
i
i

“sync protocol” — 2010/6/2 — 17:29 — page 1 — #1 i
i

i
i

i
i

Correctness Proofs of On-Demand Server
Synchronization Protocols of Session Guarantees?

 Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

Institute of Computing Science
Poznań University of Technology, Poland

{Lukasz.Piatkowski,Cezary.Sobaniec,Grzegorz.Sobanski}@cs.put.poznan.pl

Abstract. Session guarantees define required properties of a distributed system
regarding consistency from the point of view of a single mobile client. Consistency
protocols of session guarantees are composed of two elements: the first is aimed
at providing safety (the guarantees), the second is aimed at providing liveness
(data synchronization). This paper presents correctness proofs of two new data
server synchronization protocols, which solve main problems of earlier proposals.

1 Introduction

Nowadays, distributed, mobile and ubiquitous computer systems are becoming more
and more popular. It is expected, that these systems are able to provide high perfor-
mance and availability of data and services. A key concept in providing these features
is replication. However, it introduces the problem of data consistency that arises when
replicas are modified. There are numerous consistency models developed for Distributed
Shared Memory systems. These models, called data-centric consistency models [1], as-
sume that servers replicating data are also accessing the data for processing purposes.
All consistency requirements are defined from the point of view of a data object.

Our work is aimed toward a mobile environment, where clients are accessing data
and services located on different servers. This approach is very different from DSM
replication and is called session guarantees [2] or client-centric consistency models [1].
Clients using session guarantees are not bound to a particular server, but they can
switch from one server to another to achieve better performance or keep data available.
Data consistency requirements are specified only from the point of view of a single
migrating client. Intuitively: the client wants to continue processing after a switch to
another server, but it requires new operations to remain consistent with previously is-
sued operations within a session. This model is expected to be better suited for mobile
systems. Of course DSM models are also possible to use in a mobile environment. Un-
fortunately, weak DSM models which are applicable in such environments, are hard to
use by the user, while strong models are easy to use, but very hard, or even impossible,
to achieve in a highly mobile and asynchronous system [3]. Moreover, DSM consistency
protocols maintain consistency from the point of view of a data object, independently
of a number of clients performing operations and their locations.

? The research presented in this paper has been partially supported by the European Union
within the European Regional Development Fund program no. POIG.01.03.01-00-008/08.



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 2 — #2 i
i

i
i

i
i

2  Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

To allow a client to switch to another server, the servers need to synchronize opera-
tions which were performed on objects being accessed by the client. This synchronization
is done by exchanging histories of writes between servers. Constant size version vectors
based on vector clocks [4, 5] may be used for efficient representation of write sets. It is
proved in [6] that the version vector representation of a set of writes is always a super-
set of the exact set of operations resulting from definitions of session guarantees. Each
position of the version vector represents the number of writes performed by a given
server. [7] shows that other approaches are also possible: protocols using client-based or
object-based version vectors.

One of the key elements of a system with session guarantees is the synchronization
protocol used by servers to exchange write history sets. [8] presents a solution, which
is quite complex and designed for old and slow network architectures. Newer papers
[7, 6] focus on the problem of providing formal description of session guarantees, but
they consider the problem of server synchronization to be orthogonal and use a simple
periodic history multicasting protocol. To overcome serious limitations of this basic ap-
proach, two new server synchronization protocols were proposed in [9]. They introduced
an on-demand server synchronization protocol with pruning of histories.

The purpose of this paper is to prove that protocols proposed in [9] are safe and
provide liveness. This paper is organized as follows. First, a system model is introduced
and session guarantees are defined in Section 2. In Section 3 the synchronization proto-
cols are described. Section 4 contains proofs of safety and liveness. Finally, conclusions
and future work is outlined in Section 5.

2 System Model and Session Guarantees

The system consists of a set S of servers (|S| = NS ) holding a full copy of a set of data
objects. There are NC clients accessing the data. Each of them selects a single server
and sends direct requests divided into two classes: non-modifying operations (reads),
and modifying operations (writes). Clients are separated from servers, and they can
run on a different computers than servers. Clients are mobile, i.e. they can switch from
one server and object to another. Session guarantees are expected to take care of data
consistency observed by a single, migrating client.

