer p sort the inputdata and perform the omputations using a Reducep funtion. For a multilayerappliation, the funtion Reducep in a sense omprises both reduing operationsof the p-th appliation in the hain and mapping operations of the (p + 1)-stappliation in the hain. Beause the pattern of ommuniations between theproessors from onseutive layers is unknown in general, and a reduer an onlystart omputations after it reeives the whole assigned load, we assume that allreduers in layer p start the omputations at the same time, after transferring alldata between layer p − 1 and p. We denote the omputation startup time of areduer in layer p by sredp and its proessing rate by aredp . The omputation timeof a reduer in layer p, reeiving the load of size x, is de�ned by the funtion

τp(x) = aredp x log2 x. As reduer k in layer p reeives input of size δpkV
∏p−1

i=0 γi,its exeution time is sredp + τp(δpkV
∏p−1

i=0 γi).Finally, in the last, (2R+3)-rd stage, the reduers in layer R store the resultsin the network �le system with equal writing rate C. The output of a MapRedueappliation is usually available in multiple �les to be used by other MapRedueappliations. However, sine we analyze here the whole sequene of suh applia-tions, produing a ompat set of results, we assume that the �nal output shouldbe saved in a single �le. Still, the sheduling algorithms proposed in the furthertext an be easily modi�ed to handle other organizations of storing results, e.g.keeping the data on the reduers from the last layer or parallel writing to thenetwork �le system, on�ned by the bisetion width limit l (f. Setion 5.2.1).A sheduling algorithm for multilayer appliations has to hoose the frations
δpk of the load reeived by the reduers in eah layer, partition the input loadof size V into mapper hunks α1, . . . , αm, and shedule mapper to reduer and142

reduer to reduer ommuniations, as well as storing the results by the reduersfrom the last layer, so that the total shedule length T is as small as possible.5.2 Sheduling AlgorithmsIn this setion we propose algorithms for load partitioning and ommuniationsheduling for multilayer omputations. The sheduling problem is omplex andan instane ontains a lot of parameters. Therefore, for larity, we present thealgorithm divided into parts orresponding to the R+1 omputation layers. Thisis possible due to the assumption that all reduers in a given layer start theomputations at the same moment. The omputations of di�erent layers areseparated in time from eah other and the shedule an be built for one layer ata time.Note that the optimum load distribution between the mappers (layer 0) de-pends on the frations of the load whih should be sent to the �rst layer of reduers(δ1k). Similarly, the load distribution for the reduers in layer p depends on thefrations of load reeived by the reduers in layer p + 1. Therefore, we presentthe shedule onstrution starting with the last layer and we proeed to layer 0.Consequently, while sheduling omputations in layer p, the frations δp+1,k arealready known. After presenting the algorithms for separate omputation lay-ers, we show how to onstrut the sheduling algorithm for the whole multilayerappliation.5.2.1 Load Partitioning for Reduer LayersProessing in the last reduer layer may seem di�erent than in the previous layers,beause the results are not sent to another set of reduers. Still, storing resultssequentially in the distributed �le system an be seen as sending data to onemore layer onsisting of a single proessor. Hene, we an de�ne rR+1 = 1 and143

δR+1,1 = 1, and use similar formulas for obtaining the load distribution in allreduer layers. The algorithm �nding the load distribution in reduer layer p(p = 1, . . . , R) is desribed below.We assume that all reduers in layer p start omputations at time t0 = 0. Letus denote by t1 ≤ . . . ≤ trp the moments when reduers in layer p �nish theiromputations. As all reduers are idential and start omputations at t0 = 0, wean assume that the reduers are ordered by their omputation ompletion times.Thus, reduer k �nishes omputations at time tk. Let trp+1 be the moment whenall reduers �nished writing their results. The amount of load sent in interval
[ti, ti+1) from reduer j in layer p to reduer k in layer p+1 will be denoted by βijk.The following mathematial program omputes the optimum values of variables
ti, δpj and βijk. Note that the load frations δp+1,k are onstants omputed in theprevious step of the optimization.

minimize trp+1 (5.1)
sredp + τp(δpiV

p−1
∏

q=0

γq) ≤ ti for i = 1, . . . , rp (5.2)
C

i
∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , rp, k=1, . . . , rp+1 (5.3)
C

rp+1
∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , rp, j=1, . . . , i (5.4)
C

rp
∑

j=1

rp+1
∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , rp (5.5)
βijk = 0 for j=1, . . . , rp, i = 1, . . . , j − 1, k = 1, . . . , rp+1 (5.6)
rp
∑

i=1

βijk = δp+1,kδpjV

p
∏

q=0

γq for j = 1, . . . , rp, k = 1, . . . , rp+1 (5.7)
rp
∑

j=1

δpj = 1 (5.8)
144

In the above formulation, we minimize the length of the shedule from themoment when the reduers in layer p start omputations to the moment whenthey �nish ommuniating with the reduers in layer p+ 1. By inequalities (5.2)reduer i in layer p �nishes omputations no later than at the moment ti, for
1 ≤ i ≤ rp. Constraints (5.3)-(5.5) guarantee that all ommuniations �t in theommuniation intervals together and that the bisetion width limit is observed.By (5.6) no reduer sends its results before �nishing the omputations. Eahreduer in layer p sends all its results by (5.7) and the whole load is proessed by(5.8). There are r2prp+1+2rp+1 variables and rp+1r

2
p/2+rp(3rp+1+rp)/2+5rp/2+1onstraints in the given program.As we mentioned in Setion 5.1, the above mathematial program an beeasily modi�ed for layer p = R to handle di�erent methods of storing the �nalresults. For example, if parallel writing on�ned only by the bisetion width limit

l is possible, it is enough to omit onstraints (5.3). If the results are stored loallyon eah of the reduers from the last layer, onstraints (5.3) should be omittedand additionally l should be hanged to rR in onstraints (5.5). Alternatively,the latter ase may be handled in an even simpler way, by inluding the resultswriting in funtion τp, and substituting onstraints (5.3)-(5.7) with ti ≤ trR+1 for
i = 1, . . . , rR.Let us note that onstraints (5.2) are not linear beause of the form of thefuntion τp. In order to provide a pratial method of solving (5.1)-(5.8), wetransform this program into a linear program. We approximate the funtion τpwith a pieewise linear onvex funtion τ ′p. For eah interval [2y, 2y+1), for 0 ≤

y ≤ log2 V , the values ay = (τp(2
y+1)− τp(2

y))/(2y+1− 2y) and by = τp(2
y)− ay2

yare alulated. Then, we set τ ′p(x) = ayx + by for x ∈ [2y, 2y+1). Thus, theonstraints (5.2) are hanged to
sredp + ayδpiV

