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Preface

Extracting knowledge from the data is one of the fundamental tasks of machine learning and data
mining. This knowledge can be used either to describe the unknown concepts and patterns in
the data or to make predictions for the unknown observations. The latter task, called supervised
classification, is the most common application of machine learning. Based on the historical data,
for which the correct decisions (class labels or categories) are known, the learning system should
produce a knowledge representation (e.g. decision rules) which can be used to assign new, unseen
observations (examples) to the classes.

As an example, consider a problem of credit assignment. Historical data collected by a bank
consists of the clients’ profiles together with their credit risk (good or bad client). As the historical
clients’ records comprise only a small part of all possible profiles, the goal of a learning system is
to generalize the learning data sample to be able to classify new potential clients as good (who
should be allowed a credit) or bad (who should be refused).

Note that in the presented credit assignment problem, there is a high probability that the
learning examples will unevenly represent both classes. In the bank’s historical data, there will
(hopefully) be much more data describing good clients than bad clients. Such an uneven distribu-
tion of learning examples is known as the class imbalance problem and it has been recently gaining
much interest both from the research community and from the business sector.

It has been observed that the of-the-shelf learning algorithms do not work well with such
data as they have been designed with the assumption that the distribution between the classes is
approximately balanced. As a result, they tend to concentrate on recognizing the larger classes
(called majority classes) and neglect the smaller (minority) class.

The need for addressing this problem is an important research challenge from a practical point
of view, as the class imbalance problem has been reported in many application domains such
as medicine (diagnosing rare ilnesses and assigning therapy or treatment), detecting fraudulent
banking operations, detecting network intrusions, managing risk, predicting failures of technical
equipment or information filtering. In all those applications the correct classification of the minority
examples is of key importance. For instance, a failure in recognizing an illness and not assigning a
proper treatment is much more dangerous than misdiagnosing a healthy person, whose diagnosis
can be corrected in an additional examination.

The aim of this thesis is to provide some insights and solutions to the problem of learning
decision rules from imbalanced datasets. We concentrate on the decision rules, as it is one of the
most popular knowledge models, due to its intuitive and natural representation. Moreover, rule
learning algorithms are sensitive to the imbalance problem. Although some modifications of either
the rule induction phase or of the classification strategy have already been proposed, we think
that their effectiveness is not sufficient. Further research on constructing efficient rule classifiers
for imbalanced domains is still needed.

First, we would like to carry out a thorough analysis of a problem at hand, to show why
the learning algorithms have difficulties with imbalanced data. We will identify the problems
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on data characteristics level as well as on algorithmic level. The first ones are related to the
characteristics of the data distribution in imbalanced datasets, which particularly negatively affect
learning. The problems on algorithmic level are related to the construction of the standard rule
learning algorithms which may cause the undesired bias towards majority classes. A theoretical
analysis will be backed up by a set of experiments carried out on specially designed artificial
datasets as well as on real-world datasets.

Then, based on the results of this analysis, we propose some approaches to improve learning
rules from imbalanced data. We introduce a new learning algorithm, BRACID, which compre-
hensively addresses the data-level and algorithmic-level problems with class imbalance. Another
proposal, ABMODLEM algorithm, uses expert argumentation to explain the decisions for the se-
lected problematic learning examples to tackle the problem of recognizing correctly the minority
class examples. The usefulness of these solutions will be verified in the extensive computational
experiments.

Acknowledgments. This research has been supported by the ”Scholarship support for PH.D.
students specializing in majors strategic for Wielkopolska’s development” (sub-measure 8.2.2 Hu-
man Capital Operational Programme, co-financed by European Union under the European Social
Fund) and partly by the Ministry of Science and Higher Education, grant no. N N519 441939.

I would like to thank my supervisor, Professor Jerzy Stefanowski, for his invaluable guidance and
support, insightful remarks and inspiring discussions, which gave shape to this thesis.



Chapter 1

Introduction

1.1 Problem Setting

Classification. Machine learning is a subfield of computer science and artificial intelligence. It
concerns designing systems that can learn from experience. According to Tom Mitchell’s definition
[90], a computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured by P , improves with
experience E.

The learning algorithm uses a set of previously observed training examples (also called learning
examples, objects or observations), described by a finite set of attributes (called conditional at-
tributes). Attributes can be defined on different domains, usually numeric (integer or real values),
ordinal or nominal.

In the problem of classification, the examples are described by an additional class (decision)
attribute defined on a finite domain. Here we consider a problem of supervised learning, in which
the value of this attribute is known a-priori for the training examples. Such data is fed to the
learning system, which creates a model that can be used to predict a value of the class attribute
(or class label) for unseen objects, using the known values of conditional attributes. A supervised
learning system that can perform classification is called a classifier.

More formally, given a set of learning examples described by vectors of conditional attributes
x = (x1, x2, ...xn) ∈ X, where X is called attribute space, and class labels y ∈ Y , where Y =
{y1, y2, ...yk}, a learning task is to construct a classifier which represents a mapping f from X to
Y (f(x) = y) that allows for future prediction of class y based only on the observation of x .

Several methods have been proposed in the literature to solve this task, from more statisti-
cal analysis, through symbolic approaches such as classification trees, to more complex support
vector machines or ensemble techniques. Among these approaches, no dominant solution can be
distinguished. For their review, see e.g. [90].

Rule-based learning. There are many representations in which the learned model can be ex-
pressed. This thesis focuses on the rule-based representation, which is one of the most popular
symbolic representations of knowledge discovered from data. The rule-based classifier consists of
a set of rules, which are represented as symbolic expressions of the following form:

IF (conditions) THEN (target class)

or, more formally, P 7→ Q, where conditions P are formed as a conjunction of elementary tests w
on values of attributes describing the learning examples

P = w1 ∧ w2 ∧ · · · ∧ wi

1



1. Introduction

The rule consequence Q indicates the assignment of an example satisfying the condition part of
the rule to a given class y ∈ Y .

We concentrate on rule-based classifiers for several reasons. First of all, it is claimed that they
are more comprehensible and human-readable than other representations, in particular ”black box”
representations such as neural networks or support vector machines. Individual rules constitute
”blocks” of knowledge, which can be easily analysed by human experts. Additionally, there exists
a direct relation of each rule to facts (examples) in the training data. Such comprehensibility and
explicability of the rule representation is highly appreciated when constructing intelligent systems,
as it often results in an increased willingness of decision makers to accept the provided suggestions
and solutions (e.g. applications in medicine [87]).

Although a tree representation shares similar characteristics, a set of rules is typically more
compact [87, 109, 150] than a comparable decision tree. Rule representation can be also more
powerful because it is not constrained by the arborescent structure of the tree. That is why
tree-based classifiers are often converted a posteriori to the set of rules.

Finally, rules have been successfully used in many applications, see e.g. [70, 97] or some chapters
in [87, 119, 65].

Class imbalance. A dataset is considered to be imbalanced if it is characterized by an unequal
distribution of examples between the classes. The smaller class is called the minority class, while
the other classes are called majority classes. In the imbalanced datasets, the minority class is
usually of primary interest to the decision maker, i.e. not recognizing the minority class examples
is much more serious than raising so called ”false alarms” (assigning a majority example to the
minority class). For this reason, the most popular performance measures such as total accuracy
are not useful in the context of class imbalance, as they are biased towards the majority classes.
Thus, for imbalanced domains other performance measures have to be used (they will be described
in detail in Section 2.2).

There is no unique opinion about the degree of such imbalance between the class cardinalities.
Some researchers have studied the datasets where one class was several times smaller than other
classes, while others have considered more severe imbalance ratios as, e.g., 1:10, 1:100 or even
greater. Without naming the precise values of this ratio, we repeat after [139] that the problem is
associated with lack of data (absolute rarity), i.e. the number of examples in the rare (minority)
class is too small to detect properly the regularities in the data. This kind of data characteristics
is also called between-class imbalance [60].

The imbalance of a learning dataset can be either intrinsic (in the sense that it is a direct result
of the nature of the data space) or it can be caused by too high costs of acquiring the examples
from the minority class, e.g. due to economic or privacy reasons [139].

Although in this work we usually consider binary (two-class) problems in which there is one
minority and one majority class, the problem may in general concern also the multiclass data in
which imbalance exists between various classes.

1.2 Motivations

The difficulties in learning from imbalanced data have been encountered in many domains of
application, but the techniques applied were rather simple, such as modifying prior distributions
in Bayesian classifiers or transforming the problem to the cost-sensitive learning. Since the end of
90s, an interest in this problem has grown and new methods have been introduced. In general, two
classes of approaches may be disstinguished: methods on data level try to artificially re-balance the

2



1.3. Aims and Objectives

learning data, while methods on algorithmic level modify the learning algorithms. Among different
methods proposed, it is difficult to indicate the best approach. Typically, a given method is shown
to outperform other on a group of imbalanced problems, while on a different set of problems,
chosen for an experimental setup in a different publication, it performs worse. Therefore, it is
interesting to look for the settings in which a given method should be used to improve learning
from imbalanced data. Also, there is still an interest in finding the reasons for the difficulties in
learning from imbalanced data.

The reasons why learning from imbalanced data is problematic are more complex than they
at first have seemed to be. Initially, the difficulty was attributed solely to the rarity of one of
the classes [56]. However, some researchers have observed that imbalance ratio itself may not
be a problem when the classes are clearly separated – they pointed out that the difficulties arise
only when other data characteristics occur together with class imbalance (see e.g. one of the first
works – ”Class Imbalances: Are we Focusing on the Right Issue?” [56]). Up to now, several issues
related to the distribution of examples in the imbalanced datasets were named, such as overlapping
of examples from different classes [44, 9] or small disjuncts (decomposition of a class into smaller
sub-concepts, in which the number of examples is too small – also called within-class imbalance
[60]). We will review them in detail in Section 2.1. However, a further research in this topic is
stilll needed.

The above mentioned data factors have been shown to deteriorate the classifiers’ performance
using the specially prepared artificial datasets, in which the data distribution was known a-priori.
Using these datasets, the researchers could draw interesting conclusions, for instance how different
classifiers behave in face of different data distributions. However, what is still missing in our
opinion, is a method to shift these observations to the real-world datasets. In other words, there is
a need for a method which could identify these data factors in the datasets in which the distribution
of examples in the attribute space in not known a-priori. Such a method (or a set of methods)
would, first, help to confirm that the discovered data characteristics are common in real-world
problems and, second, give a possibility to analyse the dataset before deciding which learning
method is the most suitable for a particular dataset.

Imbalance-related problems affect various types of classifiers; in fact, none of them are com-
pletely insensitive to the class imbalance. This also refers to the rule-based classifiers, which reveal
an undesirable bias towards the majority classes [22]. As mentioned before, rule representation is
especially useful in the domains where the explicability of the classifier’s decisions is important,
such as medicine or banking. At the same time, in these domains class imbalance is often an in-
trinsic characteristics of the learned problem. For this reason, we think that improving rule-based
classifiers to better deal with imbalanced data is a particularly important research problem. Al-
though some attempts have already been made to improve rule classifiers, in our opinion they lack
the understanding of the complex characteristics of the imbalanced data, the key properties of its
underlying distribution and their consequences (we will discuss it in Section 4.5). We think that
there is still a place for new algorithms that could resolve these issues in a more comprehensive
way.

1.3 Aims and Objectives

The thesis is devoted to learning rules from imbalanced datasets. The general goal of the thesis is
formulated as follows:

Analyse factors on data-level and on algorithmic-level which make learning rules from
imbalanced data difficult; based on these observations, introduce new rule learning

3



1. Introduction

techniques, which are more efficient than the existing solutions in terms of performance
measures dedicated for class imbalance.

Four major objectives can be distinguished within this goal. We characterize them briefly below,
giving reference to the chapters in which they are achieved.

Study of data-level sources of difficulty. Although some studies of the influence of data
factors on the learning abilites have already been carried out, we think that there is no unifying
framework, analysing and comparing all these factors together. Moreover, there is a lack of methods
which would allow to carry out this analysis on real-worlds datasets. Chapter 3 is devoted to this
objective. We distinguish four types of minority class examples: safe, borderline, rare and outliers.
We introduce a method to identify these types of examples in real-world datasets, which is based
on analysing the local neighbourhood of minority examples. Additionally, we show how to use
the visualization methods, which allow to present multi-dimensional data on the two-dimensional
graphs, to analyse the distribution of examples in imbalanced datasets. Using these methods we
show that real-world imbalanced datasets can have different proportions of the four distinguished
types of examples. Considering these observations in a comprehensive experimental study allows
us to differentiate the performance of popular classifiers as well as of the preprocessing methods.
Moreover, by analyzing the accuracies for each type of testing examples we can identify the sources
of difficulties for the classiffiers, in particular rule-based ones, and the areas of competence for the
preprocessing methods.

Study of algorithmic-level sources of difficulty. Classic rule-based learners were designed
with the assumption that the distribution between the classes is balanced. In Chapter 4 we provide
a comprehensive analysis of standard approaches to rule learning with reference to class imbalance
problem. We show how different stages of creating a rule classifier – from the sequential covering
induction technique, through measures used to evaluate rules, to classification strategies – are
implicitely biased towards the majority classes. We also review the existing approaches to improve
rule learning, which try to address these issues.

Bottom-up induction of Rules And Cases for Imbalanced Data. Based on the anal-
ysis from the two previous chapters, in Chapter 5 we introduce a new rule induction algorithm,
BRACID, which aims at improving the classiffication performance of classifiers learned from imbal-
anced data. It achieves this goal by changing these phases of the induction process which might be
biased towards the majority class, such as greedy sequential covering, top-down induction technique
and classification strategy. Moreover, it takes into account different types of learning examples
and processes them differently. In Chapter 6 the usefulness of the proposed BRACID algorithm is
evaluated in a series of experiments conducted on 22 imbalanced datasets. We compare it against
popular rule induction algorithms as well as the selected specific approaches dedicated for han-
dling the imbalanced data. We also analyse, for which types of examples (defined in Chapter 3),
BRACID is the most competent classifier.

Using expert argumentation for learning rules from imbalanced data. Using expert
knowledge to direct the rule induction can help to obtain rules more consistent with the domain
knowledge, and as a result more intuitive and acceptable to the decision maker. It can be useful
also for learning from imbalanced data. When the learning minority examples are rare and they
represent very sparsely the whole attribute space, it may be difficult for the learner to construct the
correct hypothesis, and the learner’s bias towards the majority class may become even more evident.

4



1.3. Aims and Objectives

In Chapter 7 we adapt the paradigm of argument-based learning for the imbalanced domain. In this
approach, an expert can give additional arguments for the selected difficult examples, explaining
the decision taken for them. Such arguments are then used in the induction of rules. We adapt this
paradigm to the MODLEM rule learning algorithm, and propose an ABMODLEM extention of it
(argument-based MODLEM). We also propose how to automatically select a small number of most
critical examples which should be explained by an expert. In the experimental study (presented
in Chapter 8) we show that such argumentation can improve both the interpretability of rules and
the classification performance, especially when the minority class is concerned.

The main achievements related to these four objectives have been published in the scientific jour-
nals. The list of publications is listed in Appendix B.
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Chapter 2

Basic Concepts of Learning from Imbalanced
Data

Class imbalance has been observed in many application domains. For example, in detection of
frauds in telephone calls [35] and credit card transactions [18] the number of legitimate transactions
is much higher than the number of fraudulent ones. In direct marketing, where the goal is to identify
likely buyers of certain products and adjusting the promoting of the products, the minority class
representing a response rate for marketing campaigns is also small (about 1% [75]). Class imbalance
is also an intrinsic property of medical datasets, e.g. predicting pre-term birth [47]. Other examples
include detecting oil spills from satellite images [68], telecommunication equipment failures [140],
network intrusion, managing risk or information filtering – for their review see, e.g., [19].

In these and other works it has been shown that when the learning set is imbalanced, standard
classifiers have a difficulty in correctly recognizing the minority class. For instance, in [141], the
authors analysed the relationship between the imbalance ratio and the performance of classification
trees and showed that the minority class predictions are more error-prone. Japkowicz et al. in [2]
carried out an analogous analysis for Support Vector Machines, also showing that their performance
deteriorates with a growing imbalance ratio.

The problem of dealing with class imbalance has been receiving a growing research interest
from academia and industry, which is reflected by a growing number of publications in this topic.
Figure 2.1 presents the estimation of the number of publications concerning imbalanced learning
(based on the number of publications with a ”class imbalance” keyword stored in the Assocation for
Computing Machinery database, ACM). A high activity in this field is also reflected by a number
of conferences, special sessions and workshops dedicated for this problem, e.g. the International
Conference on Machine Learning workshop on Learning from Imbalanced Data Sets (ICML’03),
special issue on Learning from Imbalanced Data Sets in ACM SIGKDD Explorations Newsletter
2003 or the most recent Workshop on Class Imbalances: Past, Present, Future on the ICMLA-
2012 conference. In this Chapter we present the current understanding of the imbalanced learning
problem and review the state-of-the-art solutions proposed to address it.

2.1 Nature of the Problem

It has been shown that class imbalance ratio is not the only factor that impedes learning. The
experimental studies carried out, e.g., in [9, 59, 141] suggest that when there is a clear separation
of the decision classes, the definition of both classes can be correctly learnt regardless of the
imbalance ratio. These works showed that the data complexity, understood here as the distribution
of examples from both classes in the attribute space, has a crucial impact on learning. It is not

7



2. Basic Concepts of Learning from Imbalanced Data

Figure 2.1: Number of publications on imbalanced learning.

particularly surprising, as it could be expected that data complexity should affect learning also
in balanced domains. However, when data complexity occurs together with the class imbalance
factor, the deterioration of classification performance is amplified and it affects mostly (or even
only) the minority class.

The term ”data complexity” can comprise different data distribution patterns. Up to now, the
researchers have distinguished several factors which hinder learning in imbalanced domains, such
as overlapping, small disjuncts, outliers or noise. We describe them briefly below.

Overlapping between the classes
In the boundary regions between classes, the examples from different classes may overlap (see
Fig. 2.2b – black circles represent minority examples). In such case, it is difficult for the learner
to decide where exactly the border line separating the class definitions should be placed. As
the minority class is underrepresented in the dataset, it will most probably be underrepresented
also in the overlapping region. As a result, the learners will have a tendency to shift the border
definition too close to the minority class, treating the whole overlapping area as belonging to the
majority class definition. Indeed, the experiments on mainly artificial data with different degrees
of overlapping showed that overlapping deteriorated the classifier performance, especially when
the minority class was concerned. What is more, increasing the overlapping of classes was more
critical for the recognition of the minority class examples than increasing the overall imbalance
ratio [44, 9] - we will discuss it more in Section 3.1.

Data decomposition leading to small disjuncts
Another difficult distribution of the data concerns the situation when a class is scattered into
smaller sub-parts representing separate sub-concepts. Japkowicz in her research named it within-
class imbalance [60]. This is closely related to the problem of small disjuncts (see Fig.2.2a). Briefly
speaking, a classiffier learns a concept by generating disjunct forms (represented as rules [55]) to
describe it. Small disjuncts are these parts of the learned classiffier which cover a too small number
of examples [139]. It has been observed in the empirical studies that small disjuncts contribute to
the classiffication error more than larger disjuncts [108].

8



2.1. Nature of the Problem

(a) Small disjuncts in the minority class (b) Overlapping and noisy examples

Figure 2.2: Difficult data distributions in imbalanced datasets

Although a problem of within-class imbalance may occur in both minority and majority classes,
small disjuncts are more characteristic and more critical for a minority class. In a majority class, the
sub-concepts will be most often represented by a vast number of examples forming large disjuncts,
while in the minority class, in which the examples are already rare, their further decomposition into
several sub-concepts will produce small disjuncts, represented by a too small number of examples
to be correctly learnt. Japkowicz and co-authors in their experiments with artificial data showed
that a high level of decomposition combined with a too small number of examples in the minority
class resulted in a poor recognition of this class [56, 60]. At the same time, they showed that for
much larger datasets with low level of decomposition or with a suficient number of examples in the
sub-concepts, the imbalance ratio alone did not decrease so much the classification performance.

Presence of noisy/outlying examples
Single examples from one class, located far from the decision boundary inside the other class, are
usually called in the literature noisy examples. However, according to the definition, e.g., in [73],
such examples may in fact be a result of three kinds of data imperfections:

• noise, i.e. random errors in training examples and background knowledge

• insufficiently covered example space, i.e. too sparse training examples from which it is difficult
to reliably detect correlations,

• inexactness i.e. an inappropriate description language which does not contain/facilitate an
exact description of the target concept.

Other works distinguish between class noise (erroneous classification labels), attribute noise
(erroneous attribute values) and outliers (non-typical class representatives) [41].

Handling noise (in its broad definition described above) is also an important issue in imbalanced
data. Noisy majority examples are particularly harmful for the minority class, as they can cause
the fragmentation of the minority class and increase the difficulties in learning its definition. On
the other hand, for distant minority examples surrounded by the majority class examples, it is
important to distinguish outliers from noise as distant minority examples might often be a result
of the insufficiently covered example space rather than of random errors in the training data.

Learning systems usually have a single mechanism for dealing with the three kinds of imperfect
data [73] – after the identification of ”suspicious” examples, such instances are eliminated from the
learning set or class (attribute) values are corrected or these examples are neglected in the learning
phase (e.g. by using pruning in the decision trees). These approaches have been shown to improve
the total classification accuracy in the classic learning perspective (see a review in [7]). However,
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2. Basic Concepts of Learning from Imbalanced Data

in the class imbalance setting, using standard approaches for handling noise ”can be catastrophic”,
as pointed out e.g. in [133]. It may lead to removal or relabeling of most minority examples, or to
pruning all the decision rules for the minority class. The study in [16] showed that when there is
an abundance of data, it is better to detect properly ”bad data” at the expense of throwing away
”good data”, while in case when the data are rare, more conservative filters are better. Therefore,
some specialized approaches dedicated for noise in imbalanced datasets have been proposed, e.g.,
in [133], which treat differently the minority and majority distant examples. We will return to this
topic in Section 3.1.

2.2 Evaluating Classifiers Learned from Imbalanced Data

Evaluation measures, reflecting the classification abilities of a classifier learned from imbalanced
data, are usually designed for two-class problems in which class labels for the minority and majority
classes are called positive and negative, respectively. In case when a dataset contains several
majority classes, they can be aggregated into one negative class. Thus, the performance of a
classifier can be presented in a confusion matrix as in Table 2.1.

Table 2.1: Confusion matrix for performance evaluation

Predicted Positive Predicted Negative
True Positive TP FN
True Negative FP TN

As it is more straightforward to compare the performance of classifiers using single values rather
than comparing the matrices, several point measures are created from the confusion matrix. Four
simple measures concerning the recognition of the positive and negative classes, are:

True Positive Rate = TP

TP + FN

True Negative Rate = TN

TN + FP

False Positive Rate = FP

TN + FP

Precision = TP

TP + FP

True Positive Rate is also called Sensitivity and Recall. True Negative Rate is called Specificity.
In balanced domains, the most popular assesment measures are global accuracy and error rate:

Accuracy = TP + TN

TP + FN + FP + TN

Error rate = 1−Accuracy = FP + FN

TP + FN + FP + TN

However, as described in Section 1.1, in imbalanced domains the recognition of minority class
examples is more important than the recognition of a majority class. We expect from a classifier
to provide a good recognition of the minority class, even at a cost of misclassifying some majority
examples. Therefore, performance metrics such as a total accuracy or an error rate do not provide
the desired information about a classifier as they are sensitive to the imbalance ratio and are biased
towards the majority class – a conventional classifier which can recognize correctly all majority
examples and no minority examples, will achieve very high accuracy (e.g. 90% if the imbalance
ratio in a dataset is 1:9), even though such a classifier would present no value for a decision maker.
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Thus, when evaluating a classifier learnt in the imbalanced environment, alternative perfor-
mance measures are needed, in which minority and majority classes are treated independently.
Often, simply Sensitivity and Specificity measures are looked at separately to compare two clas-
sifiers. However, these measure usually comprise a trade-off – the improvement on the minority
class accuracy usually comes at a cost of deterioration of a majority class accuracy. As a result,
looking at these two measures separately it is difficult to decide which classifier is better, as one
of them will usually win on one of the measures, and another one on the other measure. There-
fore, aggregative measures which consist of two measures representing both classes were proposed.
Kubat and Matwin [69] proposed to use the geometric mean of Sensitivity and Specificity defined
as:

G-mean =
√
Sensitivity · Specificity

This measure promotes the classifiers which maximise the recognition of both minority and
majority classes while keeping these accuracies balanced. An important, useful property of G-
mean is that it is independent of the distribution of examples between classes [53]. An alternative
criterion is the F-measure, aggregating Precision and Recall:

F -measure = (1 + β)2 · Precision ·Recall
β2 · Precision+Recall

where β is a coefficient expressing the relative importance of Precision and Recall (typically β = 1).
For discussion of its properties see, e.g., [53].

For the classifiers which yield a probabilistic decision representing a degree to which an example
is a member of a class, such as, e.g., Naive Bayes or Neural Networks, a threshold can be used to
produce a series of evaluation measures such as TP - and FP -rate, which can produce graph-based
evaluation measures as the ROC curve (plot of TP -rate over the FP -rate). Generally speaking,
one classifier is better than another if its ROC curve is over the other curve (see Figure 2.3). A
random classifier produces a ROC curve located on a diagonal, therefore a classifier with a curve
under the diagonal performs worse than random guessing [34]. To quantify the ROC curve results,
a point measure representing the area under curve (AUC) is often used. A random classifier obtains
AUC equal to 0.5, while for a perfect classifier it equals to 1. AUC is said to give more weight to
the correct classification of the minority class, thus outputting fairer results than the classification
accuracy [58]. There are also some modifications to AUC, for instance a weighted AUC proposed
in [142]. It addresses the undesired characteristic of AUC which values equally the performance
of a classifier in the high TP -rate region and in the low TP -rate region while only the former
one is truly interesting to the decision maker. In weighted AUC, more emphasis is put on the
performance in the high TP -rate regions.

Other curve measures proposed for the class imbalance setting are PR-curves and Cost Curves.
PR-curves plot Precision over Recall and are claimed to be a better measure than ROC for highly
imbalanced data for which the FP -rate used in ROC curves does not change significantly. Cost
Curves, on the other hand, plot the classification performance over varying misclassification costs
and class distributions. They are more useful than ROC curves if one wants to answer the question
”for what class probabilites one classifier is preferable over the other” [58]. For the review of these
measures, see e.g. [53].

Although the graph-based measures are applicable rather for probabilistic classifiers than for
the deterministic ones [58], the deterministic classifiers can be sometimes adapted to give proba-
blistic answers (for instance, pruned decision trees can estimate the probability according to the
proportion of examples from different classes in the leaves), or the classifier can be evaluated on
a dataset in which the class imbalance is step-wise changed by sampling, producing a point on a
graph for each imbalance ratio [53].
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Figure 2.3: ROC curve. Ideal point is (1,1). Classifier 1 is better
than classifier 2; both are better than random guessing.

2.3 Review of Existing Methods

Solutions proposed for the class imbalance problem are often divided in the literature into methods
on data level and methods on algorithmic level. Most of the research concentrates on the data level
techniques, which resample the original learning data to balance the classes, so that the learning
could be performed using classic, well-studied learning algorithms. Less numerous works concern
the algorithmic-level solutions, which modify the techniques used in the learning algorithms and
the classification strategies.

We do not intend to present here a complete review of all methods and algorithms representing
these two types of approaches. We rather want to describe the main areas of research and send the
reader to the more comprehensive review works, such as [53, 44]. The categorization of the most
popular techniques, together with the most representative algorithms, is presented on Figure 2.4.
In these families of approaches, we will describe some methods, focusing on the proposals which
we will use in our work (either as inspiration or as comparatory solutions).

2.3.1 Methods on Data Level

Sampling methods modify an imbalanced dataset to provide a more balanced distribution. Bal-
ancing the examples in the classes can be obtained by undersampling the majority class and/or
oversampling the minority class. Although it has been argued whether balancing the data set
to the proportion 1:1 between the classes leads to the best results [136], in general changing the
class distribution towards a more balanced one improves the performance for most datasets and
classifiers [53]. We describe the most well known sampling methods below.

Simple under- and oversampling
Random oversampling consists in replicating randomly chosen minority examples, while random
undersampling removes randomly selected majority examples from the original dataset. While
both methods can balance the original dataset to a desired level, it should be remembered that
they have their consequences. Removing the majority examples by means of undersampling may
cause the classifier to miss some important subconcepts of the majority class if a random selection
will pick too many examples representing this concept. Oversampling, on the other hand, may
lead to ovefitting, especially if multiple copies of noisy examples are introduced. A rule learnt from
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2. Basic Concepts of Learning from Imbalanced Data

such examples will appear confident and accurate, while it may in fact cover only one learning
example.

Informed undersampling
To overcome the problems with simple random undersampling, informed undersampling is used to
remove only the redundant majority examples. It is usually based on analysing the local neigh-
bourhood of learning examples, to differently process the examples representing the overlapped,
noisy or safe regions. In these neighbourhood-based approaches, a measure estimating the distance
between the examples (described by nominal and numerical attributes) is needed. We will come
back to this topic in Section 2.4, assuming now that such a measure is given. There are also
some proposals which estimate the nature of examples without the use of distance measure – for
instance, in [112, 133], a classifier’s ability to recognize correctly the examples is used to identify
difficult (noisy) examples which should be removed.

The first group of informed undersampling methods aims to remove the noisy and overlapping
majority examples. Tomek links [130] is one of such methods. Tomek link can be defined as a
pair of examples belonging to different classes with distance between them equal to d(Ei, Ej) if
there are no other examples Ek such that d(Ei, Ek) < d(Ei, Ej) or d(Ej , Ek) < d(Ei, Ej). If two
examples form a Tomek link, than either one of them is noise or both lie in the borderline region,
where overlapping may be present. In such case, the majority example from such pair is removed
to move the decision border further from the minority class.

Edited Nearest Neighbour method (ENN [144]) also tries to discard unreliable majority exam-
ples, by removing any majority examples whose class label differs from the class of at least two of
its three nearest neighbors. Neighbour Cleaning Rule method (NCR, proposed by Laurikkala in
[71]) modifies ENN to clean even more majority examples. Similarly to ENN, if a majority example
is surrounded by at least two minority examples, it is removed. Additionally, if a minority example
is surrounded by at least two majority examples, than its majority neighbours are also removed.
The effect of this preprocessing method is presented on Figure 2.5 – compare the original dataset
(Fig. 2.5a) with the the result of preprocessing using NCR (Fig. 2.5d).