A client can instruct the servers to check specific consistency criteria expressed using
session guarantees. There are four session guarantees [2]: Read Your Writes (RYW),
Monotonic Writes (MW), Monotonic Reads (MR) and Writes Follow Reads (WFR).
Formal definitions of session guarantees can be found in [6].

A client requesting RYW session guarantee expects, that every read operation will
reflect all previous writes issued by him, regardless of switching to another server during
the session. This guarantee can be exemplified by a user writing a TODO list to a file.
When he is traveling between different locations and servers, he wants to recall the most
urgent tasks on the TODO list. Without RYW session guarantee the read may miss
some recent updates of the list.

The MW session guarantee globally orders writes of a given client. Let us consider a
counter object with two methods for updating its state: increment(), and set(). A user
of the counter issues the set() function at first, and then updates the counter by calling



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 3 — #3 i
i

i
i

i
i

Correctness Proofs of ODSAP Protocol of Session Guarantees 3

increment() function. Without MW session guarantee the final result would be unpre-
dictable, because it depends on the order of the execution of these two functions.

A client requesting MR knows, that his read operation will always return a state
newer or equal to the one observed by a previous read operation. Usage of the MR
guarantee can be illustrated by a mailbox of a traveling user. The user opens the mailbox
at one location, and reads a few emails. Afterward he opens the same mailbox at different
location; he expects to see at least all the messages he has seen previously. The new
state may not reflect the most recent one, but must be at least as new as the previously
observed state.

WFR session guarantee keeps track of causal dependencies resulting of the client’s
operations. As an example let us consider a discussion forum, where a user has read
some posts. Some time later the user wants to post a reply to a message he has read.
The new message must be submitted to a server that knows the post to which the user
is going to reply. WFR session guarantee may solve the problem by tracking causal
dependency between the read of the original message and the posting (write) of the
reply.

It is important to note, that differences between data centric and session guarantees
approaches are essential and clearly seen when we try to compare them. The dissimilarity
is caused by a very different way of client cooperation model and consistency properties.
This can be seen when one tries to achieve session guarantees using DSM protocols and
vice versa. In [10] it is proved, that only if we enable all possible session guarantees, we
can get a causal consistency known from DSM systems, and in [11] that enabling three of
four guarantees is required to get a PRAM consistency. Thus trying to implement DSM
consistency using session guarantees is inefficient. Also trying to get session guarantee
consistency using DSM algorithms is very ineffective. Let us consider a client with
just MW guarantee enabled issuing two write operations w1 and w2 at two different
servers S1 and S2, respectively. If a strong consistency of Sequential Order is enabled
on the server side, it is still possible, that during the synchronization of servers, the final
order of the writes will become w2, w1. This still satisfies sequential consistency, but
violates MW guarantee. Therefore, to achieve MW guarantee, no new client’s operation
in the whole system may be processed until a previously issued operation is finished
and replicated to other servers — and this requires Atomic Consistency. Moreover, the
client cooperation model in session guarantees differs from the one in DSM systems.
In session guarantees, if a set of clients is requesting operations only from a subset
of all servers, there is no need to synchronize operations among all servers, but only
among the subset. This is not true in DSM, i.e. when using Atomic Consistency, many
protocols require all replicas to be updated before client’s operation is finished. Some of
those problems are solved in voting base protocols, but still they require a synchronous
update of all replicas in a write quorum [12].

To achieve consistency of replicated objects, an exchange protocol is required [7]. As
mentioned in Section 1, such protocols use version vectors to efficiently represent sets
of writes resulting from definitions of session guarantees. Each client Ci maintains two
version vectors: WCi and RCi , representing the set of writes it has requested, and the
set of writes observed by reads issued by the client. Each server Sj maintains a version
vector VSj updated on every write performed at this server. Every client along with



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 4 — #4 i
i

i
i

i
i

4  Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

every request sends a version vector VCi representing its consistency requirements. This
version vector represents the set of writes that are expected to be performed by the
destination server before proceeding to the current operation. The version vector is
calculated based on version vectors WCi , RCi and the set of required session guarantees.
Before performing a new operation a server Sj checks whether its version vector VSj

dominates the version vector VCi . The domination is denoted by VSj ≥ VCi and is
fulfilled when ∀k VSj [k] ≥ VCi [k]. Such domination means that the required session
guarantees are preserved, otherwise the server must be updated before performing the
requested operation.