p−1
∏

q=0

γq + by ≤ ti for i = 1, . . . , rp, y = 0, . . . , log2 V, (5.9)145

what inreases the number of onstraints in the mathematial program by rp log2 V .The relative error aused by this approximation dereases with growing x. In ourexperiments (whih will be desribed in Setion 5.3), the sizes of load obtainedby the reduers are larger than 1E5. For suh values the approximation error isless than 1%. Suh a range of error is on par with typial auray of measuringsystem parameters suh as A, C, ared, sred. Hene, it should be su�ient for pra-tial purposes. If neessary, a better approximation auray an be ahieved byonsidering intervals shorter than [2y, 2y+1). As τ ′p(x) ≥ τp(x) for x ≤ V , the loadpartitioning obtained for the funtion τ ′p allows to reate a feasible solution withthe original funtion τp.5.2.2 Load Partitioning for Mapper LayerIn this setion we analyze sheduling the mapper omputations and the ommu-niations between the mappers and the �rst layer of reduers, so that this phaseof proessing is as short as possible. The optimum load partitioning between thereduers in the �rst layer, given by frations δ1k, has been already found by themathematial program desribed in the previous setion. As the optimum order of�nishing omputations by the mappers is not known, we will use binary variables
zij (1 ≤ i, j ≤ m) to de�ne this order. Preisely, if mapper j �nishes proessingas the k-th of all mappers, then we set zij = 0 for 1 ≤ i ≤ k − 1 and zij = 1 for
k ≤ i ≤ m. Thus, zij = 1 means that mapper j has �nished omputations bytime ti, and onsequently, an send some load in interval [ti, ti+1).Let t1 ≤ . . . ≤ tm be the times when the mappers �nish their omputations.Let tm+1 be the moment when the mapper to reduer ommuniations �nish.We will denote by βijk the amount of results read by reduer k from mapper
j in time interval [ti, ti+1). Let M denote a big onstant. For example, M ≫

mS + (C + A)V . The optimum load partitioning and the sequene of �nishingomputations by the mappers an be omputed from the following linear program.146

minimize tm+1 (5.10)
jS + Aαj ≥ ti − zijM for i = 1, . . . , m, j = 1 . . . , m (5.11)
jS + Aαj ≤ ti + (1− zij)M for i = 1, . . . , m, j = 1 . . . , m (5.12)
C

m
∑

j=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, k=1, . . . , r1 (5.13)
C

r1
∑

k=1

βijk ≤ ti+1 − ti for i = 1, . . . , m, j=1, . . . , m, (5.14)
C

m
∑

j=1

r1
∑

k=1

βijk ≤ l(ti+1 − ti) for i = 1, . . . , m (5.15)
βijk ≤ zijV for i = 1, . . . , m, j=1, . . . , m, k = 1, . . . , r1 (5.16)
m
∑

i=1

βijk = δ1kγ0αj for j = 1, . . . , m, k = 1, . . . , r1 (5.17)
m
∑

i=1

αi = V (5.18)
zi+1,j ≥ zij for i = 1, . . . , m− 1, j = 1, . . . , m (5.19)
m
∑

j=1

zij = i for i = 1, . . . , m (5.20)In the above program, zij are binary variables, and αj , βijk, ti are rationalvariables. We minimize tm+1 whih is the length of the shedule until the end ofthe mapper to reduer ommuniations. Inequalities (5.11) and (5.12) guaranteethat the mappers �nish omputations in the order de�ned by variables zij . By(5.13) and (5.14) no mapper or reduer ommuniates longer than the ommu-niation interval. By (5.15) the bisetion width limit is observed. Inequalities(5.16) guarantee that no load is sent by a mapper whih has not �nished ompu-tations. Eah reduer reeives the appropriate amount of results by (5.17) andthe whole load is proessed by (5.18). Constraints (5.19)-(5.20) ensure that thereis one-to-one orrespondene between the mappers and moments ti, 1 ≤ i ≤ m,when they �nish omputations. There are m2r1 + 2m+ 1 rational variables, m2147

binary variables and m2r1 + 4m2 + 2mr1 +m+ 1 onstraints in the above linearprogram.5.2.3 The Complete Load Partitioning AlgorithmIn order to reate a load partitioning algorithm for the whole multilayer appli-ation, the mathematial programs desribed above should be put together andsolved as one program. However, this leads to many pratial di�ulties. Firstly,suh a program ontains ∑R
p=1(r

2
prp+1 + 2rp + 1) +m2r1 + 2m+ 1 rational vari-ables and m2 binary variables. The number of onstraints is ∑R

p=1

(

rp+1r
2
p/2 +

rp(3rp+1+ rp)/2+5rp/2+1+ rp log2 V
)

+m2r1+4m2+2mr1+m+1. Hene, themathematial program is very large even for very small instanes. Seondly, allvalues αj and δpk are variables in the ompound mathematial program. Hene,in the onstraints orresponding to (5.7) and (5.17) the variables are multipliedand the program is not linear. Thus, it is very hard to solve this program inpratie. Therefore, in the omputational experiments presented in Setion 5.3an algorithm solving the problem separately for eah layer was used. The loaddistribution obtained in this way for a given layer may be suboptimal from thepoint of view of the whole multilayer appliation exeution time. Still, it an beused as an approximation of the solutions to start a study of the problem features.5.2.4 Finishing Mapper Computations OrderThe order in whih the mappers should �nish their omputations is unknown ingeneral. This resulted in using binary variables in the mathematial programfor the load partitioning in the mapper layer. However, if the startup time Sis negligible, then the mappers are not distinguished by the order of startingthem. Consequently, the binary variables are not needed in formulation (5.10)-(5.20), whih beomes similar to (5.1)-(5.8). Furthermore, we prove below thatif the load is distributed equally between the reduers in the �rst layer, then the148

a)
b)Figure 5.2: Communiation pattern in shedules a) σ1 and b) σ2. Labeling (i) of theommuniation intervals is explained in the main text.mappers should �nish omputations in the FIFO order. Also in this ase thebinary variables an be removed from the LP (5.10)-(5.20).Theorem 5.1. If δ1k = 1

r1
for k = 1, . . . , r1, then the FIFO order of �nishingmapper omputations is optimum.Proof. We will show that FIFO is a dominating struture by alulating theamount of load proessed in a given time, and by the interhange argument. As-sume that in a shedule σ1 of the mapper phase proessor Pi+1 �nishes omputa-tions before Pi. The amount of load proessed by Pi+1 in this shedule is αi+1, andthe amount of load proessed by Pi is αi = α

(1)
i + α

(2)
i , where Aα

(1)
i = S +Aαi+1(see Fig. 5.2). Sine S > 0, A > 0, we have α

(1)
i ≥ αi+1. We will onstrut ashedule σ2 in whih proessor Pi is assigned load of size α(1)

i and proessor Pi+1reeives load of size αi+1 + α
(2)
i . Therefore, proessor Pi �nishes omputationsbefore Pi+1 in σ2. The amounts of load assigned to proessors other than Pi and

Pi+1 remain the same as in σ1. We will show that it is possible to shedule themapper to reduer ommuniations in σ2 so that the total length of σ2 is notgreater than the length of σ1.Let us hoose a set I of time intervals in whih Pi sent load to the reduers in149

shedule σ1 and whih did not overlap with any ommuniations from Pi+1 in σ1,suh that∑I∈I |I| = γ0C(α
(1)
i −αi+1). This operation is possible beause the totallength of the intervals in whih Pi ommuniates in σ1, and whih do not overlapwith ommuniations from Pi+1, is equal to at least γ0C(α

(1)
i + α

(2)
i − αi+1) ≥

γ0C(α
(1)
i − αi+1). Note that this set usually may be hosen in many di�erentways. The total length of the intervals in set I allows for sending load of size

α
(1)
i − αi+1.Let us introdue the following labeling of the ommuniation intervals in whihat least one of proessors Pi and Pi+1 sends load in σ1. The intervals from I reeivelabel 1, the other ommuniation intervals in whih Pi sends load get label 2, andall ommuniation intervals ontaining ommuniations from Pi+1 reeive label 3(f. Fig. 5.2).We shedule the ommuniations in σ2 so that proessor Pi performs all om-muniations in intervals labeled with 1 or 3, and Pi+1 sends load in intervalslabeled with 2. The total length of intervals marked with 2 is γ0C(α

