
Using ML to Design a Flexible LOC Counter

Mirosław	Ochodek		
Miroslaw	Staron	

Dominik	Bargowski	
Wilhelm	Meding	
Regina	Hebig		

MaLTeSQuE2017,	Feb	21st,	2017,	Klagenfurt		

Workshop	on	Machine	Learning	Techniques	for	SoKware	Quality	EvaluaNon	

So7ware size

2

Size	

#Defects	
Size	Defects	density	=		

Cost	predicNon	

ProducNvity	

Metrics	normalizaNon	

The Problem

3

Introduces	(unknown)	measurement	
error,	problems	with	reliability	of	the	
measurement,	difficulNes	in	measuring	

mulN-language	code	base…	

Improving Measurement Certainty by Using

Calibration
to Find Systematic Measurement

Error – A Case of Lines-o
f-Code Measure

Miroslaw Staron
1 , Darko Durisic

2 , and Rakesh Rana
1

1 Computer Scien
ce and Engineering

, University of Gothenburg,
Sweden

m

i

r

o

s

l

a

w

.

s

t

a

r

o

n

/

r

a

k

e

s

h

.

r

a

n

a

@

g

u

.

s

e

,

2 Volvo Car Group, Swed
en

d

a

r

k

o

.

d

u

r

i

s

i

c

@

v

o

l

v

o

c

a

r

s

.

c

o

m

Abstract. Base measures such as the number of lines-of-cod
e are of-

ten used to make predictions
about such phenomena as project e↵ort,

product quality or maintenance
e↵ort. However, qui

te often we rely on

the measurement instrum
ents where

the exact algor
ithm for calculat

ing

the value of the measure is not known. Th
e objective of our research is

to explore how we can increase the certainty of base measures in soft-

ware engineering
. We conduct a benchmarking study where we use four

measurement instruments for lines-of-cod
e measurement with unknown

certainty to measure five code bases. Our results show that we can ad-

just the measurement values b
y as much as 20% knowing the systematic

error of the
tool. We conclude that calibra

ting the measurement instru-

ments can significantly
contribute

to increased accuracy in measurement

processes in software engineering
. This will impact the accuracy of pre-

dictions (e.g. of e↵ort in software projects) and therefore increase the

cost-e�ciency of software
engineering

processes.

1 Introduct
ion

With the introduction
of the measurement information model in the interna-

tional ISO/IEC 15939 standard for measurement processe
s the discipl

ine of soft-

ware engine
ering evolved from discussing metrics in general to categorizing

them

into three categories –
base measures, der

ived measures and
indicators.

The use

of base measures is fundamental for the construction
of derived measures and

indicators. T
he base measures are

also the types of
measures whi

ch are collected

directly and are a result of a measurement method. In many cases this m
easure-

ment method is an automated algorithm (e.g. a script) which we can refer to

as the measurement instrum
ent which quantifies an attribute of interest i

nto a

number.

Since in software engineering
we do not have reference measurement etalons

as we do in other discip
lines (e.g. k

ilogram or meter for phy
sics), we often rely

on arbitrary definitions o
f the base quantities.

One of such quantities i
s the size

of program
s measured as the number of lines of code. Ev

en though the num-

ber of lines
of code of a given program is a deterministic and fully quantifiable

Output:	2512	LOC	

Four	tools	
Error	(vs.	median)	

up	to	~20%	

Poten>al solu>ons

4

?	

A tool based on Programming
Language (PL) parsers

A machine learning (ML) approach

•  Explicitly known rules for coun3ng that
can be somehow formulated

•  100%	accurate	according	to	the	rules	
•  Requires	implementaNon	for	each	PL	
•  Can	be	also	implemented	to	allow	for	

some	configuraNon	of	rules	(however,	
probably	somehow	limited)	

•  It is difficult to explicitly define the rules
(either not known or too complex)

•  Learns	from	examples	(require	training	set)	
•  ClassificaNon	error	depending	on	the	

quality	of	training	set	
•  Doesn’t	require	new	implementaNon	for	

new	language	(however,	may	require	a	
new	training	set)	

Poten>al solu>ons

5

?	