Every server Sj records all write operations it has performed in an ordered history
HSj . Servers exchange information about writes performed in the past in order to syn-
chronize the states of replicas. This synchronization procedure eventually causes total
propagation of all writes directly submitted by clients.

It is assumed that the system supports reliable communication primitives like send-
ing unicast and broadcast messages. Another assumption is that the servers do not fail.
These assumptions are quite strong, but there is already some research targeted at al-
leviating them, e.g. consistency protocols of session guarantees using rollback recovery
proposed in [13].

3 The Synchronization Protocol

The simple synchronization protocol used in [6] was proposed only to allow evaluation
of the quality of version vector representations of sets of writes. In that approach a full
copy of the server’s history of processing is sent periodically to all other servers. Due to
growing size of the set of writes, the algorithm is obviously unacceptable, as it causes
the system to degenerate in short time. To overcome this problem, new synchronization
protocols called ODSAP and ODSAP-O were proposed. They are event-driven and
allow servers to prune their histories. Understanding those protocols is important for
providing correctness proofs, so they are briefly discussed here. More detailed description
is available in [9].

In order to present ODSAP synchronization protocols, it is necessary to introduce
some basic operations. Send is understood as a network communication primitive allow-
ing to send a message to a remote node. Wait causes a calling thread to suspend until
the signal operation is executed. The function T(op) returns a version vector timestamp
assigned earlier to the operation op. The type of operation may be determined by the
iswrite(op) function. Deliver means that a result of a remote call can be delivered to
the application.

The client side part of the proposed protocols is the same in both cases and is
presented on Alg. 1.1. Lines 1–8 of this algorithm show how a client computes a version
vector associated with every request sent to a server. The client’s version vectors RCi

and WCi are updated after receiving a response from a server, lines 9–14. A detailed
explanation of this part of the protocol can be found in [6].

Algorithm 1.2 presents server side of the On-Demand Synchronization Algorithm
with Pruning (ODSAP). In this approach no periodic updates are sent, but the server



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 5 — #5 i
i

i
i

i
i

Correctness Proofs of ODSAP Protocol of Session Guarantees 5

On send of 〈Req〉 op, SG from Ci to Sj

1: VCi ← 0
2: if (iswrite(op) and MW ∈ SG) or (not iswrite(op) and RYW ∈ SG) then
3: VCi ← max (VCi ,WCi)
4: end if
5: if (iswrite(op) and WFR ∈ SG) or (not iswrite(op) and MR ∈ SG) then
6: VCi ← max (VCi , RCi)
7: end if
8: send 〈Req〉 op, VCi to Sj

Upon receiving 〈Repl〉 op, res, VSj from server Sj at client Ci

9: if iswrite(op) then
10: WCi ← max

(
WCi , VSj

)
11: else
12: RCi ← max

(
RCi , VSj

)
13: end if
14: deliver res

Alg. 1.1: Client side of ODSAP and ODSAP-O protocols

Perform (Req)

C1

ReplReq [2 2 0]

[2 2 0]

SyncReq [2 0 1]

Upd (history)

S2
[2 3 1]

S3
[2 0 1]

SyncReq [2 0 1]

[2 0 1]
S1

[2 3 1] [3 3 1]

Fig. 1: Synchronization protocol

sends an on-demand synchronization request (line 2 of Alg. 1.2) when consistency cri-
teria are not met. When a server Sj receives a synchronization request 〈SyncReq, VSi〉
from a server Si, it computes a set Hdiff , which includes all write operations that
are missing (not dominated) by Si (line 16). After receiving an update message
〈Upd, Si,Hdiff〉 by Sj , it executes from the Hdiff set only those operations, that it has not
yet performed. After that, it signals all awaiting requests. This procedure is described in
Alg. 1.2 in lines 20–27. Both proposed protocols include also the same history pruning
solution, which was fully described in [9] and is presented in lines 28–32 of Alg. 1.2.