(1)
i + α

(2)
i)−

∑

I∈I |I| = γ0C(αi+1 + α
(2)
i). The total length of intervals labeled with 3 is

γ0Cαi+1. The intervals marked with 1 and 3 do not overlap. Therefore, proes-sors Pi and Pi+1 have enough time to send the required amount of data to thereduers. The ommuniations from proessors other than Pi and Pi+1 remainsheduled in the same way as in shedule σ1. The bisetion width limit is still ob-served, beause we only swapped some ommuniation slots between proessors
Pi and Pi+1.However, further hanges in the ommuniation shedule are needed to guar-antee that eah reduer reeives a proper amount of load from proessors Pi and
Pi+1. Note that the previous transformations do not guarantee that the om-muniation shedule for reduers (reading) remains unhanged. Sine the loadassignments hange, some reduer may have to read from two mappers simul-taneously. The ommuniation shedule will be hanged globally, not only for150

Figure 5.3: Sheduling mapper to reduer omputations in σ2, for m = 3, r1 = 3.Notation j → k stands for: mapper j ommuniates with reduer k in layer 1.proessors Pi and Pi+1. Let us de�ne t1 < . . . < tq as all distint moments inshedule σ1 when any mapper to reduer ommuniation starts or �nishes. Thus,in eah interval Ii = [ti, ti+1) eah mapper either ommuniates all the time withthe same reduer, or it does not ommuniate at all. As the shedule is feasible,in eah interval Ii there are at most min(l, r1) mappers sending some load.Let us divide eah interval Ii into r1 subintervals Ii1, . . . , Iir1 of equal length(f. Fig. 5.3). Let P ′
1, . . . , P

′
m′ be the proessors whih send some load in interval

Ii. Note that neessarily m′ ≤ l and m′ ≤ r1. In shedule σ2 proessor P ′
j willommuniate with reduers j, j + 1, . . . , r1, 1, . . . , j − 1 in intervals Ii1, . . . , Iir1,orrespondingly (f. Fig. 5.3). As m′ ≤ r1, no reduer reads more than onemapper at a time in shedule σ2. The bisetion width limit is not violated in σ2beause m′ ≤ l. Furthermore, all mappers send the same amount of load as inshedule σ1 and eah reduer reeives the same amount of load from any givenmapper. Therefore, the obtained shedule σ2 is feasible and its length is notlarger then the length of σ1.Repeating the above proedure for eah pair of proessors Pj , Pj+1, suh that

Pj+1 �nished omputations before Pj, we prove that there exists an optimumshedule in whih the mappers �nish the omputations in the FIFO order.Whether the FIFO shedule struture is generally optimum, remains an openquestion. Some omputational experiments indiate that it may be the ase.151

5.2.5 Sheduling CommuniationsAfter solving the mathematial programs given in Setions 5.2.1 and 5.2.2, theamounts of data to be sent between eah pair of omputers in eah time intervalare known. A feasible ommuniation shedule an be built for eah interval
[ti, ti+1) between two layers using a two-stage approah similar to the one usedfor problem R|pmtn|Cmax [15, 19, 36℄. Then, a shedule for all load transfersan be built by the onatenation of the partial shedules for the onseutiveintervals. However, let us observe that here the algorithm for R|pmtn|Cmax isnot su�ient beause we have the bisetion width onstraints, not present inproblem R|pmtn|Cmax. Hene, we generalize the former approah. Below we givethe sheduling method in detail, and prove its feasibility.Consider one of the intervals [ti, ti+1) with the load transfers βijk from sender jto reeiver k delivered by formulations (5.1)-(5.8) or (5.10)-(5.20). Let us denotethe number of the load senders for the given interval by n1 and the number of thereeivers by n2, i.e. n1 = |{j : βijk > 0}|, n2 = |{k : βijk > 0}|. Let W = [wjk]be the n1 × n2 matrix de�ned by wjk = Cβijk/∆t, where ∆t = ti+1 − ti is thelength of the time interval. Thus, wjk ≤ 1 is the fration of the length of theurrent time interval used to transfer load from sender j to reeiver k. Note that
∑n1

j=1

∑n2

k=1wjk ≤ l by (5.5), (5.15).Row j of matrix W , orresponding to sender j, will be alled ritial if
∑n2

k=1wjk = 1. Similarly, the k-th olumn of W , orresponding to reeiver k,will be alled ritial if ∑n1

j=1wjk = 1. We will be saying that the bisetion widthlimitation is ative for matrix W if ∑n1

j=1

∑n2

k=1wjk = l. Let us de�ne a set F ofpositive elements of matrix W , ontaining:
• exatly one element from eah ritial row or olumn, and
• at most one element from eah non-ritial row or olumn, and
• exatly l elements in total if the bisetion width limitation is ative for W ,or at most l elements in the opposite ase.152

Thus, F orresponds to a set of onurrent ommuniations in a feasible shedule.Algorithm 5.1 onstruts the optimum shedule for interval [ti, ti+1) by onate-nating partial shedules of length ε > 0 for a given set F .Algorithm 5.1 MULTILAYER-COMMUNICATIONS
∆t := ti+1 − tiwhile ∆t > 0 doonstrut set F
v1min := minwjk∈F{wjk}

v1max := maxj∈{j′:wj′k /∈F for all k=1,...,n2}{
∑n2

k=1wjk}

v2max := maxk∈{k′:wjk′ /∈F for all j=1,...,n1}{
∑n1

j=1wjk}if |F| < l then
v2min :=

l−
∑n1

j=1

∑n2
k=1

wjk

l−|F|else
v2min := 1end if

ε := min{v1min, 1− v1max, 1− v2max, v
2
min}for eah wjk ∈ F doshedule ommuniation from sender j to reeiver k in interval

[ti+1 −∆t, ti+1 −∆t + ε∆t)end forfor eah wjk ∈ F do
wjk := wjk − εend for

∆t := ∆t(1 − ε)if ∆t > 0 thenfor eah wjk do
wjk := wjk/(1− ε)end forend ifend while

153

Figure 5.4: Network for �nding set F . Ars are labeled with (lower, upper) bounds.Notation a|b is used for non-ritial|ritial nodes (see the explanation in the main text).In this algorithm ε is de�ned so that the elements of W :
• never beome negative by the hoie of v1min, whih means that a ommu-niation is not performed after the proper amount of load is sent,
• the onstraints on the sums of elements of W in any row or olumn are notviolated by the hoie of v1max, v