Other methods try to eliminate the examples from the majority class which lie in the homo-
geneous, safe regions and are distant from the decision border, considering these examples less
relevant for learning. An example of such method is Condensed Nearest Neighbour Rule (CNN
[51]), which preserves only the majority examples misclassified by k nearest neighbours (in the orig-
inal proposal, k = 1) – compare Fig. 2.5a with Fig. 2.5c. One-sided selection method (OSS [69])
integrates Tomek links with CNN. First, CNN is used to remove redundant (safe) examples. Then,
majority examples participating in Tomek links (representing overlapping and/or noisy examples)
are discarded.

Informed oversampling
The most well-known representative of this approach is SMOTE [20]. To avoid overfitting which
may occur when the exact copies of minority examples are added to the original learning set, this
method introduces new synthetic minority examples. Specifically, for each minority example Ei it
finds k-nearest minority neighbours, and generates the synthetic examples in the direction of some
or all of them, depending on the amount of the oversampling required. A new artificial example is
introduced on a randomly chosen point on the line joining the selected example and its neighbour.
In this way, SMOTE allows the classifier to build larger decision regions that contain the nearby
examples of the minority class [20].

Although SMOTE can significantly improve learning, its main drawback is that when generating
the synthetic examples, it does not take into consideration the neighbouring examples from other
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classes, which can increase the overlapping of classes and introduce additional noise (compare
Fig. 2.5a with Fig. 2.5b). As a result, several extensions of this algorithm have been proposed.
Borderline-SMOTE [50] generates synthetic instances only for minority examples close to the
decision border. ADASYN [52] generates more synthetic examples from the examples which are
”harder to learn” and fewer examples from the easier learning instances. Safe-level SMOTE [17] and
LN-SMOTE [81] try to generate new synthetic examples in the direction of the regions populated
by the minority class, to avoid introducing artificial examples inside the majority class regions.

(a) Original dataset (b) Dataset processed with SMOTE

(c) Dataset processed with CNN (d) Dataset processed with NCR

Figure 2.5: Comparison of different preprocessing methods

Sampling with clustering
Cluster-based sampling addresses the problem of within-class imbalance, when the minority class
is separated between several smaller sub-concepts. Cluster-based oversampling method (CBO [60])
puts more emphasis on oversampling the smaller subconcepts than larger ones. It first uses the
K -means method to identify clusters in the dataset and then oversamples each cluster so that
all the clusters from a given class are of the same size (to overcome the problem of within-class
imbalance), assuring at the same time that the distribution of examples between the classes is even
(addressing the problem of between-class imbalance).

Hybrid informed resampling
These methods combine the use of oversampling with cleaning. In [9], two such methods were
proposed and evaluated, which integrate SMOTE with ENN and SMOTE with Tomek links. In
these algorithms, cleaning is done for both classes as a post-processing after oversampling with
SMOTE, to additionally remove the artificial minority class examples introduced too deeply in the
majority class space. Another hybrid method, SPIDER, was proposed in [125]. It also analyses the
local neighbourhood of examples, but contrary to the previous two methods it does not introduce
any artificial examples and it cleans only the majority class. In this method, noisy majority
examples are removed, while borderline and outlying minority examples are replicated. Contrary
to, e.g., SMOTE, the number of example copies is not constant among the whole dataset – it
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depends on the number of neighbours from the opposite class and the idea is to introduce such a
number of copies so that the original example was correctly classified by its nearest neighbours.

Sampling with ensembles
Finally, there are some more complex algorithms which integrate different kinds of resampling with
either boosting or bagging. For instance, SMOTE-Boost [21] integrates SMOTE with AdaBoost
introducing synthetic sampling at each boosting iteration to make the successive classifier ensembles
focus more on the minority class. Building each component classifier on a different data sample
helps to build well-defined regions for the minority class [53]. Other examples of integrations
with boosting are DataBoost-IM [49] or RUSBoost [114]. There are also some approaches which
combine sampling with bagging, e.g. IIVotes (IVotes combined with SPIDER), SMOTEBagging
(bagging with oversampling) or Exactly Balanced Bagging and Roughly Balanced Bagging [54]
(bagging with special undersampling). For their review, see e.g. [40].

2.3.2 Methods on Algorithmic Level

Methods on algorithmic level adapt the existing algorithms and techniques to the problem of class
imbalance. The most popular groups of methods are cost-sensitive learning, one-class classifiers
and classifier ensembles. We will review them briefly below. The discussion of modifications
proposed for rule-based classifiers is shifted to Section 4.5.

Cost-sensitive learning
Cost-sensitive learning assumes that together with the learning examples, different misclassification
costs are specified for different classes. The goal of learning is to minimize the total misclassification
cost. Although the problem of class imbalance is not the same as cost learning as, in general, the
costs of misclassification for the minority and majority classes are unknown, the cost-sensitive
learning framework can be adapted for class imbalance [82]. For instance, Japkowicz and Stephen
propose a cost-sensitive C5.0 decision tree in which they estimate the costs based on the class
imbalance ratio [59], assigning higher costs for false negatives than for false positives. Liu and
Zhou in B-C45CS algorithm, based on the C4.5 decision tree, normalize the error costs in terms
of the number of examples in each class [77].

One-class learning
Systems trying to learn the definition for both classes may tend to ignore the minority class.
Therefore, some researches have proposed to use a one-class learning paradigm, in which the goal
is to recognize only the minority class objects and distinguish them from the majority class. There
are some solutions which adopt this recognition-based approach for neural networks (Hippo [57]),
Support Vector Machines [110] or rules (Shrink [67], Brute [111], Ripper [25]). Rule approaches
will be described in more detail in Section 4.5.

Changing the internal bias
Some techniques try to internally bias the learning algorithm to take into account the characteristics
of the data distribution in imbalanced datasets. For instance, in [8], a distance function in k-
nearest neighbour classifier is modified to compensate for the fact that minority examples are rare
and thus have a smaller chance to belong to a neighbourhood of a classified example. In this
approach, a weighting factor is introduced to the distance function depending on the class of the
learning example, so that the distance to the minority examples becomes smaller. In Support
Vector Machines, on the other hand, different loss functions are used for both classes, to push the
hyperplane further from the minority class [135]. Other approaches directly modify the weights of
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slack variables in the objective function for the quadratic programming – see e.g. [91] or even more
complex solutions in [137, 138]. Some other works integrate re-sampling of examples (by SMOTE
or undersampling) inside SVM – see e.g. [128].

There are also some works concerning decision trees. They focus mostly on the evaluation
measure used during the generation of a tree to choose the best splitting condition. For example,
in [83] the authors point out that in classic decision trees an entropy measure is often used to
evaluate the splitting condition, which assigns the worst value when a branch of a tree covers
an equal number of examples from both classes. In class imbalance setting however, such leaf
may carry an interesting information to the user. Therefore, the authors propose to use a new
evaluation measure based on an asymmetric entropy measure. Cieslak and Chawla in [22, 76] show
that another popular evaluation measure used in decision trees, Information Gain, is sensitive to
class imbalance. They propose to use instead a Hellinger distance measure (HD [22]) and show it
to be insensitive to the class imbalance ratio. In [76] they propose yet another measure – Class
Confidence Proportion (CCP).

Classifier ensembles
Classifier ensembles are known to improve the accuracy of single classifiers by combining them
together. Their adaptation for the class imbalance problem includes not only the resampling of
the training samples as described before, but there are also some proposals which modify the
learning procedure itself (for a review see [40]), for instance by applying cost-sensitive learning in
the ensemble framework. A representative of this approach is RareBoost [62], which gives a different
treatment to positive and negative predictions by assigning different weights to the examples in
the subsequent iterations, depending on the class of the example. Here the weights of false-positive
examples are scaled in proportion to how well they are distinguished from true-positive examples,
while false-negative examples are scaled in proportion to how well they are distinguished from
true-negative examples. Other cost-sensitive approaches which modify the weight update formula
include AdaCost, AdaC1, AdaC2 or AdaC3. Their review can be again found in [40].

2.4 Measuring the Distance Between the Examples

Many methods presented in this Chapter (especially the methods on data level, described in Section
2.3.1) are based on analysing a local neighbourhood of examples. Also, the methods introduced by
us in the next chapters will be based on it. Measuring the distance between the examples which
are described by both numeric and nominal attributes is not trivial and can influence the results
of the methods such as informed preprocessing methods, k-NN classifiers etc. Although measuring
the distance between the examples is a general problem, not related directly to the class imbalance
problem, we have decided to discuss it here in a separate section, as we will refer to this topic in
almost all the subsequent chapters.

The basic distance measures assume that the examples are defined only on numeric attributes.
The distance between the examples x and y can be then defined with a standard Euclidean distance
measure. It is calculated as

D(x, y) =

√√√√ k∑
i=1

(xi − yi)2

where k is the number of conditional attributes and xi and yi are the attribute values of the
examples x and y, respectively. Other measures for numeric attributes include Minkowski or
city-block (also called Manhattan) measures – see review of these and other measures in [145, 84].
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To handle the datasets with both numeric and nominal attributes, so-called heterogeneous dis-
tance functions that use different attribute distance functions on different kinds of attributes, have
been proposed. The HEOM measure (Heterogeneous Euclidean-Overlap Metric) uses a normalized
Euclidean distance for numeric attributes. For nominal ones, the attribute distance equals 1 if the
attribute values are equal and 0 otherwise. Unknown attribute values are handled by returning an
attribute distance of 1. Other simple heterogeneous distance functions include Gower, ER, GEM
– for their review, see [80].

The HVDM (Heterogenous Value Difference Metric) differs from the above measures in how it
treats the nominal attributes. Instead of simple value matching, HVDM makes use of the class
information to compute conditional probabilities by using a Stanfil and Valtz value difference
metric for nominal attributes [145, 115]. For numeric attributes, it uses a normalized Euclidean
distance. HVDM is defined as:

D(x, y) =

√√√√ k∑
i=1

di(xi, yi)2

All distances for single attributes are normalized in range 0 to 1. If one of the attribute values of
xi, yi is unknown, the distance di is equal to 1. The distance for nominal attributes is defined as:

di(xi, yi) =
{

0 if xi = yi

svdm if xi 6= xi

Value difference metric (a simplified form without tuning attributes’ weights) is defined as [115]:

svdm =
k∑

l=1

∣∣∣∣N(xi,Kl)
N(xi)

− N(yi,Kl)
N(yi)

∣∣∣∣
where k is the number of classes, N(xi) and N(yi) are the numbers of examples for which the
value on i-th attribute is equal to xi and yi respectively, N(xi,Kl) and N(yi,Kl) are the numbers
of examples from the decision class Kl, which belong to N(xi) and N(yi), respectively.

The attribute distance for numeric attributes is defined as

di(xi, yi) = |xi − yi|
4σa

where σa is a standard deviation of the numeric values of attribute a.
Among the distance measures, HVDM is one of the most popular and is often claimed to

perform better than other heterogeneous functions. For instance, in [80] the authors compared the
performance of the Euclidean distance, HEOM, Gower, ER, HVDM and GEM distance measures
used with 3-NN classifier on 12 medical datasets, and concluded that HVDM was better that
the other measures on the True Positive Rate. In [72], where HVDM was compared against
other distance measures on 21 datasets, HVDM was shown to treat the nominal attributes more
appropriately than the other compared functions, which resulted in a better performance on total
accuracy and on TPR (the differences were statistically significant according to the Wilcoxon test).

Let us mention that, despite the popularity of HVDM, other more sophisticated measures
have been proposed. IVDM and WindowedVDM, proposed by Wilson and Martinez in [145],
calculate the attribute distance for numeric attributes in a more advanced way, by discretising
them to calculate sample probabilities. The main drawback of these methods (including also
HVDM) is that they assume that attributes are independent of each other. Thus, two highly
correlated attributes will contribute twice as much to the distance value as they should [84].
Therefore, more sophisticated methods have been proposed, which use the regular simplex methods
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or covariance measures for the nominal attributes to compute the Mahalonobis-type distance [84].
The experimental comparison of these new methods to the HVDM method showed however, that
HVDM performed quite well in most cases, even when the assumption of attribute independence
was violated.

HVDM measure was also succesfully used in the related studies concerning class imbalance –
especially in the preprocessing methods which analyse the local neighbourhood of examples (e.g.
in SMOTE, SPIDER, NCR). Therefore, we will use the HVDM measure in this thesis.
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Chapter 3

Types of Examples and Their Influence on
Learning of Classifiers

In this Chapter we analyse the relationship between the types of examples in imbalanced data and
the performance of learning methods. As described in Chapter 2, learning from imbalanced data
with clearly separated classes is not difficult for most classifiers. Recognizing the minority class
becomes more difficult when the distribution of examples from different classes is more complex.
A number of experimental studies can be found in the literature, which show that the mutual
position of examples has a crucial impact on learning from imbalanced data [44, 69].

In Section 3.1 we review the most important related works, which experimentally evaluate
the impact of different data types on learning of classifiers and on the preprocessing methods.
Most of these works are carried out on artificial datasets in which the distribution of the data is
known a-priori and can be precisely controlled. Although they focus on the important aspects of
data distribution, such as, e.g, the role of small disjuncts in the minority class, their conclusions
might not be evident and easy to directly apply in the real-world settings, as it may be difficult to
precisely estimate the occurence of these data factors in the real-world datasets.

Some comparative studies are carried out with real-world datasets [7, 63, 108], however they
focus rather on studying single data factors or just compare the performance of the selected clas-
sifiers. They usually do not consider several data factors occuring together and do not propose
straight-forward methods for the identification of these types of examples in the real data.

Therefore, we look for new simple techniques which could help to identify the difficult types of
example distributions in imbalanced data and which could lead to new studies on their influence
on learning typical classifiers and the main preprocessing methods. We propose first to adapt
the visualisation methods to confirm the occurence of different types of examples in real-worlds
datasets and then we introduce a method of their identification in the datasets, based on analysing
the local neighbourhood of examples.

We focus on, so-called, safe, borderline and outlier minority examples. We also introduce an
additional type of examples, called rare examples, which in our opinion can also influence the
learning methods. We will show that in real-world imbalanced datasets, the classes can rarely be
clearly separated. In most datasets a mixture of types of examples can be observed. Then, we will
relate the results of the preprocessing methods and classifiers’ performance to the results of the
analysis of the data distribution, showing which types are the most difficult and which methods
are sensitive to the particular types of examples.
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3.1 Experimental Perspectives on Types of Examples – Literature
Study

In this Section we review the most important related works which study the properties of the
imbalanced data distributions and their consequences for the learning classifiers and the prepro-
cessing methods. First, let us discuss the types of examples which have been distinguished and
studied in these works.

The most common is the distinction between safe and unsafe examples [69]. Safe examples
are located in the homogenous regions populated by the examples from one class only. Otherwise
they are treated as unsafe. Unsafe examples are considered to be less reliable and are often further
discriminated between borderline and noisy examples [69]. Borderline examples are placed close to
the boundary regions between classes. They can be unreliable as even a small amount of attribute
noise can send the example to the wrong side of the decision border [69], resulting in the overlapping
of classes. Singular examples located deeper in the regions where the opposite class prevails are
usually treated as noisy examples. Finally, examples forming small separated groups, called in [59]
small disjuncts, have been distinguished – their definition was introduced in Section 2.1.

These four types of examples (safe, borderline, noisy, small disjuncts), together with such
factors as imbalance ratio, size of the datasets and size of the minority class, have been a subject
matter of several experimental studies concerning class imbalance. Let us briefly review the main
works.

Impact of decomposition of the minority class into small disjuncts
Japkowicz and Stephen in [59] carried out a large number of experiments with simulated data
studying the relationship between the fragmentation of the class, the size of the training set and
the class imbalance ratio. By introducing these three types of disturbance and manipulating
with their degree, their influence on the recognition of minority classes and on the abilities of
particular classifiers were analysed. The experiments were carried out on artificial data described
by one numerical attribute. The minority class was initially divided into two separate intervals,
and was systematically partitioned into smaller sub-groups (interpreted as small disjuncts). The
experimental results showed an important role of sparsity of the minority class when it contains
very small sub-groups. Jo and Japkowicz in [60] conducted a comparative study (also on artificial,
one-dimensional data) of various sampling methods with a recommendation for using informed
cluster-based techniques. A relationship between the class imbalance and small disjuncts was
investigated also in [108] using real-world UCI datasets and the C4.5 tree-based classifier. Here,
the leaves covering only few examples were treated as representatives of small disjuncts and the
authors measured (with the so-called error concentration measure) if the incorrectly labeled testing
examples are a result of using these leaves for classification. Their results suggest that pruning
may not be effective for dealing with small disjuncts and class imbalance, that SMOTE might
increase the error concentration around small disjuncts and that simple random oversampling may
sometimes compete with more advanced preprocessing methods.

Impact of borderline examples and overlapping
The role of overlapping has been a subject matter of many experimental studies concerning class
imbalance. In [107], the authors used the artificial, five-dimensional datasets described by nu-
merical attributes. Minority and majority classes formed two spherical clusters. By changing the
imbalance ratio and the distance between the clusters (from the separated clusters to the entirely
overlapped ones), the authors analysed the relationship between these two factors and their influ-
ence on the C4.5 classifier with respect to the AUC measure. They concluded that when the clusters
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were separated, even a high imbalance ratio did not deteriorate AUC. Increasing overlapping was
more influential than increasing class imbalance, leading to the deterioration of AUC.

An analogous experiment, but comparing more classifiers on more evaluation measures, was
carried out in [44]. Here, two-dimensional artificial datasets described with numerical attributes
were generated, and the degree of overlapping and imbalance ratio were systematically changed.
The classes formed two rectangular regions, which were overlapped by moving them along the
x-axis. Six learning algorithms were compared (1-NN, Naive Bayes, C4.5 tree learner, Support
Vector Machine and Neural Networks) using Specificity and Sensitivity measures. Increasing over-
lapping between the classes degraded the recognition of the minority class more than changing
the imbalance ratio. However, it affected various classifiers in a different degree. In case of a
very high overlapping, 1NN performed the best on the minority class but degraded the most the
recognition of the majority class, while SVM was the worst classifier on the minority class. In the
additional experiment, the authors manipulated with the imbalance ratio in the overlapping re-
gion, showing that when the minority examples prevailed in this region, the majority class started
to be recognized poorer than the minority class. The same experimental setup was then used to
analyse in more detail the kNN classifier, with k changing from 1 to 15 [43]. It showed that when
the overlapping increased, more local classifiers (with smaller k) performed better on the minority
class.

The study in [30] focused on the effects of overlapping and class imbalance on Support Vector
Machines. Using the two-dimensional artificial datasets, the authors showed that when the overlap
level was high, it was unlikely that collecting more training data would produce a more accurate
classifier. They also observed that the performance of SVM decreased gradually with the increasing
imbalance ratio and overlapping, and that there was a sudden drop when the imbalance ratio
equaled to 20% and the overlapping level exceeded 60%, regardless of the training set size. After
this threshold, SVM failed to recognize the minority examples.

Finally, in [121] the effect of overlapping was studied together with other factors such as de-
composition of the minority class into smaller sub-concepts. The experiments were carried out
on artificial two-dimensional datasets with more complicated non-linear borders. The experiments
showed that the combination of class decomposition with overlapping makes learning very difficult.
Increasing overlapping was more influential than increasing the number of subconcepts.

Impact of noise

Some other experimental studies concern the role of noisy examples in learning from imbalanced
data. Anyfantis et al. [7] evaluated the effectiveness of techniques for handling class noise in im-
balanced datasets using the C4.5, Naive Bayes and 5NN as classifiers and the G-mean performance
measure. They carried out the experiments using 7 UCI real-world datasets which were consid-
ered noise-free, and the class noise was introduced by randomly relabelling some of the learning
examples. In [63], class noise was also introduced to real-world datasets by randomly relabelling
the learning examples. The experimental results showed that all learners were sensitive to noise,
however some of them, as Naive Bayes and nearest neighbor learners, were often more robust than
more complex learners such as support vector machines or random forests. In [112], the impact
of noise was studied on both artificial and real-world datasets. In real-world data, the authors
introduced both class noise and attribute noise, by either changing the class label or the attribute
values, respectively. The comparison concerned the SMOTE preprocessing method and its sev-
eral extensions, used with several clasisifiers and evaluated with an AUC measure. It showed that
SMOTE was sensitive to the noisy data and its extensions, cleaning the additional noise introduced
by SMOTE, were necessary.
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Impact of imbalance ratio
Van Hulse et al carried out a large study with 35 real-world datasets, 11 classifiers and 7 pre-
processing methods in [132]. They grouped the datasets into 4 categories with respect to the
imbalance ratio and compared the learning strategies within these categories. According to the
authors, random undersampling worked better than other approaches for data with the most se-
vere imbalance ratio (< 5%). Unlike other studies, they claimed that simpler random re-sampling
often performed better than more sophisticated informed re-sampling methods. Having many ex-
perimental configurations, the authors drew a conclusion that algorithms respond differently to
various preprocessing methods (e.g. results for decision trees are not valid for neural networks)
and it depends on the evaluation measures (e.g. G-mean or F-measure show higher improvements
than AUC).

Yet another study concerning impact of imbalance ratio was carried out in [10]. 20 real-world
datasets were used to analyse the behaviour of 7 learning methods on the AUC measure. Averaging
the results for all the datasets, the authors have observed that the loss of performance started to be
significant when the minority class represents 10% of the data or less. SVM was less affected by the
class imbalance ratio than other classifiers for all except the most imbalanced distributions. Then,
they analysed the performance of two preprocessing methods, random oversampling and SMOTE,
and concluded that the preprocessing methods usually could not improve the performance by more
than 30%.

Impact of data size
Batista et al in [9] developed a wide systematic experimental study with 15 real-world UCI datasets
and 10 different preprocessing methods used with the C4.5 decision trees. The oversampling
methods provided better AUC than undersampling ones. Considering data factors, the authors
took into account the data size and claimed that SMOTE combined with informed undersampling
(ENN or Tomek links) led to the best results for smaller data with few minority examples while
simple random oversampling was competitive to other methods for datasets containing a high
number of the minority examples (>100 according to the authors).

3.2 Rare and Outlying Examples

In our opinion, in the above works concerning the role of types of examples in learning from
imbalanced data, not enough attention has been focused on the singular minority examples distant
from the decision border. Single minority examples surrounded by many examples from majority
classes were usually treated as noise (more precisely, class or attribute noise). As a result, they
were usually removed from the data [7, 63]. However, as the minority class can be underrepresented
in the data, these examples can be outliers, representing a rare but valid subconcept of which no
other representatives could be collected for training. This opinion was expressed e.g. in [69], where
the authors suggested that minority examples should not be removed as they are too rare to be
wasted, even under the danger that some of them are noisy. In [149], which concerns the detection
of noise in balanced datasets, the authors suggest to be cautious when performing automatic noise
correction, as it may lead to ignoring outliers which is ”questionable, especially when the users
are very serious with their data”. In our opinion, the minority class examples conform to this
case. The interesting results can be found in [41]. Although this work was not carried out in the
context of class imbalance, it concerns medical domains in which class imbalance often occurs.
The authors have consulted the results of noise identification filter with an expert to verify if the
identified examples were rather noise or outliers. In some datasets a large number of examples
was denoted by an expert as outliers (e.g. 11 out of 13). Their removal would be harmful for the
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learner. The authors suggested that examples representing real noise should be eliminated from
the training set, whereas outliers should be, after hypothesis construction, added as exceptions to
the generated rules.

On the other hand, distant majority examples located in the minority class regions are most
probably a true noise. Since the majority class is well represented in the dataset, such example
is rather not a representant of a very rare subconcept, but more likely a result of a assigning a
wrong class label (class noise) or a faulty measurement of some conditional attributes (attribute
noise). Noisy majority examples are undesired as they can cause the fragmentation of the minority
class and increase the difficulties in learning its definition. Therefore, in our work, we will treat
the distant minority examples as outliers which should be kept in the learning set, while majority
examples as noise which should be removed.

Moreover, it would be worth to distinguish yet another type of so-called rare examples. These
are pairs or triples of minority class examples, located in the majority class region, which are
distant from the decision boundary so they are not borderline examples, and at the same time
are not singular examples, so they are not exactly outliers. The role of these examples has been
preliminary studied by us in the experiments with special artificial datasets [102, 121]. It has
been shown that rare examples significantly degraded the performance of classifiers. Also, various
preprocessing methods (based on oversampling or undersampling) performed differently on such
rare examples.

3.3 Identifying Types of Examples in Real-world Datasets

3.3.1 Motivations

Related works, discussed in Sections 3.1 and 3.2, showed that the deterioration of classification
performance in imbalanced datasets is related not only to the class imbalance ratio, but that the
data distribution characteristics, such as small disjuncts, overlapping, noisy, rare and outlying
examples, have a crucial impact on learning, especially when the minority class is concerned.
These dependecies have been examined using mostly artificial datasets [121, 107, 44], in which the
data distribution was given a priori and the degree of each factor could be precisely controlled by
augmenting or diminishing the degree of overlapping [107, 44], the number and cardinality of small
disjuncts [59, 60] or noisy/outlying examples [112]. The datasets used were usually one- or two-
dimensional, the examples were mostly described by only numerical attributes and they formed
very basic shapes (rectangles, spheres). Some works were carried out using real-world datasets
[7, 63, 108, 112]. In most of them the experimental setup assumed that the original datasets were
free of the analysed factor, e.g. class noise, and the dataset was then artificially disturbed, e.g. by
relabelling a certain number of examples to introduce class noise. Based on the results of these
experiments the researchers were able to draw conclusions about, e.g., a level of certain disturbance
which is critical for the performance of a given classifier or a preprocessing method. Thanks to
these works, we have now a broader view of the data distribution characteristics in imbalanced
data which influence the performance of learning methods and of the mutual dependencies between
these data factors.

However, what in our opinion is missing to broaden this picture, is the analysis of the natural
underlying distribution of real-world imbalanced datasets. If, for example, the results presented in
[30] suggest that the performance of SVMs is seriously downgraded when the number of overlapping
examples in the imbalanced dataset exceeds 60%, it would be interesting to know if such strong
overlapping often occurs in real-world applications. What is more, if we could estimate the data
distribution in the real-world dataset, e.g. estimate the degree of overlapping in some learning
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problem at hand, we could use the conclusion of [30] and not apply SVM to this dataset. Moreover,
by analysing a representative collection of real-world imbalanced datasets, we could observe what
are the most common data distribution patterns - e.g. if noise can be observed across many
datasets, what percentage of the dataset it can constitute – and which data distribution factors
often appear together. Such knowledge would help to point out the most promising directions for
the development of methods dedicated for class imbalance.

Some simple data distribution factors which are known to influence learning from imbalanced
data, can be directly measured in the real-world datasets - e.g. imbalance ratio, data set size or
minority class size. As a result, the observations from the experimental studies carried out in the
related works which are based on these characteristics (e.g. [10, 132, 9]) can be easily applied to
the real-world settings. However, the data distribution factors which have been shown to influence
learning more than imbalance ratio or dataset size – such as noise or overlapping – are not that
straightforward to measure. Therefore, we think that there is a need for methods which could help
estimate the presence and level of these factors in the real-world datasets.

Some works have been proposed which try to tackle this problem. For example, in [30] (con-
cerning the effects of overlapping and imbalance on the SVM classifier), the authors propose to
estimate the degree of overlapping in real-world datasets by measuring a number of support vec-
tors which can be removed from the classifier without deteriorating the classification accuracy. In
[134], on the other hand, a method for estimating the number of noisy examples was proposed.
It uses ensemble methods, such as cross-validated committees, bagging and boosting, to identify
the examples which cannot be correctly classified by all or the majority of the classifiers built on
parts of the training set. The conclusion was that using the majority vote gives good results for
large datasets, while for small datasets or when the examples are costly, conservative approaches
(in which all the classifiers have to mislabel the example) are better.

However, these methods usually measure only one characteristics of the dataset. To analyse the
dataset set in a more comprehensive way, one would have to apply these methods one by one (using
the methods described above, it would require building an SVM classifier to estimate overlapping,
and building an ensemble of classifiers to evaluate the presence of noise). We would like to propose
a single method, which evaluates the occurrence of all the interesting data factors at once. What is
more, we would like to keep the method simple and intuitive. We do not want to propose a method
which is directly related to a particular classifier, but rather analyse the mutual positions of the
learning examples in the attribute space. We will be interested in four types of minority examples:
safe, borderline, rare and outlying examples. An illustrative artificial dataset containing all these
types of examples is presented in Fig. 3.1a (the dataset concept comes from our earlier paper
[102]). The minority class (black circles) is divided into five sub-concepts (clusters). In each of
these concepts, the examples lying near the center of the cluster can be considered as safe. Many
more examples belong to the border between the classes, in which the majority examples overlap
with the minority ones. Finally, there are some examples more distant from the clusters, which
represent outliers or rare examples.

3.3.2 Data Visualisation

Data visualisation techniques can be used to gain insight into a structure of multidimensional data.
A term ”structure” is understood here as geometric relationships between the examples. Examples
of structure include clusters, regular patterns, outliers, distance relations, proximity of data points
etc. [27]. The real-world problems are often described by more than two attributes, so to visualize
such data, methods which can project multidimensional data points into a lower dimensional space
such that the structural properties of the data are preserved, have to be used. Projection methods
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create new dimensions (artificial attributes), which should aggregate well the original attributes.
A large number of dimensionality reduction techniques have been proposed – their review can be
found in [74]. One of the most popular technique is Multidimensional Scaling (MDS). It performs
a linear mapping of dimensions with the aim of preserving the pairwise distances between data
points in the original high dimensional data space in the projected low dimensional space [26]. Let
us remark that while projecting a dataset to a lower dimensional space using MDS, it is important
to monitor how much it preserves the data variance after the projection. If the preserved variance
is too small, than there is a risk that too much information has been lost because the number of
dimensions used was too low, and that the resulting visualisation is not reliable.