Figure 1 shows a simple case of the synchronization protocol execution. In this case
client C1 is sending a request to server S1, which does not dominate client’s request
version vector. Hence the S1 sends a synchronization request to all other servers. The
S3 server does not have any operations dominating S1’s version vector, so it does not
send any reply. On the contrary, the server S2 has such operations, so it sends a reply.
After receiving the reply, server S1 can perform the client’s operation.



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 6 — #6 i
i

i
i

i
i

6  Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

Upon receiving 〈Req〉 op, VCi from client Ci at server Sj

1: if
(
VSj 6≥ VCi

)
then

2: send 〈SyncReq〉VSj to all other servers
3: end if
4: while

(
VSj 6≥ VCi

)
do

5: wait

6: end while
7: perform op and store results in res
8: if iswrite(op) then
9: VSj [j]← VSj [j] + 1
10: MSj [j]← VSj

11: timestamp op with VSj

12: HSj ← HSj ∪ {op}
13: end if
14: send 〈Repl〉 op, res, VSj to Ci

Upon receiving 〈SyncReq〉VSi from server Si at server Sj

15: MSj [i]← VSi

16: Hdiff ← {op ∈ HSj : VSi 6≥ T (op)}
17: if Hdiff 6= ∅ then
18: send 〈Upd〉Sj , Hdiff to Si

19: end if

Upon receiving 〈Upd〉Si, Hdiff at server Sj

20: foreach wi ∈ Hdiff do
21: if VSj 6≥ T (wi) then
22: perform wi

23: VSj ← max
(
VSj , T (wi)

)
24: HSj ← HSj ∪ {wi}
25: end if
26: end for
27: signal

On idle event at server Sj

28: Vminj ← VSj

29: for k = 1 . . . NS , k 6= j do
30: Vminj ← min

(
Vminj ,MSj [k]

)
31: end for
32: HSj ← HSj\ {op ∈ HSj : Vminj ≥ T (op)}

Alg. 1.2: ODSAP — server side

Unfortunately, the proposed ODSAP protocol cannot be applied directly when the
system is using object-based version vectors, which require a distributed sequence
counter of operations on every object[6]. In this case, every request of a client is as-
sociated with a sequence number of an operation on an object with a given id. Servers
need to keep track of both version vectors and sequence numbers. Figure 2 shows, that
the ODSAP protocol combined with an object-based version vectors can cause a dead-



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 7 — #7 i
i

i
i

i
i

Correctness Proofs of ODSAP Protocol of Session Guarantees 7

oid = 2, seq = 3

Req_2 [3 1]

Perform (Req_1)

C1

Repl_2

Upd_2

Repl_1

[3 1]

[0 0]

oid = 2, seq = 2

oid = 2, seq = 3

S1

Upd_1

Perform (Req_2)

S2

Req_1 [0 1]

[3 1] [3 3]

[0 1]

SyncReq_1 [0 0]
[3 1]

C2

[3 2]

SyncReq_2 [3 1]

[3 2]

oid = 2, seq = 2

Upd_2

[3 2] Req_3 [3 2]

oid = 2, seq =4

oid = 2, seq = 4
SyncReq_3 [3 2]

Fig. 2: Deadlock in ODSAP protocol used with object-based version vectors

lock. The whole problem and its solution are discussed in [9]. The protocol resolving
this problem is an extended ODSAP-O protocol, which is presented on Alg. 1.3.

Algorithm 1.3 introduces new system operations: id(op), which returns id of an
object, on which an operation op is requested; getNextSeqNumber(oid), which returns
the next value of the distributed sequence number generator for all writes on the object
oid; waiting(op) indicates whether the operation op is waiting for completion of the
server synchronization; seq(op) returns the value of the distributed counter assigned
earlier by a call to getNextSeqNumber(oid).