2
max, and hene the ritial ommuniationsare always exeuted,

• the onstraint on the sum of elements of W is not violated by the hoie of
v2min, and the ative bisetion width limitation is also obeyed.In eah iteration of the while loop either a row or olumn of W beomesritial, or an element ofW is dereased to 0, or the bisetion width limit beomesative. Hene, the algorithm onsists of at most n1 + n2 + n1n2 + 1 iterations.It remains to give an algorithm that �nds set F for a given matrix W . Thisan be done by using network �ow formulation (see Fig. 5.4). Beyond the sinkand the soure, the network has n1 nodes orresponding to the senders, n2 nodesorresponding to the reeivers, and a node representing the bisetion width limi-tation. There is an ar between sender j and reeiver k if and only if wjk > 0. Thears from the soure to the senders, from the senders to the reeivers, and from154

the reeivers to the bisetion width limitation node have apaities bounded fromabove by 1. The ars from the soure to the non-ritial senders, all ars fromthe senders to the reeivers, and the ars from the non-ritial reeivers to thebisetion width limitation have lower bound of apaity equal to 0. For the arsfrom the soure to the ritial senders and for the ars from the ritial reeiversto the bisetion width limitation node the �ows are bounded from below by 1.The ar from the bisetion width limit node to the sink has apaity l. If thebisetion width limit is ative then its �ow is bounded from below by l, and by 0otherwise. For oniseness, in Fig. 5.4 the notation a|b is used for lower boundson the �ow of ars whih lead from or to the non-ritial|ritial nodes. Findinga feasible �ow in the above network is equivalent to �nding the set F : the arfrom sender node j to reeiver node k with positive �ow indiates wjk ∈ F .We will now prove that a feasible �ow, and hene the set F , always exist.Consider a weighted bipartite graph G = (X ∪ Y,E, w), suh that there are
n1 verties in X , orresponding to the rows of matrix W and n2 verties in Y ,representing the olumns of W . The set E omprises an edge between verties
uj ∈ X and vk ∈ Y if and only if wjk > 0, and the weight of this edge is equal to
wjk. Note that the sum of the weights of all edges inident to any given vertex isnot greater than 1, and the sum of all edge weights in G is at most l. We will saythat a vertex is ritial if it orresponds to a ritial row or olumn in W . Thus,the sum of weights of edges inident to a ritial vertex in G is equal to 1. Letus denote the number of ritial verties in X by cX and the number of ritialverties in Y by cY . The subsets of ritial verties in X and Y will be denotedby Xc and Yc orrespondingly. Let Gc denote a subgraph of G indued by the setof ritial verties, i.e. Gc = G[Xc ∪ Yc]. Let wc be the sum of the edge weightsin subgraph Gc.In order to prove that a feasible �ow in the network desribed above alwaysexists, we need to show that there is always a mathing Mc in G suh that155

1) Mc overs all ritial verties,2) Mc has size at most l, and3) if the bisetion width limit is ative, then the size of Mc is exatly l.We prove it in Theorems 5.4 and 5.5 eventually, but for this we need some prelim-inary results. First, in Lemma 5.2 we show that a mathing satisfying the aboveondition 1) always exists.Lemma 5.2. A mathing in G overing all ritial verties always exists.Proof. This follows diretly from the proof given in [15, 36℄ for the algorithmsolving problem R|pmtn|Cmax.Note that if cX + cY ≤ l then the above result implies that there exists amathing in G of size at most l overing all ritial verties. For the oppositease, suh a mathing must ontain at least cX + cY − l pairs of ritial vertiesmathed with eah other, in order not to violate ondition 2). We prove in Lemma5.3 that a mathing onsisting of cX + cY − l pairs of ritial verties exists inthis ase. In Theorem 5.4 we use this fat to prove that there exists a mathingsatisfying both onditions 1) and 2) given above. Finally, in Theorem 5.5 itis proved that if the bisetion width limit is ative, then a mathing satisfyingonditions 1), 2) and 3) exists.Lemma 5.3. If cX+cY > l, then there exists a mathing of size at least cX+cY −lin the graph Gc.Proof. The sum of all edge weights in graph G is not smaller than ∑

j∈Xc
wjk +

∑

k∈Yc
wjk − wc. Hene, by (5.5), (5.15)

∑

j∈Xc

wjk +
∑

k∈Yc

wjk − wc ≤ l. (5.21)
156

As the sum of weights of edges inident to a ritial vertex in G is equal to 1, weobtain from (5.21)
wc ≥ cX + cY − l. (5.22)Now onsider the minimum vertex over of Gc. Sine the sum of weights ofedges inident to any vertex in Gc is not greater than 1, at least wc verties areneessary in the Gc vertex over. Thus, by (5.22) the minimum vertex over of Gchas at least cX + cY − l elements. By König's theorem, the size of the maximummathing in Gc is equal to the size of the minimum vertex over. Hene, thereexists a mathing of size at least cX + cY − l in Gc.Theorem 5.4. There exists a mathing in G of size at most l overing all ritialverties.Proof. If cX+cY ≤ l, the thesis follows from Lemma 5.2. Assume that cX+cY > l.Consider the maximum mathing M in Gc. Suppose that not all ritial vertiesare mathed by M . We will show that for eah ritial vertex v ∈ Y unmathedby M eithera) there exists an even length M-alternating path π1 starting in v and endingwith a non-ritial vertex v′ ∈ Y (f. Fig. 5.5a), orb) there exists an odd lengthM-augmenting path π2 starting from v (Fig. 5.5b).Suppose that there is no M-alternating path π1 starting in v and ending witha non-ritial vertex v′ ∈ Y . Consider the graph Gv indued by the set of all

M-alternating paths starting in v ∈ Y . Sine no alternating path π1 ending innon-ritial v′ ∈ Y exists, all verties of Gv ontained in Y are ritial. Graph
Gv ontains also all neighbors in X of these verties. By Lemma 5.2, there existsa mathing in Gv overing all its ritial verties from the set Y . As v is theonly ritial vertex in Gv ontained in Y and not mathed by M , there existsan M-augmenting path starting in v. In other words, we neessarily have ase157

a)
b)Figure 5.5: Augmenting mathing M . Blak nodes are ritial, non-ritial nodes arewhite, gray nodes may be ritial or not. The bold edges are in M . The left �gure is theinitial mathing M , the right �gure is the augmented mathing. a) Case a - alternatingpath starting in ritial v and �nishing in non-ritial v′ ∈ Y . b) Case b - augmentingpath starting in ritial v.b (Fig. 5.5b). Analogous reasoning an be applied to the unmathed ritialverties in X .Thus, for eah unmathed ritial vertex v we an �nd either anM-alternatingpath π1 or an M-augmenting path π2. We set M ′ = M ⊕ π1 or M ′ = M ⊕ π2orrespondingly, where the symbol ⊕ denotes the symmetri di�erene. In bothases, no ritial verties beome unmathed by M ′, we gain at least one ritialvertex mathed by M ′, and the number of edges in M ′ is inreased by at most1 (see Fig. 5.5a,b). The size of the initial mathing M was em ≥ cX + cY − lby Lemma 5.3. At most cX + cY − 2em ritial verties in G were unmathedin M . Thus, we obtain a mathing overing all ritial verties, with at most

em + cX + cY − 2em ≤ l edges.The last thing to prove is the existene of a mathing satisfying onditions 1),2) and 3) in the ase when the bisetion width limit is ative.
158