Despite its popularity, the MDS method is sometimes criticized for focusing too much on keeping
the dissimilar datapoints far apart. For high-dimensional data, it is usually more important to
keep the very similar points close together, which is typically not possible with a linear mapping
[74]. Among many non-linear methods proposed (see their review in, e.g., [74]), t-SNE method
(t-Distributed Stochastic Neighbour Embedding) is one of the most recent dimensionality reduction
methods, which does not concentrate on preserving all the pairwise distances, but puts more
emphasis on preserving local distances to keep similar examples together, rather than on preserving
the exact distances between dissimilar examples [131]. T-SNE is a modification of the earlier SNE
projection method, aiming to correct the drawback of ”crowding” the examples too much in the
center of the map. According to the experiments in [131], t-SNE is capable of capturing much
of the local structure of the high-dimensional data very well, while also revealing global structure
such as the presence of clusters.

Projection methods can be a helpful tool to visually inspect the distribution of examples in
the multidimensional imbalanced data. By using a projection to a 2-dimensional space, we can
plot the dataset and observe if data factors such as overlapping, rare or outlying examples are
present in the dataset. As most of the real-world datasets are described by both numeric and
nominal attributes, we calculate the distances between the points using the HVDM metric – see a
discussion and justification of this choice in Section 2.4. To verify if the observed distribution of
a dataset is not a result of the applied projection method rather than an intrinsic characteristics
of the data, we apply on the same datasets the MDS and t-SNE projection, which are based on
different principles, and compare the results.

We present the visualisations after the MDS projection of three imbalanced datasets from the
UCI repository1, often used in the experimental studies concerning class imbalance: thyroid, ecoli
and cleveland (Fig. 3.1b-3.1d). For these datasets, the percentage of preserved variance was high
enough to analyse the data. Looking at Fig. 3.1b-3.1d, one can notice that the three datasets
are of different nature. In thyroid dataset (Fig. 3.1b), the classes are clearly separated (even
linearly), so most of the minority examples represent safe examples. In ecoli dataset (Fig. 3.1c)
on the other, the classes seriously overlap. The consistent region belonging solely to the minority
class (on the very left) is rather small – most examples lie in a mixed region between the classes.
Finally, the cleveland dataset (Fig. 3.1d) is even more difficult to learn, as the minority class
is very scattered – the examples form very small groups of few examples and some of the other
are singular observations, surrounded by the opposite class. This dataset consists mostly of rare
examples and outliers.

Fig. 3.2 presents the results for thyroid and ecoli datasets after the t-SNE projection (run with
the default parameters). The cleveland dataset is not used in this comparison as t-SNE method
does not handle nominal attributes. It can be observed that the dimensions to which the datasets
were projected are different, e.g. for ecoli, the t-SNE visualisation is rotated. Also, the mutual

1http://www.ics.uci.edu/~{}mlearn/MLRepository.html
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(a) Artificial data – 60% borderline, 20% rare examples (b) Thyroid – ”safe” dataset

(c) Ecoli – ”borderline” dataset (d) Cleveland – ”rare” / ”outlier” dataset

Figure 3.1: MDS visualisation of selected imbalanced datasets

positions of examples differ – the three clusters in the t-SNE projection of ecoli dataset are better
separated than in the MDS method (which is consistent with the assumptions of t-SNE), and in
the thyroid dataset the minority class forms several clusters instead of one. However, for both
datasets the principle observations of distribution characteristics remain the same: in the thyroid
dataset the classes can be easily separated, while in the ecoli dataset, in one of the clusters the
examples from both classes strongly overlap.

To conclude, the visualisation methods can help to inspect the distribution of examples in the
real-world dataset and estimate the types of minority examples. However, the applicability of these
methods is limited. First of all, they cannot be used for very large datasets, as the visualisation
of thousands of points would be difficult to read. Secondly, the projection to two dimensions may
not always be feasible, as the dataset may be intrinsically characterized by more dimensions. For
instance, we could not use the MDS technique to visualize another well-known imbalanced dataset
from the UCI repository, hepatitis, as MDS with two dimensions preserved only 25% of variance
in the dataset. Finally, some methods, such as t-SNE, were designed to use the numeric datasets.
Therefore, there is still a need for more flexible methods, which can estimate the characteristics of
the dataset. We propose such a method below.

3.3.3 Labelling the Minority Class Examples

To automatically identify different types of examples, we propose a simple procedure which assesses
the type of example by analysing the class labels of the examples in its local neighbourhood.
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(a) Thyroid – ”safe” dataset (b) Ecoli – ”borderline” dataset

Figure 3.2: T-SNE visualisation of selected imbalanced datasets

We think that analysing a ”local” distribution of examples may be better suited for this task
than ”global” approaches, especially when the minority class is considered, as this class is often
decomposed into smaller subconcepts with difficult, nonlinear borders between the classes. What
is more, such ”local” analysis has been used in many preprocessing methods dedicated for class
imbalance (such as OSS, NCR, CNN, SMOTE or SPIDER).

Our aim is to distinguish whether a minority class example is a safe, borderline, rare or outlying
example. Let us recall that by safe examples we understand the examples located in the homoge-
nous regions populated only by the examples from the same class. Borderline examples are placed
in the boundary regions between the classes where the examples from different classes overlap.
They can also be the examples lying close to the complex borderline separating the classes, even
when there is no overlapping. Minority examples located inside the majority class, far from the
decision boundary, are considered to be outliers or rare cases. Outliers are more distant, single
examples surrounded by many examples from majority classes, while rare cases are not single ones
and may form isolated groups of few examples.

To identify these four types of examples, for each minority example we analyse the class assign-
ment of its k-nearest neighbours. Other methods modelling the local neighbourhood could also
be used (see e.g. [12]), hovewer we wanted to stay with a simple approach. In Section 3.4 we will
consider also an alternative approach based on kernel functions.

The performance of the k-nearest neighbour approach depends on the distance function and
the value of k. To calculate the distance between the examples we use the HVDM distance metric
– see a discussion of its choice in Section 2.4. As for the value of k, we have based our choice on
the suggestions given in [11, 43]. In [11], the authors compare the values of k from 1 to 27 for
several distance functions, analysing the total accuracy on a set of UCI datasets (not considering
class imbalance). They concluded that for the HVDM measure, values between 5 and 11 were the
best (and the differences of performance between them were very small). The comparison in [43]
concerned the use of k-NN in the class imbalance setting, and the suggestion was that for difficult
data distributions, more local classifiers (with small k) are recommended.

Following these suggestions, we have decided to use k = 5. K = 1 and k = 3 may poorly
distinguish the nature of examples, especially if we want to assign them to four types. Neighbour-
hood of size 5 seems enough for the purpose of this analysis, and it is often used in the related
preprocessing methods for class imbalance. We will also evaluate experimentally in Section 3.4
that using k = 7 does not change the results too much.
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With k = 5, the proportion of neighbours from the same class against neighbours from the
opposite class can range from 5:0 (all neighbours are from the same class as the analysed example)
to 0:5 (all neighbours belong to the opposite class). Depending on this proportion, we propose to
assign the labels to the examples in the following way:

• 5:0 or 4:1 – an example is labelled as a safe example (further denoted as S).

• 3:2 or 2:3 – a borderline example (denoted as B). The examples with the proportion 3:2 are
correctly classified by its neighbours, so they might still be safe. However, the number of
neighbours from both classes is approximately the same, so we assume that this example
could be located too close to the decision boundary between the classes.

• 1:4 – labelled as a rare example (denoted as R), only if its neighbour from the same class
has the proportion of neighbours either 0:5 or 1:4 (additionally, in case of 1:4, it must point
to the analysed example). Otherwise there are some other examples from the same class in
the proximity (although not in the immediate surrounding of k = 5), which suggests that it
could be rather a borderline example B.

• 0:5 – an example is labelled as an outlier and denoted as O.

A more probabilistic interpretation of this method will be given in Section 3.4.

3.3.4 Validation of the Labelling Method

The presented method is based on a simple analysis of a fixed number of neighbours. We are aware
that it gives rather an approximation of a real distribution of examples, so we would like to verify
its usefulness. To check whether the assigned labels can precisely reflect the known distribution
of examples, we use the artificial datasets. Inspired by a good experience with such data in [102],
we generated a number of such datasets. They contained 800 examples described by 2 numerical
attributes. The minority class formed elliptical subconcepts, surrounded by uniformly distributed
majority class examples. The datasets were characterized by various imbalance ratios (from 1:5
to 1:9) and a different number of the minority class sub-concepts (from 1 to 5). In these datasets
we changed the percentage of safe, borderline, rare and outlying minority examples. Table 3.1
presents the description of several analysed datasets and the labelling results.

Table 3.1: Labelling of artificial datasets

Dataset Description Identified Labels
Imbalance
Ratio

Sub-
concepts

Border
[%]

Rare
[%]

Outlier
[%]

Safe
[%]

Border
[%]

Rare
[%]

Outlier
[%]

1:5 1 60 20 0 17.04 60.74 21.48 0.74
1:5 3 60 20 0 18.52 57.78 23.70 0.00
1:5 5 60 20 0 17.78 64.44 17.78 0.00
1:5 5 0 0 10 64.44 25.93 0.00 9.63
1:7 5 0 0 10 54.00 36.00 0.00 10.00
1:9 5 0 0 10 52.00 36.00 2.00 10.00

The first three datasets are disturbed in the same way (60% of borderline examples and 20%
of rare examples), but differ in the number of sub-concepts. One of them (with 5 sub-concepts)
is plotted in Fig. 3.1a. Proportions of the identified labels show that our labelling method can
correctly reconstruct the percentage of safe, borderline and rare examples, regardless of the number
of sub-concepts. The other three datasets contain 10% of outliers and differ according to the
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imbalance ratio. Here, the labels also correctly reflect the percentage of outliers regardless of the
changing imbalance ratio. However, although the classes in these datasets are not overlapped, a
considerable number of examples is labelled as borderline. Let us recall that by these examples
we understand also the examples lying close to the borderline between the classes, even when
there is no overlapping. The examples close to the border between the classes can contain in their
neighbourhood some examples from the opposite class, so our labelling method will also assign
them to the B category.

3.4 Analysing Real-world Datasets – Experimental Study

Experimental Setup
In this experiment we want to analyse the distribution of different types of minority examples in
real-world datasets. We analyse 21 imbalanced datasets often used in the related works on class
imbalance, which represent different sizes, imbalance ratios, domains and have both continuous
and nominal attributes. Most of the datasets come from the UCI repository, while 4 datasets
are retrospective medical datasets which were used in the earlier works on class imbalance2. The
characteristics of the datasets is presented in Table 3.2.

Table 3.2: Characteristics of the datasets

Dataset No of
examples

Imbalance
ratio [%]

No of attributes
(numeric)

Minority
class name

abdominal-pain 723 27.94 13 (0) positive
acl 140 28.57 6 (4) 1
new-thyroid 215 16.28 5 (5) hyper
vehicle 846 23.52 18 (18) van
car 1728 3.99 6 (0) good
scrotal-pain 201 29.35 13 (0) positive
credit-g 1000 30 20 (7) bad
ecoli 336 10.42 7 (7) imU
hepatitis 155 20.65 19 (6) die
ionosphere 351 35.89 34 (34) bad
haberman 306 26.47 3 (3) died
cmc 1473 22.61 9 (2) l-term
breast-cancer 286 29.72 9 (0) rec-events
cleveland 303 11.55 13 (6) positive
glass 214 7.94 9 (9) v-float
hsv 122 11.48 11 (9) 4.0
abalone 4177 8.02 8 (7) 0-4 16-29
postoperative 90 26.66 8 (0) S
solar-flare 1066 4.03 12 (0) F
transfusion 748 23.8 4 (4) yes
yeast 1484 3.44 8 (8) ME2

Labelling the Datasets
The results of labelling the minority class examples in all the datasets are presented in Table 3.3.
To facilitate the analysis, we have sorted the datasets from the ”easiest” to the ”most difficult” (in
terms of the complexity of the data distribution).

2We are grateful to prof. W. Michalowski and the MET Research Group from the University of Ottawa for
abdominal-pain and scrotal-pain datasets; and to prof. K. Slowinski from Poznan Univerisity of Medical Science for
hsv and acl datasets.

31



3. Types of Examples and Their Influence on Learning of Classifiers

The first observation is that most of the datasets contain the examples of all four types. More-
over, a majority of datasets contains rather a small number of safe examples - only in the top four
datasets (from abdominal-pain to vehicle) safe minority examples prevail and they have almost no
rare or outlying examples. Some datasets, on the other hand, do not contain any safe examples –
such as cleveland, glass or solar-flare.

Datasets from car to ionosphere consist of safe and borderline examples in comparable propor-
tions and they do not have many rare or outlying examples. In these datasets there is probably a
complicated border between the classes or some overlapping occurs.

Then, we can distinguish a group of datasets in which the borderline examples dominate in the
distribution of the minority class - these are datsets from credit-g to haberman. A high number
of borderline examples may suggest that there is a strong overlapping of classes on the border
between the classes in these datasets.

Several datasets contain many rare examples. Although they are not that numerous as B or
S examples, they can constitute even 20-30% of the minority class. Datasets from haberman to
postoperative have at least 20% of rare examples. Other datasets contain less than 10% of these
examples.

Finally, some datasets contain a relatively high number of outlier examples – datasets from cmc
to yeast contain more than 20% of these examples. Sometimes the outlying examples constitute
more than a half of the whole minority class (see cleveland, abalone, hsv). This observation
confirms the discussion in Section 3.2, in which we claimed that lonely minority examples cannot
be treated entirely as noise. If the standard noise-handling techniques, which relabel or remove
such examples, were used in the datasets like hsv, it would seriously degrade the recognition of
this class, as it would result in removing more than a half of all the minority examples. Finally, it
is interesting to observe that for many datasets rare and outlying examples appear together.

Note that the results of this labelling method are consistent with the observations of the MDS
visualisations. The three datasets visualised in Fig. 3.1b-3.1d also show that new-thyroid contains
mostly safe examples, ecoli has a lot of borderline examples, while cleveland constitutes mostly of
rare and outlying examples.

Influence of Parameters on the Labelling Results
Although some of the results of our proposed labelling method are confirmed by the MDS and
t-SNE visualisations, we would like to verify in more detail if the results presented in Table 3.3
are not related to the used identification method rather than to the distribution of the analysed
datasets.

First, we want to verify if the results depend strongly on the used size of the neighbourhood, by
comparing the results of using k = 5 with the neighbourhood of size 7. To do that, new thresholds
for assigning the examples to the four categories based on the distribution of neighbours have to
be established.

Note that we can treat the proposed neighbour-based approach as a discrete estimator of
the underlying (continuous) probability distribution in the small region containing the analysed
example x, where the probability of class membership of x is estimated as

p(Cmin|x) = Kmin

K

Cmin is a minority class, K is the number of neighbours and Kmin is the number of minority
class neighbours [12]. Looking at our identification method from this perspective, the proportion
of neighbours 3:2 (in case of which we treat an example as borderline) is equivalent to the distri-
bution estimation p(Cmin|x) = 3

5 = 0.6, while proportion 4:1 (safe example) is equivalent to the
distribution estimation 0.8. Interpolating between these values, we can say that our method labels
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Table 3.3: Labelling of datasets

Dataset S [%] B [%] R [%] O [%]
abdominal-pain 59.90 22.28 8.90 7.92
acl 67.50 30.00 0.00 2.50
new-thyroid 68.57 31.43 0.00 0.00
vehicle 74.37 24.62 0.00 1.01
car 47.83 39.13 8.70 4.35
scrotal-pain 38.98 45.76 10.17 5.08
ionosphere 44.44 30.95 11.90 12.70
credit-g 9.33 63.67 10.33 16.67
ecoli 28.57 54.29 2.86 14.29
hepatitis 15.63 62.50 6.25 15.63
haberman 4.94 61.73 18.52 14.81
breast-cancer 24.71 25.88 32.94 16.47
cmc 17.72 44.44 18.32 19.52
cleveland 0.00 31.43 17.14 51.43
glass 0.00 35.29 35.29 29.41
hsv 0.00 0.00 28.57 71.43
abalone 8.36 20.60 20.60 50.45
postoperative 0.00 41.67 29.17 29.17
solar-flare 0.00 48.84 11.63 39.53
transfusion 18.54 47.19 11.24 23.03
yeast 5.88 47.06 7.84 39.22

the example as safe if its distribution is greater than 0.7. Calculating the remaining thresholds
between the categories analogously, our identification method with k = 5 can be translated to:

Definition 3.1
if 1 ≥ p(Cmin|x) > 0.7 then label x as safe;
if 0.7 ≥ p(Cmin|x) > 0.3 then label x as borderline;
if 0.3 ≥ p(Cmin|x) > 0.1 then label x as rare;
if 0.1 ≥ p(Cmin|x) > 0 then label x as outlier;

To use the identification method with k = 7 while preserving the above probability thresholds,
the labels are assigned in the following way:

• 7:0 or 6:1 or 5:2 – a safe example

• 4:3 or 3:4 – a borderline example; again, the examples with proportion 4:3 are correctly clas-
sified by their neighbours, but the number of neighbours from both classes are approximately
the same, so they might lie in the borderline region

• 2:5 or 1:6 – a rare example; analogously to the original method we verify if, in case of 1:6,
the example and its neighbour are the only minority examples in the proximity, while for 2:5
proportion we verify if an example with its two neighbours form an isolated group with no
other minority examples in their surrounding

• 0:7 – an outlier

We have analysed again the same 21 chosen datasets with k = 7 and compared the results
with the original method (k = 5). For most of the datasets and types of examples, the differences
in percentage of examples assigned to a given type were small (up to 5-10%). Higher differences
were observed only for glass and solar-flare datasets (they resulted from changing between rare
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and borderline categories) and for car and hepatitis datasets (change between safe and borderline
categories) – the detailed results can be found in Appendix A (Table 1). Despite these small
differences, we can assume that the analysis presented in Table 3.3 was not the result of the
selected k, and that k = 5 is sufficient to analyse the datasets.

Then, we wanted to verify if analysing the local neighbourhood based on fixed k (either to 5
or 7) does not influence negatively the results, as the datasets might have different densities in
different regions. Again, looking on the problem from the probability estimation perspective, we
can estimate the local distribution either by fixing the number of neighbours and determining the
area for which the estimation is calculated from the data (as in k-nearest-neighbour methods) or
by fixing the area and estimating the number of neighbours from the data, giving rise to kernel
approaches [12]. Therefore, we compare the results of our method with using a kernel approach.

In this method, a kernel function is used to determine which neighbours should be taken
into account in the class probability estimation and what weights should be assigned to them,
based on their distance from the analysed example. We apply a commonly used kernel function,
Epanechnikov (presented on Fig. 3.3), which gives more weight to the neighbours closer to the
analysed example. The width of the function (which determines the maximum distance up to
which the examples are treated as neighbours), has been set for each dataset separately, and it is
equal to the average distance to the 5th neighbour of each minority example in the dataset, to keep
the average number of analysed neighbours comparable to the one used in our original method.
The type of a minority example is assigned according to the thresholds given in Def. 3.1. We
have observed that some examples do not have any neighbours closer than width; in this case we
assume that we do not have enough information about these examples and do not take them into
account in our analysis. In practice, such examples constituted up to 5-10% of the dataset. Only
in the ionosphere dataset, there were 40% of such examples, so the results for this dataset should
be treated with caution. The labelling of examples based on the kernel approach is presented in
Table 3.4.

Figure 3.3: Epanechnikov kernel function

Comparing the results in Tables 3.3 and 3.4, we can observe that using the kernel method does
not change the results more than by 10% for most of the datasets. Only in three datasets the
differences are more visible. In postoperative dataset, 24% of examples changed its label from
borderline to outlier. However, it should be remembered that it is a very small dataset, and this
difference refers in fact to only 5 minority examples. In breast-cancer dataset, also more examples
are labeled as outliers and less as borderline in the kernel approach. Finally, there are bigger
differences for the ionosphere dataset (there are shifts between safe and borderline examples and
between rare and outlier examples). However, let us recall that in this dataset 40% of examples
remained unlabeled by the kernel method which might have influenced the results.
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Table 3.4: Labelling of datasets – the kernel density method

Dataset S [%] B [%] R [%] O [%]
abdominal-pain 62.0 21.9 5.3 10.7
acl 72.2 22.2 0.0 5.6
new-thyroid 62.5 37.5 0.0 0.0
vehicle 77.4 18.9 0.0 3.7
car 47.8 43.5 8.7 0.0
scrotal-pain 24.4 53.3 11.1 11.1
ionosphere 12.9 62.9 1.4 22.9
credit-g 13.9 63.3 6.4 16.3
ecoli 25.8 61.3 3.2 9.7
hepatitis 13.6 63.6 9.1 13.6
haberman 15.1 56.2 16.4 12.3
breast-cancer 18.8 46.3 33.8 1.3
cmc 17.2 44.3 10.4 28.2
cleveland 6.7 30.0 13.3 50.0
glass 6.7 40.0 26.7 26.7
hsv 0.0 0.0 16.7 83.3
abalone 7.8 23.7 11.4 57.1
postoperative 0.0 65.2 30.4 4.3
solar-flare 7.1 45.2 7.1 40.5
transfusion 15.1 57.8 9.6 17.5
yeast 15.2 37.0 2.2 45.7

We have also tested other kernel functions, such as Gaussian, triangular or uniform functions;
we have also tested other kernel widths (calculated as the average distances to the 3rd, 7th and
9th neighbour), but it did not influence too much the results. Therefore, we can assume that
the revealed distributions are rather inherent characteristics of the datasets than of the particular
neighbourhood used. We can also say that the simple method based on analysing the local neigh-
bourhood of fixed size 5 is sufficient to analyse the distribution of a dataset. We will base on its
results in the following Sections.

3.5 Influence of Types of Examples on Learning of Classifiers –
Experimental Study

Having shown that the analysed imbalanced datasets differ in their distribution of minority exam-
ples, we would like to verify whether they constitute a different degree of difficulty for the learning
algorithms, and whether different classifiers reveal different sensitivity to the particular types of
examples. We could expect that the datasets with a lot of safe minority examples will be easier
to learn than the datasets with borderline examples and that rare or outlying examples will be
particularly difficult for most of the classifiers.

We want to focus on the basic classifiers rather than on the complex ones such as classifiers
ensembles. We have decided to compare five learning algorithms which have been often considered
in related works and which represent different learning strategies. They are: tree learning by C4.5,
rule induction with PART algorithm, k-nearest neighbour (kNN), neural network based on radial
functions (RBF) and support vector machine SVM3. C4.5 and PART are run without pruning as
pruning may be harmful for imbalanced datasets [108]. kNN is used with k = 1 and k = 3, as it
has been suggested e.g. in [43] that for difficult imbalanced datasets more local classifiers (with

3The WEKA implementations are used. We use J48 version of C4.5 and SMO version of SVM.
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Table 3.5: Sensitivity [%] of compared classifiers

Dataset 1NN 3NN J48 PART RBF SVM
abdominal-pain 76.4 78.5 69.8 72.6 75.0 71.8
acl 72.0 78.5 85.5 80.0 84.0 82.5
new-thyroid 96.3 90.2 92.2 93.3 99.5 89.8
vehicle 89.1 87.9 87.0 88.3 88.0 95.2
car 3.1 3.1 77.7 90.0 49.6 88.2
scrotal-pain 58.4 58.7 55.3 63.4 62.5 65.9
ionosphere 69.4 65.5 82.7 84.0 94.2 89.0
credit-g 50.3 39.9 46.5 47.7 43.6 52.2
ecoli 52.2 50.8 58.0 42.0 54.7 58.5
hepatitis 44.0 37.0 43.2 45.7 60.7 51.5
haberman 30.1 26.9 41.0 33.4 18.3 1.3
breast-cancer 40.4 27.6 38.7 41.1 40.8 45.3
cmc 37.6 33.8 39.2 37.7 12.1 5.2
cleveland 20.3 12.5 23.7 25.2 9.5 9.0
glass 30.0 16.0 30.0 34.0 25.0 0.0
hsv 0.0 0.0 0.0 2.0 1.0 0.0
abalone 20.5 16.5 30.4 18.8 12.3 0.2
postoperative 4.3 0.0 4.7 10.3 13.7 7.0
solar-flare 9.1 8.2 20.9 18.7 10.2 15.7
transfusion 31.9 34.3 41.3 42.9 32.9 2.2
yeast 38.1 26.2 30.9 26.7 15.1 0.0

smaller k) perform better on the minority class. Standard values of parameters for RBF and SVM
have failed to recognize the minority class. For RBF we have scanned several configurations trying
to get the best sensitivity measure on all 21 datasets. As a result, we changed a number of clusters
to 5 and minimum standard deviation to 0.1. The similar optimization has been done for the SVM
classifier. It is used with the RBF kernel, complexity C = 50 and gamma parameter 1.0. We
will come back to the issue of SVM parametrisation later in this Section. The performance of the
classifiers is evaluated with Sensitivity and two aggregation measures – G-mean and F-measure.
Their values are estimated by means of a 10-fold stratified cross-validation repeated 5 times to
reduce possible variance. We resign from using the ROC curves and AUC measure, as most of
the selected classifiers give determinstic predictions and these measures are more suited for the
probabilstic classifiers - see discussion in Section 2.2. In datasets with more than one majority
class, they are aggregated into one class to have only binary problems.

First, we compare the performance of classifiers on the 21 imbalanced datasets. Table 3.5
presents the Sensitivity measure. Let us comment these results, relating them to the labelling
of the datasets presented in Table 3.3. The datasets in Table 3.5 are sorted in the same way
as in Table 3.3 – from the simple to the more complex distributions. We can observe how with
the increasing difficulty of the dataset distribution, the performance of all the classifiers decrease.
For datasets where safe examples prevail (abdominal-pain -new-thyroid), all classifiers learn the
minority class quite well – they recognize 70-90% of the minority examples. In datasets with
more borderline examples (car-haberman), the classifiers usually recognize 40-60% of the minority
class. When many rare and/or outlying example are observed (datasets haberman-yeast), the
Sensitivity ranges between 0% and 40%. Finally, for the datasets with a lot of outlying examples
(e.g. cleveland, hsv, abalone), it is impossible to recognize more than 30% of the minority examples
(for some data even no examples can be classified). As for a majority class, all the classifiers can
recognize this class in a similar degree, reaching 80–100% on Specificity for all the datasets (see
Appendix A, Table 4 for details).
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The second observation is that different classifiers reveal different sensitivity to the particular
types of example. To examine the importance of differences between the classifiers on a collection
of datasets, we apply the non-parametric ranked Friedman test ([66, 58]) which globally compares
the performance of several methods on multiple datasets with a null hypothesis saying that all
methods perform equally. It uses ranks of all classifiers on each of the datasets – the higher rank,
the better classifier. We also carry out a post-hoc analysis (a Nemenyi test [58]) of differences
between the average ranks of classifiers. In both tests we use a confidence level α = 0.05.

First, we compare how the classifiers perform on average on all datasets, not taking into account
their nature. The null hypothesis, saying that all the classifiers are equal, is rejected with p ≤
0.007. The ranking of classifiers according to their average ranks is presented in Fig 3.4a. The
best classifiers are PART and J48, while SVM and 3NN perform the worst. The critical difference
(CD) according to the Nemenyi test is 1.65 – so we cannot say that differences between the best
performing classifiers are significant, however the first classifiers are better than the last ones.

Classifier Avg. rank
PART 5.2
J48 4.5
RBF 4.2
1NN 4.0
SVM 3.8
3NN 2.7

(a) All datasets

Classifier Avg. rank
SVM 5.5
PART 4.7
RBF 4.5
J48 4.1
1NN 3.3
3NN 2.2

(b) Safe and border datasets

Classifier Avg. rank
PART 5.9
J48 5.5
1NN 4.2
RBF 3.6
3NN 2.8
SVM 2.5

(c) Rare and outlying datasets

Figure 3.4: Rankings of classifiers depending on the nature of the dataset (based on Sensitivity).

In our opinion, averaging over the datasets of different nature might hide the interesting charac-
teristics of the learning methods. Our aim is rather to analyse the influence of types of examples on
the performance of classifiers. To carry out such analysis, we have decided to divide the collection
of datasets into two groups. In the first group we place the datasets where the are a lot of safe and
borderline examples, and only a small number of outlier or rare examples – these are datasets from
abdominal-pain to haberman. In the second group we put the datasets where many rare and/or
outlying examples were observed - these are datasets from haberman to yeast4. If we consider only
the datasets from the first group, the ranking of classifiers is definitely different – SVM is becoming
the best classifier (see ranking in Fig. 3.4b). While considering the second group of datasets, we
observe an opposite behaviour (Fig. 3.4c). PART and J48 perform well (the critical difference CD
is now 2.27, so they dominate some of the remaining classifiers). 1NN also becomes one of the best
classifiers and it becomes much better than 3NN. RBF or SVM fail at these datasets. It is also
reflected by the results of the Wilcoxon test, which we use as a supplementary test to additionally
analyse the differences between the selected pairs of classifiers. The results of this test showed
that, e.g., PART or J48 are better than RBF with p ≤ 0.025. If we look solely on the most difficult
datasets with a lot of outlying examples (e.g. cleveland, hsv, abalone, glass, postoperative, yeast)
in Table 3.5, J48, PART or 1NN can classify a few examples while SVM usually cannot recognize
the minority class at all.

The results on G-mean and F-measure show quite similar trends (the corresponding tables can
be found in Appendix A – Tables 2 and 3). On safe and borderline datasets, F-measure favors SVM
and RBF over other classifiers even more than Sensitivity: SVM (5.5) � RBF (5.2) � PART (3.7)

4Let us note that we initially wanted to divide the datasets into four groups, one for each type of minority
examples. However, the number of datasets in each group would be too small to be able to draw meaningful
conclusions. E.g. there would be only four datasets representing the ”safe” group.
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� J48 (3,6) � 3NN (3.4) � 1NN (3.2). The differences on G-mean are more subtle. When datasets
with rare and outlying examples are considered, for both measures J48 and PART dominate other
classifiers. For G-mean the ranks are almost identical as for Sensitivity. F-measure results are also
similar, except that RBF swaps with 1NN.