Lines 5–10 of Alg. 1.3 contain a new condition for sending synchronization requests,
which now requires both vector dominance and correct sequence number. Line 17 con-
tains an additional signal operation, because adding an operation to the history may
cause a suspended synchronization request to be resumed. In ODSAP-O it is possible to
hold back an incoming synchronization request, if it can cause a deadlock. The condition
for holding back such request is presented in lines 20–22.

4 Safety and Liveness of Proposed Protocols

Both presented protocols include the same history pruning solution, which is based on
the Vmin infimum. Safety of this protocol means that it cannot remove from history any
single operation that may be ever needed by another server. Liveness means that any
operation which may be removed from a server’s history will be eventually removed.

Lemma 1. If the operation op is performed by all servers, than the Vmin vector of every
server dominates T (op).

Proof. By contradiction: Let us consider an operation op which is already performed by
all servers and its T (op) is not dominated by Vminj of server Sj . A server can perform an
operation only as a result of a direct client request or an update from another server. The
VS version vector of every server S is monotonous and always dominates timestamps of
all operations performed by this server. This is shown in lines 9, 11 and 23 of Alg. 1.2
and in lines 13, 15 and 31 of Alg. 1.3. Because Sj already performed op, it means that
also VSj ≥ T (op). The Vmin vector of every server is defined as the infimum of it’s local
VS vector and vectors representing view of other servers, thus on every server Vmin ≥ VS .
As a result Vminj ≥ VSj ≥ T (op) — a contradiction. ut



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 8 — #8 i
i

i
i

i
i

8  Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

Upon receiving 〈Req〉 op, VCi from client Ci at server Sj

1: seq ← 0
2: if iswrite(op) then
3: seq ← getNextSeqNumber(id(op))
4: end if
5: if

(
VSj 6≥ VCi ∨

(
seq > VSj [id(op)] + 1

))
then

6: send 〈SyncReq〉VSj , seq, id(op) to all servers
7: end if
8: while

(
VSj 6≥ VCi ∨

(
seq > VSj [id(op)] + 1

))
do

9: wait

10: end while
11: perform op and store results in res
12: if iswrite(op) then
13: VSj [id(op)]← VSj [id(op)] + 1
14: MSj [j]← VSj

15: timestamp op with VSj

16: HSj ← HSj ∪ {op}
17: signal

18: end if
19: send 〈Repl〉 op, res, VSj to Ci

Upon receiving 〈SyncReq〉VSi , seq Si , oidSi from server Si at server Sj

20: while seq Si 6= 0 ∧ ∃ op waiting(op) ∧ id(op) = oidSi ∧ seq(op) < seq Si do
21: wait

22: end while
23: Hdiff ←

{
opj ∈ HSj : VSi 6≥ T (opj)

}
24: if Hdiff 6= ∅ then
25: send 〈Upd〉Sj , Hdiff to Si

26: end if
27: MSj [i]← max

(
VSi , VSj

)
Upon receiving 〈Upd〉Si, Hdiff at server Sj

28: foreach wi ∈ Hdiff do
29: if VSj 6≥ T (wi) then
30: perform wi

31: VSj ← max
(
VSj , T (wi)

)
32: HSj ← HSj ∪ {wi}
33: end if
34: end for
35: signal

Alg. 1.3: ODSAP-O — server side without pruning

Theorem 1. (Liveness of pruning) All operations which are performed by all servers
are eventually removed from histories.

Proof. By contradiction: Let us consider an operation op which is already performed
by all servers, but will never be removed from server’s Sj history. According to Lem. 1
the following holds: ∀Sj∈S : Vminj ≥ T (op). When the server Sj becomes idle and



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 9 — #9 i
i

i
i

i
i

Correctness Proofs of ODSAP Protocol of Session Guarantees 9

executes the pruning algorithm, it will prune all operations opi from its history such
that Vminj ≥ T (opi). It means that also op will be removed — a contradiction. ut

Lemma 2. If the Vmin vector of every server dominates T (op), than the operation op
was performed by all servers.