A tool based on Programming
Language (PL) parsers

A machine learning (ML) approach

•  Explicitly known rules for coun3ng that
can be somehow formulated

•  100%	accurate	according	to	the	rules	
•  Requires	implementaNon	for	each	PL	
•  Can	be	also	implemented	to	allow	for	

some	configuraNon	of	rules	(however,	
probably	somehow	limited)	

•  It is difficult to explicitly define the rules
(either not known or too complex)

•  Learns	from	examples	(require	training	set)	
•  ClassificaNon	error	depending	on	the	

quality	of	training	set	
•  Doesn’t	require	new	implementaNon	for	

new	language	(however,	may	require	a	
new	training	set)	

Idea of the solu>on

•  Flexible	lines	of	code	counter	(CCFlex)	
– A	user	teaches	the	tool	which	lines	should	be	
counted	based	on	a	sample	(a	training	set)	

6

10	LOC	
JusNficaNon	

Idea of the solu>on

7

Feature acquisi>on

8

Each	line	is	characterized	by	a	set	of	features	
and	its	decision	class	(count	or	ignore)	

We	parse	the	text	to	extract	those	features.	

File type #Characters If … Decision class

java	 25	 TRUE	 …	 Count

…	 …	 …	 …	 …	

Feature acquisi>on

•  Plain text (F01-F04):
–  File	extension	
–  Full	and	trimmed	length	(characters)	
–  Tokens	

•  Programming language (F05-F19):
–  Assignment,	
–  Brackets,	
–  Class,	
–  Comment,	
–  Semicolons,	
–  …	

9

III. MACHINE-LEARNING-BASED LOC COUNTER

We assume that a flexible LOC counter should be
programming-language agnostic. Therefore, if it is possible,
we do not want to rely upon any specific language-specific
parsers. We would like to treat the code as it was a plain
text and perform classification at the level of a single line
of code instead of block constructs. Such approach limits the
necessity to modify the code of the counter to apply it to a
new programming language.

A. Features

We consider two approaches to deriving features describing
lines of code. In the first approach, the features are defined
a priori and extracted from the text either by measuring the
quantitative aspects of the text or checking the occurrence of
certain patterns. The currently supported list of such features
is presented in Table I. Although we use regular expressions
instead of language-specific parsers, it seems clear that the
features F05–F19 refer to constructs known from program-
ming languages. Consequently, such approach is not fully
programming-language agnostic. However, it is still based on
the constructs (and keywords) that are present in most of the
modern programming languages. As an alternative, we propose
a method of automatic acquisition of features based on the
analysis of a code base.

The proposed approach is based on the frequency analysis
of tokens appearing in the code (so called bag-of-words
approach). We tokenize each line in a file using white and
special characters: ()[]{}!@#$%ˆ&*-=;:’”\|‘˜,.<>/?. We also
preserve the split strings as tokens. We count the frequency of
occurrence of the tokens in each file and the whole code base.
We define two thresholds for accepting a token as a candidate
feature:

• min. frequency — the minimal number of occurrences of
the token in the code base;

• min. files covered — the minimal percentage of files that
have at least one occurrence of the token.

The thresholds allow us to filter out tokens that appear
frequently, but only in a small number of files (e.g., local
variables or API calls). We set the default values of the
thresholds based on our experience and trail and error to
25% for the minimum frequency and to 5 for the minimum
files covered. We observed that such settings allow us to
sufficiently eliminate tokens appearing only in a single module
or in a small number of files. However, we believe that using
a more systematic approach to tune these parameters could
still improve the results. Finally, we define a feature for each
candidate token meeting the thresholds as Fi: the number of
times the tokeni occurs in a line of code (Numeric).

B. Classification Algorithm

We consider a standard, binary classification problem (de-
cision classes are Count and Ignore) with numerical and
categorical variables. Therefore, it could be handled by most
of the available classification algorithms. However, taking into
account the practical application of the proposed approach, we

TABLE I
THE LIST OF PREDEFINED FEATURES DESCRIBING A LINE OF CODE.

ID Name Type Description
F01 File

extension
Nominal The extension of the file (e.g.,

java, cpp, etc.)
F02 Full

length
Numeric The number of characters in the

line.
F03 Length Numeric The number of characters in the

line after removing all leading
and trailing white characters.

F04 Tokens Numeric The number of tokens in the line
(the line is split based on white
characters).

F05 Semicolons Numeric The number of semicolons in the
line.

F06 Comments Boolean The line includes any of //, /*, */
or after trimming starts with *.