The results of RBF and SVM classifiers need an additional comment. It is important to
remember that these two classifiers are known to be sensitive to the configuration of parameters.
As we did not want to favor any of the classifiers, in our experimental setup they were used
with one configuration for all the datasets (similarly to other compared classifiers), which was on
average the best on the whole collection of datasets. A similar approach was taken, e.g., in the
experimental setup in [132]. In total, more than one hundred combinations of parameters were
tested, so there was already a lot of effort put in the tuning of these classifiers. However, tuning the
parameters for each group of datasets separately (e.g. selecting another configuration for datasets
with mostly safe and borderline examples and another for those with a lot of rare and outlying
examples) or even for each dataset separately, might improve the performance of these classifiers,
especially on the rare and outlying examples. We have done a preliminary study in this topic.
When we performed tuning for a whole group of rare and outlying datasets, we could not identify
a single configuration which would improve all the datasets. When we optimized the parameters
for each dataset separately, for some datasets with rare and outlying examples the results of SVM
and RBF could be improved. However, there were only a few configurations among a hundred
of combinations tested which yielded an improvement. Therefore, although the results of some
rare and outlying datasets presented in Table 3.5 could be higher if a more fine-grained tuning
was performed, the general conclusion remains the same: the SVM and RBF classifiers are very
sensitive to the rare and outlying minority examples.

Classifiers’ performance with respect to the types of testing examples

Note that examples of different types often occur together. So, one can ask a question which types
of examples actually contribute to the ”global sensitivity” and which types are the most difficult.
For instance, yeast dataset was included in the second group of datasets as it contains a lot of
outlying examples and almost no safe examples, but still many of its examples are of type B (for
details see Table 3.3). As a result, ”global sensitivity” in yeast may rely more on the recognition of
B than of O examples. As our labelling method enables to identify a type of each testing example,
we record the ”local accuracy” for each type of testing examples separately. In Table 3.6 we present
the results for two classifiers – PART and 1NN – which represent different learning strategies and
achieve a high ”global sensitivity”, especially for more difficult datasets. What is more, PART is
a rule classifier on which this thesis is focused. When analysing these results, one should keep in
mind that the minority class is small, and partitioning the testing examples with respect to their
types makes the representation of each type even more sparse. Thus, we do not present the results
for too small datasets (less than 300 examples) to ensure that there are enough representatives
in each category. Also, as some datasets do not have any examples of a particular type or their
number is too small (e.g. cleveland, vehicle) – in Table 3.6 we left the corresponding cells empty.

Note that these results confirm the previous observations. Safe examples are easy to recognize
for both classifiers (except for car dataset where 1NN cannot recognize the minority class at all).
Borderline examples are more difficult, but still a large number of them can be correctly learnt.
Rare examples are usually recognized within the range of 10–30%. Outlier examples are extremely
difficult for these and other classifiers. Only for cmc, credit-g and cleveland datasets some of them
are partly recognized, while for other datasets these examples are mostly neglected.
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Table 3.6: Local accuracies for labeled testing examples [%]

1NN PART
Dataset S B R O S B R O
abalone 81.4 45.3 22.5 2.1 74.3 27.8 12.4 10.4
abdominal-pain 99.5 74.5 5.7 0.0 91.7 69.5 17.1 8.8
car 5.5 1.5 0.0 0.0 91.5 91.1 100 46.7
cleveland 35.0 8.9 20.0 45.0 22.2 16.7
cmc 81.0 35.9 26.3 18.2 63.1 37.5 34.9 19.1
credit-g 72.9 53.9 42.1 39.2 65.7 53.3 40.5 32.0
ecoli 100.0 49.4 0.0 84.0 32.9 12.0
haberman 100.0 43.5 18.1 0.0 90.0 48.2 20.6 5.0
ionosphere 96.4 69.7 49.5 0.0 98.6 92.1 67.6 37.5
solar-flare 16.3 14.0 0.0 27.5 32.0 2.4
transfusion 80.6 41.9 12.4 0.0 86.1 64.5 21.2 1.6
vehicle 97.6 71.8 93.1 74.1
yeast 100.0 62.2 52.0 0.0 73.3 50.0 20.0 2.0

3.6 Addressing Types of Examples by Preprocessing Methods –
Experimental Study

The preprocessing methods, which balance the distribution of examples between the classes, can
improve learning. These methods are based on different principles – e.g they clean the majority
class or oversample the minority class. In this experiment we want to compare the performance
of the preprocessing methods, depending on the type of minority examples in the dataset. We
consider four different methods: simple Random Oversampling, SMOTE – a representative of
informed oversampling, informed undersampling method NCR [71] and a hybrid approach SPIDER
[102] – see their definition in Section 2.3.1. SMOTE is used with k = 5 and the oversampling ratio
aimed to balance the distribution between the classes (the configuration suggested e.g. in [132]
and many other studies). SPIDER also uses k = 5 to preserve consistency with SMOTE. All the
methods use the HVDM distance measure.

Analogously to the experiments in the previous section, we compare the preprocessing methods
using Sensitivity, F-measure and G-mean measures. We conduct this analysis for only four best
classifiers – PART, one kNN classifier (1NN as it is better than 3NN especially for rare and
outlier examples), RBF and J48. We resigned from the SVM classifier as it was the worst on rare
and outlier datasets and it was difficult to parametrize for all datasets. As in this thesis we are
interested mostly in rule-based classifiers, we present the detailed results for one classifier, PART.
We chose it also because on average it performed the best on all the datasets. The Sensitivity on
each dataset is presented in Table 3.75. For other analysed classifiers, we comment their results as
well, especially when they differ from the PART’s results.

First, we compare the preprocessing methods on all 21 datasets, not taking into account their
underlying distribution. The null hypothesis in the Friedman test is rejected. The order of prepro-
cessing methods is given in Table 3.5a. The critical difference CD is 1.33. When all the datasets
are concerned, a cleaning method (NCR) is followed by a hybrid method (SPIDER), followed by
oversampling SMOTE, however the differences are statistically insignificant. All informed methods
perform significantly better than Random Oversampling, and all preprocessing methods are better
than no preprocessing.

However, if we split the datasets into two groups as in the experiments described in the previous

5Random oversampling is denoted as RO, SPIDER – SP, SMOTE – SM, no preprocessing – None.
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section, the order is different (and in both cases the null hypothesis is rejected). For safe and
borderline datasets, the NCR cleaning method performs even better (see ranks in Fig. 3.5b).
SPIDER, which also performs some cleaning, is second. The critical difference CD is equal to
2.15.

For datasets with rare and outlier categories, on the other hand, oversampling methods seem
to be better suited. The ranking, presented in Fig. 3.5c, shows that the oversampling method
SMOTE and hybrid method SPIDER are the best and almost equal to each other. When we look
only on the datasets with a lot of outliers in Table 3.7 (e.g. hsv, abalone, yeast), the advantage of
SMOTE is even more visible.

Considering F-measure and G-mean, the results are similar, with slightly better average ranks
for NCR in case of datasets with rare and outlying examples over SMOTE, which might suggest that
SMOTE’s increased performance on the minority class comes at a too high cost of the majority
class recognition. This is consistent with the literature studies, which were based on artificial
datasets [81, 9] – see discussion in Section 2.3.1. Results for F-measure and G-mean for PART can
be found in Appendix A (Tables 5 and 6).

Table 3.7: Sensitivity for PART and preprocessing [%]

Dataset None RO NCR SM SP
abdominal-pain 72.6 76.0 86.1 73.8 85.0
acl 80.0 83.5 91.0 86.5 87.5
new-thyroid 93.3 90.2 86.3 94.0 91.0
vehicle 88.3 90.6 92.6 92.4 91.4
car 90.0 75.6 92.6 88.3 91.2
scrotal-pain 63.4 66.6 74.9 69.7 72.1
ionosphere 84.0 84.0 86.8 88.9 85.0
credit-g 47.7 47.5 69.7 53.3 60.6
ecoli 42.0 55.0 71.2 74.0 72.8
hepatitis 45.7 57.3 63.3 54.8 56.7
haberman 33.4 55.3 59.7 68.3 70.3
breast-cancer 41.1 43.7 67.9 44.3 55.9
cmc 37.7 48.5 59.8 49.7 55.9
cleveland 25.2 16.7 42.2 28.8 24.5
glass 34.0 33.0 56.0 46.0 43.0
hsv 2.0 9.0 7.0 15.0 10.0
abalone 18.8 38.2 31.1 52.8 50.2
postoperative 10.3 21.7 42.3 17.0 36.0
solar-flare 18.7 35.6 45.5 33.9 46.1
transfusion 42.9 59.1 50.3 72.4 70.3
yeast 26.7 33.3 30.3 47.9 37.2

Preprocessing Avg. rank
NCR 4.0
SPIDER 3.8
SMOTE 3.6
RO 2.2
None 1.4

(a) All datasets

Preprocessing Avg. rank
NCR 4.2
SPIDER 3.7
SMOTE 3.4
RO 2.0
None 1.5
(b) Safe and border datasets

Preprocessing Avg. rank
SPIDER 3.9
SMOTE 3.8
NCR 3.6
RO 2.2
None 1.2
(c) Rare and outlying datasets

Figure 3.5: Rankings of preprocessing methods used with PART, depending on the nature of the
dataset (based on global sensitivity).
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Table 3.8: PART and preprocessing: local accuracies
recorded on borderline testing examples [%]

Dataset None RO NCR SM SP
ionosphere 92.1 92.1 95.2 93.3 92.7
car 91.1 69.6 92.6 89.6 86.7
scrotal-pain 64.0 69.6 74.4 68.8 77.6
credit-g 53.3 54.1 76.9 58.8 67.9
ecoli 32.9 60.0 78.8 90.6 80.0
hepatitis 65.7 80.0 82.9 80.0 80.0
haberman 48.2 69.4 73.5 85.3 86.5

Rankings of preprocessing methods used with J48 are the same. For 1NN, SMOTE is often
a better classifier. It becomes the first in the ranking for all datasets, second for safe and bor-
der datasets and first for rare and outlier datasets. Considering F-measure and G-mean, again
NCR gets better ranks than SMOTE on rare and outlying datasets, suggesting that SMOTE can
deteriorate too much the results of the majority class.

For RBF we observed different behaviour of Random Oversampling, which seems to work better
than for the former classifiers. On Sensitivity, it is particularly good for the datasets with rare
and outlying examples: SPIDER (3.9) = SMOTE (3.9) � RO (3.5) � NCR (2.6) � None (1.0).
Considering datasets with a lot of outliers, Random Oversampling becomes the best classifier. It
is also better when G-mean is concerned – it wins in both groups of datasets. The results for RBF
on Sensitivity can be found in Appendix A (Table 7).

Performance of preprocessing with respect to the types of testing examples
Again, to get more precise results, we analyse the local accuracies for each type of testing examples
separately. Tables 3.8–3.10 present the values of accuracies for preprocessing integrated with the
PART rule classifier. As already mentioned in Section 3.5, some datasets contain too few examples
of a given type to provide reliable results. Therefore in Tables 3.8-3.10 we present only the datasets
which have a sufficient number of examples of a given type.

When comparing the results of all methods to the use of PART without preprocessing (None
column in Table 3.8), PART without preprocessing can recognize about 40-60% of the borderline
examples (except for ionosphere and car on which PART performs better), 10-20% of rare examples
(Table 3.9) and usually not more than 10% of outlying examples (Table 3.10). The preprocessing
methods can increase the results on each type of minority examples by 10-30%.

If one considers borderline testing examples in the datasets given in Table 3.8, the Friedman
test for all the classifiers rejects the null hypothesis and gives the ranking in which NCR method
is on the first place. Ranks for PART are presented in Fig. 3.6a (CD = 2.3, so the difference is
statistically significant only for RO and NCR). J48 and 1NN produce the similar order. For the
RBF classifier and borderline testing examples, Random Oversampling is ordered before SMOTE.

The results for PART on rare testing examples are given in Table 3.9. Depending on the
classifier, SMOTE or SPIDER seem to be the best choice in this case. The ranking for PART
is presented in Fig. 3.6b – SMOTE is on the first position ex aequo with NCR. For 1NN the
results are similar, while for J48 SPIDER is on the first position. RBF again behaves differently –
SPIDER (4.2) � SMOTE (3.5) = RO (3.5) � NCR (2.7) � None (1.1).

For outlier testing examples (in the datasets presented Table 3.10), SMOTE performs the best
for all the classifiers. The ranking for PART is given in Fig. 3.6c (CD = 2.15). J48 and 1NN
produce the same order with slightly different values. For RBF, Oversampling again performs
quite well: SMOTE (4.2) � RO (3.4) � SPIDER (3.3) � NCR (2.9) � None (1).
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Table 3.9: PART and preprocessing: local
accuracies recorded on rare testing examples [%]

Dataset None RO NCR SM SP
haberman 20.6 49.0 48.4 62.6 64.5
cmc 34.9 40.4 56.1 41.4 45.1
breast-cancer 26.7 28.7 59.3 35.3 44.7
cleveland 22.2 22.2 33.3 22.2 22.2
glass 25.0 25.0 45.0 37.5 35.0
hsv 0.0 30.0 0.0 20.0 20.0
abalone 12.4 37.1 26.5 52.1 48.8
postoperative 8.0 18.0 42.0 6.0 32.0
solar-flare 32.0 58.0 66.0 52.0 60.0
transfusion 21.2 42.4 31.2 62.4 58.8
yeast 20.0 42.0 12.0 38.0 24.0

Table 3.10: PART and preprocessing: local
accuracies recorded on outlier testing examples [%]

Dataset None RO NCR SM SP
cmc 19.1 24.0 28.0 25.5 30.2
breast-cancer 11.7 18.3 33.3 20.0 26.7
cleveland 16.7 11.1 37.8 21.1 10.0
glass 28.0 16.0 48.0 52.0 32.0
hsv 4.0 4.0 12.0 16.0 8.0
abalone 10.4 27.7 16.6 41.5 39.1
postoperative 5.7 5.7 28.6 22.9 14.3
solar-flare 2.4 16.5 12.9 12.9 27.1
transfusion 1.6 22.9 4.9 45.3 49.4
yeast 2.0 7.0 9.0 26.0 13.0

Preprocessing Avg. rank
NCR 4.3
SPIDER 3.8
SMOTE 3.4
RO 2.0
None 1.3
(a) Border testing examples

Preprocessing Avg. rank
SMOTE 3.7
NCR 3.6
SPIDER 2.9
RO 2.5
None 2.1

(b) Rare testing examples

Preprocessing Avg. rank
SMOTE 4.3
SPIDER 3.5
NCR 3.4
RO 2.2
None 1.5
(c) Outlying testing examples

Figure 3.6: Rankings of preprocessing methods used with PART, depending on the nature of the
dataset (based on accuracies on testing examples of a given type).

3.7 Conclusions

In this experimental study we were interested in the data properties of imbalanced datasets which
influence the recognition of the minority class. We analysed four types of minority examples –
safe, borderline, rare and outlier examples. We proposed the method for identification of these
examples in the real-world, multidimensional data, based on the analysis of the local neighbourhood
of learning examples [100]. Although it is quite simple, its results were validated on the artificial
datasets. The results on the real-world datasets were confirmed (where it was possible) by the
visualisation methods, based on the MDS and t-SNE projections of the multidimensional dataset
into two dimensions. Changing the parameters of the proposed method such as the size of the
neighbourhood, as well as using a kernel density approach, did not influence too much the results.
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The use of the proposed method on 21 real-world datasets has led to the following conclusions:

• The datasets can be of different nature. Most datasets contain all types of examples, but in
different proportions. Most of them do not contain many safe examples.

• Outlier examples can constitute an important part of the minority class – there are some
datasets where they even prevail in the minority class. Therefore, one should be cautious
with considering all of them as noise and applying noise-handling methods such as relabelling
or removing these examples from the learning set. In general, distinguishing between noise
and outliers in the minority class is an important, but challenging issue. We do not consider
it in this thesis, however it would be an interesting topic for a future research.

• The imbalance ratio and the size of the data are not as influential as the above distribution
types. Using the simple imbalance ratio to differentiate the data as in [132, 10] or the size of
data [9] is not sufficient to explain the differences in the classification performance according
to our experiments. For instance, datasets with a low imbalance ratio, e.g. car (3%) or ecoli
(10%), are easier to learn than transfusion (23%). Similarly, large datasets are often more
difficult than the small ones – compare, e.g., the results of abalone (over 4000 examples) with
acl (less than 150 examples). Analysing the types of examples in class distribution provides
information more relevant to the classification performance. Our observations are partly
consistent with some earlier works with artificial datasets. In [44, 60, 102] it has also been
shown that the imbalance ratio is not the main source of difficulty. However, these earlier
works did not attempt to analyse real-world datasets.

• The four analysed data characteristics (safe, borderline, rare and outlier examples) differ-
entiate the performance of classifiers. In general, safe datasets are easy to learn for all the
classifiers. Datasets with a lot of borderline examples are more difficult, however the RBF
and SVM classifiers work well on these datasets. Rare and especially outlier examples are
extremely difficult to recognize. PART, J48 and sometimes 1NN may classify them but at a
very low level. SVM and RBF are very sensitive to these data. Analysing the relationship
between the distribution of the dataset and the optimal parameter setting of the SVM and
RBF classifiers would be an interesting study, however it is outside the scope of this thesis
as we are interested more in studying the data distribution and the rule-based classifiers.

• Finally, the competence of preprocessing methods has been analysed. In general, they can
improve the recognition of the minority class examples by 10-30%. NCR (representative
of informed undersampling) is better for safe and borderline examples, while SMOTE and
SPIDER (informed oversampling and hybrid approach) are more accurate on rare examples.
SMOTE is the best approach to improve the recognition of outliers. However, SMOTE can at
the same time deteriorate too much the recognition of the majority class. All these informed
sampling methods are significantly better than simple Random Oversampling for kNN, tree-
and rule-based classifiers. For RBF, on the other hand, Oversampling often performs better.

• Our results often confirm the results of the related works conducted on artificial datasets. For
instance, similarly to [43] we have observed that for datasets with more difficult distributions
(i.e. with a lot of rare and outlier examples), a more local kNN (1NN) performs better com-
pared to 3NN. Our results confirm also the hypothesis from [63], in which 1NN performed
better that SVM on difficult distributions with a lot of outliers. Concerning the results of
preprocessing methods, we have also observed that for difficult data distributions SMOTE
can deteriorate the majority class too much and, perhaps, introduce overlapping of classes
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– which was shown in [9]. Our observation that preprocessing methods usually improve the
recognition of the minority class by no more that 30% is consistent with the results presented
in [10]. Finally, the observation that informed resampling is better than simple resampling
follows the conclusions from [9, 20]. Van Hulse et al in [132] gave contradictory recommen-
dations in favour of simple random oversampling. However, in their experiment they do not
take into account the distribution of the datasets, so we think that their conclusions may be
a result of averaging over datasets having quite different characteristics.

• Our analysis of the common data distribution patterns carried out on a benchmark of im-
balanced datasets can also contribute to the development of methods dedicated for class
imbalance. First, the observation that safe examples are uncommon in most of the imbal-
anced datasets strengthens the need for taking into account the data distribution factors
while developing new classifiers or new preprocessing methods dedicated for class imbalance.
Then, our study shows that borderline examples appear in most of the datasets and often
constitute more than a half of the minority class, so we might conclude that even though
standard learning techniques can recognize them to some extent, concentrating on these ex-
amples in the methods dedicated for class imbalance may be profitable, as it should bring
substantial improvements in the recognition of almost all imbalanced datasets. Finally, we
could observe that rare and outlier examples are not only extremely difficult for most of
the learning methods, but they are often numerous in the imbalanced datasets. Therefore,
developing new methods which focus on these examples would be beneficial, especially taking
into account the fact that the existing preprocessing methods do not bring enough improve-
ment on these examples. These guidelines can help in the construction of the more effective
informed preprocessing methods, in choosing the appropriate sampling techniques used in
the ensembles of classifiers, or in the construction of the single learning algorithms. We will
take these conclusions into account while proposing our new rule classifiers in the subsequent
Chapters of this thesis.
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Chapter 4

Learning Rule Classifiers from Imbalanced
Data

In this chapter we discuss rule learning in the context of class imbalance. It contains a brief
review of the standard rule learning algorithms, followed by a discussion of the limitations of the
techniques used in these algorithms which may hinder learning from imbalanced datasets. We then
review the existing modifications of the learning algorithms dedicated for class imbalance. We also
take a closer look at classification strategies. We show that, to construct an efficient classifier for
imbalanced data, a proper classification strategy is as important as the rule induction technique
itself. Finally, we present several works which represent bottom-up rule learning and using single
instances in a hybrid representation with rules. Although these approaches were not created for
class imbalance, in our opinion they have several characteristics useful for dealing with such data.
This chapter serves as an introduction to Chapter 5 in which we introduce our new rule learning
algorithm, BRACID, dedicated for imbalanced datasets.

4.1 Basic Notations

The definition and notation of a learning example and a decision rule was given in Section 1.1. Let
us now introduce some basic concepts of rule properties.

When the rules are induced for a class Yj , the examples from this class are called positive
examples. Examples belonging to the remaining classes are called negative examples of class Yj .

A learning example is covered by a rule P 7→ Q if its description (values of condition attributes)
satisfies the elementary conditions or a rule. A set of learning examples covered by a rule is called
a cover [P ] of a rule. A rule is certain (also called discriminant or consistent) if it covers only the
positive examples of class Yj , i.e., [P ] ⊆ Yj . Rules which cover not only the positive examples, but
also a limited number of negative examples are called possible (partially discriminant or uncertain)
rules [36].

During the search for a set of rules, which describes the best the learning problem and will form
the final classifier, candidate rules have to be created and evaluated to decide whether they should
be included in the final rule set. Nearly all the rule learning techniques use the rule evaluation
measures to guide the search, which estimate the generality and certainty of a rule [36].

Generality is usually measured in terms of support or coverage. The support of a rule R,
denoted as sup(R), is equal to the number of learning examples satisfying the condition and the
decision parts of a rule (P and Q respectively), i.e.

sup(R) = |P ∩Q|
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where |.| is a cardinality of a set.
Coverage of a rule, called also rule strength, is defined as its support divided by a number of

positive examples, i.e.

cov(R) = |P ∩Q|
|Q|

The certainty of a rule is usually measured in terms of confidence, which estimates the certainty
of assignment to a decision class indicated by the rule. It is defined as

conf(R) = |P ∩Q|
|P |

This measure is also known as certainty factor, accuracy or discrimination level.
Note that when a rule covers a small number of examples, this measure is not very robust in

that one additional example in |P ∩Q| or in |P | will change this measure significantly. Therefore,
some authors introduce the corrections to this measure to estimate the confidence in a more robust
way. Laplace accuracy [23] is defined as

Laplace(R) = |P ∩Q|+ 1
|P |+ k

where k is the number of classes. In this way, a certain rule in the two-class problem (k = 2)
covering only one positive example will get an estimation of 2/3, while certain rules covering more
examples will asympotically go to one.

M-estimate [33] is another measure, which introduces a correction as

M -estimate(R) = |P ∩Q|+m ∗ pi

|P |+m

where pi is the a-priori probability of class indications Q in the dataset. The m parameter allows
to tune this measure with respect to the data and problem characteristics (usually more noise
requires larger m).

Rules which are not certain, i.e. they cover the examples from different classes, can be treated
as deterministic and output the most probable class. We can also use such rule as a probabilistic
one to output a probability distribution over all classes rather than making a single categorical
prediction [36].

Another group of measures is used to assess the gain achieved when refining rule R into R′

(obtained by adding an elementary condition to P). The accuracy gain is defned as the difference
in rule accuracy between two rules R = P 7→ Q and R′ = P ′ 7→ Q.

Accuracy_gain(R′, R) = conf(R′)− conf(R)

Information gain is a logarithmic modification of accuracy gain, i.e.

Information_gain(R′, R) = log2 conf(R′)− log2 conf(R)

Entropy gain is defined as

Entropy_gain(R′, R) = Ent(R′)− Ent(R)

where Ent(R) measures how well the rule R discriminates the classes:

Ent(R) =
k∑

i=1
−|P ∩Qi|

|P |
log2

|P ∩Qi|
|P |

46



4.2. Standard Approaches to Rule Learning

where k is the number of classes and |P ∩Qi| is the number of examples from class Qi covered by
conditions in P .

Let us note that the two properties of a rule (generality and certainty) are complementary –
the most certain rules are usually more specific, while very general rules usually cover also some
negative examples. Thus, it is important to control the trade-off between these two measures in
the induction process. For instance, when two rules are equally certain, the more general rule
should be favoured. The above measures do not take it into account. Therefore, weighted variants
are often used, which trade off certainty and generality. The examples are weighted accuracy gain
(WAG) and weighted information gain (WIG) measures [36].

Weighted_accuracy_gain(R′, R) = sup(R′)
sup(R) × (conf(R′)− conf(R))

Weighted_information_gain(R′, R) = sup(R′)
sup(R) × (log2 conf(R′)− log2 conf(R))

There are also other, more complex measures – their review can be found, e.g., in [5].

4.2 Standard Approaches to Rule Learning

Many algorithms have been proposed to induce rules from examples in a standard classification
perspective without class imbalance. We describe here the general techniques used in these solu-
tions and present in more detail some algorithms which will be used in the experimental evaluation
as comparative approaches. For a more comprehensive review of the current state of the art in
rule induction see, e.g., [38, 36, 127].

First algorithms come from Michalski’s proposal of the AQ-family [88]. They are based on a
sequential covering search technique (also called conquer-and-divide or separate-and-conquer) to
find a minimal set of rules which covers the dataset. The covering algorithm generates sequentially
the rules for each class independently. The pseudo-code of the sequential covering algorithm for
a given class is presented in Algorithm 4.1. It starts with an empty set of rules and it repeatedly
generates new rules with a FindBestRule procedure, until a stopping criterion is met, e.g. all
positive examples of a given class are covered. Once a rule is added to the set of rules, all positive
examples covered by this rule are deleted from the current set of considered examples [36].

Algorithm 4.1 Sequential covering search procedure

Procedure LearnOneClass (Learning examples E, Class Y)

1. Let RULE_LIST be an empty list.
2. Let E_P be a set of positive examples in E.

3. while E_P is not empty do
4. Let BEST_RULE be FindBestRule(E,Y).
5. Add BEST_RULE to RULE_LIST.
6. Remove from E_P examples covered by BEST_RULE.
7. end while

8. Return RULE_LIST.
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In AQ, the rule generation in FindBestRule is example-driven, i.e. each rule is constructed from
a seed learning example. It is called a specific-to-general search. A limited set of rules characterizing
the seed is found and the ”best” rule is added to the final ruleset. Popular successors of AQ are
PRISM, LEM2 [45], MODLEM [118], ELEM2 [4] or CN2 [23].

CN2 is (similarly to AQ) a sequential covering algorithm, however, the rules in FindBestRule
are found in the general-to-specific (top-down) direction. A construction of a rule begins with the
most general (empty) rule, which is repeatedly specialised with new conditions as long as it still
covers negative examples (or until other stopping criterion is met). It is also called a generate-and-
test approach and is said to be more robust to noise than the example-driven approach. Rules in
CN2 are specialized using the beam search, i.e. rather than considering a single candidate at each
search step, it keeps track of the k best candidate rules. As a rule evaluation measure, it uses the
Laplace correction.

MODLEM algorithm also follows a sequential covering schema and generates a minimal set of
rules using a generate-and-test approach. Its specific property concerns direct processing of nu-
merical values of attributes (without pre-discretization), missing values and imperfect descriptions
of examples. It uses an Entropy measure to evaluate candidate rules. MODLEM will be presented
in more detail in Section 7.3.

While classifying the new, unseen examples, rule sets are either ordered and the first matched
rule indicates a decision, or the rules are undordered and a new example is tried against each
rule. In this case, special strategies for solving conflicts between matched rules (or when no rule
matched the example) have to be applied. We will discuss the classification strategies in more
detail in Section 4.3. CN2 algorithm was first designed to induce the ordered set of rules and
was then modified to produce also the unordered sets of rules. MODLEM algorithm produces
unordered sets of rules.

Some other rule learning algorithms are based on the decision trees, such as C4.5rules [109] or
PART [37]. They both produce ordered sets of rules and are based on the elements from the C4.5
decision tree learner. In C4.5rules, an unprunned decision tree is first built using Quinlan’s C4.5
algorithm. Then, each path from the root to the leaf in the decision tree is turned into a single
rule. Finally, pruning is performed to remove redundant conditions in the rules. Repeated and
redundant rules are also removed if it improves a quality evaluation measure.

PART is a separate-and-conquer rule learner proposed by Eibe and Witten. In each iteration,
a partial C4.5 decision tree is built and the ”best” leaf is turned into a rule. This algorithm also
performs an intensive post-pruning.

Other algorithms which intensively prune the ruleset are IREP [39], Grow [24] and RIPPER
[25]. RIPPER (Repeated Incremental Pruning to Produce Error Reduction), an optimized version
of IREP, is a sequential covering, general-to-specific rule learner. In this approach, a learning set
is divided into growing set and pruning set (in the proportion 2:1). The classes are ordered by size,
from the smallest to the largest, and the rules are built starting from the smallest class. RIPPER
produces an ordered set of rules, and for the dataset with n classes, it induces rules only for n− 1
classes. For the remaining (largest) class, a default rule is added at the end of the rule list. The
algorithm builds the rules using the growing set, and immediately after a rule is built it tries
to simplify it, evaluating it on an independent pruning set (so called grow-and-prune approach).
After a ruleset is constructed, an additional optimization postpass is performed on the ruleset to
further reduce its size and improve its fit to the training data. A combination of cross-validation
and minimum-description length techniques is used to prevent overfitting.

Finally, note that rules can also be induced by other approaches, not based on the sequential
covering technique. Using this technique often leads to so-called minimal set of rules, which
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may contain a limited number of rules having interesting evaluation measures. In the so-called
descriptive perspective of knowledge discovery [119], the researchers look for more rules satisfying
certain requirements. Some of these algorithms, as BRUTE or EXPLORE, will be discussed in
Section 4.5. For a brief review of other approaches, see [126].

4.3 Classification Strategies

Prediction of a class label for an unseen example is based on matching its attribute description to
the condition parts of induced rules. When an algorithm produces an ordered set of rules, the first
rule that completely matches the example indicates a class label. If no rule matches the example,
a special default rule is used, which usually indicates the majority class.