Proof. By contradiction: Let us consider an operation op which is not performed by all
servers, but its T (op) is dominated by Vmin of all servers. The Vminj vector is calculated
based on the array of vectors MSj by taking minimal values of appropriate positions
of all but the j-th elements of the array. As a result we get: ∀k 6=jMSj [k] ≥ Vminj . The
values stored in the array MSj are copies of appropriate version vectors maintained by
servers (line 10 of Alg. 1.2 and line 14 of Alg. 1.3). Version vectors maintained by servers
are monotonically increasing, therefore the real version vector of a server VSk

always
dominates its (possibly outdated) copy MSj [k] at another server Sj . If we additionally
take into account that VSj ≥ Vminj , we get: ∀Sk

VSk
≥ Vminj , and thus ∀Sk

VSk
≥ T (op).

It means that version vectors of all servers dominate the timestamp of the operation op.
The server Si which has accepted the operation op as a direct request from a client has
assigned a unique version vector to this operation by increasing its version vector VSi

at position i (lines 9 and 11). Server version vectors get updated along with execution
of appropriate ordered sequences of operations (lines 22 and 23). For a given server Sk,
its version vector VSk

represents all operations opi already performed by the server,
therefore VSk

≥ T (opi). In our case ∀Sk
VSk

≥ T (op), which means that all servers have
performed operation op — a contradiction. ut

Theorem 2. (Safety of pruning) The ODSAP’s pruning algorithm removes from his-
tories only those operations that have already been performed by all servers.

Proof. By contradiction: Let us consider a server Sj removing an operation op which is
not performed by all servers. As can be seen in line 32 of Alg. 1.2, the pruning algorithm
on every server removes only such operations op, that Vmin ≥ T (op). According to Lem. 2
if Vmin ≥ T (op), then the operation op was performed by all servers — a contradiction.

ut

It is worth noting, that according to Lem. 1 and Lem. 2, the operation op is performed
by all servers iff the Vmin vector of every server dominates T (op).

The two proposed server synchronization protocols do not change session guarantees
definitions, so there is no need to prove they have the property of safety. These proofs
can be found in [6]. Nevertheless, a proof of liveness is needed. In this case liveness
means that every client request will eventually end.

Definition 1. For a given server Si ∈ S with a version vector VSi , a set of nodes
SS(Si) ⊆ S is called a synchronization set of server Si and is defined as follows:

SS(Si) = {Sj ∈ S : ∃
op∈HSj

VSi � T (op)}

It implies that VSi � VSk
where Sk ∈ SS(Si) and that VSi ≥ VSl

where Sl /∈ SS(Si).



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 10 — #10 i
i

i
i

i
i

10  Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

Theorem 3. Every operation requested by a client to a server running ODSAP syn-
chronization protocol eventually ends.

Proof. Every client request of operation opCk
sent by a client Ck to a server Si ∈ S can

be hold back only in line 5 of Alg. 1.2, otherwise client’s request is performed by Si and
a reply message is sent to Ck. If the Ck’s request was suspended by a call to wait(), also
a synchronization request has been sent by Si to S ∈ S \ {Si}, where SS(Si) ⊆ S (line
2). Client’s version vectors can be updated only as a result of receiving a request reply
from some server Sj . A server version vector is monotonous and always dominates all
operations performed by that server, therefore if a client’s request with a version vector
W , where VSi � W , was hold back at server Si, there must exist at least one server Sj

such that VSj ≥ T (opCk
). It means that SS(Si) is not empty and Sj ∈ SS(Si).

Because the network and the servers never fail, every message sent, including the
Si’s synchronization request, will be eventually delivered. The procedure of replying
to the synchronization request is non-blocking (lines 15–19 of Alg. 1.2), thus Si will
eventually get update messages from servers from its synchronization set Ss(Si). Each
of the servers Sj ∈ SS(Si) sends to Si all operations op from a Sj ’s history such that
op ∈ HSj ∧ VSi � T (op) (line 16). All server version vectors are monotonous. Because
SS(Si) contains all and only such servers that VSi � VSj , Sj ∈ SS(Si), every server
which accepted operations unknown to Si, must also belong to SS(Si). The version
vector of client Ck represents all writes which consequences the client needs to see.
All these operations are unknown to Si and therefore were performed by some servers
from Ss(Si). All servers from this set respond in a reliable way to Si’s synchronization
request. This means that eventually all operations blocking Si from performing a held
back client’s request will be received and performed (lines 20–27). Thus, eventually
VSi ≥ W and the held back operation opCk

will be performed. ut

Protocols that use object version vectors must assure an ordering of writes on respective
objects. That order is achieved using a distributed counter, which assigns unique and
consistent sequence numbers. The problem of generating such numbers in a distributed
environment is considered orthogonal to the problem of server synchronization protocols.