Theorem 5.5. If the sum of edge weights in G is equal to l, then there exists amathing in G of size l, overing all ritial verties.Proof. We an apply the same proedure as in the proof of Theorem 5.4 to obtaina mathing M of size at most l, overing all ritial verties. The sum of weightsof the edges inident to any vertex in G is at most 1. Hene, if the sum of alledge weights in G is l, then the minimum vertex over in G ontains at least lverties. By König's theorem, the size of the maximum mathing in G is at least
l. Therefore, if |M | < l, we an further augment the mathing M until it hasexatly l edges.5.3 Computational ExperimentsIn this setion the in�uene of the instane parameters on the shedules for mul-tilayer appliations is analyzed. Unless written to be otherwise, the referenesystem on�guration used in the experiments is the following. There are R = 2reduer layers. Eah layer onsists of 5 proessors (m = r1 = r2 = 5). The size ofthe test instanes is a result of both high omplexity of the sheduling algorithmand the ahievable numerial preision. The reduer layers are haraterized byparameters sredp = 1E-2, aredp = 1E-7, γp = 0.1 (for p = 1, 2), The mapper param-eters are A = 1E-7, S = 1 and γ0 = 0.1. The ommuniation rate is C = 1E-8,and the bisetion width limit l = 5 is not restriting the ommuniation. Theinitial amount of load is V = 1E15.5.3.1 Speedup of Multilayer AppliationsIn Chapter 4 we analyzed the in�uene of the number of proessors in the twoomputational layers and the other system parameters on the relative length ofthe obtained shedules. Qualitatively, the results obtained for the mathematialmodel presented in this hapter do not di�er muh from the previous ones. As an159

a)1

3

5

7

9

11

1 2 3 4 5 6 7 � 9 1� b)1

3

5

7

9

11

1 2 3 4 5 6 7 � 9 1�Figure 5.6: Speedup for di�erent γ0, γ1, a) vs. m, for r1 = r2 = 5, b) vs. r1, for
m = r2 = 5.example, we present in Fig. 5.6 the speedup for hanging m and r1 (in relationto the system with m = r1 = r2 = 1). We analyzed ases with big (γp = 1) andsmall (γp = 1E-3) load multipliity frations in eah layer. It turned out thatthe value of γ2 has almost no impat on the speedup. This an be explained bythe fat that γ2 in�uenes only the time needed to store the �nal results, whihis very short in omparison to the whole shedule length. Therefore, we presentonly the instanes with γ2 = 1 in Fig. 5.6.As it ould be expeted, the frations γ0 and γ1 in�uene the performane ofthe appliation. It an be seen that the appliation sales well with the mappernumber m if γ0 is small (see Fig. 5.6a). In this ase, the reduers reeive littleload and do not dominate in the omputations. On the other hand, if γ0 is big,then the number of mappers has a small impat on the speedup beause the bulkof omputations takes plae in layer 1, and the appliation sales better with thenumber of reduers r1 (f. Fig. 5.6a and Fig. 5.6b). The range of the speedupis determined not only by γ0, but also by γ1. If γ1 is big, then the reduers inthe seond layer reeive big load and their ontribution to the shedule lengthis omparable with the �rst layer. On the other hand, if γ1 is small, then theexeution time of the whole appliation is dominated by the �rst reduer layer.Then, r1 has the greatest in�uene on the shedule length. The in�uene of r2160

on the performane of the appliation is signi�ant for the speedup only if both
γ0 and γ1 are big. We do not show these results here beause they follow thepattern of Fig. 5.6a,b.In the previous hapter we presented sheduling algorithms for 2-layer appli-ations. The algorithms for r1 > 1 assumed a spei� ommuniation shedulestruture, whih ould be an obstale to �nding the optimum solution. In par-tiular, the amounts of load assigned to di�erent proessors ould be biased. Inthis hapter we relaxed the assumptions on the ommuniation pattern, as wellas on the load partitioning in the reduer layers. Therefore, in the further textwe onentrate on the load distribution between the proessors in a given layer.5.3.2 Load Distribution between ReduersThis setion is dediated to analyzing the load distribution in the reduer layers.The number of the reduers in the �rst layer is set to r1 = 10. Sine r2 = 5,the bisetion width limit l = 5 is not restriting the ommuniation between the�rst and the seond layer. We present the load distribution in reduer layer pas the load frations reeived by the onseutive proessors relative to the equaldistribution, i.e. the values δpk/(1/rp). As the frations of load reeived by thereduers in the �rst layer depend on the load sent to the reduers in the nextlayer, we start our study with the seond layer.The values of load frations δ2,k for di�erent values of ommuniation rate Care shown in Fig. 5.7. Let us remind that aording to the model from Setion5.1, the reduers in a given layer start omputations at the same moment and�nish them in the order of their indies. Hene, the frations δ2,k are alwaysnondereasing. It an be seen in Fig. 5.7a that for very fast ommuniation theload distribution in the seond layer of reduers is very equal. For C = 1E-7 thedi�erenes are more signi�ant than for smaller values of C, but the frations δ2,kstill grow nearly linearly. This an be explained by the fat that for very fast161

a)0.994

0.996

0.998

1.000

1.002

1.004

1.006

1 2 3 4 5 b)0

1

2

3

4

1 2 3 4 5Figure 5.7: Relative load frations δ2,k/(1/r2) vs. ommuniation rate C, a) fast om-muniation (small C), b) slow ommuniation (big C).ommuniation, the time of omputations dominates in the shedule length fora given layer. Therefore, to make this time shorter, the load should be dividedequally, so that the omputations �nish around the same time on all proessors.The situation beomes di�erent for slow ommuniation (f. Fig. 5.7b). For verybig values of C (C = 1E-4, C = 1E-5) the time needed for storing the resultsdominates in the shedule length. Thus, it is pro�table to start ommuniationsfrom some reduers very early, while other proessors are still omputing. Thisleads to great inequalities in the load distribution between the reduers. The�rst proessors reeive very small load, while the last reduer has to proess morethan a half (for C = 1E-5) or even more than 90% (for C = 1E-4) of all data.The load distribution between the proessors in the �rst reduer layer is pre-sented in Fig. 5.8. As in the seond layer, the distribution is balaned for fastommuniation and very unequal for slow ommuniation. Another interestingphenomenon an be observed. For fast ommuniation, the reduers an be di-vided into two groups omprising 5 proessors eah (see Fig. 5.8a). The proessorsin a given group reeive similar amounts of load. As there are 5 proessors inlayer 2 whih reeive data from the reduers in the �rst layer, we infer that theproessors in a given group an use a similar ommuniation pattern, but om-muniate with the reduers from the seond layer in di�erent order. Preisely,162

a)0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

1 2 3 4 5 6 7 8 9 10 b)0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10Figure 5.8: Relative load frations δ1,k/(1/r1) vs. ommuniation rate C, a) fast om-muniation (small C), b) slow ommuniation (big C).for very fast ommuniation, the reduers in layer 1 onstitute retangular bloksof omputations of roughly the same time on r2 proessors. The proessors ina given group �nish omputations around the time when the previous group�nished sending the results to the next layer of reduers. Thus, it seems thatthe optimum ommuniation pattern in this ase is similar to the �rst methodof sheduling MapRedue omputations proposed in Chapter 4. The di�ereneis that in Chapter 4 we synhronized the omputations and ommuniations ofonseutive proessors, and not onseutive groups of several workers. The in-equalities in the load distribution between the proessors in a given group beomelarger when C gets larger. This an be aused by a more unequal load distribu-tion in the seond reduer layer. It an be seen in Fig. 5.8b that in the ase ofslow ommuniation the groups of 5 proessors annot be distinguished anymore.It an be inferred that the pattern of ommuniations is very di�erent for slowommuniations.In the test instanes desribed above the number r1 was divisible by r2. Thus,for fast ommuniation the reduers in the �rst layer ould be divided into groups,eah of whih omprised r2 omputers. In Fig. 5.9 we show the load distributionin the �rst reduer layer for r1 = 10 and r2 = 4. In this ase, one group of size 4and three groups of size 2 an be distinguished for C = 1E-7, and groups of sizes163