F07 Assignments Numeric the number of single assignment
signs in the line (=).

F08 Brackets Numeric The number of brackets: (,)in
the line.

F09 Square
brackets

Numeric The number of square brackets:
[,] in the line.

F10 Curly
brackets

Numeric The number of curly brackets: {,
} in the line.

F11 Class Boolean The word ”class” appears in the
line.

F12 For Boolean The word ”for” appears in the
line.

F13 If Boolean The word ”if” appears in the
line.

F14 While Boolean The word ”while” appears in the
line.

F15 Case Boolean The word ”case” appears in the
line.

F16 Try Boolean The word ”try” appears in the
line.

F17 Catch Boolean The word ”catch” appears in the
line.

F18 Expect Boolean The word ”expect” appears in
the line.

F19 Member
access

Numeric Counts members accessors: . or
->

require that the model constructed by a classification algorithm
has a form of a white-box, and allows the user to analyze how
a given decision was made.

Currently, we experiment with rules- and tree-based clas-
sifiers. In particular, we tested the approach using tree algo-
rithms available in the WEKA package [13]:

• J48 — an implementation of the C4.5 decision tree-based
classifier [21];

• PART — a rule-based classifier that derives rules from
C4.5 decision trees [10];

• JRip — a rule-based classifier, which is an implementa-
tion of Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) [7].

Feature acquisi>on

•  Bag of words approach (automa>c)
– Tokenize:	()[]{}!@#$%ˆ&*-=;:’”\|‘	̃,.<>/?		
– Treat	split	character	as	a	token	
– Calculate	thresholds:	

•  Frequencies	of	tokens	in	the	code	base	(min.	5)	
•  %	of	files	a	token	is	present	in	(min.	25%)	

–  If	thresholds	are	met:	
•  Fi:	the	number	of	Nmes	the	tokeni	occurs	in	a	line	

10

Preliminary valida>on

•  RQ1: What	level	of	predicNon	quality	can	be	
achieved	by	the	proposed	approach?		

•  RQ2: How	the	automaNc	features	acquisiNon	
affects	the	classificaNon	quality?		

•  RQ3: How	the	choice	of	classificaNon	
algorithm	affects	the	classificaNon	quality?		

11

Code databases

•  2402	physical	lines	of	code	in	total	
– Eclipse:	475	LOC,		
–  Jasper	Reports	757	LOC,	
– Spring	MVC:	1170	LOC	

•  ELOC	(Count	1492	/	Ignore	910)	
•  Subjec>ve	(Count	1237,	Ignore	1165)	

12

Valida>on schemes

10	x	10-fold	cross-validaNon	(18	schemes)	
•  two	datasets	

–  ELOC	
–  SubjecNve;		

•  three	feature	sets	
– All:	F01–F19	and	acquired	automaNcally;		
– Auto:	F01–F04	and	acquired	automaNcally;		
–  Predefined:	F01–F19;		

•  three	classificaNon	algorithms	(PART,	JRip,	J48).		

13

Predic>on quality measures

•  Accuracy	
•  Precision	
•  Recall	
•  F-score	
•  Ma�hews	CorrelaNon	Coefficient	(MCC)	

14

Results

RQ1: What	level	of	predicNon	quality	can	be	
achieved	by	the	proposed	approach?		

15

Results

16

TABLE II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC
ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

TABLE III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto
Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

define such properties, based on groundwork for more general
measure properties by Weyuker [27], Zuse [28] and Tian and
Zelkowitz [25]. The goal of the use of properties is to ensure
correctness of definitions of software metrics. However, the
approach cannot remove uncertainties from the measurement
process in practice (i.e. lacking a mechanism to guarantee
the correct instantiation of the mapping between the empirical
world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size mea-
sure: the number of components [9], which was intended as

an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8], [16]
and [23]. Armour [1] recognized the problems of using LOC
measures when estimating the future size of software and
pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]). Park
et al. [20] addressed this problem by providing one of the
first standardized instructions, focusing on distinct guidelines
to recognize physical LOC and logical LOC. Our work is
a complement and a different perspective on this problem –
trying to find which rules can be applied to recognize the lines

Results

17

TABLE II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC
ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