Definition 2. For every object we define a sequence number value called next, which
is the sequence number of the first requested operation, that was not yet performed by
any server:

next(oid) = max { ∀
Si ∈S

VSi [oid]} + 1

Theorem 4. Every operation requested by a client to a server running ODSAP-O syn-
chronization protocol eventually ends.

Proof. The generated sequence number for a given client request can be assigned to one
of four cases of sequence values:

1. seq = 0 — this is true for read operations,
2. seq > 0 ∧ seq < next — no current client request can be assigned a sequence

number from this interval, as these are the numbers of requests already completed,
3. seq = next — this is the next expected operation sequence number; this operation

must be performed before all other active clients’ requests on the same object,



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 11 — #11 i
i

i
i

i
i

Correctness Proofs of ODSAP Protocol of Session Guarantees 11

4. seq > next — these are the sequence numbers of operations, that must wait until
all operations with lower sequence numbers will be completed and information about
them synchronized with the server serving the request.

Considering the case 2., operations with such sequence number are already completed
or there are no such operations (just after a system start, when no operation has been
performed yet).

Let’s now assume, that the incoming client request is assigned a sequence number
like in the case 1. or 3. In these cases the conditions in lines 5 and 8 of Alg. 1.3 transform
directly to corresponding conditions in Alg. 1.2. Similarly, the while condition in line
20 of Alg. 1.3 is never true, because no other client request can have lower sequence
number than next. This way the whole procedure in lines 20–26 of Alg. 1.3 becomes
identical to the analogous procedure of Alg. 1.2. As can be seen, for cases 1. and 3.,
the whole Alg. 1.3 is equivalent to Alg. 1.2, so the same proof of liveness as for Thm. 3
holds.

Now, in the 4. case, the request of a client Ck with a sequence number seqCk
, directed

to a server Si, can be hold back because of out-of-order sequence number or a vector
dominance. In both cases a synchronization request is sent by Si to all Sk ∈ S \{Si}. If
this synchronization request is not held back by a receiving server Sk, the situation is
again analogous to Alg. 1.2. Otherwise, Sk suspends sending the synchronization reply, if
it has an already held back request from a client Cl with sequence number lower than the
value seqSi included in a Si’s synchronization request. Sk cannot send synchronization
reply to Si, because reply is sent only once, so it must include the operation from
Cl’s request. Otherwise, Si will not receive an operation, which is needed to satisfy
condition in line 8 of Alg. 1.3. Now Sk’s situation is the same as Si’s — it has sent
a synchronization request with a sequence number seqSk

< seqSiand is awaiting a reply.
This chain of sequence number dependencies ends on a server Sm, where seqSm = next.
As was stated earlier, in this case a client request to Sm eventually ends. After that Sm

answers all synchronization requests it has held back, including the one coming from
server Sl with sequence number seqSl

= seqSm
+1. Next, Sl receives all synchronization

replies, thus it will know all operations with previous sequence numbers and also all
operations, that updated it’s VSl

to the state that dominates a version vector in a held
back client request. The client request can now be performed, so does the while loop in
line 8. Applying this recursively, Sk and Si eventually get all required operations and
every client request will be eventually performed.

Concluding all above cases: for all possible values of sequence number included in
client’s request, the request will eventually end. ut

5 Conclusions and Future Work

Session guarantees are a poorly explored approach to the problem of objects and services
consistency in mobile environments. This solution is particularly well suited for mobile
clients, where data-centric consistency is hard and expensive to achieve. Nowadays,
when Service Oriented Architecture and mobile computing is becoming more and more
popular, an efficient way of services and data replication for mobile networks is becoming
one of the major problems to solve.



