
Authorization and authentication

Authorization and authentication

Security systems

2

Authorization and authentication

WHY?!

- security vulnerability

- data manipulation, piracy, cheating,
unauthorized access to information, etc.

- the information is the most important
commodity on the black market

- Virtually all cases of safety violation on the
Internet cover the offenses specified in the
applicable law in Poland

3

Authorization and authentication

General Security Property

-Confidentiality

- Integrity

- Availability

4

Authorization and authentication

• Authentication involves verifying the
credentials of the connection attempt. The
process includes sending the credentials of the
remote access client for remote access server in
plain text or in encrypted form, using the
authentication protocol.

• Authorization is to check whether the
connection attempt is allowed. Authorization
occurs after successful authentication.

5

Authorization

 proces of assign rights to user (access to resources)

6

Authentication

Types of authentication

- One-way authentication

Credentials

7

Authentication

Types of authentication

- Bi-directional authentication
* Two-stage (2x-sided)

* Single-step (both sides)

authentication from the server

authentication from the client

8

Authentication

Types of authentication

- Authentication of the trusted third party

1: credentials

2: Statement

3: Statement

9

Authentication

Authentication Methods

 Classical method

 Single sign-one (SSO)

 One-Time Pasword (OTP)

 Time Synchronization

 Challenge-Response

 Security Tokens

 Biometric Auth

10

Authentication

Encryption / Cryptography

 Simple Ciphers

 encryption method of substitution

 encryption method conversion

 Encryption

cryptogram

User AUser A

User B

Encrypting

Decoding

Method + Key

Method + Key

11

Authentication

Encryption / Cryptography

 Symmetric encryption

 To encrypt and decrypt the plaintext using a key or
keys

 Problems:

 Secrecy of the key issues

 The problem of key distribution

 Algorithms: DES, 3DES, CAST, RC {2,4,5,7}, Blowfish,
Rijndael, AES

12

Authentication

Encryption / Cryptography

 Asymmetric encryption

 recipient of a pair of keys: a private key and public
key

 knowledge of the public key is not sufficient to
breach the confidentiality of the ciphertext
obtained by using this key

 Advantages:

 ensuring confidentiality

 ensure the authenticity

 Algorithms: RSA, ElGamal13

Mobile
Authorization and authentication

14

Token

15

Public key, Private key

16

Components

• Application

• Verifying Server

• API

• Management Console User

17

Security

• Strong Cryptography

• One-Time Passcode

• 60 sec Passcode Generator

18

Security cd.

• What user know?

• What user have?

19

Authentication

20

Authorization

21

QR or Code

22

Radius

23

Demo

http://mobileid.comarch.pl/login.action

24

Authorization and authentication

OpenID & OAuth

25

OpenID

OpenID - distributed authentication architecture
and distribution of identity in Web services.

26

OpenID – how it works

27

OpenID

Advantages:

• ease of use

• decentralization

• privacy control

• ease of updating

Disadvantages / risks:

• identity theft

• concentration data
28

OpenID providers

Password-based providers:

• Google (www.google.com/accounts/o8/id)

• Yahoo! (me.yahoo.com/username)

• WordPress (username.wordpress.com)

• Wirtualna Polska (openid.wp.pl/username)

Strong authentication providers:

• PIP by VeriSign Labs
(username.pip.verisignlabs.com)

• MyOpenID (username.myopenid.com)

29

OAuth

OAuth (Open Authorization) - an open standard
for authorization. It allows users to share their

private resources stored on one site with another
site without having to hand out their credentials,

typically username and password.

OAuth is a service that is complementary to, but
distinct from, OpenID.

30

OAuth – how it works

31

OAuth

Advantages:

• customer application doesn’t know the user name
and password

• user can prevent access to the application from
the OAuth Provider

• allows to perform additional functions and data
made available by the OAuth service provider

Disadvantages / risks:

• user can’t tailor the profile for your application

32

OAuth who use it?

33

WS- Security Standards

34

IBM, Microsoft and a number of other vendors and
organisations have created standards for protection
of communications at the message level. These
standards cover many aspects of security, including
digital signatures, authentication and encryption of
SOAP messages. The generic name for the
standards is WS-*, and includes WS-Security, WS-
Trust and WS-SecureConversation.