a)0.998

0.999

1.000

1.001

1.002

1 2 3 4 5 6 7 8 9 10 b)0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10Figure 5.9: Load frations δ1,k vs. ommuniation rate C for r1 = 10, r2 = 4, a) fastommuniation (small C), b) slow ommuniation (big C).4, 2, 4 are visible for C = 1E-8. Thus, there is no simple repetitive pattern inthe load distribution, whih ould be easily generalized to any system on�gura-tion. Additionally, the number and the sizes of the obtained groups depend onparameter C. This suggests that in the systems with fast ommuniation it maybe pro�table to use the numbers of reduers r1 divisible by r2. In suh a ase,the assumption that the proessors are divided into r1/r2 groups an be used tobase the sheduling algorithm on a predetermined load partitioning pattern. Thiswould result in the design of simpler and faster sheduling heuristis.The amount of time neessary to send the load from one reduer layer toanother depends not only on parameter C, but also on the bisetion width limit
l. Let us remind that the load distribution in the last layer does not depend on l,as the results are stored sequentially. In Fig. 5.10 we present the load distributionin the �rst reduer layer for di�erent values of l. The value C = 1E-8 in Fig. 5.10an be onsidered fast ommuniation. The results shown in Fig. 5.10a on�rmthat the groups of proessors reeiving similar amounts of load are onnetedwith the number of proessors whih an ommuniate at the same time. When
l = 2, groups of 2 proessors an be observed in Fig. 5.10a. For l = 1 eahproessor onstitutes a separate group. Similarly, for l = 5 �ve-proessor groupsan be observed. If r1 is not divisible by l (Fig. 5.10b), then no lear groups of164

a)0.9985

0.9990

0.9995

1.0000

1.0005

1.0010

1.0015

1 2 3 4 5 6 7 8 9 10 b)0.9996

0.9998

1.0000

1.0002

1.0004

1 2 3 4 5 6 7 8 9 10Figure 5.10: Relative load frations δ1,k/(1/r1) vs. the bisetion width limit l, a) r1divisible by l, b) r1 not divisible by l.proessors an be distinguished. It seems that the pattern of ommuniation isnot so simple anymore.5.3.3 Load Distribution between MappersIn this setion we analyze the load distribution in the mapper layer. In the fol-lowing simulations we assumed the FIFO struture of the mapper omputations.Whether it is generally optimum, remains an open question. However, we hosethis struture for several pratial reasons. The startup times are short in relationto the whole shedule, and hene, the order of starting proessors and startupproedure have small impat in di�erentiating the proessors. Mixed integer lin-ear programming is omputationally hard, and only very small instanes an besolved to optimality in aeptable time. The hoie of the FIFO order allowed usto solve larger instanes of the problem: the number of mappers was m = 50 inthe experiments presented in this setion.In the �rst series of experiments we analyzed the load distribution between themappers for relatively small startup times S = 1. The results of the experimentswith hanging C and l are presented in Fig. 5.11. The load distribution in themapper layer was shown as the frations αj/(V/m). As ould be intuitivelyexpeted, the results are very similar to the distributions for the �rst reduer165

a)0

1

2

3

4

5

6

0 10 20 30 40 50 b)0.7

0.8

0.9

1.0

1.1

1.2

1.3

0 10 20 30 40
��Figure 5.11: Mapper load frations αj/(V/m) for S = 1, a) vs. C, b) vs. l.layer. The di�erene between the omputations in the mapper and the reduerlayers is the presene of startup time S, but its in�uene was almost negligible inthis set of experiments. Thus, we observed the same phenomena as were desribedin Setion 5.3.2. For example, groups of min{r1, l} mappers with nearly equalload assignments an be distinguished when C is small and m is divisible by

min{r1, l}. When C is big, the majority of the load is proessed by the mahinesativated as the last ones.In order to better expose the di�erenes between the mapper and the reduerlayers we inreased the startup time S to 1E4. The results of the experiments withhanging ommuniation rate C are shown in Fig. 5.12. For fast ommuniationwe observed a qualitative di�erene in the load distribution (see Fig. 5.12a).The mapper loads are now generally dereasing. Similarly to the reduer layer,the mappers an be divided into groups of onseutive 5 proessors (we have
r1 = l = 5). However, the frations of load obtained by the proessors in a givengroup are far from equal. The di�erene between the amounts of load reeived bytwo onseutive proessors from the same group is about 1E11 for C = 1E-8, 1E-9, 1E-10. The time needed to proess load of this size on a mapper is 1E4, whihis equal to the startup time S. Thus, the proessors in a given group reeive suhamounts of data that they �nish omputations at approximately the same time.166

a)0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 10 20 30 40 50 b)0

1

2

3

4

5

6

0 10 20 30 40 50Figure 5.12: Mapper load frations αj/(V/m) for S = 1E4 vs. C, a) fast ommuniation(small C), b) slow ommuniation (big C).Then, they use the available ommuniation hannels to send the results to thereduers. The �rst omputer in the next group of mappers reeives suh amountof load that it still performs omputations while all ommuniation hannels areused by the previous group. For C = 1E-8 this means that the load obtained bythe �rst proessor in a given group is larger than the load assigned to the lastproessor in the preeding group. Hene omes the harateristi saw-like patternin Fig. 5.12a.When the ommuniations gets slower (C is bigger) the situation hanges andis more similar to the reduer layer distribution (f. Fig. 5.12b). The sizes ofload assigned to onseutive mappers are inreasing and the groups of 5 mappersreeiving similar amounts of load an be seen. This an be explained by thefat that for slow ommuniation the startup time S = 1E4 is not signi�ant inthe shedule length. Hene, the results obtained here are similar to the reduerlayers.The load distributions in the mapper layer for di�erent bisetion width limits
l are presented in Fig. 5.13. When the number of mappers m is divisible by l(Fig. 5.13a), then groups omprising l mappers an be observed again. Di�erenttendenies an be seen for di�erent values of l. When l = 5, the amount of loadassigned to the mappers in a given group and the amounts of load obtained by167

a)0.85

0.90

0.95

1.00

1.05

1.10

1.15

0 10 20 30 40 50 b)0.90

0.95

1.00

1.05

1.10

0 10 20 30 40 50Figure 5.13: Mapper load frations αj/(V/m) for S = 1E4 vs. l, a) m divisible by l, b)
m not divisible by l.onseutive groups are dereasing. For l = 2, the �rst mapper in a given pairreeives more load than the seond, but there are no visible di�erenes betweenthe groups. For l = 1, the load sizes assigned to the mappers are inreasing.Although these three patterns seem di�erent, they are in fat instantiation of thesame type of ommuniation organization. The l mappers in a given group �nishthe omputations around the same moment. The mappers from eah followinggroup �nish the omputations when the preeding group �nishes sending resultsand the ommuniation hannels an be used by the next group of proessors.Suh an organization of proessing is not possible when m is not divisible by
l (Fig. 5.13b). In this ase, the groups of l mappers an be seen at the beginningof the mapper sequene, but for the mappers ativated later, the group patterngradually disappears. Thus, the shedule starts with bloks of l mappers, whihgradually dismantle to single-mapper "groups".5.4 SummaryIn this hapter we introdued multilayer divisible appliations and proposedsheduling algorithms for all omputation layers. The order in whih the mappersshould �nish their omputations was analyzed. We proved that the FIFO order168