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 12 — #12 i
i

i
i

i
i

12  Lukasz Pi ↪atkowski, Cezary Sobaniec, and Grzegorz Sobański

In this paper proofs of safety and correctness of two new server synchronization
protocols were presented. These protocols allow servers to perform synchronization only
when it is really needed and enable servers to prune their operation histories, which
solves the problem of system degeneration. Both of these problems were present in the
synchronization protocols described in earlier work.

Of course, many additional problems remain open. The most important, in our
opinion, research tasks are now a performance evaluation of proposed protocols and
further work on methods of efficient server synchronization. Performance evaluation
was already conducted, but length limitations of this paper does not allow us to present
it here. Nevertheless, these results were described in a separate paper and submitted
for review to the same conference.

References

[1] A. S. Tanenbaum and M. van Steen, Distributed Systems — Principles and Paradigms.
New Jersey: Prentice Hall, 2002.

[2] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. W. Welch,
“Session guarantees for weakly consistent replicated data,” in Proc. of the Third Int. Conf.
on Parallel and Distributed Information Systems (PDIS 94), (Austin, USA), pp. 140–149,
IEEE Computer Society, Sept. 1994.

[3] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services,” SIGACT News, vol. 33, no. 2, pp. 51–59, 2002.

[4] F. Mattern, “Virtual time and global states of distributed systems,” in Proc. of the Int.
Conf. on Parallel and Distributed Algorithms (Cosnard, Quinton, Raynal, and Robert,
eds.), pp. 215–226, Elsevier Science Publishers B. V., Oct. 1988.

[5] C. Fidge, “Logical time in distributed computing systems,” Computer, vol. 24, pp. 28–33,
Aug. 1991.

[6] C. Sobaniec, Consistency Protocols of Session Guarantees in Distributed Mobile Systems.
PhD thesis, Poznań University of Technology, Poznań, Sept. 2005.

[7] A. Kobusińska, M. Libuda, C. Sobaniec, and D. Wawrzyniak, “Version vector protocols
implementing session guarantees,” in Proc. of Int. Symp. on Cluster Computing and the
Grid (CCGrid 2005), (Cardiff, UK), pp. 929–936, May 2005.

[8] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J. Demers, “Flexible
update propagation for weakly consistent replication,” in Proc. of the 16th ACM Symp. on
Operating Systems Principles (SOSP-16), (Saint Malo, France), pp. 288–301, Oct. 1997.

[9] L. Piatkowski, C. Sobaniec, and G. Sobanski, “On-demand server synchronization algo-
rithms for session guarantees,” in Proc. of the 23rd International Symposium on Computer
and Information Sciences (ISCIS 2008), (Istanbul, Turkey), pp. 1–4, Oct. 2008.

[10] J. Brzeziński, C. Sobaniec, and D. Wawrzyniak, “From session causality to causal consis-
tency,” in Proc. of the 12th Euromicro Conf. on Parallel, Distributed and Network-Based
Processing (PDP2004), (A Coruña, Spain), pp. 152–158, Feb. 2004.

[11] J. Brzeziński, C. Sobaniec, and D. Wawrzyniak, “Session guarantees to achieve PRAM
consistency of replicated shared objects,” in Proc. of the Fifth Int. Conf. on Parallel
Processing and Applied Mathematics (PPAM’2003), LNCS 3019, (Cz ↪estochowa, Poland),
pp. 1–8, Sept. 2003.

[12] D. Gifford, “Weighted voting for replicated data,” in Proc. of the 7th ACM Symp. on
Operating Systems Principles (SOSP), (Pacific Grove, USA), pp. 150–162, Dec. 1979.



i
i

“sync protocol” — 2010/6/2 — 17:29 — page 13 — #13 i
i

i
i

i
i

Correctness Proofs of ODSAP Protocol of Session Guarantees 13

[13] A. Kobusinska, Rollback-Recovery Protocols for Distributed Mobile Systems Providing Ses-
sion Guarantees. PhD thesis, Institute of Computing Science, Poznan University of Tech-
nology, Sept. 2006.