When an unordered set of rules is used, the new example’s description is tried against each
rule in the set. In this case, conflict situations may occur when the description of a new example
matches many rules from different classes or when it does not match any rule. Therefore, specialized
classification strategies are necessary to solve the conflict situations and decide which class should
be assigned to the example. Let us now briefly review the most popular classification strategies
proposed in the literature for the algorithms producing unordered sets of rules.

Grzymala’s LERS strategy
This strategy was originally introduced by Grzymala in [46]. It is based on a voting of matched
rules according to their supports sup(R). The total support for a class Y is defined as:

sup(Y ) =
m∑
i

sup(Ri)

where Ri is a matched rule that indicates Y and m is the number of these rules. A new example
is classified to the class with the highest total support. In case of no-matching, so called partial
matching is considered where at least one of rule conditions is satisfied by the corresponding
attributes in the new example’s description x. The matching factor match(R,x) is introduced as a
ratio of conditions matched by the object x to all conditions in the rule R. The total support is
modified to

sup(Y ) =
p∑
i

match(R, x)× sup(Ri) (4.1)

where p is the number of partially-matched rules.

Nearest rules strategy
This strategy, introduced by Stefanowski in [118], is also based on the idea of voting with rule
supports. However, a rule support is calculated in a different way – if the rule covers examples
from different classes, then their numbers are included in the total supports for each class Y . Then,
the main difference lies in solving a no-matching case by means of so-called nearest rules instead
of partially matched ones [118]. These are rules nearest to the object description with respect
to the valued heterogeneous metric HVDM (see Section 2.4 for details). A coefficient expressing
rule similarity (complement of the calculated distance) is used instead of matching factor in the
Equation 4.1 and again the strongest decision class Y wins.

Default rule strategy
In this strategy a default rule is used in case of no-matching. It usually assigns the example to the
largest class. In case of multiple matching, it uses the same solution as Grzymala’s strategy. This
strategy is used e.g. in a version of CN2 producing the unordered set of rules [23].
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Single best rule strategy
Then, some strategies solve conflict situations by choosing a single rule according to its quality
measure, e.g. m-estimate or Laplace accuracy. In case of m-estimate, the multiple matching is
solved by selecting one rule in the conflict set with the highest value of the m-estimate. In case
of no-matching, a default rule indicating the majority class is usually applied. In [101], it was
modified to use partial matching in case of no-matching. More precisely, for each rule the m-
estimate is calculated for the rule with the condition part reduced to matched conditions only.
Then, a classification decision is taken according to one partially matched rule with the highest
m-estimate.

Discrimination measure strategy
The four above strategies are the most popular in the rule-based classifiers. There have been also
some alternative strategies proposed, which use a different rule quality measure. For instance,
Aijun An proposed in [3] to use a rule quality measure called measure of discrimination for the
ELEM2 rule learner. It is defined as

DM(R) = log
P (R|Y )× (1− P (R|¬Y )
P (R|¬Y )× (1− P (R|Y ))

where P denotes probability, R refers to a rule and Y to the decision class. For more technical
details of estimating probabilities and adjusting this formula to prevent zero division, see [3]. Its
interpretation says that it measures the extent to which rule R discriminates between positive and
negative examples of class Y . Inside the classification strategies it is used in similar formulas for
decision scores as in the Grzymala’s strategy – the only difference concerns putting DM(R) in
place of sup(R).

4.4 Limitations of Standard Approaches

Most of the rule induction algorithms described above share a number of problems when it comes to
learning from imbalanced datasets. The most comprehensive and systematic study was presented
in [139]. Although it concerns data mining in general, many of the observations are also true for
rule approaches.

Top-down induction technique
As it was discussed in Section 4.2, rules are most often induced in a top-down (general-to-specific)
manner. The top-down technique should favor general rules and avoid overfitting. This is often
referred to as maximum-generality bias – when a learner decides to create a rule that covers a subset
of training examples, it selects the most general set of conditions that covers those examples but
no other. As a result, a top-down induction technique works well for so-called large disjuncts but
it has difficulties with identifying the small disjuncts [55]. Rare examples, which are typical for
the minority class, may depend on the conjunction of many conditions, therefore strategies which
examine the conditions one-by-one in isolation may not guide the search in the proper direction
[139]. This is especially true for the minority examples, which often form small disjuncts and may
be overwhelmed by the surrounding majority examples.

Improper evaluation measures used to guide the search
A choice of the best condition which should be added to a rule in a given iteration depends on
the evaluation measure, which typically tries to assess the accuracy and generality of the rule (e.g.
Entropy measure, Laplace accuracy, support and confidence measures – see Section 4.1). Due to
rarity of the minority examples, their impact on the accuracy and generality of a rule is much
smaller than for common (majority) examples [139]. As a result, the search for the best condition
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will be guided mostly by the majority class examples, neglecting the minority class (see, e.g.,
experiments in [22, 76, 6]).

Greedy, sequential covering technique

Nearly all popular rule induction algorithms employ a sequential covering search technique, in
which the examples covered by the rules are removed from the current set of considered examples.
Removing these examples during training partitions the space of examples into smaller and smaller
groups and changes the descriptive statistics for the training set. As a result, rules generated in
further iterations heavily depend on the previous rules and the examples they cover. Moreover,
due to a too small number of examples used to induce the last rules, these rules may not be
statistically significant. Data fragmentation is problematic especially for the minority examples,
which are already sparse and have an intrinsic difficulty in being covered by statistically meaningful
rules.

Biased classification strategies

As described in Section 4.3, in learning algorithms inducing unordered sets of rules, classification
strategies are needed to solve the conflicts between the rules, when either no rules match a classified
example, or many rules representing different classes match to it. They usually measure either
the generality or accuracy of the rule and are based on voting of rules with weights depending
on their evaluation measures. As minority class rules are usually more specific and supported by
fewer examples, they can be characterised by worse values of evaluation measures than rules for
the majority class. It can cause a classification bias toward the majority class (see e.g. empirical
studies conducted in [141, 48]).

For instance, when we analyse the classification strategies presented in Section 4.3, we can
observe that especially in case of no-matching, some of these strategies seem to be biased too
much towards the majority classes. A default rule strategy, which in case of no-matching assigns
an example to the majority class may be prone to give incorrect decisions by assigning the examples
to the majority classes too often. M-estimate is also not well suited for such data, as it uses a class
probability in the denominator (see Section 4.1 for its definition). As a result, minority rules (for
which this probability is low) with the same accuracy as majority rules are characterized by worse
values of this evaluation measure. Laplace accuracy may also discriminate the minority class, as
the correction lowers the value of this measure significantly for rules with low support, while for
rules with a high support the role of the correction is negligible. As minority rules usually have
smaller support than majority rules, they will be affected more by the correction and receive lower
evaluations. Grzymala strategy uses the rule supports of all partially matched rules, which may
also favour the majority classes. Using a more local classification strategy, such as nearest rules,
may be better for the minority class examples. Finally, as discrimination measure uses probabilities
which are independent of class cardinalities, it may be less biased toward the majority classes.

In [101], these strategies have been compared using the MODLEM algorithm. The experimental
results have shown that indeed a default rule and m-estimate were the worst strategies for the
minority class, discrimination measure performed the best while nearest rules strategy was slightly
better than Grzymala strategy, although the differences (apart from the discrimination measure)
were not statistically significant. The discrimination measure was, however, too much biased
towards the majority class, so it was also not a satisfying solution.
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4.5 Review of Existing Modifications Dedicated for Class Imbalance

Several approaches have been proposed to deal with the above problems. They work on different
stages of rule induction and usually aim to solve only one or few of these problems. We will now
review them in groups, as shown on Figure 4.1.

Applying less greedy search technique
Using less greedy techniques of rule induction aims at finding more rules for the minority class,
and/or improving their values of evaluation measures. This helps to find rules for small disjuncts
and to increase the chance of classifying new examples as minority ones. The less greedy search is
usually performed only for the minority class. The majority class is either not learnt at all (in case
of one-class learning algorithms [148, 111]) or the rules for this class are learnt using a separate
induction technique.

RLSD [148] is a one-class learning algorithm that learns only rules for the minority class. It
initially generates one rule for each training example and gradually generalizes them. To reduce
the number of obtained rules, it employs a sophisticated multi-phase approach based on precision,
accuracy and F-measure. During classification, if a new example satisfies any rule, it is classified as
a minority example, otherwise it is assigned to the majority class. RLSD was used to find patterns
for fraudulent cases in law domain.

BRUTE [111], another one-class learning algorithm, also performs a more exhaustive search
looking for accurate minority rules. The algorithm was succesfully applied in a Boeing manufacture
design and was able to find small disjuncts of information that other algorithms were not able to
locate.

An extention of the EXPLORE algorithm [126, 48] performs a less greedy search for the minority
rules, looking for all rules that satisfy a certain threshold for rule support. Rules for the majority
examples are induced with a standard sequential covering procedure. As a result, a set of rules for
the minority class is more numerous and rules have on average better evaluation measures, which
helps to outvote the majority rules during the classification of the unseen examples.

Changing the post-pruning phase
Other solutions try to improve the generality of the minority rules, concentrating on the post-
pruning phase of rule induction. In IDL [103], a scheme of weighting the minority examples using
a local neighbourhood is proposed. Weights are determined with the aim of maximizing the AUC
measure. They are used as rule evaluation measures to decide if pruning should be performed.
The idea is to prune only the rules with local neighourhood belonging to the same class.

Changing the classification strategy
The strength of minority rules (referring to the rule support measure) can be improved in yet
different way, by modifying the classification strategy. For instance, Grzymala in [47] introduces a
constant coefficient called a strength multiplier which is used to multiply the support of minority
rules in a voting phase during classification in case of conflict situations. A value of a multiplier is
optimized for a given dataset to maximize an aggregated measure of Sensitivity and Specificity.

Another point of view is taken in [13], where the classification strategy is modified in the
ensemble of rule classifiers based on the Ivotes learning scheme. In this proposal, the component
classifiers which are not sure about their prediction can abstain from voting for the class of a new
example. In this way, only the classifiers which are competent for the new example (e.g. because
they have learnt from the data sample representing the subspace of an attribute space close to the
classified example), participate in the decision making. It was shown that using abstaining in the
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4. Learning Rule Classifiers from Imbalanced Data

IIVotes makes the classifier more sensitive to the minority class. A similar approach also helped
to improve the bagging classifier [101].

Using more appropriate evaluation measures
Some solutions try to deal with a learning bias of classifiers caused by the used evaluation measures,
which favor the majority class and can fail to find the rules for small disjuncts (characteristic for
minority classes). Holte, Acker and Porter in [55] change the bias of a CN2 algorithm. Original
CN2 uses a maximum-generality bias when evaluating rules in the induction process, i.e. it selects
the smallest subset of conditions to cover a particular set of training examples using the entropy
measure. In the proposal of Holte et al., the maximum-generality bias is used only for large
disjuncts, while for small disjuncts a more specific bias is used. More precisely, when a rule is
created for a particular (small, e.g. lower than 5 examples) set of training examples S and the
maximally general subset of conditions G covering S was found, it is additionally extended by
all other conditions that cover this subset of examples and meet additional requirements. The
additional requirement verifies if the analysed condition does not cover too many examples from
the other class.

In [6], the authors consider the ELEM2 sequential covering algorithm and modify its measure
evaluating candidate rules. They analyse 11 different measures and show that the recognition
of a minority class strongly depends on the particular measure. Furthermore, they focus on the
post-pruning phase and propose to prune only the minority rules to obtain stronger rules, while
leaving the majority rules unprunned.

Using more appropriate evaluation measures is used also in the PN-rule algorithm [61]. This
approach was motivated by an observation that missing the rare cases is a result of optimizing
precision and recall simultaneously. PN-rule consists of two phases. The first phase focuses on
recall and finds strong rules, even if they are not highly accurate, called P-rules. In the second
phase, precision is optimized by finding ”exceptions” (rules covering false positives, called N-rules)
for each P-rule from the first phase.

Refining rules for the borderline between the classes
This class of approaches concentrates on the borderline between the classes, where the examples
from both classes overlap. Most algorithms assign this region to a majority class, because due to
the sparseness of the minority examples, majority class usually prevails in the overlapping region.
Some algorithms handle this region in a different way. SHRINK [67] finds rules only for the minority
class, and labels the mixed regions as positive, no matter if the minority examples dominate in
the region or not. There are also proposals to detect a boundary region between classes in a pre-
processing phase and relabel all majority examples into minority ones in this region before learning
[123]. Another algorithm proposed in [78], WFLEM2, is a rule learner based on rough sets and
fuzzy theory. Briefly speaking, it creates weighted fuzzy aproximations of lower and upper bounds
of the classes to balance the accuracy of the majority and minority classes in the overlapping
regions.

Using ensembles of rule classifiers or genetic algorithms
Finally, to complete the review of the existing works on rules and class imbalance, let us men-
tion a few proposals which combine rules with other paradigms, such as ensemble classifiers and
evolutionary programming. There are some works where rules are used inside an ensemble of clas-
sifiers to deal with the imbalanced data. For example, in [13] the authors use an ensemble of rule
classifiers, which is based on an Ivotes learning scheme [15]. Apart from using abstaining in clas-
sification (as described in the paragraph concerning modifications of the classification strategy),
a selective preprocessing of examples using SPIDER method is performed to make the ensemble
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more sensitive to the minority class.
In [42], an evolutionary algorithm EUSTSS is used to properly undersample the imbalanced

training set to improve the performance of a tree- or rule-based classifier. The search space consists
of all subsets of a training set. For a given subset, a C4.5 decision tree or a PART rule learner is
used to induce a classifier. It is then evaluated by a G-mean measure, which serves as a fitness
function.

In [89], a hybrid approach using a set of rule classifiers and an evolutionary algorithm is
proposed. In this approach, several balanced datasets with all minority class cases and a random
sample of majority class cases are fed to classic learning systems that produce rule sets. The
rule sets are then combined to create a pool of rules and an evolutionary algorithm is used to
build a final classifier from this pool. In this work, two such algorithms are proposed: EA-Ripper
and EA-C4.5rules. Evolutionary algorithms are used also in [106]. Here, the authors propose a
rule induction evolutionary algorithm XCS+PMC (XCS with mechanisms Protecting the Minority
Class) which self-adapts depending on the imbalance level detected during learning. For instance,
it adjusts a population size according to the imbalance ratio, to guarantee that the algorithm is
initially supplied with enough rules and that the genetic search will pressure toward the recognition
of the minority class.

4.6 Bottom-up Rule Induction and Hybrid Representations

In imbalanced data, rule learning algorithms suffer from the fragmentation problem and small
disjuncts problem. Here we discuss two directions which could decrease the negative impact of
these factors: using single instances in a hybrid representation with rules and inducing rules from
single instances in a bottom-up way. Although, to the best of our knowledge, these paradigms
were not yet used in the class imbalance setting, they share some characteristics which might be
useful for such data. In this section we also describe the RISE algorithm, which applies both these
approaches. Our algorithm, introduced in the next chapter, is insipired by its basic idea.

Instance-based learning (IBL) is a complementary induction paradigm to rule-based learning
(RBL) and it is based on the classification according to the similarity of a new example to its
local neighbours. In comparison to RBL, this ”lazy” learning paradigm can handle more complex,
non-linear frontiers and it can work locally with fewer learning examples, making it less sensitive
to class imbalance. However, opposite to rule learners, it is more sensitive to noise and irrelevant
attributes. While rules usually represent a maximum-generality bias good for large disjuncts, IBL
can be seen as a representative of a minimum-generality bias, suitable for small disuncts. There
are some works which aim to combine both paradigms to create a general description in regions
where the examples form large disjuncts (using a maximum-generality bias of rules) and in the
regions of small disjunts, they exploit good properties of IBL (using its minimum-generality bias).
Ting proposes such a hybrid approach in [129]. He first uses a decision-tree (C4.5) to determine if
an example is covered by a small or large disjunct. If the example is covered by a large disjunct,
then the tree is used to classify the example; otherwise an instance-based classifier is used.

We think that a hybrid use of both complementary paradigms is a good direction for learning
with class imbalance. As it was pointed out in [44], some classifiers are less affected by overlapping,
noise, small disjunct and imbalance, depending on their local or global nature. However, although
the aim of Ting’s solution is to identify the small disjuncts without degrading the recognition
of large disjunts, it can still suffer from the data fragmentation and improper bias, as it uses
a top-down rule induction technique. We think that an opposite technique, called bottom-up
(or specific-to-general), is more appropriate for learning rules from imbalanced data. Bottom-up
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techniques start from the most specific rule that covers a single example and then generalise this
rule until it cannot be further generalised without covering the negative examples (or until other
stopping criterion is met). In this process, some examples may remain not generalized to rules
and may be treated as maximally specific rules, leading to a transparent unification of RBL and
IBL approaches. Bottom-up search seems better suited for situations where fewer examples are
available [36], although it tends to build larger sets of rules and is more susceptible to noise.

Following these motivations for building hybrid rule and single instances representation by
means of bottom-up rule induction, we identified in the literature the most related algorithm
called RISE [32]. Although it has not been considered for class imbalance, we think that some of
its solutions could be a good inspiration.

RISE algorithm
In RISE, a rule is represented as a conjuction of conditions. Conditions on symbolic attributes
have a form of attribute = value pairs, and conditions on numeric attributes are represented as
closed intervals (lower_bound <= x <= upper_bound).

RISE starts from building an initial set of rules which is equal to the whole set of training
examples. Each learning example is treated as a maximally specific rule (i.e. it contains conditions
on all attributes and conditions on numeric attributes are degenerated, that is lower_bound =
upper_bound). Unlike conventional rule induction algorithms, RISE does not construct one rule at
a time, but induces all rules in parallel. Also, it does not evaluate each rule separately, but in the
context of the rule classifier as a whole. In consequent iterations, rules are gradually generalized
until no improvement in the overall accuracy of a rule set is obtained. Accuracy of a set of rules
is calculated using a specific leaving-one-out procedure – see details in [32].

Generalization of a rule is done by generating the Most Specific Generalization (MSG) to the
closest example of the same class, not already covered by this rule. MSG consists in dropping
the nominal attributes in case they are different for the rule and example, and broadening the
boundaries of intervals for conditions on numerical attributes to cover the nearest example. If
during this generalization two rules become identical, one of them is dropped. An important
feature of RISE is that when the closest example is selected for MSG, the choice is done from all
the learning examples, even if they are already covered by a different rule. This prevents the data
fragmentation problem caused by a sequential covering strategy.

Finally, a classification strategy consists in selecting the nearest rule. If several rules are in a
conflict set (either because more rules cover the classified example and the distance equals 0, or
because no rule covers the example, but several rules are equally distant) one rule is chosen based
on the Laplace measure which estimates the confidence of a rule on a specifically chosen set of
covered learning examples.

In [32], RISE was compared experimentally with IBL and three rule learning algorithms (PE-
BLS, CN2 and C4.5rules) on 30 datasets, using the total accuracy. According to the Wilcoxon
test, RISE was significantly more accurate (with respect to the global accuracy) than all other
algorithms.

Other hybrid algorithms
There are also other algorithms which induce the rules in a bottom-up manner. One of them is
EACH algorithm [113] which generates hyperrectangles from examples. However, it can deal with
numerical attributes only, and it generates a different representation than a set of unordered rules,
as hyperrectangles can be nested inside each other, providing a hierarchy of rules and exceptions.
INNER algorithm [79] is an attempt to deal with RISE’s drawback of inducing too many rules – it
randomly selects a subset of examples and generates rules ”strategically placed in decision regions”
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to treat them as the representatives of subconcepts in a class. As a result, it does not cover all the
learning examples. Finally, FCLS [147] algorithm is a bottom-up modification of the AQ-family,
which combines rules and examples to deal with the small disjuncts problem. Its drawback is that
it uses the separate-and-conquer strategy of its AQ ancestors.
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Chapter 5

BRACID: A Comprehensive Approach To
Learning Rules From Imbalanced Data

5.1 Motivations

In Section 2.1 we have discussed the characteristics of data distribution in imbalanced data which
hinder learning, such as overlapping of examples from both classes in the borderline region, small
disjuncts or outlying/noisy examples. The experiments carried out in Chapter 3 showed that imbal-
anced datasets with complex data characteristics are difficult for most of the classifiers, including
the rule-based ones. As pointed out in Section 4.4, there are several problems on the algorithmic
level in rule learners which may be responsible for the degradation of perfomance when rule-based
classifiers are learnt from imbalanced data. Let us recall that they include greedy search, sequen-
tial covering technique, improper evaluation measures or biased classification strategies. Although
some modifications of rule-based algorithms have been proposed to deal with the above problems,
the review of these approaches (presented in Section 4.5) shows that they address rather a single
or at most a few of these problems. For example, some of the algorithms modify only the greedy
search technique (e.g. RLSD [148]) or change the maximum-generality bias (e.g. a modification
of CN2 algorithm [55]). The ELEM2 modification [6] works in two areas – evaluation measure
used to guide the search and post-pruning phase. In our opinion, such ”selective” approaches are
not satisfactory and cannot handle sufficiently the difficulties of class imbalance. Therefore, in
this Chapter we introduce a new rule induction algorithm, BRACID [99], which tries to deal with
more of these problems – more precisely with all the main drawbacks of rule learners described in
Section 4.4. It also makes use of the knowledge about the types of examples, which were discussed
in Chapter 3.

We have decided to choose an integrated representation of rules and single instances (see mo-
tivations discussed in Section 4.6). Other crucial assumptions include:

• using a less greedy bottom-up induction of rules from single examples with the specific
generalization by looking for the nearest examples to the rule,

• a new evaluation of a generated rule with respect to the recognition of imbalanced classes,

• proposing the new classification strategy with the nearest rule,

• a special treatment of the borderline and noisy examples.

These assumptions will be described in detail in the next sections.
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Data

5.2 Notation and Basic Concepts

The BRACID name is the acronym of Bottom-up induction of Rules And Cases for Imbalanced
Data. Before describing it, let us introduce some basic concepts.

Learning examples
A definition of a learning example has been given in Section 1.1. BRACID can handle attributes
defined either on numeric or nominal scales. In a current form, it works with two-class problems of
which one is a minority class (Kmin) and the other one is the majority class (Kmaj). For problems
with more classes, all the examples from classes other than a selected minority class are merged
into a single majority class.

Representation of rules
A rule R is represented similarly to the definition given in Section 1.1. In BRACID, there is at
most one elementary condition per single attribute. For nominal attributes it is a single equality
test of the form (xi = vij) where xi represents the i-th attribute characterizing an example and
vij is a single value from its domain. Conditions for numeric attributes are represented as closed
intervals (vi,lower ≤ xi ≤ vi,upper), where vi,lower ≤ vi,upper are values belonging to the domain of
the attribute.

In BRACID, examples can be treated as maximally specific rules containing conditions built
on all attributes, where the intervals are degenerated to a single point (vi,lower = vi,upper).

Rule seed
As a rule in BRACID is induced in a bottom-up direction, by generalizing from a single example,
we introduce the term seed of rule R to denote the learning example used for creating a maximally
specific rule in the first iteration of BRACID.

Moreover, each learning example, in particular a seed of the rule, can be labelled by an extra
tag expressing its type with respect to the characteristics of its local neighbourhood. Generally
speaking, we distinguish between SAFE and UNSAFE examples. Safe examples are the ones which
are correctly classified by their k-nearest neighbours. The misclassified examples are called unsafe
examples. This distinction follows the typology introduced in [124]. Among the misclassified
examples we distinguish noisy majority (and outlier minority) examples if all neighbours belong
to the opposite classes; otherwise they are treated as borderline.

Distance measure
To determine the neighbours, either when performing a bottom-up generalization of a rule to
the nearest example or when classifying new examples with the nearest rule strategy, we need to
calculate the distance between the examples (or between the rule and the example). Following
the discussion in Section 2.4, we have decided to use the Heterogenous Value Difference Metrics
(HVDM). On nominal attributes, the distance between two examples and between the rule and
the example is calculated according to the HVDM definition, given in Section 2.4. For numeric
attributes, the calculation of the distance between rule xi and example yi had to be slightly
modified, as a rule does not take a single value on the numeric attribute, but a pair vi,lower,
vi,upper. Here, the attribute distance is defined as

di(xi, yi) =


0 if v(x)i,lower ≤ yi ≤ v(x)i,upper

yi−v(x)i,upper

xmax−xmin
if yi > v(x)i,upper

v(x)i,lower−yi

xmax−xmin
if yi < v(x)i,lower
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5.3 Algorithm Description

A pseudo-code of the main procedure of BRACID is presented in Algorithm 5.1. While discussing
the code we will refer to the critical factors mentioned in Section 4.4.

Using a bottom-up induction technique
We think that using a specific-to-general direction of rule induction can facilitate covering the
subparts of the minority class which can be interpreted as small disjuncts. Furthermore, leaving
some examples ungeneralized to rules can be profitable for rare examples and difficult (non-linear)
decision boundaries.

Thus, we start from creating an initial set of the most specific rules RS, in which each rule
corresponds to a single learning example (Algorithm 5.1, line 1). Then, in the main loop (lines
7-34) the algorithm considers each rule as a candidate for generalization in a bottom-up way. More
precisely, in a given iteration the algorithm looks for the nearest examples (using the procedure
FindNeighbours), which are not already covered by the rule and are from the same class. Depend-
ing on the class K of an example and its type (so-called TAG determined before the main loop in
line 4), either one generalization to the nearest neighbour is considered, or k nearest examples are
taken into account. This is done in procedures AddOneBestRule and AddAllGoodRules, which will
be discussed further in the "Facing borderline examples" description. In these procedures, a gen-
eralized rule is temporarily added to a rule set RS and its influence on the F-measure is estimated
(see "Evaluation metrics" description for details of the evaluation technique). If the generalization
of this rule results in an improvement (or at least in no decrease) of the classification performance,
the rule is stored in RS and the procedures return a flag IMPROVED = TRUE; otherwise the gener-
alization is discarded and flag IMPROVED = FALSE is returned. If during the generalization process
two rules become identical, one of them is dropped (line 31). The procedure is repeated until no
rule in RS could be acceptably generalized (line 35). Let us note that generalizations which do not
change the F-measure are also accepted, to promote more general models.

Algorithm 5.1 BRACID - main procedure

BRACID(Set of Examples ES)
1 RS = ES #initialize Rule Set RS with ES
2 SEED = ES #set seed examples for RS as ES
3 FINAL_RULES = ø #rules not generalized in next iterations
4 Calculate TAGS #tag examples as SAFE or UNSAFE
5 ITERATION = 0
6 Flag IMPROVED #TRUE means that generalization of rule R

better than R was found
7 NEIGHBOURS = ø #set for storing the nearest examples
8 F = Evaluate(RS) #Evaluate RS with leaving-one-out procedure

using F-measure
7 Repeat
8 For each rule R ∈ RS and R /∈ FINAL_RULES #main loop
9 If K[R] = K_min #a block for minority class rules

10 | NEIGHBOURS = FindNeighbours(k,R)
| #find k nearest examples to R, such that:
| R does not cover any NEIGBOURS[i] and
| K[NEIGHBOURS[i]] = K[R]

11 | If TAGS[SEED[R]] = SAFE
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12 | IMPROVED = AddOneBestRule(NEIGHBOURS,R,RS, F)
13 | Else #seed tagged as UNSAFE
14 | IMPROVED = AddAllGoodRules(NEIGHBOURS,R,RS, F)

|
15 | If IMPROVED = FALSE
16 | If ITERATION 6= 0 #do not extend if "outlier"
17 | Extend(R)
18 | FINAL_RULES = FINAL_RULES ∪ R
19 Else #a block for majority class rules
20 | If TAGS[SEED[R]] = SAFE
21 | n = 1 #analyse only one neighbour
22 | Else n = k #analyse k neighbours
23 | NEIGHBOURS = FindNeighbours(n,R)
24 | IMPROVED = AddOneBestRule(NEIGHBOURS,R,RS,F)
25 | If IMPROVED = FALSE
26 | If ITERATION = 0 #Treat as noise:
27 | RS = RS \ R #Remove rule R
28 | ES = ES \ SEED[R] #Remove seed of R
29 | Else FINAL_RULES = FINAL_RULES ∪ R
31 If IMPROVED = TRUE and R is identical to another rule in RS
32 Delete R from RS
33 ITERATION ++
34 Until IMPROVED = FALSE for all R ∈ RS
35 Return RS

Generalization of a rule to the nearest example
Generalization of a rule is done using the MostSpecificGeneralization procedure (Algorithm
5.2). For nominal attributes, MSG consists in dropping the condition on the attribute in case the
rule and example have different values on it (lines 4-5). For numerical attributes, the boundaries
of intervals in a rule’s condition (Ri,lower, Ri,upper) are minimally broadened to cover the example
(lines 6-9).

Algorithm 5.2 MostSpecificGeneralization procedure

MostSpecificGeneralization(Example Neighbour, Rule R)

1 For each Attribute Xi

2 If condition on Xi is missing in R
3 Do nothing
4 Else if Xi is nominal and Neighbouri 6= Ri

5 Remove condition on Xi from R
6 Else if Xi is numeric and Neighbouri ≥ Ri,upper

7 Ri,upper = Neighbouri

8 Else if Xi is numeric and Neighbouri ≤ Ri,lower

9 Ri,lower = Neighbouri
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Less greedy search
When the nearest example is chosen for the MSG generation, it is selected from the whole learning
set – examples covered by rules are neither removed, nor their weight is diminished in any way.
As a result, the algorithm does not suffer from the data fragmentation in subsequent iterations,
which could occur for the sequential covering.

Evaluation measure used to guide the search
To decide if the MSG generalization of a rule should be accepted, the influence of this generalization
on the whole set of rules RS is estimated. Evaluating the rule set with global accuracy (as in RISE)
is biased towards the majority class. In BRACID, on the other hand, we want to take class
imbalance into account and focus more on the minority class. Thus, we choose the F-measure,
which aggregates Recall and Precision measures. Both these measures are defined with respect to
the positive (minority) class (see Section 2.2), which makes the classifier more ”sensitive” to the
minority class examples.

F-measure for a current rule set is estimated using a specific leaving-one-out procedure, orig-
inally proposed in RISE. Each learning example is classified by its nearest rule. Based on the
classification predictions, a confusion matrix is calculated. When classifying a learning example, a
rule for which this example is a seed is left out, unless it already covers other examples as well.

