

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

The following is intended to provide some insight into a line of research in
Oracle Labs. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material,
code, or functionality, and should not be relied upon in making purchasing
decisions. Oracle reserves the right to alter its development plans and practices
at any time, and the development, release, and timing of any features or
functionality described in connection with any Oracle product or service remains
at the sole discretion of Oracle. Any views expressed in this presentation are
my own and do not necessarily reflect the views of Oracle.

2	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@	and	Cannoli	
An	Ini&al	Explora&on	into	Machine	Learning	for	the	Purposes	of	Finding	
Bugs	in	Source	Code	

Tim	Chappell*,	CrisDna	Cifuentes,	Paddy	Krishnan,	Shlomo	Geva*	
Queensland	University	of	Technology*,	Oracle	Labs	
November	15,	2016	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Project	Overview	
•  Imagine	if	machine	learning	could	detect	bugs	for	us	in	soTware	

– With	good	precision	
– With	good	recall	
– With	good	performance	
– And	beat	Parfait	and	other	staDc	code	analysis	tools	at	finding	bugs	in	soTware	

•  This	Friday	Project	is	an	invesDgaDon	into	what	is	feasible	in	this	space	
– Project	started	in	February	2016	

4	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

		Machine	Learning	is	the	subfield	of	
computer	science	that	“gives	
computers	the	ability	to	learn	without	
being	explicitly	programmed”	(Arthur	
Samuel,	1959)	
– Wikipedia	

5	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	

•  The	learning	algorithm	is	given	
example	inputs	and	their	desired	
outputs,	with	the	goal	to	learn	a	
general	rule	that	maps	inputs	to		
outputs	

Unsupervised	Learning	

•  The	learning	algorithm	infers	
structure	in	its	inputs	to	produce	
the	outputs	of	interest	

Machine	Learning	Approaches	

6	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	

•  The	learning	algorithm	is	given	
example	inputs	and	their	desired	
outputs,	with	the	goal	to	learn	a	
general	rule	that	maps	inputs	to		
outputs	

•  Two	tools	
– Bisco@	
– Cannoli	

Unsupervised	Learning	

•  The	learning	algorithm	infers	
structure	in	its	inputs	to	produce	
the	outputs	of	interest	
	
	

Machine	Learning	Approaches	

7	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	–	Classifiers	and	Decision	Trees	

Diagram from: http://sebastianraschka.com/images/blog/2014/intro_supervised_learning/decision_tree_1.png

8	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

2D	Decision	Boundary	

http://statweb.stanford.edu/~jtaylo/courses/stats202/_images/trees_fig_03.png

9	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Iris	Dataset	Example	

	
• Made	use	of	two	petal	features	(length	and	width)	

• Classified	into	three	classes	of	Irises	(setosa,	versicolor,	virginica)	

10	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

AbstracDng	The	Iris	Dataset	Example	

	
•  Features	are	inputs	
• Classes	are	outputs	
• Dataset	needs	to	contain	features	and	classes	

11	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

AbstracDng	The	Iris	Dataset	Example	

	
•  Features	are	inputs	
• Classes	are	outputs	
• Dataset	needs	to	contain	features	and	classes	
•  For	bugs	in	source	code	

– Features	==	?	
– Classes	==	bug	type	

12	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@	

13	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Complexity	of	the	code	
–  CyclomaDc	complexity	
–  Def-use	chains	
–  #	edges	
–  #	knots	
–  Length	of	code	
–  Line	count	
–  NesDng	level	
–  Vocabulary	
–  FuncDon	start	line	
–  FuncDon	end	line	
– …	

•  Text	features	
–  !	
–  (
– )	
–  ,	
–  00	
–  1	
– …	
–  FILE	
– …	
–  Input	
–  Logged	
– …	

•  Intermediate	Code	
instrucDon	frequency	
–  add	
–  alloca	
–  and	
–  ashr	
–  bitcast	
–  br	
–  call	
–  extractvalue	
–  fadd	
– …	

Bisco@’s	Feature	SelecDon	

14	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Intermediate	Code		
2-grams	
–  alloca-alloca	
–  store-store	
–  store-br	
–  br-load	
–  load-icmp	
–  icomp-br	
–  br-br	
– …	

•  Clang	–analyze	output	
–  Array-subscript-is-undefined	
–  Bad-free	
–  Dead-assignment	
–  Dead-increment	
–  Dereference-of-null-pointer	
–  Double-free	
–  FuncDon-call-argument-is-
an-uniniDalized-value	

– Memory-leak	
–  Out-of-bound-array-access	
– …	

•  Output	from	other	StaDc	
Code	Analysis	tools	
–  Parfait	
–  Splint	
–  UNO	

Bisco@’s	Feature	SelecDon	

15	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Feature	SelecDon	–	Dimensionality	ReducDon	

010002000300040005000600070008000
0

500

1000

1500

2000

2500

3000

8,190	features	reduced	to	500	
16	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Feature	SelecDon	–	Dimensionality	ReducDon	
•  LOONNE:	leave	one	out	nearest	neighbour	error	