WS- Security Standards

35

The WS-* architecture is a set of standards-based
protocols designed to secure Web service communication.
The WS-* security standards include:

• WS-Policy.

• WS-Security.

• WS-Trust.

• WS-SecureConversation.

• WS-ReliableMessaging.

• WS-AtomicTransactions.

WS- Security Standards / Web Services Security
Concepts

36

37

• It provides end-to-end security. Because message
security directly encrypts and signs the message,
having intermediaries does not break the security.

• It allows partial or selective message encryption and
signing, thus improving overall application
performance.

• Message security is transport-independent and can be
used with any transport protocol.

• It supports a wide set of credentials and claims,
including issue token, which enables federated
security.

Using WS-* has following advantages:

• Java

 WSS4J

 Apache Rampart

• .NET

 WCF (Windows Communication
Foundation)

• WSIT (Web Services Interoperability
Technologies) that enable interoperability
between the Java platform and WCF.

WS-* Implementation

38

39

WS-* example Web Service WCF

40

WS-* example Web Service WCF

Web.config(Server side)

<system.serviceModel>
<bindings>

<wsHttpBinding>
<binding name="wsHttpEndpointBinding">

<reliableSession enabled="true"/>
<security mode="Message">

<message clientCredentialType="UserName"/>
</security>

</binding>
</wsHttpBinding>

</bindings>
<diagnostics>

<messageLogging logEntireMessage="true" logMalformedMessages="true" logMessagesAtTransportLevel="true"/>
</diagnostics>
<services>

<service behaviorConfiguration="Server.StudentsServiceBehavior" name="Server.StudentsService">
<endpoint address="" binding="wsHttpBinding" bindingConfiguration="wsHttpEndpointBinding" name="Main"

contract="Server.IStudentsService">
</endpoint>
<endpoint address="mex" binding="mexHttpBinding" name="MetaData" contract="IMetadataExchange"/>

</service>
</services>
<behaviors>

<serviceBehaviors>
<behavior name="Server.StudentsServiceBehavior">

<serviceMetadata httpGetEnabled="true"/>
<serviceDebug includeExceptionDetailInFaults="false"/>
<serviceCredentials>

<serviceCertificate findValue="CN=tempCert"/>
<userNameAuthentication userNamePasswordValidationMode="MembershipProvider"

membershipProviderName="MySqlMembershipProvider"/>
</serviceCredentials>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

41

WS-* example Web Service WCF

App.config(Client side)

<system.serviceModel>
<bindings>

<wsHttpBinding>
<binding name="Main" closeTimeout="00:01:00" openTimeout="00:01:00"

receiveTimeout="00:10:00" sendTimeout="00:01:00" bypassProxyOnLocal="false"
transactionFlow="false" hostNameComparisonMode="StrongWildcard"
maxBufferPoolSize="524288" maxReceivedMessageSize="65536"
messageEncoding="Text" textEncoding="utf-8" useDefaultWebProxy="true"
allowCookies="false">
<readerQuotas maxDepth="32" maxStringContentLength="8192" maxArrayLength="16384"

maxBytesPerRead="4096" maxNameTableCharCount="16384" />
<reliableSession ordered="true" inactivityTimeout="00:10:00"

enabled="true" />
<security mode="Message">

<transport clientCredentialType="Windows" proxyCredentialType="None"
realm="" />

<message clientCredentialType="UserName" negotiateServiceCredential="true"
algorithmSuite="Default" establishSecurityContext="true" />

</security>
</binding>

</wsHttpBinding>
</bindings>
<client>

<endpoint address="http://localhost:54522/Service1.svc" binding="wsHttpBinding"
bindingConfiguration="Main" contract="IStudentsService" name="Main">
<identity>

<certificate encodedValue="AwAAAAEAAAAUAAAApJDIhsjoC/uNbaBdTdBjJo/>
</identity>

</endpoint>
</client>

</system.serviceModel>

 Intercept encrypted message from WCF Web Service

<DerivedKeyToken> – device token;

<SecurityTokenReference> – reference to device token;

<EncryptionMethod> – message encryption method in this
case AES 256 algorithm;

<CipherData> – encrypted information (user data).

42

WS-* example Web Service WCF

MessageLogTraceRecord.doc

43

44

Questions?