A calculation of a confusion matrix can be done efficiently – when a new MSG is evaluated,
only this rule is matched against all examples, to check if it wins any that it did not before (i.e. it
is closer to the example than a previously winning rule). If the decision for a newly won example
has changed, the confusion matrix is updated.

Hybrid representation
Let us notice that the generalization of an example is accepted and included in the rule set only if
it satisfies the leaving-one-out evaluation procedure. Otherwise the example remains ungeneralized
as a maximally specific rule.

Facing borderline examples
To make BRACID more sensitive to the overlapping (boundary) regions, we use the information
about the nature of examples to perform different actions in the consistent (safe) and in the
overlapping (unsafe) regions. We assign tags (SAFE or UNSAFE) to all learning examples (line 4 of
the Algorithm 5.1) based on the class labels of the nearest neighbours, as described in Section 5.2.

The BRACID algorithm processes rules differently depending on the tag and on the class of its
seed example. For the SAFE examples from the majority class, we assume that the rule is created
in the consistent majority region which is sufficiently represented in the learning set. Therefore,
for these rules we analyse only the MSG to a single nearest neighbour (lines 20-21). For UNSAFE
majority examples, we assume that this example could be inside the overlapping region, which
should be more carefully analysed. So, we allow these rules to analyse the MSGs to k nearest
neighbours, and to choose the best one according to the F-measure evaluation (lines 22-24), using
AddOneBestRule procedure presented in Algorithm 5.3.

Algorithm 5.3 AddOneBestRule procedure

AddOneBestRule(Set NEIGHBOURS, Rule R, RuleSet RS, Evaluation F)

1 BEST_F = F #F-measure evaluation of RS
2 BEST_G = R #best generalization of R

3 For each Neighbour in NEIGHBOURS

63



5. BRACID: A Comprehensive Approach To Learning Rules From Imbalanced
Data

4 G = MostSpecificGeneralization(Neigbour, R)
5 TMP_RS = ( RS \ R ) ∪ G
6 TMP_F = Evaluate(TMP_RS) #evaluate TMP_RS

by calculating influence of G
7 If TMP_F ≥ BEST_F on confusion matrix and F-measure
8 BEST_F = TMP_F
9 BEST_G = TMP_G

10 If BEST_G 6= R #better generalization was found
11 RS = ( RS \ R ) ∪ BEST_G
11 R = BEST_G
12 F = BEST_F
13 Return TRUE

14 Else return FALSE

Minority examples are treated in a different way. For SAFE examples, we assume that the
minority class is always underrepresented in the data, even in the consistent regions. Therefore,
for these examples we also allow to analyse the MSGs for k nearest neighbours, and choose a
single best generalization (lines 11-12). In case of UNSAFE examples, on the other hand, we assume
that they should be additionally strengthened as they are located in the boundary region between
the classes and could be overwhelmed by the majority class examples. Thus, we assume that an
UNSAFE minority example can be generalized more than once. Having its k-nearest neighbours,
we can add to the rule set all the generalizations, which do not harm the F-measure (procedure
AddAllGoodRules in line 14). AddAllGoodRules is done in a greedy manner, by analysing the
neighbours starting from the nearest one. The first MSG which does not harm the F-measure
estimate replaces the original rule in RS, while the MSGs to the following neighbours (estimated
with respect to the updated RS) are added to RS.

Facing noisy and outlying examples
Noisy majority examples, present inside the minority class regions, may hinder the induction of
general minority rules. BRACID has an embedded mechanism for detecting and dealing with such
examples. If a maximally specific rule representing a single majority example cannot succesfully
generalize to any of its neighbours, we assume that it represents a noisy example. Otherwise, the
learning set would possess at least one similar majority example, as we assume that this class is
well represented in the dataset – see discussion in Chapter 3. Therefore, such maximally specific
majority rules are removed from a set of rules. Additionally, the corresponding learning example
(seed) is removed from a learning set, because it may disturb the evaluation of a confusion matrix
for the nearby minority rules and prevent them from generalizing in this direction (lines 26-28 in
Algorithm 5.1).

In case of the analogous situation for the minority class rules (i.e. when the maximally specific
minority rule cannot be generalized to any of its neighbours), the rule and its corresponding seed
are not removed, because we assume that such an outlying example may belong to a valid sub-
concept of this class, which is just not sufficiently represented in the learning set (see discussion
in Chapter 3). Our experiments will also show, that for some datasets such maximally specific
minority rules prevail in the final ruleset, so their removal might seriously harm the performance.
In the experimental setup we will analyse how many of these examples are labeled as outliers also
by our method described in Chapter 3.
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Facing the underrepresentation of the minority class
As minority class is often underrepresented in the data, its examples are also more sparsely disposed
in the attribute space than the majority examples. As a result, the decision boundary is often
shifted too close to the minority class. Thus, we have decided to extend the boundaries of minority
rules. When there is no neighbour of the same class, towards which the rule can be successfully
generalized, BRACID performs the Extend procedure on the rule and adds it to the FINAL_RULES
set (lines 17-18 in Algorithm 5.1) .

The Extend procedure (Algorithm 5.4) processes only the conditions in R on numerical at-
tributes (lines 3-4) and allows to extend the intervals towards the surrounding majority examples.
This is done by choosing k nearest examples from the opposite (majority) class (line 1). For each
attribute’s left and right boundary separately, the closest (not covered – line 6 and 9) neighbour
is selected (line 5 and 8), and the interval is extended to half of the distance between the rule
boundary and the neighbour’s value on this attribute (lines 7 and 10).

What is important, the Extend procedure is not performed on maximally specific rules rep-
resenting single examples which could not be generalized to any of its neighbours (line 16 in
Algorithm 5.1). We assume that such examples may be outliers and we do not want to amplify
such regions.

Algorithm 5.4 Extend procedure

Extend(Rule R)

1 OPPOSITE_NEIGHBOURS = FindNeighbours(k,R)
#find k nearest examples to R, such that:

R does not cover any NEIGBOURS[i] and
K[NEIGHBOURS[i]] 6= K[R]

2 For each Attribute Xi

3 If Xi is nominal or condition on Xi is missing in R
4 Do nothing

#extend left boundary towards the nearest neighbour
5 Find arg mink(Ri,lower−OPPOSITE_NEIGHBOURS[k]i)
6 such that Ri,lower−OPPOSITE_NEIGHBOURS[k]i > 0
7 Ri,lower = 0.5 ∗ (Ri,lower - OPPOSITE_NEIGHBOURS[k]i)

#extend right boundary towards the nearest neighbour
8 Find arg mink(OPPOSITE_NEIGHBOURS[k]i −Ri,upper)
9 such that OPPOSITE_NEIGHBOURS[k]i −Ri,upper > 0

10 Ri,upper = 0.5 ∗ (OPPOSITE_NEIGHBOURS[k]i −Ri,upper)

5.4 Evaluation of Computational Costs

An important question determining the usability and applicability of BRACID, is whether this
bottom-up, less-greedy induction of rules is much more costly than standard greedy sequential
covering algorithms. As the general loop of BRACID is partly analogous to that of RISE, we can
make use of its cost evaluation [32]. In the worst case, when in each iteration only a single rule is
generalized on only one condition, the complexity was shown to be O(e3a2) where e is the number
of examples, and a is the number of attributes (see [32] for details). Most often, many rules will
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be generalized in parallel and more than one condition will be processed in each iteration. For
comparison, a complexity of CN2 algorithm is estimated as O(be2a2), where b is the beam size.

From many elements which differ BRACID from RISE, the most costly is using k neighbours
instead of a single rule/example. Since in one iteration BRACID allows to analyse k generalizations
to a rule, and to produce k rules from one example, the above estimation should be multiplied
by a constant value of k2. However, this worst case is very unlikely, as it would happen only if
all learning examples were the minority unsafe examples. Let us remark that in our experiments,
BRACID’s time was comparable to that of RISE.

5.5 Classification Strategy Based on the Nearest Rule

Using rules and single examples induced by BRACID to classify new coming examples is another
non-trivial issue. As we discussed in Section 4.3, algorithms inducing unordered sets of rules
require special classification strategies to solve conflict situations of ambiguous matching of the
new example’s description to multiple rules from different classes or non-matching to any rule. The
behaviour of different strategies in face of imbalanced data was analysed in Section 4.4. It showed
that classification strategy can have an important impact on the performance of the classifier, and
that some strategies may be biased toward the majority class.

Yet another issue is that BRACID produces both rules and single examples. Having such
a combined, dual knowledge representation, we have decided to make the classification decision
on the basis of the local neighbourhood of the new example, as it is often done in the instance-
based learning. In other words, we look for a rule or a single example which is the nearest to
this example. This idea seems to be a natural extension of the k-NN principle and it is also
consistent with BRACID’s internal procedures for a rule generalization. Additionally, the nearest
rule strategy may reduce the impact of the global domination of majority rules in the rule set. It
also diminishes the role of very general rules, for which the quality measures are estimated basing
on the example distributions in the regions distant from the classified example. So, we think that
such a local strategy may be less biased towards the majority class. Let us also recall that the
similar nearest rule strategy was also successfully used in the earlier works of Stefanowski [116, 117]
as well as in the related RISE algorithm [31]. However, in these works the authors considered the
overall classification accuracy only and did not take into account class imbalance.

To calculate the nearest rule to the classified example, we apply the same HVDM measure as
in BRACID (see Section 5.2). However, even assuming that we look for the first nearest rule only,
it may happen that more rules are equally distant from the classified example, causing ambiguity.
Such a situation may occur either when several rules cover the example, i.e. their distance = 0, or
when no rule covers it, but several rules are equally distant from the example with distance > 0.
These are conflict situations if the rules represent different classes. Let us stress that in the
preliminary experiments we observed that such a situation may hold for about 20% of cases.

Such conflict situations could be solved in several ways, by taking into account additional
measures characterizing the equally distant rules. For instance, Domingos in RISE [31] proposed
to choose the rule with the highest value of accuracy calculated with Laplace accuracy [104],
estimated on the very specific choice of so-called winning examples. However, we have observed
that it did not work properly with respect to measures suitable for class imbalance. We also
checked that nearly all rules induced by RISE were approximately equally certain (with respect to
the confidence measure). In BRACID the situation is analogous. So, confidence-based measures
might not sufficiently discriminate the rules. Additionally, using the Laplace accuracy favors the
majority rules (we have discussed in Section 4.4 and we will show it on a toy example). This is
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why we come back to rule support measures. Although majority rules are globally characterized
by the higher support, focusing on a local neighborhood of the classified example should reduce
the risk of the domination of majority class rules over the minority class rules.

In our classification strategy the decision how to classify a new example e is made according
to the sum of supports for all equally distant rules R. The total support for class Ki and example
e is defined with the following expression:

sup(Ki, e) =
∑

rules for Ki equally distant to e

sup(R).

Example e is assigned to the class Kj for which the total support is the largest.
Summing the supports for all the equally distant rules may additionally help the minority class

as BRACID generalizes more rules for the unsafe examples of this class in the difficult, overlapping
regions (see Section 5.3).

Let us show it on a toy example. Figure 5.1 presents a possible conflict of rules when a minority
example (marked with ?) is classified. Minority class examples are marked with black circles. Let
us assume that all 4 rules (rectangles) are equally distant from the classified example. Using
accuracy as a rule quality measure would result in a random selection of one rule, as all 4 rules are
100% confident. Selection of the single, strongest rule would assign the example to the majority
class. Laplace measure also favors stronger (usually majority) rules – it would give 10+1

10+2 = 0.92
estimation for the majority rule, and 5+1

5+2 = 0.86 for the best minority rule. Summing the supports
of all equally distant rules can result in a correct classification of this example.

Figure 5.1: An example of a conflict situation while using the nearest rule classification strategy
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Chapter 6

BRACID – Experimental Study

This Chapter presents the experimental study concerning BRACID. The aim of the experiments
is to evaluate the classification abilities of the BRACID classifier in presence of class imbalance.
First, we want to analyse an impact of BRACID’s components on its final performance. Then,
we compare it with other standard rule induction classifiers. Although we could expect some
improvements, we want to see how much one can gain using BRACID instead of well known rule-
based approaches. We will also verify if BRACID is better than its related ”parent” approaches,
i.e. k-NN and RISE. Finally, we will compare BRACID against some methods dedicated to deal
with class imbalance – MODLEM with a modified classification strategy, and PART with two
preprocessing methods. We compare the classifiers using the evaluation measures suitable for class
imbalance. Additionally, we compare the structure of a rules produced by BRACID and other
classifiers producing unordered sets of rules. To determine the area of competence of BRACID,
in the separate experiment we analyse its performance on the testing examples labelled using the
procedure introduced in Chapter 3. This will let us estimate how efficiently BRACID deals with
safe, borderline, rare and outlying minority examples.

6.1 Experimental Setup

The experiments are carried out on 22 imbalanced datasets. 20 of them come from the UCI repos-
itory, while abdominal-pain and scrotal-pain datasets are real-world retrospective medical datasets
from prof. W.Michalowski and the MET Research Group from the University of Ottawa [143, 86].
The datasets represent a wide range of domains, imbalance ratios (from 3% to 35%), sizes (from
100 to over 4000 examples) and attributes (purely nominal, purely numeric and mixed). These
datasets were often used in other experimental studies with related methods for class imbalance
and they appeared to be difficult for the learning classifiers (see e.g. [132]). For the datasets
with multi-class domains, we selected the smallest class as a minority class, and aggregated the
remaining classes into one majority class. Let us notice that for some of these datasets the class
imbalance ratio is rather low (e.g. pima or ionosphere). However, according to our analysis with
the labelling method proposed in Chapter 3, they are also characterized by other influential factors
as overlapping of decision classes or presence of noisy or rare examples which is consistent with the
assumptions behind our approach. Table 6.1 summarizes the main characteristics of the datasets.

The performance of all compared classifiers is evaluated by three measures (considered also
in Chapter 3): Sensitivity of the minority class and two aggregating measures – G-mean and
F-measure (see their definitions in Section 2.2). We choose G-mean as it has a good intuitive
meaning and expresses a trade-off between Sensitivity and Specificity. Furthermore, we think that
it is important to analyse an additional measure which is not directly optimized in BRACID. Let
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Table 6.1: Basic characteristics of datasets

Dataset No of
examples

Minority
class size

Imbalance
ratio [%]

No of attributes
(numeric)

Minority
class name

abalone 4177 335 8.02 8 (7) 0-4 16-29
abdominal-pain 723 202 27.93 13 (0) positive
balance-scale 625 49 7.84 4 (4) B
breast-cancer 286 85 29.72 9 (0) rec-events
breast-w 699 241 34.47 9 (9) malignant
car 1728 69 3.99 6 (0) good
cleveland 303 35 11.55 13 (6) positive
cmc 1473 333 22.61 9 (2) long-term
credit-g 1000 300 30.00 20 (7) bad
ecoli 336 35 10.42 7 (7) imU
flags 194 17 8.76 29 (2) white
haberman 306 81 26.47 3 (3) died
hepatitis 155 32 20.65 19 (6) die
ionosphere 351 126 35.89 34 (34) bad
new-thyroid 215 35 16.28 5 (5) hyper
pima 768 268 34.89 8 (8) diabetes
postoperative 90 24 26.66 8 (0) S
scrotal-pain 201 59 29.35 13 (0) positive
solar-flare 1066 43 4.03 12 (0) F
transfusion 748 178 23.80 4 (4) yes
vehicle 846 199 23.52 18 (18) van
yeast 1484 51 3.44 8 (8) ME2

us also recall that we resign from analysing the ROC curves and calculating AUC measure, as
the chosen rule classifiers give deterministic predictions while the way of calculating AUC reflects
better the performance of classifiers with probabilistic outputs – see a quite similar discussion
in [137] and other arguments in Section 2.2.

All the experiments were run with a stratified 10-fold cross-validation repeated 5 times for a
better reproducibility of results and to reduce a possible variance of estimating the average of the
measures.

In the additional experiments, we compare BRACID and selected rule classifiers with respect
to the structure of the induced set of rules and to the average values of rule evaluations measures
such as support and average number of rules.

6.2 Studying the Role of BRACID’s Components

First, we evaluate the influence of BRACID’s components on its final classification abilities. More
precisely, we study the impact of:

• new classification strategy described in Section 5.5 (called in this experiment component C),

• removal of noisy majority examples (component N),

• the use of the Extend operator (component E).

The final classifier is called in this experiment BRACID-N-E-C beacuse it uses all three components.
The version which does not extend the minority rules is called BRACID-N-C etc. A version without
the C component uses a classification strategy coming from the RISE algorithm – based on the
Laplace accuracy instead of the support.
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Fig. 6.1 shows how these three components influence the Sensitivity measure. We present
only a representative subset of analysed datasets – the behaviour on the remaining datasets was
comparable. A single group of 4 bars refers to one dataset. Analysing the bars in a group from
the leftmost bar (referring to the most simplified algorithm) to the rightmost bar (referring to the
final algorithm with all the components), one can notice that adding the components improves the
Sensitivity. Using a classification strategy better suited for class imbalance results in the highest
increase of Sensitivity. Removing the noise in the majority class and extending the minority rules
brings further improvements.

Figure 6.1: Influence of BRACID’s components on Sensitivity measure

As all three components were created with a view to improve the recognition of a minority
class, they may cause a decrease of a recognition of a majority class. Fig. 6.2 (presenting values
of G-mean for all the datasets) shows however, that this aggregated measure also improves from
the left to the right bars. It indicates that these components do not deteriorate the majority class
too much. We also calculated the similar results for the F-measure and the conclusions were the
same.

Figure 6.2: Influence of BRACID’s components on G-mean measure

Finally, we analysed how these components affect the average rule support in the minority
class. In Fig. 6.3 we present this measure for BRACID with N and E components and for the
algorithm without these components. Component C operates only in the classification phase and
it does not influence the induction of rules, so it is not included in this figure. It can be observed
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that removing the noisy majority examples and using the Extend operator helps to create stronger
rules for the minority class. It is worth mentioning here that BRACID-N-E increases also the
average support of the majority rules, but it is rather a by-product of removing maximally specific
majority rules (by the N component) which decrease the average value for the remaining rules.

Figure 6.3: Influence of BRACID’s components on the average rule support for the minority class

6.3 Comparison of BRACID with Standard Rule Classifiers

In this section we compare the classification performance of BRACID against 4 very popular rule
algorithms: CN2 [23], PART [37], RIPPER [25] and C45rules [109] – they were presented in Section
4.2. We also compare it to the MODLEM [118] algorithm, as it was already used for imbalanced
data (for example in [124, 125]) and its extention MODLEM-C will be used in the experiments
presented in the next section.

CN2 is run with Laplace accuracy as an evaluation measure and beam size = 5. It produces the
unordered set of rules with the classification strategy based on voting with rule supports in multiple
matching and a default rule in case of non-matching. RIPPER is run with standard parameters
(including rule pruning) and its typical classification strategy using an ordered list. PART, C45rules
and MODLEM are also used with standard parameters, however without prunning. MODLEM is
used with the standard Grzymala classification strategy [46]. BRACID is parameterized only with
the neighbourhood size. We tested values 3, 5 and 7, which are often used in the neighbourhood-
based methods (such as k-NN) and in the preprocessing approaches. Although all three values
have led to comparable results, k = 5 has been slightly better than the other two. Therefore, we
present the results for k = 5 only.

As BRACID produces a hybrid instance and rule representation, we have also decided to
compare it against a typical k-NN algorithm representing instance-based learning (with k=5, to
stay with the same value as in BRACID) and to the RISE algorithm which is the most related
hybrid algorithm.

In case of CN2, RISE, MODLEM and C45rules algorithms, the original authors’ implemen-
tations were used1. All other implementations come from the WEKA library. BRACID was

1CN2 is available at http://www.cs.utexas.edu/users/pclark/software/ , RISE at http://homes.cs.
washington.edu/~pedrod/ and MODLEM at http://www.cs.put.poznan.pl/jstefanowski/; a code of C4.5rules
was attached to a book [109].
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6.3. Comparison of BRACID with Standard Rule Classifiers

Table 6.2: Sensitivity for BRACID compared against standard algorithms

Dataset BRACID RISE kNN C45rules CN2 PART RIPPER MODLEM
abalone 0.474 0.128 0.137 0.339 0.160 0.188 0.184 0.245
abdominal-pain 0.782 0.711 0.775 0.695 0.658 0.726 0.602 0.657
balance-scale 0.565 0.000 0.004 0.018 0.018 0.000 0.000 0.000
b-cancer 0.572 0.356 0.261 0.330 0.276 0.411 0.288 0.319
breast-w 0.989 0.959 0.968 0.917 0.886 0.947 0.896 0.887
car 0.781 0.596 0.031 0.753 0.544 0.900 0.530 0.787
cleveland 0.483 0.147 0.042 0.175 0.000 0.252 0.163 0.085
cmc 0.631 0.293 0.308 0.404 0.096 0.377 0.071 0.256
credit-g 0.801 0.359 0.371 0.373 0.260 0.477 0.213 0.365
ecoli 0.790 0.505 0.578 0.597 0.185 0.420 0.445 0.400
flags 0.840 0.020 0.000 0.308 0.000 0.250 0.190 0.000
haberman 0.669 0.224 0.181 0.244 0.184 0.334 0.180 0.240
hepatitis 0.757 0.487 0.475 0.358 0.050 0.457 0.417 0.383
ionosphere 0.976 0.902 0.629 0.837 0.779 0.840 0.818 0.824
new-thyroid 0.980 0.928 0.867 0.850 0.866 0.933 0.855 0.812
pima 0.875 0.551 0.558 0.507 0.408 0.591 0.377 0.485
postoperative 0.577 0.147 0.000 0.000 0.017 0.103 0.037 0.033
scrotal-pain 0.771 0.544 0.492 0.569 0.432 0.634 0.521 0.547
solar-flare 0.517 0.066 0.000 0.148 0.000 0.187 0.010 0.070
transfusion 0.738 0.297 0.319 0.386 0.150 0.429 0.088 0.371
vehicle 0.960 0.831 0.865 0.867 0.329 0.883 0.874 0.859
yeast 0.555 0.245 0.194 0.323 0.000 0.267 0.259 0.189

implemented by us using the WEKA components.
Tables 6.2-6.4 present the average values of Sensitivity, G-mean and F-measure, respectively,

for all compared classifiers. In all these tables, for each dataset, we marked with bold fonts the
best result.

We use a statistical approach to compare the differences in performance between all classifiers.
First, we apply a non-parametric Friedman test to globally compare the performance of 8 different
classifiers on 22 datasets (following the recommendations given in [66, 58]). The null hypothesis in
this test is that all compared classifiers perform equally well. It uses ranks of all classifiers’ results
on each of the data sets. The higher rank, the better classifier.

Let us start from analyzing the results for the Sensitivity measure. Friedman statistics for these
results gives 89.64 which exceeds the critical value for confidence level 0.05 (equal to 14.07) and we
can easily reject (for p much smaller than α = 0.05) the null hypothesis saying that all compared
classifiers perform equally well. The average ranks of each of the classifiers are the following:
BRACID 7.9; PART 6.11; C45rules 5.25; RISE 4.43; KNN 3.59; MODLEM 3.52; RIPPER 3.02;
CN2 2.15. Then, we carried out a complete post-hoc analysis of differences between classifiers
with a Nemenyi test [58]. The critical value of difference (CD) between the average ranks of
two classifiers is 2.23. So, we can claim that Sensitivity of BRACID is significantly better to all
other classifiers except PART – where the difference is smaller than CD. Then, we repeat the
same testing procedure for G-mean. The Friedman statistics is 76.23 and we can again reject
the null hypothesis. The average ranks of the classifiers are the following: BRACID 7.77; PART
5.7; C45rules 5.02; RISE 4.61; KNN 3.81; MODLEM 3.7; RIPPER 3.15; CN2 2.2. A post-hoc
analysis leads to similar conclusions – performance of BRACID is significantly better than other
classifiers and the difference between it and PART is just near CD. Statistical Friedman test for
the F-measure has led us to the same conclusions.

As BRACID is always close to PART, we have decided to use the Wilcoxon signed rank test to

73



6. BRACID – Experimental Study

Table 6.3: G-mean for BRACID and standard algorithms

Dataset BRACID RISE kNN C45rules CN2 PART RIPPER MODLEM
abalone 0.650 0.345 0.358 0.568 0.396 0.419 0.421 0.484
abdominal-pain 0.811 0.805 0.828 0.784 0.775 0.786 0.748 0.771
balance-scale 0.567 0.000 0.009 0.019 0.019 0.000 0.000 0.000
breast-cancer 0.559 0.545 0.475 0.486 0.460 0.529 0.485 0.485
breast-w 0.968 0.963 0.969 0.929 0.929 0.950 0.928 0.926
car 0.870 0.751 0.079 0.858 0.714 0.943 0.711 0.879
cleveland 0.574 0.232 0.081 0.259 0.000 0.382 0.258 0.149
cmc 0.637 0.507 0.517 0.586 0.258 0.543 0.255 0.472
credit-g 0.611 0.540 0.569 0.555 0.469 0.602 0.439 0.563
ecoli 0.830 0.638 0.701 0.717 0.284 0.554 0.587 0.568
flags 0.481 0.025 0.000 0.339 0.000 0.297 0.216 0.000
haberman 0.576 0.375 0.334 0.426 0.345 0.468 0.355 0.401
hepatitis 0.751 0.604 0.615 0.508 0.050 0.549 0.504 0.502
ionosphere 0.912 0.928 0.780 0.878 0.870 0.888 0.874 0.890
new-thyroid 0.984 0.951 0.921 0.901 0.915 0.953 0.911 0.878
pima 0.712 0.666 0.681 0.649 0.600 0.679 0.581 0.641
postoperative 0.345 0.193 0.000 0.000 0.022 0.133 0.055 0.044
scrotal-pain 0.731 0.667 0.661 0.676 0.582 0.707 0.662 0.678
solar-flare 0.638 0.135 0.000 0.270 0.000 0.319 0.020 0.126
transfusion 0.639 0.507 0.529 0.579 0.342 0.602 0.266 0.529
vehicle 0.935 0.895 0.914 0.911 0.513 0.919 0.919 0.916
yeast 0.709 0.436 0.341 0.511 0.000 0.420 0.452 0.337

Table 6.4: F-measure for BRACID and standard algorithms

Dataset BRACID RISE kNN C45rules CN2 PART RIPPER MODLEM
abalone 0.370 0.192 0.208 0.393 0.253 0.269 0.282 0.326
abdominal-pain 0.718 0.738 0.751 0.713 0.704 0.691 0.681 0.694
balance-scale 0.198 0.000 0.007 0.019 0.019 0.000 0.000 0.000
b-cancer 0.438 0.426 0.364 0.373 0.335 0.389 0.366 0.351
breast-w 0.947 0.949 0.957 0.912 0.915 0.932 0.910 0.910
car 0.730 0.665 0.054 0.766 0.680 0.895 0.600 0.866
cleveland 0.332 0.169 0.059 0.178 0.000 0.225 0.165 0.103
cmc 0.444 0.351 0.358 0.434 0.140 0.361 0.124 0.311
credit-g 0.527 0.404 0.449 0.426 0.352 0.471 0.311 0.442
ecoli 0.601 0.517 0.592 0.593 0.244 0.450 0.473 0.465
flags 0.240 0.012 0.000 0.238 0.000 0.204 0.141 0.000
haberman 0.442 0.240 0.214 0.300 0.235 0.349 0.233 0.262
hepatitis 0.603 0.489 0.538 0.406 0.100 0.452 0.407 0.423
ionosphere 0.878 0.913 0.747 0.847 0.850 0.864 0.848 0.872
new-thyroid 0.970 0.947 0.895 0.843 0.906 0.918 0.879 0.848
pima 0.661 0.577 0.599 0.567 0.512 0.596 0.484 0.550
postoperative 0.317 0.158 0.000 0.000 0.016 0.110 0.043 0.032
scrotal-pain 0.628 0.563 0.584 0.578 0.493 0.606 0.570 0.585
solar-flare 0.284 0.088 0.000 0.170 0.000 0.177 0.015 0.079
transfusion 0.468 0.354 0.385 0.443 0.214 0.462 0.149 0.354
vehicle 0.857 0.855 0.877 0.867 0.433 0.875 0.885 0.892
yeast 0.420 0.311 0.243 0.352 0.000 0.287 0.286 0.245
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get a better insight in the comparison of these two classifiers. In this non-parametric test, the null
hypothesis is that the medians of measures for the two compared classifiers on all datasets are equal
[66, 28]. The ranks are assigned to the values of differences in performance of a pair of classifiers
for each dataset – while in Friedman test the winner is only established for a given dataset, without
considering how much one algorithm outperforms the other. The p-values resulting from this test
are: Sensitivity 0.00089; G-mean 0.00018. All the p-values support our observation that BRACID
is significantly better than any of the compared algorithms, also including PART.

We can also discuss some of these results for particular datasets and measures. BRACID can
better recognize the minority class than all other classifiers (Table 6.2). The improvements of
Sensitivity, sometimes relatively high, are particularly visible if we compare it with its ”parents”,
i.e. RISE and k-NN. The only exception is the car dataset, where PART is the best algoritm
– we will analyse this case in more detail in Section 6.5. We can also say that this improved
recognition of the minority class does not degrade too much the recognition of the majority class
– values of G-mean in the Table 6.3 are higher for BRACID than for other algorithms although
some differences are smaller. Only for more balanced datasets (e.g. ionosphere – 35%, breast-w –
34%, abdominal-pain – 28%), which according to the experiments in Chapter 3 have a rather safe
characteristics, the degradation on the majority class is more serious and it influences the G-mean
measure. The same observation refers to the F-measure (Table 6.4).

6.4 Experiments with Approaches Dedicated for Class Imbalance

In the previous experiment we could expect the superiority of BRACID over standard rule classifiers
as they are not suited to handle imbalanced data. Thus, we include in the comparison some rule-
based methods dedicated for class imbalance. Unfortunately, the access to the most interesting
algorithms described in Section 4.5 was impossible (most of these algorithms are not available
publicly or their authors do not maintain the software anymore). We received a MODLEM-C
implementation2, which is a generalization of the MODLEM algorithm with a modified Grzymala
classification strategy [47] – see also Section 4.5. For each dataset separately, we tested 10 possible
values of a strength multiplier (from 1 to 10) and chose the best one (according to F-measure and
G-mean). Furthermore, as the original RISE uses a less greedy bottom-up induction technique,
we can also treat it as better suited for class imbalance. Therefore we include its results in this
comparison as well.