TABLE III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto
Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

define such properties, based on groundwork for more general
measure properties by Weyuker [27], Zuse [28] and Tian and
Zelkowitz [25]. The goal of the use of properties is to ensure
correctness of definitions of software metrics. However, the
approach cannot remove uncertainties from the measurement
process in practice (i.e. lacking a mechanism to guarantee
the correct instantiation of the mapping between the empirical
world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size mea-
sure: the number of components [9], which was intended as

an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8], [16]
and [23]. Armour [1] recognized the problems of using LOC
measures when estimating the future size of software and
pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]). Park
et al. [20] addressed this problem by providing one of the
first standardized instructions, focusing on distinct guidelines
to recognize physical LOC and logical LOC. Our work is
a complement and a different perspective on this problem –
trying to find which rules can be applied to recognize the lines

Very	high	accuracy:	
95.05	-	99.60%	

	
Higher	accuracy	for	ELOC	

Results

18

TABLE II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC
ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

TABLE III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto
Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

define such properties, based on groundwork for more general
measure properties by Weyuker [27], Zuse [28] and Tian and
Zelkowitz [25]. The goal of the use of properties is to ensure
correctness of definitions of software metrics. However, the
approach cannot remove uncertainties from the measurement
process in practice (i.e. lacking a mechanism to guarantee
the correct instantiation of the mapping between the empirical
world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size mea-
sure: the number of components [9], which was intended as

an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8], [16]
and [23]. Armour [1] recognized the problems of using LOC
measures when estimating the future size of software and
pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]). Park
et al. [20] addressed this problem by providing one of the
first standardized instructions, focusing on distinct guidelines
to recognize physical LOC and logical LOC. Our work is
a complement and a different perspective on this problem –
trying to find which rules can be applied to recognize the lines

Very	high	Precision	and	
Recall	(0.93-1.00)	

Slight	preference	towards	
Precision	

Small	standard	deviaNons		

Results

RQ2: How	the	automaNc	features	acquisiNon	
affects	the	classificaNon	quality?		

19

Results

20

TABLE II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC
ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

TABLE III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto
Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

define such properties, based on groundwork for more general
measure properties by Weyuker [27], Zuse [28] and Tian and
Zelkowitz [25]. The goal of the use of properties is to ensure
correctness of definitions of software metrics. However, the
approach cannot remove uncertainties from the measurement
process in practice (i.e. lacking a mechanism to guarantee
the correct instantiation of the mapping between the empirical
world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size mea-
sure: the number of components [9], which was intended as

an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8], [16]
and [23]. Armour [1] recognized the problems of using LOC
measures when estimating the future size of software and
pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]). Park
et al. [20] addressed this problem by providing one of the
first standardized instructions, focusing on distinct guidelines
to recognize physical LOC and logical LOC. Our work is
a complement and a different perspective on this problem –
trying to find which rules can be applied to recognize the lines

		

		

		

		

		

		

All	features	provided	the	
best	results	for	both	

datasets	

Predefined	slightly	be�er	
for	ELOC	and	worse	for	

SubjecNve	

Automa>c features acquisi>on

21

TABLE II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC
ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

TABLE III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto
Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

define such properties, based on groundwork for more general
measure properties by Weyuker [27], Zuse [28] and Tian and
Zelkowitz [25]. The goal of the use of properties is to ensure
correctness of definitions of software metrics. However, the
approach cannot remove uncertainties from the measurement
process in practice (i.e. lacking a mechanism to guarantee
the correct instantiation of the mapping between the empirical
world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size mea-
sure: the number of components [9], which was intended as

an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8], [16]
and [23]. Armour [1] recognized the problems of using LOC
measures when estimating the future size of software and
pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]). Park
et al. [20] addressed this problem by providing one of the
first standardized instructions, focusing on distinct guidelines
to recognize physical LOC and logical LOC. Our work is
a complement and a different perspective on this problem –
trying to find which rules can be applied to recognize the lines

WEKA	WrapperSubsetEval	(classifier:	J48)	and	the	BestFirst	method		
(selecNon	based	on	Accuracy	and	RMSE,	five	folds,	threshold	=	0.01).	

Results

RQ3: How	the	choice	of	classificaNon	algorithm	
affects	the	classificaNon	quality?		

22

Results

23

TABLE II
THE RESULTS OF THE PREDICTION QUALITY EVALUATION (AVERAGES, AND STD. DEVIATIONS).