is optimum in some speial ases.The load distribution between the proessors in di�erent omputation layerswas analyzed. It turned out that it is to a large degree determined by the om-putation rate C. When C is small, the omputation time dominates the shedulelength. Hene, the load distribution is rather balaned, so that all proessors �n-ish omputing around the same time. If C is very big, the ommuniation timedominates the shedule length and it is pro�table to start the ommuniations assoon as possible. This leads to big inequalities in the load distribution.Another important parameter in�uening the load distribution is the bise-tion width limit l. If the number of senders (mappers or reduers) is divisibleby l and the ommuniation is fast, then the omputers form groups of size l.The omputers in a given group �nish the omputations around the same mo-ment and send their results during the same time interval, using the l availableommuniation hannels. The next group �nishes the omputations almost ex-atly when the ommuniation hannels are released. If the number of senders isnot divisible by l, the groups of l omputers are visible at the beginning of thesender sequene, but then they disappear. Thus, it may be pro�table to use thenumbers of mappers or reduers divisible by l. In this ase, due to the additionalinformation about the shedule struture, faster sheduling algorithms may bedevised.

169

6 Summary and Conlusions
In this work we analyzed sheduling divisible loads in heterogeneous distributedsystems. First, we studied lassial single-round divisible load sheduling prob-lems in star networks. We proposed fully polynomial time approximation shemesfor the problems with in�nite bandwidths. This result omplements omputa-tional omplexity analysis of this problem. The obstales in approahing themore general problem with �nite bandwidths were presented. Future researhmay inlude further analysis of the approximability of this problem. Another di-retion is the onstrution of approximation algorithms for single-round divisibleload sheduling with limited memory.The seond problem analyzed in this work was multi-round sheduling instar networks. Suh an organization of ommuniations allows for dereasing theinitial ommuniation delays and for taking into aount the pratial memorylimitations. We proposed a geneti algorithm solving the orresponding shedul-ing problem and used it to perform an experimental study of the properties of thenear-optimum solutions. Analytially obtained results were also provided. Theresults were used to onstrut fast and simple heuristis for our sheduling prob-lem. We analyzed them experimentally and ompared with the algorithms knownfrom the earlier literature. The heuristis proposed in this work obtained substan-tially better results in muh shorter time. Some lasses of ine�ient heuristiswere singled out. These results an be used as a base for future researh onapproximation algorithms for the analyzed problem.170

The following parts of this thesis were dediated to sheduling divisible MapRe-due and multilayer omputations. Sheduling divisible loads with preedeneonstraints was not studied before. We proposed mathematial models andsheduling algorithms for the analyzed organization of omputations. On thebasis of a series of omputational experiments we analyzed the in�uene of the sys-tem parameters on the performane of MapRedue appliations and the strutureof the shedules. These results an be helpful in onstruting e�etive omputernetworks as well as in designing e�ient MapRedue and multilayer divisibleappliations in pratie. The analysis of the load distribution in multilayer om-putations showed that the ommuniation parameters in a great extent in�uenethe amounts of load whih should be assigned to the partiular proessors. Wepointed out that adjusting the number of omputers used for proessing to othersystem parameters (e.g. the bisetion width limit) may lead to simpli�ations inthe sheduling algorithms and in the struture of the optimum shedule. Thisfat an be useful both for designing multilayer appliations and for ontrollingtheir exeution. A future researh diretion is better modeling of MapRedueand multilayer appliations. Several problems posed in this work, like �nding theoptimum order of �nishing mapper omputations or onstruting fast approxi-mation algorithms for sheduling multilayer appliations, are also open areas forfurther study.

171

Bibliography
[1℄ R. Agrawal, H.V. Jagadish, Partitioning Tehniques for Large-Grained Par-allelism, IEEE Transations on Computers 37 (1988) 1627-1634.[2℄ T. Badis, E. Boros, Minimization of Half-Produts, Mathematis of Oper-ations Researh 23(3) (1988) 649-660.[3℄ O. Beaumont, H. Casanova, A. Legrand, Y. Robert, Y. Yang, ShedulingDivisible Loads on Star and Tree Networks: Results and Open Problems,IEEE Transations on Parallel and Distributed Systems 16 (2005) 207-218.[4℄ O. Beaumont, A. Legrand, L. Marhal, Y. Robert, Independent and Divis-ible Tasks Sheduling on Heterogeneous Star-Shaped Platforms with Lim-ited Memory, Laboratoire de l'Informatique du Parallélisme, Éole NormaleSupérieure de Lyon, Tehnial Report 2004-22 (2004).[5℄ O. Beaumont, A. Legrand, Y. Robert, Sheduling Divisible Workloads onHeterogeneous Platforms, Parallel Computing 29(9) (2003) 1121-1152.[6℄ J. Berli«ska, Fully Polynomial Time Approximation Shemes for Shedul-ing Divisible Loads, in: R. Wyrzykowski, J. Dongarra, K. Karzewski, J.Wa±niewski (Eds.), Parallel Proessing and Applied Mathematis: 8th In-ternational Conferene PPAM 2009, Part II, Leture Notes in ComputerSiene 6068 (2010) 1-10.

172

[7℄ J. Berli«ska, M. Drozdowski, Dominane Properties for Divisible MapRedueComputations, Institute of Computing Siene, Pozna« University of Teh-nology, Researh Report RA-09/09 (2009), http://www.s.put.poznan.pl/mdrozdowski/rapIIn/ra0909.pdf.[8℄ J. Berli«ska, M. Drozdowski, Heuristis for Divisible Loads Sheduling inSystems with Limited Memory, Proeedings of the 4th Multidisiplinary In-ternational Sheduling Conferene: Theory & Appliations (2009) 321-329.[9℄ J. Berli«ska, M. Drozdowski, Heuristis for Multi-Round Divisible LoadsSheduling with Limited Memory, Parallel Computing 36(4) (2010) 199-211.[10℄ J. Berli«ska, M. Drozdowski, Sheduling Divisible MapRedue Computa-tions, Journal of Parallel and Distributed Computing 71(3) (2011) 450-459.[11℄ J. Berli«ska, M. Drozdowski, M. Lawenda, Multi-Installment Divisible LoadsSheduling in Systems with Limited Memory, Institute of Computing Si-ene, Pozna« University of Tehnology, Researh Report RA-07/08 (2008),http://www.s.put.poznan.pl/mdrozdowski/rapIIn/ra0708.pdf.[12℄ J. Berli«ska, M. Drozdowski, M. Lawenda, Experimental Study of Shedulingwith Memory Constraints Using Hybrid Methods, Journal of Computationaland Applied Mathematis 232 (2009) 638-654.[13℄ V. Bharadwaj, D. Ghose, V. Mani, Optimal Sequening and Arrangement inDistributed Single-Level Tree Networks with Communiation Delays, IEEETransations on Parallel and Distributed Systems 5(9) (1994) 968-976.[14℄ V. Bharadwaj, D. Ghose, V. Mani, T.G. Robertazzi, Sheduling DivisibleLoads in Parallel and Distributed Systems, IEEE Computer Soiety Press,Los Alamitos, CA, (1996).
173