– Removes	the	least	disDnguishing	feature	at	each	step	by	minimising	the	global	error	

	Given	a	feature	set	FS,		
	 	GlobalError(FS)	=	Sum	of	all	misclassificaDons	for	FS	
	LOONNE	removes	feature	f	if	
	 	for	all	other	features	f’,	GlobalError(FS-{f})	>	GlobalError(FS-{f’})	

	

17	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@’s	ClassificaDon	Algorithm	
• Random	Forests	

– Forest	of	100	randomly-seeded	decision	trees	using	random	subsets	of	the	feature	
set	

– The	outcomes	of	the	decision	trees	are	combined	to	produce	a	single	outcome	for	
each	result	

– Useful	when	no	natural	probabilisDc	distribuDon	amongst	features	

• Granularity	of	analysis:	funcDon	level	
– Line	number	level	too	fine	for	iniDal	experimentaDon	

18	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Training	and	Test	Datasets:	BegBunch’s	Accuracy	Suites	

BegBunch	Suite	 Type	of	Benchmark	 Average	Non-Commented	
Lines	of	Code	

#	Func&ons	 #	and	Types	of	Bugs	

Cigital	 SyntheDc	 15	 50	 	
Buffer	overruns:	1709	
Memory	leaks:	196	
UniniDalised	vars:	131	

Samate	 SyntheDc	 20	 2,366	

Iowa	 SyntheDc	 31	 1,686	

OracleLabs-
Accuracy*	

Real	 917	 547	

Bugs	are	marked	up	in	the	suites	

* These bug kernels were extracted from open source code, including relevant flow of control.

Trained	with	4-fold	cross-validaDon	over	test	datasets	

19	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Bisco@)	vs	StaDc	Code	Analysis	Tools	

Type	of	Bug	 Splint	 Parfait	 BiscoG	

500	features	

Buffer	overrun	 581/999	TP	
(58%)	

343	FP	
	

885/999	
(89%)	

14	FP	
	

910/999	
(91%)	

262	FP	
	

Memory	leak	 -	 9/42		
(21%)	

10	FP	
	

17/42		
(40%)	

3	FP	
	

UniniDalised	variable	 12/15	TP	
(80%)	

54	FP	
	

13/15		
(87%)	

11	FP	
	

8/15		
(53%)	

0	FP	
	

Evaluated	using	4-fold	cross-validaDon	over	BegBunch	dataset	

20	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

•  Top	10	features	
– [Parfait]	buffer	overflow	
– [Parfait]	read	outside	array	bounds	
– [Splint]	fresh	storage	not	released	
before	return	

– [Text]	,	
– [Complexity]	funcDon	end	line	
– [Parfait]	uniniDalised	variable	
– [Splint]	funcDon	exported	but	not	used	
outside	

– [Splint]	for	body	not	block	
– [Text]	contents	

•  Training	datasets	have	high	number	
of	syntheDc	benchmarks	
– Bisco@	learnt	to	rely	on	features	that	
don’t	make	sense	(e.g.,	end	of	line)	

• None	of	the	features	are	
representaDve	of	a	bug	

What	Did	Bisco@	Learn?		

21	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Bisco@)	vs	StaDc	Code	Analysis	Tools	

Type	of	Bug	 Splint	 Parfait	 BiscoG	

500	features	 1-&2-grams	+	
complexity	features	

(553	features)	

Buffer	overrun	 581/999	TP	
(58%)	

343	FP	 885/999	
(89%)	

14	FP	 910/999	
(91%)	

262	FP	 23/999	
(2%)	

5	FP	
	

Memory	leak	 -	 9/42		
(21%)	

10	FP	 17/42		
(40%)	

3	FP	 5/42	
(12%)	

0	FP	
	

UniniDalised	
variable	

12/15	TP	
(80%)	

54	FP	 13/15		
(87%)	

11	FP	 8/15		
(53%)	

0	FP	 0/15		
(0%)	

0	FP	
	

Evaluated	using	4-fold	cross-validaDon	over	BegBunch	dataset	

22	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Bisco@	Conclusions	
• Need	more	datasets	of	representaDve	bugs;	marked	up	

– I.e.,	not	syntheDc	benchmarks	

•  The	crux	of	supervised	learning	is	determining	the	right	set	of	features	
– What	features	make	a	bug	a	bug?		