As we have been unable to get access to other rule-based approaches dedicated to class imbal-
ance, we have decided to compare BRACID with a rule algorithm combined with specialized data
preprocessing methods. First, we direct our interest to a well known SMOTE algorithm [20] as
in many experimental studies it has been evaluated to be one of the most efficient preprocessing
methods and it has been often used together with rule or tree classifiers. We combine SMOTE
with PART rule induction algorithm, as it is the second-best algorithm from the previous experi-
ment. SMOTE is run with k = 5 (this value is used in many experiments with SMOTE; it is also
consistent with the neighbourhood size used in BRACID) and oversampling ratio tuned for each
dataset separately to balance the distribution between classes.

Finally, as SMOTE can sometimes increase the overlapping in the difficult datasets (see dis-
cussion in Section 2.3.1), we include SMOTE-ENN which combines SMOTE with cleaning, to get
an even more competitive classifier.

We should stress here that our aim in this part of the experiment is not to generally study the
preprocessing methods as they are based on different principles than rule algorithms. We want

2We thank Dr Szymon Wilk for providing us his implementation.
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Table 6.5: Sensitivity for algorithms dedicated for class imbalance

Dataset BRACID RISE MODLEM-C PART
SMOTE

PART
SMOTE+ENN

abalone 0.474 0.128 0.274 0.478 0.582
abdominal-pain 0.782 0.711 0.753 0.738 0.770
balance-scale 0.565 0.000 0.000 0.277 0.443
b-cancer 0.572 0.356 0.406 0.426 0.482
breast-w 0.989 0.959 0.949 0.969 0.983
car 0.781 0.596 0.787 0.856 0.749
cleveland 0.483 0.147 0.138 0.290 0.470
cmc 0.631 0.293 0.358 0.490 0.660
credit-g 0.801 0.359 0.551 0.514 0.668
ecoli 0.790 0.505 0.457 0.780 0.798
flags 0.840 0.020 0.000 0.190 0.190
haberman 0.669 0.224 0.413 0.728 0.796
hepatitis 0.757 0.487 0.552 0.543 0.573
ionosphere 0.976 0.902 0.900 0.889 0.885
new-thyroid 0.980 0.928 0.842 0.940 0.938
pima 0.875 0.551 0.720 0.862 0.890
postoperative 0.577 0.147 0.283 0.170 0.257
scrotal-pain 0.771 0.544 0.692 0.697 0.693
solar-flare 0.517 0.066 0.192 0.337 0.494
transfusion 0.738 0.297 0.497 0.591 0.769
vehicle 0.960 0.831 0.920 0.910 0.960
yeast 0.555 0.245 0.209 0.628 0.505

to check whether BRACID is not worse or competitive to the well known representatives of these
methods.

The results, presented in Tables 6.5-6.7, show as previously Sensitivity, G-mean and F-measure.
Comparing the standard MODLEM algorithm with MODLEM-C proves that modified classifica-
tion strategy helps to deal with imbalanced classes (Table 6.2). Similarly, PART+SMOTE and
PART+SMOTE+ENN work better than PART alone. We conducted again the Friedman test for
all the classifiers. For all measures we can reject the null hypothesis. Critical values are: Sensitiv-
ity 54.94; G-means 34.78; F-measure 27.76. In the post-hoc analysis the critical difference CD is
equal to 1.3 (with Nemenyi test).

The average ranks are the following: Sensitivity – BRACID 4.5; PART+SMOTE+ENN 3.84;
PART+SMOTE 3.11; MODLEM-C 2.11; RISE 1.43. G-mean – BRACID 4.3; SMOTE+ENN
+PART 3.65; SMOTE+PART 2.84; MODLEM-C 2.29; RISE 1.88. F-measure – BRACID 4.22;
PART+SMOTE+ENN 3.52; PART+SMOTE 2.88; MODLEM-C 2.25; RISE 2.11W. With the
critical difference CD=1.3 we cannot say that BRACID is significantly better than PART+
SMOTE+ENN; however the difference between them is around 1 in favor of BRACID. All other al-
gorithms are ouperformed by BRACID. In all cases RISE is the worst algorithm while MODLEM-C
is worse than PART combined with SMOTE.

Again we applied the Wilcoxon signed rank test to verify more deeply the differences between
BRACID and PART+SMOTE+ENN. With respect to Sensitivity, BRACID is significantly better
than PART+SMOTE+ENN (p < 0.0308). For G-mean and F-measure, BRACID is better with p <
0.043 and p < 0.028, respectively. Determining win-loss between them also shows that BRACID
dominates PART+SMOTE+ENN for 14 or 15 datasets, depending on the evaluation measure. It
is defeated (for all measures) on only two datasets: abalone and haberman. To sum up, we can
conclude that BRACID’s classification performance is comparable or even slightly better than the
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Table 6.6: G-mean for algorithms dedicated for class imbalance

Dataset BRACID RISE MODLEM-C PART
SMOTE

PART
SMOTE+ENN

abalone 0.650 0.345 0.513 0.643 0.704
abdominal-pain 0.811 0.805 0.793 0.790 0.818
balance-scale 0.567 0.000 0.000 0.346 0.462
breast-cancer 0.559 0.545 0.530 0.526 0.540
breast-w 0.968 0.963 0.947 0.959 0.962
car 0.870 0.751 0.879 0.916 0.842
cleveland 0.574 0.232 0.225 0.410 0.565
cmc 0.637 0.507 0.544 0.581 0.635
credit-g 0.611 0.540 0.645 0.612 0.658
ecoli 0.830 0.638 0.633 0.826 0.826
flags 0.481 0.025 0.000 0.224 0.224
haberman 0.576 0.375 0.532 0.608 0.596
hepatitis 0.751 0.604 0.644 0.639 0.656
ionosphere 0.912 0.928 0.898 0.876 0.868
new-thyroid 0.984 0.951 0.903 0.955 0.955
pima 0.712 0.666 0.704 0.681 0.660
postoperative 0.345 0.193 0.297 0.158 0.251
scrotal-pain 0.731 0.667 0.729 0.716 0.732
solar-flare 0.638 0.135 0.322 0.492 0.651
transfusion 0.639 0.507 0.579 0.601 0.621
vehicle 0.935 0.895 0.941 0.932 0.942
yeast 0.709 0.436 0.370 0.749 0.658

Table 6.7: F-measure for algorithms dedicated for class imbalance

Dataset BRACID RISE MODLEM-C PART
SMOTE

PART
SMOTE+ENN

abalone 0.370 0.192 0.353 0.350 0.372
abdominal-pain 0.718 0.738 0.695 0.695 0.733
balance-scale 0.198 0.000 0.000 0.131 0.171
b-cancer 0.438 0.426 0.390 0.392 0.405
breast-w 0.947 0.949 0.925 0.940 0.940
car 0.730 0.665 0.864 0.823 0.602
cleveland 0.332 0.169 0.157 0.223 0.318
cmc 0.444 0.351 0.372 0.386 0.442
credit-g 0.527 0.404 0.524 0.481 0.539
ecoli 0.601 0.517 0.512 0.618 0.571
flags 0.240 0.012 0.000 0.162 0.162
haberman 0.442 0.240 0.370 0.491 0.483
hepatitis 0.603 0.489 0.535 0.511 0.525
ionosphere 0.878 0.913 0.867 0.839 0.826
new-thyroid 0.970 0.947 0.869 0.918 0.922
pima 0.661 0.577 0.627 0.639 0.630
postoperative 0.317 0.158 0.217 0.121 0.178
scrotal-pain 0.628 0.563 0.625 0.608 0.634
solar-flare 0.284 0.088 0.193 0.228 0.319
transfusion 0.468 0.354 0.395 0.445 0.468
vehicle 0.857 0.855 0.902 0.886 0.874
yeast 0.420 0.311 0.263 0.335 0.327
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best method for informed re-sampling used together with the most competitive rule algorithm
PART.

6.5 Analysis of Rule Sets

To analyse the differences between the induced rule sets for the selected algorithms, we additionally
calculate some descriptive statistics of rule evaluation measures such as the average number of rules
and their average support for each class separately. These values characterize the differences in the
rule induction phase but they may also help to interpret the results of applying the classification
strategies. We do not compare the confidence of the rules as all the selected algorithms (with the
parameters used, such as disabled pruning in MODLEM), induce nearly equally confident rules.
Moreover, we do not present the average length of a rule, as BRACID never drops conditions on
numerical attributes while other algorithms use more greedy strategies, so it would be misleading.
As PART and C45rules return an ordered set of rules, and RIPPER learns rules for only one class,
we have decided to compare the sets of rules for RISE, CN2 and MODLEM only. The results,
presented in Table 6.8, include additionally the number of maximally specific rules representing
single minority examples in the final BRACID classifier (called instances). This parameter shows
how hybrid is the knowledge representation corresponding to the minority class for a given dataset.
It could also refer to the difficulty of data – a lot of maximally specific minority rules suggests a
limited number of large disjuncts and possible other difficulties with the minority class distribution.
To verify this hypothesis, at the end of this experiment we will analyse the types of examples
(estimated using our method introduced in Chapter 3) which are the seeds of these rules.

We present the results for 9 selected datasets. The first 5 datasets (over the double horizontal
line) represent the standard behaviour of the algorithms, which we also observed for the remaining
13 datasets, so there is no need to include them in this Table. The last 4 datasets represent
different untypical situations which we will further discuss. Typically (first 5 datasets), BRACID
and RISE generate more rules than CN2 and MODLEM algorithms. This is due to the fact that
CN2 and MODLEM represent a maximum generality bias and try to induce a minimal set of
rules. BRACID induces more minority rules than RISE, because in the difficult regions it allows
to create more rules for unsafe examples from the minority class. However, it is important to note
that although BRACID generates much more minority rules, they are characterized by the highest
average support comparing to rule supports from other algorithms.

It is interesting to check whether an increase of a number of rules (even if they are strong)
is always profitable. For instance, for the transfusion dataset, BRACID generates 6 times more
minority rules than CN2. However, if we come back to Table 6.2 and analyse the sensitivity
measure on this dataset, it can be observed that it improves the recognition of the minority class
from 15% to 73%. For hepatitis, CN2 covered the minority class with less than four rules (while
BRACID with 60), however the recognition for CN2 was 5% and for BRACID – 75%. So, in our
opinion the trade-off is worth it.

Under the double horizontal line in Table 6.8 we present 4 datasets for which the results were in
a way untypical. For solar-flare and cleveland, CN2 generated much stronger minority rules than
BRACID. An analysis of Table 6.2 shows, however, that these rules were not useful – they could
not correctly classify even a single testing example. The same refers to abdominal-pain dataset, for
which BRACID also generates less rules than CN2. This time, although CN2 still achieves worse
performance on Sensitivity, G-mean and F-measure, its results are more comparable to those of
BRACID. Let us note that this dataset is more balanced than other datasets (28%), which may be
the reason why CN2 (and other learning algorithms, according to the experiments in Chapter 3)
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Table 6.8: Average values of evaluation measures for rulesets

Dataset Classifier No of rules
(MIN)

No of rules
(MAJ)

No of
instances

Support
(MIN)

Support
(MAJ)

CN2 39.92 47.18 1.51 42.12
balance-scale MODLEM 43.48 48.04 1.02 41.88

RISE 42.96 104.40 1.31 79.43
BRACID 65.32 124.04 10.48 7.82 14.83
CN2 22.60 34.88 2.77 6.09

b-cancer MODLEM 32.46 36.94 3.04 7.20
RISE 52.68 73.12 2.45 7.99
BRACID 64.60 61.54 18.10 4.76 5.78
CN2 3.66 4.14 4.00 15.68

hepatitis MODLEM 4.88 5.42 7.78 30.17
RISE 22.18 47.60 5.12 16.58
BRACID 60.88 46.54 1.38 7.03 19.57
CN2 2.70 3.20 17.71 140.63

new-thyroid MODLEM 2.76 2.54 19.10 133.17
RISE 9.72 20.98 13.23 112.15
BRACID 19.18 20.70 0.04 23.18 116.76
CN2 23.00 37.24 9.86 17.85

transfusion MODLEM 59.02 63.36 6.32 14.59
RISE 101.08 110.66 7.86 14.62
BRACID 146.02 109.06 21.00 11.90 11.06
CN2 11.30 29.02 30.49 59.39

solar-flare MODLEM 20.24 18.18 5.55 107.20
RISE 32.64 48.42 4.10 58.20
BRACID 34.50 64.08 11.70 7.55 37.14
CN2 9.76 13.02 10.64 44.71

cleveland MODLEM 11.82 14.20 2.91 37.33
RISE 19.10 83.66 4.22 16.02
BRACID 84.52 81.20 2.50 5.71 17.05
CN2 17.98 38.04 17.51 36.48

abdominal-pain MODLEM 41.32 41.52 9.54 35.49
RISE 57.40 110.44 8.05 14.93
BRACID 71.44 100.46 4.44 12.90 13.59
CN2 30.34 16.00 2.21 215.76

car MODLEM 14.02 12.00 5.07 270.31
RISE 45.38 328.92 1.85 17.54
BRACID 35.74 164.14 12.28 2.95 32.29

can learn it reasonably well. The same behaviour was observed for another dataset not included
in Table 6.8, ionosphere, which is even more balanced (36%). Also, according to our analysis of
the data characteristics in Chapter 3, abdominal-pain and ionosphere datasets are safe datasets so
they should be easier to learn for standard classifiers such as CN2.

We report the rule statistics also for car dataset, to check why BRACID performed on it worse
than classical PART algorithm and comparably to MODLEM. According to our analysis in Chapter
3, this dataset has a lot of borderline examples. The analysis of the ruleset suggests additionally,
that the distribution of examples in the borderline might be very scattered – almost 35% of the final
BRACID classifier corresponds to single cases. As this dataset consists of only nominal attributes,
a generalization of a rule to another example in BRACID can be achieved only by dropping the
whole condition on a given attribute, which might be difficult in a mixed borderline region without
covering too many examples from the other class. As a result, the average rule strength of BRACID
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is rather low compared to other algorithms on this dataset. Also, our algorithm did not manage
to create many additional rules for the difficult minority class examples, which would satisfy the
leaving-one-out evaluation procedure. BRACID created a comparable number of rules to other
algorithms, which are comparably strong – which may be a reason why it could not outperform
other algorithms.

Finally, we have analysed the seed examples for the maximally specific rules. Using our labelling
method from Chapter 3, we wanted to analyse the type of these examples, expecting that they
will be mostly rare and outlying examples. For most of the datasets, almost 100% of examples are
of type rare or outliers. The exceptions are flags dataset (which had only two such rules) and car
dataset. The detailed results can be found in Appendix A (Table 8).

6.6 Applicability of the Algorithm

In this experiment we want to analyse what is the area of competence for BRACID. As we have
shown in Chapter 3, imbalanced datasets can have different characteristics – they can consist of
safe, overlapping, rare or noisy/outlying examples. We have also shown that classifiers can reveal
different sensitivity to the particular types of examples. Although the experiments carried out in
Sections 6.3 and 6.4 have shown that BRACID works well on all imbalanced datasets regardless of
their data distribution, we want to observe for which data distributions BRACID is the most well
suited, by recording errors made on each type of minority class examples.

To carry out this analysis, we first identify a type of each learning example. Then, in the
cross-validation procedure, we record the sensitivity for each type of testing examples separately.
Analogously to the experimental setup in Chapter 3, we do not present the results for too small
datasets (less than 300 examples) to ensure that there are enough representatives in each category.
As some datasets do not have any examples of a particular type or their number is too small (e.g.
cleveland, vehicle) – we left the corresponding cells empty. Note that, compared to the experiment
in Chapter 3, three additional datasets have been used in this experiment – breast-w, balance-scale
and pima. Therefore, we give their labelling results in Table 6.9. In general, breast-w represents
safe datasets, balance-scale consists mostly of outliers and pima is a borderline dataset.

Table 6.9: Labelling of datasets

Dataset S [%] B [%] R [%] O [%]
breast-w 91.29 7.88 0.00 0.83
pima 29.85 56.34 5.22 8.58
balance-scale 0.00 0.00 8.16 91.84

We compare the results of BRACID with two classifiers: PART – a classic rule learning classifier
which according to the experiments in Chapter 3 worked well for all types of examples, especially
for rare and outlying ones, and PART combined with SMOTE-ENN – a classifier dedicated for
class imbalance, which was the most competitive to BRACID in the experimental setup carried
out in Section 6.4. Table 6.10 presents these results – for each dataset and the three compared
classifiers, local accuracies (sensitivities) on each type of testing examples are grouped together.
The best results are marked with bold.

First of all, we can observe that both approaches dedicated for class imbalance improve the
recognition of all four types of testing examples compared to PART. The improvements on the
safe examples are small, because PART alone can already deal very well with these examples (rec-
ognizing correctly 80-90% of them). However, BRACID can additionally improve the recognition
of these examples, often reaching a hundred percent accuracy.
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Table 6.10: Sensitivity on labeled testing examples

Dataset PART PART
SM+ENN

BRACID PART PART
SM+ENN

BRACID

Safe Border
abalone 0.743 0.993 1.000 0.278 0.792 0.792
abdominal-pain 0.917 0.932 0.985 0.695 0.836 0.805
balance-scale
breast-w 0.975 0.994 1.000 0.720 0.907 0.973
car 0.915 0.891 0.879 0.911 0.556 0.704
cleveland 0.450 0.725 0.650
cmc 0.631 0.963 0.983 0.375 0.746 0.769
credit-g 0.657 0.836 0.979 0.533 0.720 0.886
ecoli 0.840 0.960 1.000 0.329 0.882 0.847
haberman 0.900 1.000 1.000 0.482 0.965 0.865
ionosphere 0.986 0.986 1.000 0.921 0.994 1.000
pima 0.865 0.993 0.990 0.620 0.948 0.938
solar-flare 0.275 0.563 0.763
transfusion 0.861 1.000 0.994 0.645 0.916 0.887
vehicle 0.931 0.982 0.978 0.741 0.900 0.959
yeast 0.733 0.933 1.000 0.500 0.811 0.900

Rare Outlier
abalone 0.124 0.602 0.555 0.104 0.443 0.253
abdominal-pain 0.171 0.229 0.105 0.088 0.075 0.075
balance-scale 0.000 0.500 0.800 0.000 0.440 0.547
breast-w
car 1.000 0.833 0.833 0.467 0.733 0.400
cleveland 0.222 0.489 0.644 0.167 0.344 0.333
cmc 0.349 0.567 0.520 0.191 0.378 0.246
credit-g 0.405 0.653 0.749 0.320 0.444 0.532
ecoli 0.120 0.240 0.240
haberman 0.206 0.755 0.568 0.050 0.350 0.267
ionosphere 0.676 0.686 0.952 0.375 0.575 0.875
pima 0.276 0.747 0.720 0.113 0.513 0.452
solar-flare 0.320 0.780 0.720 0.024 0.271 0.212
transfusion 0.212 0.647 0.600 0.016 0.510 0.473
vehicle
yeast 0.200 0.480 0.580 0.020 0.180 0.160
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When the borderline testing examples are concerned, PART’s results are around 60%. BRACID
works very well here – it is often better than SMOTE-ENN and it improves the recognition of these
examples up to about 90%.

As for the rare and outlying examples, PART usually cannot recognize more than 20% of them.
SMOTE-ENN and BRACID can rise this number to about 60-80% on the rare examples, while on
the outliers the improvements are smaller – usually less than 50%. For the rare examples, both
approaches work comparably, while on the outliers SMOTE-ENN is a better algorithm. There may
be two reasons why BRACID does not concentrate that much on the outlying examples: the Extend
operator which we have decided to use in the ”conservative” way and not apply it for the most
specific rules (which often cover outlying examples), and the classification strategy which in case of
two equally distant conflicting rules makes a decision based on the rule support (which might be low
for rules covering outlying examples). If we would apply the Extend operator in a more aggressive
way (extending all the rules) and apply a classification strategy more biased towards the minority
class, the results on outlying examples might be better. However, in our preliminary experiments
we have tested a more ”aggressive” use of the Extend component, extending all the rules, as well as
some classification strategies biased more towards the minority class (e.g. assigning the minority
class label whenever any minority rule was in the conflict set) – these approaches indeed improved
the recognition of the minority class, but jeopardised the majority class too much.

The good behaviour of SMOTE-ENN on these examples may be a result of introducing artificial
minority examples around the outlier examples by SMOTE. Especially for the datasets with high
imbalance ratio, where the level of oversampling is high, introducing new examples in these regions
may help to recognize the rare and outlier examples. However it may have negative consequences
for the majority class.

6.7 Conclusions

The most important features of BRACID, which in our opinion should improve classifiers con-
structed from imbalanced data, are the following:

• It produces an integrated hybrid representation of rules and instances to use their comple-
mentary advantages, i.e., it uses rules to generalize consistent regions and instances to better
represent the overlapping regions, rare or outlier examples in the data.

• It induces rules in the bottom-up direction and it does not use a sequential covering technique
to prevent the data fragmentation and to better handle possible small disjuncts.

• It uses the F-measure in a leaving-one-out procedure to evaluate and accept these rules that
are more capable of recognizing the minority class.

• It uses the local nearest rule classification strategy which diminishes the role of the global
domination of the majority rules when making a classification decision.

• It removes noisy examples from the majority classes to prevent the fragmentation of the
minority class regions.

• It extends the minority rules and allows to analyze more generalizations to rules in the
consistent regions in order to address the problem of under-representation of the minority
class in the data.

• It creates more minority class rules in the overlapping regions to decrease the chance of
overwhelming the minority class by the majority classes. All these rules are generated from
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the actual learning examples. This significantly distinguishes BRACID from the preprocess-
ing methods based on oversampling (e.g., an original version of SMOTE generates quite a
large number of artificial examples which could lead to ambiguity either in a human inter-
pretation of a rule or while explaining the classification decisions for new coming examples)
or from modified classification strategies using so-called strength amplifiers (MODLEM-C )
to artificially amplify the importance of minority class in the set or conflicting rules. This
property of BRACID is crucial for getting a more comprehensible and transparent knowledge
representation.

We have conducted an extensive experimental evaluation on 22 imbalanced datasets, where we
have compared BRACID to a number of the state-of-the-art rule classifiers, one instance-based
classifier and some approaches dedicated for class imbalance. The main conclusions from these
experiments are the following:

• BRACID significantly (with respect to the non-parametric Friedman test and the post-hoc
analysis ) outperforms other standard rule classifiers, as well as its ”parent” approaches –
RISE and kNN. Moreover, according to the results of Wilcoxon test, BRACID performs
better than the most competitive rule algorithm – PART.

• BRACID is able to better recognize the minority class than other compared algorithms
(except for one dataset, car, for which PART is superior);

• The improvement of the sensitivity measure is associated with a limited deterioration of
specificity; also global measures as F-measure and G-mean are improved by BRACID. Only
for nearly balanced datasets, a slight decrease in F-measure and G-mean has been sometimes
observed.

• What is even more important, the classification performance of BRACID (with respect to all
measures) has been better than other compared approaches dedicated for class imbalance,
including the integration of the PART algorithm with the basic version SMOTE. Only after
extending SMOTE by the Edited Nearest Neighbor Rule (ENN), the difference of average
ranks between this approach (PART+SMOTE+ENN) and BRACID has become insignificant
according to the Friedman test with the post-hoc analysis. The last result is not a drawback
as SMOTE + ENN is a specialized informed re-sampling approach and it is a well known,
effective solution at the data level. Moreover, BRACID could be seen as better with respect
to the additional paired Wilcoxon test and a win-loss analysis.

• BRACID induces a classifier containing more rules, especially for the minority class, com-
pared to classifiers induced by standard rule algorithms. At the same time, the average
support of the BRACID rules from the minority class is higher than for other classifiers.
Such rules can be effectively applied within the new proposed classification strategy based
on the nearest rules.

• When the types of testing examples are concerned, BRACID can improve the recognition of
all types of examples, but it handles better the borderline examples and concentrates less
on the outlying examples. Therefore, we can conclude that BRACID is particularly well
suited for the imbalanced datasets with high overlapping of classes. Let us observe that,
according to the results presented in Chapter 3, borderline examples are the most common
type of examples in the imbalanced datasets. For the datasets with a lot of outlying examples,
PART combined with SMOTE-ENN might be worth considering (due to the effect of SMOTE
discussed in the previous Section).
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Chapter 7

ABMODLEM: Addressing Imbalanced Data
with Argument-based Rule Learning

7.1 Motivations

In this Chapter we direct our interest to using the expert’s knowledge in learning rules from imbal-
anced data. One of the problems with class imbalance is that the minority class is underrepresented
in the data. What is more, it may be further separated into smaller subconcepts or the examples
from both classes may overlap. In such case, it may be difficult for standard, automatic learning
algorithms to find meaningful rules for this class, having a good interpretation for an expert. If
a subconcept is represented by only few minority examples, there may exist several possible rules
which cover it, but not all of them will be consistent with the user’s expectations and the expert’s
knowledge concerning the domain of application. As it was pointed out in [139], incorporating
knowledge in the learning process is especially useful when rare classes/cases are present, since the
user may have domain knowledge that can aid in the search process – for example, he may help
to distinguish the features that are useful for predicting rare, but important, cases [139]. It can
lead to the induction of rules which will be consistent not only with the learning examples, but
also with the domain knowledge. Furthermore, it could lead to better classification abilities.

Using the background knowledge in the induction of rules has already been considered by many
researchers, although not in the context of class imbalance – see, e.g., generalizations of AQ
algorithms [87], and in particular rule approaches in Inductive Logic Programming systems [73].
For other rule-based approaches proposed in the context of data mining see, e.g, a review [64].
In these approaches it is assumed that the experts express their ”global” knowledge, valid for the
whole domain of application. For example, the constraints given by an expert can concern the
relation between the attributes, which has to be true for all the data. The learning algorithm must
take these constraints into account during the entire induction process. However, expressing such
”global” knowledge is often difficult for humans.

Recently, Bratko et al introduced in [93, 94] a new paradigm called argument based machine
learning (ABML) which enables expressing the domain knowledge in a more natural way. A key
concept of their approach is to let the expert annotate some of the learning examples. An expert
can describe reasons for assigning the example to a given class, which are called arguments. This
approach uses a ”local” expert’s knowledge which concerns only specific situations and can be valid
for limited, chosen examples rather than for the whole domain [93]. Note that the idea of explaining
the decisions for the selected examples may be well suited for handling rare and outlier minority
examples. The reasons for assigning such example to the minority class may be very specific and
atypical, so expressing the ”global” knowledge for such examples, valid in the whole domain, might
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not be feasible. Also, this kind of explanation is natural for such domains as justification of cases
in law, discussing circumstances of making some decisions in finance or medicine, which are often
characterised by class imbalance.

A somewhat related approach was proposed by Plaza and Ontanon in the context of multiagent
inductive learning, where agents learn rules from separate data samples and argumentation of
learning examples is used as a communication framework between the agents to share their local
knowledge and reach a consensus on a final definition of the problem [105]. However, in this
framework no external expert knowledge is used – the arguments passed to another agent are
generated automatically from the agent’s local sample. The results show that this distributed
learning protocol allows to construct a classifier which has a comparable performance to a classifier
obtained using the classic, centralized approach.

Although the ABML framework can be used with any algorithm, it is the most suitable for
rule induction, as both induced hypotheses and arguments are represented in the same language
and the influence of expert’s arguments is explicitly visible in the induced rules [94]. The ABML
has been originally implemented as an extension of a CN2 algorithm (called ABCN2 – argument
based CN2 [93]) and it has been succesfully applied to the problems of justification of cases in law,
loan policy, chess strategy and medical treatment, see [146, 96, 95].

Let us recall that these works were not carried out in the context of class imbalance and they
have been evaluated using the standard measures such as the total accuracy. However, we think
that argument-based framework is very well suited for handling imbalanced data as the expert can
help identify the features that are useful for predicting difficult minority cases.

In this Chapter we want to verify whether the ABML framework can be used to improve rule
learning from imbalanced data. We expect that the expert’s annotations might help to create
better rules for difficult (e.g. rare and outlier) minority examples, leading to a better recognition
of this class. We have decided to use the ABML framework with other learning algorithm than CN2
– MODLEM [9] – which is more suited to deal with numerical and imperfect data and which was
already used in the context of class imbalance (see Chapter 6). Also, according to the experiments
in Chapter 6, MODLEM was a better classifier than CN2 on imbalanced datasets. Although
our generalization, called ABMODLEM, is inspired by the paper [94], we have to consider new
methodological aspects. First of all, it is necessary to introduce another measure for evaluating
candidate elementary conditions to be added to a rule, which allows to obtain more general rules,
in particular the ones covering argumented examples. Secondly, while classifying new objects with
rules, a new classification strategy is required which takes into account that rules induced from
argumented examples are usually supported by fewer examples than non-argumented rules.

In this study, we concentrate in particular on the identification of examples to be argumented by
an expert, as it is a crucial issue for the effects of ABML. In problems described with a relatively
small number of examples, an expert could know them all and determine the necessary examples
manually. However, for larger problems or carrying out experiments with many datasets, it may
be impossible for humans and a more automatic support for selecting the examples is necessary.
In order to identify them Bratko et al. already proposed to focus attention on the ”problematic”
examples (for which the arguments would be likely to improve learning), which were understood as
examples incorrectly classified by a set of rules induced from plain examples without any arguments
[93]. They introduced an iterative approach, which includes selecting and argumenting only one
example at a time, and re-learning the entire set in each iteration. The example is identified as the
most often misclassified example in an internal k-fold cross validation technique used with the rule
induction by the classic version of CN2. Although it was applied in some experiments, e.g., [93, 95],
this technique may still select quite high a number of critical examples with the same number of
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misclassifications, which leads to ambiguity. Moreover, for large datasets the iterative procedure
is too computationally costly and requires a tiresome co-operation with an expert. Therefore, we
suggest that it is more reasonable to construct an approach for selecting the sufficient number of
examples in one step. We use some inspirations from active learning [85], where an analysis of
difficulties with classifying the examples is used to select the smallest subset of unlabelled learning
examples for which the class labels should be produced. It uses an ensemble of classifiers and the
idea of disagreement of its answers. Our hypothesis is that the method should select in one step a
sufficient number of examples which, after being argumented, provide a substantial improvement
of the recognition of the minority classes. At the same time, this improvement should not come at
a too high cost of the majority class recognition, improving also the aggregation measures such as
G-mean, F-measure, or even total classification accuracy.