Dataset Features set Classifier Accuracy % Precision Recall F-Measure MCC
ELOC All PART 99.55±0.45 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All JRip 99.53±0.47 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC All J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined PART 99.53±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined JRip 99.56±0.46 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Predefined J48 99.60±0.41 1.00±0.01 1.00±0.00 1.00±0.00 0.99±0.01
ELOC Auto PART 99.38±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.99±0.01
ELOC Auto JRip 99.28±0.47 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
ELOC Auto J48 99.18±0.54 1.00±0.01 0.99±0.01 0.99±0.01 0.98±0.01
Subjective All PART 97.34±1.14 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective All JRip 96.54±1.20 0.98±0.01 0.95±0.02 0.97±0.01 0.93±0.02
Subjective All J48 97.18±1.07 0.98±0.01 0.97±0.02 0.97±0.01 0.94±0.02
Subjective Predefined PART 95.05±1.45 0.97±0.02 0.93±0.02 0.95±0.01 0.90±0.03
Subjective Predefined JRip 95.32±1.44 0.97±0.02 0.93±0.02 0.95±0.02 0.91±0.03
Subjective Predefined J48 95.10±1.42 0.97±0.02 0.94±0.02 0.95±0.01 0.90±0.03
Subjective Auto PART 97.33±1.08 0.98±0.01 0.97±0.02 0.97±0.01 0.95±0.02
Subjective Auto JRip 96.38±1.14 0.98±0.01 0.95±0.02 0.96±0.01 0.93±0.02
Subjective Auto J48 97.08±1.09 0.98±0.01 0.96±0.02 0.97±0.01 0.94±0.02

TABLE III
THE MOST RELEVANT FEATURES SELECTED BY A LEARNER-BASED FEATURE SELECTION ALGORITHM ON THE TRAINING SETS.

ELOC, All ELOC, Predefined ELOC, Auto Subjective, All Subjective, Predefined Subjective, Auto
Brackets Brackets Freq. of ”*” Assignment Assignment Freq. of ”*”
Comments Comments Freq. of ”(” Freq. of ”*” Comments Freq. of ”available”
Semicolons Full length Freq. of ”;” Freq. of ”available” If Freq. of ”:”
Full length Semicolons Freq. of ”/” Freq. of ”:” While Freq. of ”=”

Full length Freq. of ”has” Full length Freq. of ”has”
Freq. of ”implied” Length Freq. of ”implied”
Freq. of ”license” Semicolons Freq. of ”license”
Freq. of ”none” Tokens Freq. of ”none”
Freq. of ”reserved” Freq. of ”reserved”
Freq. of ”return” Freq. of ”return”
Freq. of ”see” Freq. of ”see”
Freq. of ”software” Freq. of ”software”
Full length Full length
Length Length
Tokens Tokens

define such properties, based on groundwork for more general
measure properties by Weyuker [27], Zuse [28] and Tian and
Zelkowitz [25]. The goal of the use of properties is to ensure
correctness of definitions of software metrics. However, the
approach cannot remove uncertainties from the measurement
process in practice (i.e. lacking a mechanism to guarantee
the correct instantiation of the mapping between the empirical
world and the relational systems).

With the appearance of new software development
paradigms over the years, also methods for size measurement
evolved. For example, the introduction of component-based
software development was accompanied by a new size mea-
sure: the number of components [9], which was intended as

an addition to the measurement of the components’ sizes.
Similarly, object-oriented software development brought the
notion of measuring objects’ and methods’ size, e.g. [8], [16]
and [23]. Armour [1] recognized the problems of using LOC
measures when estimating the future size of software and
pointed out the future of Function Point Measurement.

However, ambiguity has a long history for many measures,
such as lines of code (e.g. as shown by Rosenberg [22]). Park
et al. [20] addressed this problem by providing one of the
first standardized instructions, focusing on distinct guidelines
to recognize physical LOC and logical LOC. Our work is
a complement and a different perspective on this problem –
trying to find which rules can be applied to recognize the lines

Nearly	no	differences	
between	the	selected	ones	

	
PART	>?	J48	>?	JRip	

Limita>ons & hard cases

•  Block	comments		
•  MulNple	meaningful	lines	of	code	in	one	line	
•  A	single	meaningful	line	in	many	lines	

	

24

Ques>ons

25