[15℄ J. Bªa»ewiz, W. Cellary, R. Sªowi«ski, J. W�glarz, Sheduling Under Re-soure Constraints - Deterministi Models, Annals of Operations Researh 7(1986).[16℄ J. Bªa»ewiz, M. Drozdowski, Sheduling Divisible Jobs on Hyperubes, Par-allel Computing 21 (1995) 1945-1956.[17℄ J. Bªa»ewiz, M. Drozdowski, Distributed Proessing of Divisible Jobs WithCommuniation Startup Costs, Disrete Applied Mathematis 76 (1997) 21-41.[18℄ J. Bªa»ewiz, M. Drozdowski, M. Markiewiz, Divisible Task Sheduling -Conept and Veri�ation, Parallel Computing 25 (1999) 87�98.[19℄ J. Bªa»ewiz, K. Eker, E. Pesh, G. Shmidt, J. W�glarz, Sheduling Com-puter and Manufaturing Proesses, Springer, Heidelberg (1996).[20℄ Y.-C. Cheng, T.G. Robertazzi, Distributed Computation with Communi-ation Delay, IEEE Transations on Aerospae and Eletroni Systems 24(1988) 700-712.[21℄ Y.-C. Cheng, T.G. Robertazzi, Distributed Computation for a Tree Networkwith Communiation Delays, IEEE Transations on Aerospae and Ele-troni Systems 26 (1990) 511-516.[22℄ N. Comino, V.L. Narasimhan, A Novel Data Distribution Tehnique forHost-Client Type Parallel Appliations, IEEE Transations on Parallel andDistributed Systems 13 (2002) 97-110.[23℄ J. Dean, S. Ghemawat, MapRedue: Simpli�ed Data Proessing on LargeClusters, in: OSDI'04: Sixth Symposium on Operating System Design andImplementation, San Franiso, CA (2004) 137-150, http://labs.google.om/papers/mapredue.html. 174

[24℄ M. Drozdowski, Sheduling for Parallel Proessing, Springer, London (2009).[25℄ M. Drozdowski, W. Gªazek, Sheduling Divisible Loads in a Three-Dimensional Mesh of Proessors, Parallel Computing 25 (1999) 381-404.[26℄ M. Drozdowski, M. Lawenda, Multi-Installment Divisible Load Proessingin Heterogeneous Systems with Limited Memory, in: R. Wyrzykowski, J.Dongarra, N. Meyer, J. Wa±niewski (Eds.), Parallel Proessing and AppliedMathematis: 6th International Conferene PPAM 2005, Leture Notes inComputer Siene 3911 (2006) 847-854.[27℄ M. Drozdowski, M. Lawenda, A New Model of Multi-Installment DivisibleLoads Proessing in Systems with Limited Memory, in: R. Wyrzykowski,J. Dongarra, K. Karzewski, J. Wa±niewski (Eds.), Parallel Proessing andApplied Mathematis: 7th International Conferene PPAM 2007, LetureNotes in Computer Siene 4967 (2008) 1009-1018.[28℄ M. Drozdowski, P. Wolniewiz. Experiments with Sheduling Divisible Tasksin Clusters of Workstations, in: A. Bode, T. Ludwig, W. Karl, R. Wismuller(Eds.), Euro-Par 2000 Parallel Proessing: 6th International Euro-Par Con-ferene, Leture Notes in Computer Siene 1900 (2000) 311-319.[29℄ M. Drozdowski, P. Wolniewiz, Proessing Time and Memory Requirementsfor Multi-Installment Divisible Job Proessing, in: R. Wyrzykowski, J. Don-garra, M. Paprzyki, J. Wa±niewski (Eds.), Parallel Proessing and AppliedMathematis: 4th International Conferene PPAM 2001, Leture Notes inComputer Siene 2328 (2002) 125-133.[30℄ M. Drozdowski, P. Wolniewiz, Divisible Load Sheduling in Systems withLimited Memory, Cluster Computing 6 (2003) 19-29.
175

[31℄ M. Drozdowski, P. Wolniewiz, Optimum Divisible Load Sheduling on Het-erogeneous Stars with Limited Memory, European Journal of OperationalResearh 172 (2006) 545-559.[32℄ D. Ghose, H.J. Kim, Load Partitioning and Trade-O� Study for LargeMatrix-Vetor Computations in Multiast Bus Networks with Communia-tion Delays, Journal of Parallel and Distributed Computing 55 (1998) 32-59.[33℄ C. Gini, Variabilità e mutabilità, C. Cuppini, Bologna (1912).[34℄ D. Hohbaum, D. Shmoys, Using Dual Approximation Algorithms forSheduling Problems: Theoretial and Pratial Results, Journal of the ACM34(1) (1987) 144-162.[35℄ H.J. Kim, G. Jee, J.G. Lee, Optimal Load Distribution for Tree NetworkProessors, IEEE Transations on Aerospae and Eletroni Systems 32(2)(1996) 607-612.[36℄ E.L. Lawler, J. Labetoulle, On Preemptive Sheduling of Unrelated ParallelProessors by Linear Programming, Journal of the ACM 25(4) (1978) 612-619.[37℄ X. Li, V. Bharadwaj, C.C. Ko, Proessing Divisible Loads on Single-LevelTree Networks with Bu�er Constraints, IEEE Transations on Aerospaeand Eletroni Systems 36 (2000) 1298-1308.[38℄ X. Li, V. Bharadwaj, C.C. Ko, Distributed Image Proessing on a Networkof Workstations, International Journal of Computers and Appliations 25(2003) 1-10.[39℄ T. Lim, T.G. Robertazzi, E�ient Parallel Video Proessing through Con-urrent Communiation on a Multi-Port Star Network, in: 2006 Confereneon Information Sienes and Systems, Prineton, NJ (2006) 458-463.176

[40℄ J. Lin, C. Dyer, Data-Intensive Text Proessing with MapRedue, Morgan& Claypool (2010).[41℄ Lp_solve referene guide (2010), http://lpsolve.soureforge.net/5.5/.[42℄ R. Pike, S. Dorward, R. Griesemer, S. Quinlan, Interpreting the Data: Par-allel Analysis with Sawzall, Sienti� Programming 13 (2005) 277-298.[43℄ K. van der Raadt, Y. Yang, H. Casanova, Pratial Divisible Load Shedulingon Grid Platforms with APST-DV, Proeedings of the 19th IEEE Interna-tional Parallel and Distributed Proessing Symposium (IPDPS'05) (2005)29.b.[44℄ C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, C. Kozyrakis, Eval-uating MapRedue for Multi-Core and Multiproessor Systems, HPCA '07:Proeedings of the 13th International Symposium on High-PerformaneComputer Arhiteture (2007) 13-24.[45℄ T.G. Robertazzi, Ten Reasons to Use Divisible Load Theory, IEEE Computer36 (2003) 63-68.[46℄ J. Sohn, T.G. Robertazzi, S. Luryi, Optimizing Computing Costs Using Di-visible Load Analysis, IEEE Transations on Parallel and Distributed Sys-tems 9 (1998) 225-234.[47℄ H.M. Wong, V. Bharadwaj, Aligning Biologial Sequenes on DistributedBus Networks: A Divisible Load Sheduling Approah, IEEE Transationson Information Tehnology in Biomediine, 9(4) (2005) 489-501.[48℄ Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, A. Legrand, On theComplexity of Multi-Round Divisible Load Sheduling, INRIA Rh�ne-Alpes,Researh Report 6096 (2007), http://hal.inria.fr/inria-00123711/en/. 177