	

23	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

“Deep	Learning	succeeds	when	it’s	difficult	
to	figure	out	what	features	you	want	to	use	
in	your	classifier”		

24	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	

•  The	learning	algorithm	is	given	
example	inputs	and	their	desired	
outputs,	with	the	goal	to	learn	a	
general	rule	that	maps	inputs	to		
outputs	

•  Two	tools	
– Bisco@	
– Cannoli	

Unsupervised	Learning	

•  The	learning	algorithm	infers	
structure	in	its	inputs	to	produce	
the	outputs	of	interest	
	

Machine	Learning	Approaches	

25	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	–	ConvoluDonal	Neural	Networks		
3-layer	neural	network	

http://cs231n.github.io/assets/nn1/neural_net2.jpeg

26	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Supervised	Learning	–	ConvoluDonal	Neural	Networks		
Convolu&onal	neural	network	

http://cs231n.github.io/assets/cnn/cnn.jpeg

27	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cannoli	

28	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cannoli’s	Architecture		

29	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Training	Dataset:	BegBunch’s	Scalability	Suites	

BegBunch	Suite	 Average	Non-Commented	Lines	of	
Code	

#	Func&ons	

Calysto	 87,636	 11,214	

OracleLabs-Scalability	 394,739	 53,448	

Bugs	are	not	marked	up	in	these	suites	

30	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Cannoli)	vs	StaDc	Code	Analysis	Tools		
Training	on	Scalability	Suite	(50/50	split),	tes&ng	on	OpenSolaris	ONNV	b93*	(no	split)	

Type	of	Bug	 Parfait	v0.4.1	 Cannoli	

Buffer	overrun	 221	TP,	81	FP	 213/221	TP,	56095	FP	

Memory	leak	 506	TP,	94	FP	 497/506	TP,	47414	FP	

* 168,666 functions

Training on Scalability Suites using Parfait v1.7.1.3 results as ground truth

31	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Results	ML	(Cannoli)	vs	StaDc	Code	Analysis	Tools	
Training	on	BegBunch’s	Accuracy	Suites	(no	split),	tes&ng	on	OpenSolaris	ONNV	b93*	

Type	of	Bug	 Parfait	v0.4.1	 Cannoli	

Buffer	overrun	 221	TP,	81	FP	 23/221	TP,	9146	FP	

Memory	leak	 506	TP,	94	FP	 0/506	TP,	174	FP	

UniniDalised	variable	 30	TP,	16	FP	 0/30	TP,	153	FP	

Training on Scalability Suites using Parfait v1.7.1.3 results as ground truth

* 168,666 functions

32	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

What	Did	Cannoli	Learn?		

?	
33	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Cannoli	Conclusions	
•  Image	recogniDon	techniques	not	ideal	for	source	code	analysis	

• Results	from	black-box	techniques	are	not	very	useful	for	bug	detecDon	
– No	bug	traces	can	be	derived	for	developers	to	understand	the	results	of	the	tool	

34	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	Of	The	State	Of	The	Art	
Paper	 Venue-Year	 Summary	

Brun,	Ernst	 ICSE-04	 ProperDes	inferred	using	both	buggy	and	fixed	code	

Yamaguchi	et	al.	 ACSAC-12	 Extrapolate	vulnerabiliDes	from	known	vulnerabiliDes	using	AST	representaDons	

ALETHEIA	 CCS-14	 StaDsDcal	analyses	to	predict	“rare”	vulnerabiliDes;	tunable	to	focus	on	FP	
eliminaDon/TP	detecDon.		Basic	features	(per	Bisco@)	

JSNice	 POPL-15	 Use	program	dependence	graphs	and	staDsDcal	predicDon	to	deobfuscate	JavaScript	
code	

Mou	et	al.	 AAAI-16	 ConvoluDonal	Neural	Networks	using	AST	representaDon	to	idenDfy	code	
similariDes	

Wang	et	al.	 ICSE-16	 Use	Deep	Belief	Networks	and	AST	representaDon	to	detect	within	project	and	cross	
project	defects	

Greico	et	al.	 CODASPY-16	 Use	staDc	and	dynamic	features	(state	of	memory)	to	detect	vulnerabiliDes	

35	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Summary	
•  Two	ML	approaches	were	implemented	to	find	bugs	in	C	code	

– Bisco@:	supervised	learning	using	a	random	forest	of	decision	trees	and	LOONNE	
– Cannoli:	supervised	learning	using	a	convoluDonal	neural	network	

• Both	learned	“something”	
– But	results	are	Ded	to	the	datasets	used;	i.e.,	doesn’t	learn	to	find	bugs	in	unseen	
code	

• Bisco@	captures	syntacDc	features	of	the	program	
– Need	to	capture	seman/c	features	

• Need	a	lot	more	representa&ve	data	

36	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Future	Plans	
1.  Create	enough	data	for	datasets	

– RepresentaDve	proporDon	of	buggy	vs	non-buggy	code	
– RepresentaDve	number	of	bugs	for	each	bug	type	of	interest	
– Fixed	version	of	each	buggy	example	

2.  Explore	different	approaches	to	encode	semanDcs	
– Use	of	buggy	vs	fixed	code	to	determine	features	of	interest	[Ernst’04]	
– Use	of	recurrent	neural	network	with	long	short-term	memory	(LSTM)	

	

37	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	

Q&A	
38	

Copyright	©	2016,	Oracle	and/or	its	affiliates.	All	rights	reserved.		|	 39	