The other related research problem concerns studying the influence of selecting examples to
be argumented on the recognition of particular classes. Most of the learning algorithms dedicated
for class imbalance face a trade-off between the recognition of minority and majority classes –
they usually can improve the recognition of the minority class, but at the cost of deteriorating the
majority class – see, e.g., the experimental results in Chapters 3 and 6. In argument-based learning,
explaining the examples from the given class may not only influence induction of rules from this
class but it may also affect other classes. Therefore, we want to check whether an appropriate
selection of examples for argumentation can improve the recognition of minority classes without
deteriorating the recognition of the majority classes.

7.2 Notation and Basic Concepts

We briefly present the concepts of ABML that are necessary for introducing our proposal. We
follow the most related works of Bratko, Mozina et al and their notations [94], presented in a
most complete form in a Ph.D. dissertation of Martin Mozina, [92]. It is assumed that some
of the learning examples are enhanced by partial justifications given in a form of arguments.
Each argument is attached to a single learning example only, while one example can have several
arguments. There are two types of arguments; positive arguments are used to explain why a
learning example is assigned to a given class, and negative arguments are used to explain why it
should not belong to a given class. Examples enhanced with arguments are called argumented
examples.

The task of learning with argumented examples is given as:

Definition 7.1 Given examples + supporting arguments for some of the examples,
find a hypothesis (set of rules) that explains the examples using given arguments.

Argumentation
Similarly to the definition given in Section 1.1, learning examples are represented as (x, y), where
x is a vector of attribute-value pairs called a description of the example, and y ∈ Y is a value
of a class label. Additionally, in ABML some of the examples are enhanced by arguments. An
argumented example AE is denoted as a triple

AE = (x, y, Arguments)

where x and y are defined as in standard examples. Arguments is a set of arguments Arg1, ..., Argn,
where an argument Argi has one of the following form:

Positive argument defined as y because of Reasons
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Negative argument defined as y despite Reasons

Reasons are expressed as conjunctions of attribute-value expressions ri which take a form similar to
elementary conditions used in the syntax of a rule. So, for nominal attributes x ∈ X an elementary
condition is of a form (xi = vi,j) and for numerical attributes of (xi rel vi,j) where vi,j is a value
of attribute xi and rel stands for an operator <,≤,=,≥, >.

A set of rules is said to explain the examples using given arguments, when there exists at least
one rule for each argumented example that contains at least one positive argument in its condition
part, and when it does not contain any of the negative arguments.

Argumentation leads to redefining the idea of covering examples by rules, which is called
argument-based covering. We say that a rule AB-covers an argumented example if it satisfies
the requirements given in Definition 7.2.

Definition 7.2 Rule R AB-covers an argumented example AE if:
(1) all the conditions in R are true for the description of AE,
(2) condition part of R is consistent with at least one positive argument of AE,
(3) it is not consistent with any of the negative arguments of AE,
where consistency means that the condition part of R contains elementary conditions ri in the same
form as expressions in reasons or ri are their generalizations (i.e. a condition ri is a superset of
the analogous expression in reasons).

To illustrate the above mentioned concepts, let us analyse a toy example. Assume that we have
a medical information for 3 patients of a hospital. Patients’ state is described by temperature,
presence of stomach ache, blood test results and blood pressure. For each patient, a decision was
taken whether to admit him to a hospital or not.

Patient Temperature Stomach
ache

Blood test
result

Blood
pressure

Admitted

Johns high no bad normal yes
Biggle normal no bad v.high yes
Perkins high yes good normal no

If one wants to discover a rule explaining the decision on admitting a patient to the hospital,
a typical rule induction algorithm could produce the following rule:

if (stomach ache = no) then (admitted = yes),

which covers all the positive examples of this decision. On the other hand, this rule contradicts
the common sense.

A physician asked to explain why Johns was admitted to hospital could explain it as (giving a
positive argument):

”Johns was admitted to hospital because his body temperature = high”

He could also explain the decision by giving a negative argument:

”Johns was admitted to a hospital despite stomach ache = no”

Notice that this argumentation is ”local” – the physician claims that Johns was admitted to
hospital because of the temperature, but he does not claim that all patients with high temperature
are automatically admitted (as is the case of Perkins). This argumented example is formally
denoted as:

88



7.2. Notation and Basic Concepts

AE = (x = {Johns, high, no, bad, normal},
y = yes,
Arguments = {y = yes because temperature = high,

y = yes despite stomach ache = no})

This argumentation can be used to direct the induction process. It shows that the temperature
was an important factor when the decision for Johns was taken, and at the same time lack of
stomach ache was not relevant for this decision. Therefore, in a construction of a rule AB-covering
this example, the temperature attribute should be favoured (to preserve consistency with the
positive argument), while stomach ache attribute should be neglected (to prevent consistency with
the negative argument). An algorithm using this argumentation would therefore induce a rule:

if (temperature = high) and (blood test results = bad) than (admitted = yes)

which in turn is a rule cosistent with a common sense and the expert’s knowledge. Also, note
that arguments impose constraints over the space of possible hypotheses, thus they can reduce the
search complexity.

Rule Learning with Arguments
A general framework for argument-based rule learning was proposed in [94]. The pseudo-code
is given in Algorithm 7.1. First, arguments given for examples are evaluated as simple rules,
and argumented examples are sorted from the most to the least ”general” ones, according to a
chosen evaluation measure. Then, an algorithm induces rules consistent with argumented examples
– if necessary, it adds additional elementary conditions to the expressions from the arguments.
Starting from the most general argumented examples helps to induce rules which cover not only
the argumented examples, but possibly also some other non-argumented examples. Rule induction
follows a typical sequential covering schema [23] – when the first rule is generated, all examples
covered by it are removed from consideration and the algorithm looks for the next best rule until
the set of examples to be AB-covered is not empty. As after the induction of rules from arguments
some non-argumented examples may still remain not covered, the following rules are induced
with the standard learning procedure LearnOneClass (which usually looks for the best rules in a
sequential covering schema as, e.g,. in classic CN2 [94]).

This framework is general enough to be used with any rule learning algorithm to evaluate the
argumented examples (line 3 of the algorithm) and to induce the rules covering non-argumented
examples (line 13), provided that it is enhanced by the possibility of inducing rules AB-covering
argumented examples (line 6). As this framework assumes that rules are induced for every class
separately, it can be used for both binary and multiclass problems. Bratko et al propose to use
the enhanced version of the well known CN2 algorithm [23] (shortly called ABCN2). The authors
modified the beam search procedure such that it guarantees to AB-cover the given argumented
example. They also replaced the original Laplace rule evaluation measure [23] with the extreme
value correction method (EVC) based on the m-estimate [29], as the Laplace measure proved to
underestimate the quality of rules induced from arguments. Finally, the authors noticed that the
rules learnt from arguments usually have a too small impact while solving ambiguous situations in
classifying unseen objects. Following this observation, a new classification strategy was introduced
in ABCN2, in which each class is represented by only one rule with the best quality according to
EVC [94].
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Algorithm 7.1 General framework for ABML

Procedure ABLearnOneClass (Learning examples ES, Class Y)

1.Let RULE_LIST be an empty list.
2.Let AES be the set of examples that have arguments.
3.Evaluate arguments (as if they were rules) and sort examples

according to the evaluation of their best argument.

4.while AES is not empty do
5. Let AE1 be the first example in AES.
6. Let BEST_RULE be ABFindBestRule(ES,AE1,Y).
7. Add BEST_RULE to RULELIST.
8. Remove from AES examples AB-covered by BEST_RULE.
9.end while

10.for all RULE in RULE_LIST do
11. Remove from ES examples covered by RULE.
12.end for

13.Add rules obtained with LearnOneClass(ES,Y) to RULE_LIST.

An important question in ABML is how to identify the examples for argumentation if the
expert does not directly choose them. The discussion of Bratko et al proposal is shifted to Section
7.5, where our methods are also presented.

7.3 Algorithm Description

We incorporate the ABML paradigm inside MODLEM algorithm, originally introduced by Ste-
fanowski in [118]. Similarly to CN2, it also follows a sequential covering schema and generates a
minimal set of unordered rules. It iteratively searches for the best rule for a given class, removes all
covered positive examples from the learning set and continues the procedure until all the examples
from that class are covered. The process is repeated for each decision class. A construction of a
single rule starts from finding the best condition according to an evaluation measure, and continues
by adding new conditions until a stopping criterion is met. The specific property of MODLEM
consists in direct processing numerical values of attributes (without pre-discretization) and missing
values. It can also be adopted to handle inconsistent or noisy examples either by rule pruning or by
rough approximations. Details of MODLEM can be found in [118, 119, 120]. Yet another reason
for choosing this algorithm is that it has already been studied in the context of imbalanced data
[124, 125].

Our algorithm, called ABMODLEM, uses the general framework of ABML, given in Algorithm
7.1. To induce the rules covering non-argumented examples (with LearnOneClass procedure –
line 13), we use the standard MODLEM procedure. Key difference between ABMODLEM and
ABCN2 is another way of constructing the best rule (line 6). This procedure is presented below
as Algorithm 7.2.
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Construction of a Rule from Arguments
To find the best rule that AB-covers an argumented example, an initial rule is built from each
positive argument (to assure coherence with at least one positive argument given for the example)
– i.e. a conjunction of elementary expressions is taken as a candidate for a condition part (line
3 in Algorithm 7.2). If the stopping criterion is not met (e.g. the rule still covers some negative
examples from other classes), additional conditions are iteratively added to the rule condition part
by the ABFindBestCondition(a,S,AE,RULE) procedure.

This procedure finds the best condition by comparing candidate conditions for each attribute,
assuring the coherence with arguments and evaluating them with respect to a chosen measure
(which will be described in the ”Rule Evaluation Measure” paragraph). The construction of ele-
mentary conditions depends on the type of the attribute:

1. For nominal attributes, as the rule must cover the argumented example, the condition must
take the form attribute = value, where value comes from the description of the argumented
example. If adding this condition to the rule will cause the consistency with any negative
argument for the considered example, this condition is skipped.

2. For numerical attributes, conditions are in form of xi > vi, xi < vi, xi ≥ vi or xi ≤ vi. For a
particular vi, direction of the relation is chosen so that the condition covers the argumented
example. To choose the best vi, candidate thresholds are built between the values present
for the attribute in the learning set (which discriminate examples from different classes). For
each candidate threshold, an appropriate condition is built and temporarily added to the
rule. If it does not violate any negative arguments, a new candidate rule is evaluated using
an evaluation measure and the best condition is chosen.

Algorithm 7.2 Induction of the best rule from an argumented example

Procedure ABFindBestRule (Not_covered_examples ES,
Argumented_Example AE, Class Y)

1.LET BEST_RULE be an empty rule.
2.foreach Positive_argument Arg for AE
3. Let RULE be a conjunction of reasons from Arg.
4. Let S be a set of objects in ES covered by RULE
5. while (S contains negative examples) #not from Y
6. Let BEST_CONDITION be an empty elementary condition
7. foreach attribute A in Attributes
8. Let NEW_CONDITION be ABFindBestCondition(A,S,AE,RULE)
9. if (NEW_CONDITION is better then BEST_CONDITION)

10. BEST_CONDITION = NEW_CONDITION
11. end foreach
12. Add BEST_CONDITION to RULE
13. Update S
14. end while
15. Remove redundant conditions from RULE
16. if (RULE is better than BEST_RULE)
17. BEST_RULE = RULE
18.end foreach
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Rule Evaluation Measure
The arguments should lead to the induction of general rules covering many examples from the
learning set, not only the specific example that was argumented. As Entropy or Laplace measure
originally used in MODLEM [120] resulted in too specific argumented rules, we looked for other
evaluation measure which would be computationally simpler than the extreme value correction
technique [29]. We chose a Weighted Information Gain (WIG) inspired by Quinlan’s proposal
from FOIL algorithm, which according to [38] favors more general rules. Its definition was given
in Section 4.1. In our earlier study [98] we carried out several experiments considering other
evaluation measures, which showed that this measure was the best in generating more general
rules.

7.4 Classification Strategy

A proper classification strategy is an important issue in argument-based learning with unordered
set of rules. Let us observe that the argumented rules are usually built for more difficult or specific
examples (we will discuss it in Section 7.5), so they might be more specific and supported by a
smaller number of learning examples. Standard classification strategies, such as Grzymala strategy
used in pure MODLEM, voting with m-estimate or Laplace accuracy (their definitions were given
in Section 4.3), may discriminate the rules covering a small number of examples (see discussion
in Section 4.4). As a result, they may underestimate the argumented rules in a conflict set when
classifying a new object, which will be outvoted by stronger and more general non-argumented
rules. The argumented rules should receive more attention as they were partly supervised by the
expert and refer to special decision cases.

This problem was already noticed by Bratko et al in [94] and they proposed to solve it by
choosing a single rule according to a new quality measure, which was estimated by their own
method of extreme value correction [29]. However, calculating its parameters is quite sophisticated.
We looked for simpler methods that would increase the role of argumented rules, but would still
have a good intuitive meaning and could be consistent with the strategies already applied in
MODLEM. As a result, we have decided to follow the inspirations coming from some earlier works
on adapting Grzymala’s strategy to class imbalance, which were based on increasing artificially
the rule support for minority class, see [47, 48]. Its experimental evaluation showed that such
modification improved the recognition of the minority class, see e.g [48]. In this thesis, we have
not considered the classification strategies similar to the nearest rules used in BRACID, but we
also focus on reducing the effect of outvoting the minority class rules by the too strong majority
class rules. Therefore, in [98] we proposed for ABMODLEM to use the Average Strength Strategy,
which aims to balance the influence of argumented and non-argumented rules while classifying
new objects. In this strategy, for each class of rules in the conflict set the support is calculated
according to the formula:

SUP (Yk) =
∑

R ∈Rk

sup(R)×MA(R)

where SUP (Yk) is the total support of decision class Yk; sup(R) is a support of rule R (number of
examples covered by it) and Rk is a set of rules for class Yk being in the conflict set. This formula
is calculated for each class and the new object is assigned to the winner – the class with its greatest
value. With MA factor equal to 1, this formula would be equivalent to Grzymala strategy [46].
In the Average Strength Strategy, the support of each argumented rule is multiplied by a strength
factor MA which is defined as in Def. 7.3:
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Definition 7.3
MA(Rarg) = R̄n

R̄arg

R̄n =
∑

R∈Rn
sup(R)

|Rn|

R̄arg =
∑

R∈Rarg
sup(R)

|Rarg|

Rarg is a set of rules induced from argumented examples only; Rn stands for a set of rules induced
from non-argumented examples; sup(R) is a support of rule R and |.| is a cardinality of a set. If rule
R is induced from non-argumented examples, then its MA(R) = 1. In this way, the importance
of weaker rules induced from argumented examples is amplified and they can contribute more to
a final classification decision.

We also tested other simpler strategies, including an Arbitrary Strategy, which assumed even
higher level of credibility for the rules induced from argumented examples. In this strategy, if any
argumented rule matched the classified object, the classification was performed according to the
voting of solely argumented rules in the conflict set. However, this strategy performed worse than
the above described proposal, showing that strong, confident rules induced without the help of the
expert should also have a high level of credibility.

7.5 Identification of Examples for Argumentation

Selecting appropriate examples to be argumented by an expert is a crucial issue for the success
of argument based rule induction, both in the class imbalance context and in the standard set-
ting (with balanced classes). ”Easy” examples, which represent a part of the concept definition
supported by many learning examples, will probably be a seed for strong rules correctly built
by an induction algorithm itself, and thus do not need to be argumented. One should rather
select difficult examples corresponding to more difficult regions of the concept, such as regions
under-represented in the learning dataset (common in imbalanced data). Such examples can lead
to unintuitive rules (e.g. because they were built using weaker confidence estimates) which may
decrease the accuracy of a rule classifier. The open problem is, how to select such examples from
a dataset.

The simplest solution is to leave a choice of these examples to an expert who knows very well
the domain of a problem at hand. Such a co-operation was presented in some real case studies
with ABCN2 [94, 96, 146]. Let us recall that giving arguments to all the learning examples is not
feasible in practice because it requires definitely too much effort for humans [94], so an expert has
to focus on the limited number of examples. For problems described with a relatively small number
of examples, an expert could have enough knowledge about all of them and should determine the
necessary examples. However, such an approach is not feasible for larger problems. Demanding
from the expert not only to explain some examples, but also to scan through the whole learning
set to decide which examples should be chosen is rather non-realistic. What is more important, an
example that is perceived by an expert as difficult may be easy for the classifier and conversely.
Therefore, there is a need for a more automatic solution suggesting the expert which examples are
possible candidates for argumentation.

Following the above motivations we think (similarly to Bratko [94]) that the expert should
turn his attention to these examples which are frequently misclassified when used as testing ones
in a validation technique for a rule induction. Such understanding of difficult examples has also
occurred in the earlier research on instance based algorithms or active learning.
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7.5.1 An Iterative Approach to Finding Misclassified Examples

Bratko et al introduced in [94] a simple method of automatic selection of examples (without
considering the class imbalance problem). Its schema is given below.

1. Learn a rule set from plain examples without arguments.

2. Find the most critical example and present it to the expert. If a critical example cannot be
found, stop the procedure.

3. Expert explains the example; the explanation is encoded in arguments and attached to the
learning example.

4. Learn rules with ABML from the learning set extended with a new argumented example.

5. Return to step 2.

Before the induction process, a standard CN2 algorithm is used within the k-fold cross valida-
tion procedure repeated n times (in this way each example is evaluated n times). Test examples
are then evaluated with respect to a chosen measure – according to [94] it is the number of mis-
classifications of the example. The example that was misclassified in most of the cases is chosen as
the example that needs to be argumented. If there are several such examples, then the algorithm
picks one at random. Then, ABCN2 algorithm is used to induce a new set of rules. The procedure
is repeated until no critical examples are found or a satisfactory value of the classification accuracy
is achieved. We see the following drawbacks of this approach:

(i) For large datasets, it is computationally costly and requires a time-consuming co-operation
with an expert, who has to wait after each argument for the classifier to re-learn.

(ii) We carried out some preliminary experiments with this method with k = 10 and n = 10.
During the identification of the first difficult example, for many examples the number of
misclassifications was equal to n (sometimes the number of such examples was at least 10%
of the whole set). Picking one of these examples at random may not lead to a choice of the
most relevant example, in particular if one is interested in imbalanced data (we will show it
in Chapter 8).

Following this criticism, we introduce in Sections 7.5.2 and 7.5.3 two different one-phase ap-
proaches in which an expert gives argumentation for all the required examples at once.

7.5.2 One-phase Cross Validation Approach

This approach is a simple modification of Bratko et al. procedure described in the previous section.
Our proposal also uses k-fold cross validation repeated n times and testing examples are evaluated
according to a number of misclassifications of the example. However, instead of picking one example
at a time, the whole set of examples with the maximal number of misclassifications is presented
to the expert.

Although the co-operation with an expert is now reduced to one step, this approach ”inherits”
the drawback (ii) – for some difficult datasets, too many examples ranked with the same number of
errors could be identified (we will show some numbers in detail in the experimental study). In this
case we still have to co-operate with the expert on selecting a smaller number of examples (using
his domain knowledge) or perform a random selection. How much to reduce the set of identified
examples is an open question. For datasets used in the further experiments we established that
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staying with a small percentage of the data size (less than 2% for datasets bigger than 1000) was
sufficient. Additional experiments also showed that increasing it did not bring substantial improve-
ments with respect to the classification abilities. We denote this method as CV (abbreviation from
the term cross validation).

7.5.3 One-phase Disagreement Approach

As the CV approach could still identify too many equally misclassified examples, we looked for
another solution that could reduce a number of identified examples and focus on the most critical
ones. Our proposal is inspired by a method called Query by Committee used in the framework of
Active Learning, see e.g. [85]. A committee is an ensemble of classifiers of the same type (in our
case of MODLEM classifiers), where each classifier is trained on a different subset of a learning set
(like in bagging).

The key issue in active learning from partially labelled examples is also selecting examples –
however it concerns unlabelled examples and the task is to direct their smallest subset to an oracle
with an ask for providing their class labels. In most active learning methods these examples are
chosen among the most uncertain ones, for instance with respect to the uncertainty of decisions
made by an initial classifier trained on a small subset of a learning set and then used to classify
the rest of the unlabelled examples.

In our approach we adapt the idea of selecting critical examples based on the largest disagree-
ment between the component classifiers in an ensemble as to the predicted label for the classified
(testing) example. As a measure of disagreement we choose a margin measure proposed in [1]. It
is defined as the difference between the number of votes in the committee for the most predicted
class and that for the second predicted class. Examples with the smallest margins are considered as
the most uncertain and difficult for classification – so the disagreement can serve as a measure for
identification of examples to be argumented. To be more selective in choosing difficult examples,
we use the generalized version of margins, which takes probability distributions of class predictions
instead of votes (following inspirations from [85] and a good earlier experience when using it in
another active learning system [122]).

Within our proposal, we make only one iteration of this idea (in original Query by Bagging
several iterations are possible), using all the examples from the learning set. After all classifiers have
learned by bootstrap sampling [14] from the appropriate subset of learning examples, a measure of
disagreement between the classifiers is calculated for the rest of examples. To be more consistent
with the CV approach, the whole process is repeated n times, each time a set of examples is
differently distributed among classiffiers.

In our first approach (further called DoC, short for Disagreement of Classifiers), the examples
most frequently identified as difficult (uncertain) in n iterations are chosen for argumentation.
More precisely, in each iteration we sort the examples according to their margin measure, and
mark as difficult the first 10% of a learning set. We have also considered to sum the margin
measures from n iterations for each example instead of applying a cutoff at 10% of the dataset, as
the latter approach looses some information and the choice of 10% may seem arbitrary. However,
sorting the examples according to their sum of margin measures did not lead to a clear threshold
after which the remaining examples should be considered uncertain. It was also not more effective
in the preliminary experiments.

We will show in the next section that DoC method selects a substantially smaller number of
examples than CV method, maintaining similar classification abilities. However, we noticed that
sometimes all the selected examples came from the minority class. As a result, argumentation
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was too much biased toward the minority class at the expense of the other classes, which could
downgrade the overall performance.

Due to this observation we propose a modified solution, which could be more suitable for
imbalanced data. To assure that examples from other classes are also argumented, we choose all
the most frequently identified examples, and in case they come from the minority class only we add
a few additional examples most frequently identified among the remaining classes. We propose to
add such a number of examples, that the ratio of selected examples is inversely proportional to the
proportion of classes in the learning set. For instance, if the class imbalance ratio is 1:9 between
the minority and the rest of the classes, the selected examples should reflect the proportion 9:1.
This approach will be called DoC-b (balanced DoC ).
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Chapter 8

ABMODLEM: Experimental Study

In this experimental study we want to evaluate the effect of argumentation on the recognition of
classes, focusing our interest on the minority class in imbalanced datasets. First, we compare AB-
MODLEM with its basic, non-argumented origin MODLEM, to evaluate if argumentation together
with other modifications (concerning evaluation measure and classification strategy) influences the
structure of the rule set (number of rules, average length of the condition parts) and its clas-
sification abilities. Analogously to the experimental evaluation carried out for BRACID, as the
evaluation measures we use the F-measure, G-mean and Sensitivity (see their definition in Section
2.2). For the purpose of calculating G-mean and F-measure, multi-class problems are transformed
to the binary case by aggregating all the majority classes into a negative one.

The other aim of the experiment is to compare different methods of selecting the critical
examples which should be explained by an expert. We want to analyse how the choice of these
examples influences the recognition of particular classes – both majority and minority ones. We
will also verify if the disagreement-based approaches (DoC and DoC-b) can reduce a number of
argumented examples compared to the CV method, maintaining a comparable (or even better)
classification performance. While DoC method can favour too much the minority class, we will
also check if keeping the balance of selected examples between the classes (DoC-b) can help to
maintain a sufficient accuracy in the majority class.

Finally, we carry out an experimental study evaluating the scalability of argument-based ap-
proaches, to verify if for large datasets this approach would not require too many argumented
examples to bring any classification improvement.

8.1 Datasets and Argumentation

For the experiments, datasets have to be extended by the expert’s annotations. Bratko et al in
their papers [146, 96] presented the results of co-operation with real experts from law or medicine.
As in our study we were unable to co-operate with such experts, we have decided to use imbalanced
datasets from the UCI repository. Due to the considerable effort required to provide the reliable
annotations, the number of datasets used in the experiments had to be limited. We chose the
datasets with intuitive domains, for which we were able to provide the reliable argumentation on
our own.

The following datasets from the UCI repository were chosen: ZOO – describing species of
animals with descriptive attributes, German Credit – representing bank credit policy, Car – evalu-
ation of the quality of cars and Cmc – representing the choice of contraceptive method of a woman
based on her demographic and socio-economic characteristics. All these datasets contain numerical
attributes (for which MODLEM or ABMODLEM are well suited) and are characterized by dif-
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ferent imbalance ratios. Although Car and German Credit datasets have a lower imbalance ratio,
according to our analysis in Chapter 3, most of the examples in these datasets are borderline, rare
or outlying examples. As a result, they are difficult for the learning algorithms – see experiments
in Section 6.3 comparing BRACID with standard rule classifiers. Let us recall that they are also
often used in the related works on class imbalance (e.g. in [132]). The basic characteristics of the
datasets are given in Table 8.1.

Dataset No. of
examples

No. of attributes
(numerical)

Minority
class [%]

Domain

ZOO 100 17(1) reptile (5%) type of animal

Car 1728 6(2) good (4%) car evaluation

Credit 1000 20(7) bad (30%) admission of credit

Cmc 1473 9(6) l-term (22%) use of contraception

Table 8.1: Characteristics of argumented datasets

To identify the examples for argumentation we use our three approaches described in Section
7.5 – CV (Cross Validation Approach), DoC (Disagreement of Classifiers) and DoC-b (balanced
DoC). We do not compare our methods with the original interactive method used in ABCN2,
because they are based on different philosophies. The interactive procedure is continued until
satisfactory results are obtained, and in theory by adding more iterations, one can constantly
improve the quality of a classifier. Therefore, it would be difficult to compare the results of the
methods because one would have to determine in advance when the iterative procedure should be
stopped.

Our argumentation is based on common or encyclopaedic knowledge. However, for some dif-
ficult examples we additionally induced rules by other rule induction algorithms (such as PART,
C45rules) and analysed the syntax of condition parts for the strongest and most accurate patterns
covering these examples.

8.2 Experimental Setup

To the best of our knowledge, the ABCN2 implementation is not publicly available for the mo-
ment of writing this thesis. Therefore, we conduct the experiments using only our ABMODLEM
implementation (implemented in Java using classes from the WEKA platform). Estimations of
all evaluation measures are carried out by means of stratified 10-fold cross-validation repeated 10
times. To verify if the differences on a single dataset for a given pair of classifiers are statistically
significant, we perform a corrected, one-tailed paired t-test with α = 0.05 on each dataset [28].
Argumentation for a given example is used only if the example belongs to a training part. If
an argumented examples is located in the testing part, it is treated as a plain non-argumented
example. This means that for a set of argumented examples, only 90% of it is used for learning
in each fold on average. Minority class labels in Tables 8.2-8.6 are underlined. For two datasets,
the next small class has comparable cardinality so we also mark these classes, to observe if their
accuracy can be also improved by argumentation.
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ZOO

Algorithm Total.acc Mammal Bird Reptile Fish Amph. Insect Inv.

MODLEM 0.89 1.0 1.0 0.0 1.0 0.25 0.98 0.80

ABM1 0.96 1.0 1.0 0.60 1.0 0.75 1.0 0.90

ABM2 0.97 1.0 1.0 0.60 1.0 0.75 1.0 1.0

Car

Algorithm Total.acc Unacc Acc Good Vgood

MODLEM 0.91 1.0 0.79 0.35 0.56

ABM1 0.91 1.0 0.81 0.42 0.58

ABM2 0.95 0.99 0.95 0.50 0.65

Credit

Algorithm Total.acc Bad Good

MODLEM 0.73 0.32 0.90

ABM1 0.73 0.37 0.89

ABM2 0.75 0.38 0.92

Cmc

Algorithm Total.acc L-term Other

MODLEM 0.75 0.25 0.90

ABM1 0.74 0.28 0.88

ABM2 0.76 0.30 0.90

Table 8.2: Total classification accuracy and accuracies in particular classes. ABM1:ABMODLEM
with Entropy evaluation measure and Grzymala classification strategy, ABM2:ABMODLEM
with WIG measure and Average Strengths strategy. Minority classes are underlined.

Dataset Arguments No. of rules Rule length

ZOO no 14 1.31

yes 9 2.19

Car no 148 4.72

yes 149 4.74

Credit no 172 4.09

yes 123 3.91

Cmc no 258.97 7.34

yes 240.23 5.72

Table 8.3: Average characteristics of induced rule sets
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8.3 Evaluation of ABMODLEM Components

Table 8.2 presents a total classification accuracy as well as the local accuracies in particular classes
for pure MODLEM, ABMODLEM used with standard Entropy rule evaluation measure and Grzy-
mala’s classification strategy (denoted as ABM1) and ABMODLEM used with WIG evaluation
measure and our Average Strength classification strategy (denoted as ABM2). We skip the results
of comparing other configurations (they were presented in [98]). All the results were obtained with
the same set of arguments (selected using CV method). One can notice that both ABMODLEM
versions improved the total classification accuracy and the recognition of particular classes com-
pared to MODLEM with no argumentation. While majority classes were improved only slightly
or their recognition stayed at the same level (only ABM1 decreased it a little for Credit and Cmc
datasets), the improvements were always observed for the minority classes – e.g. from 0 to 60%
and from 25 to 75% for the minority classes in ZOO. The differences were statistically significant
according to the t-test – e.g. for MODLEM vs ABM1, p-value on sensitivity for was 0.003 for Cmc,
0.0002 for Credit and smaller for other datasets. ABM2 could further increase the accuracy, espe-
cially by raising the recognition of minority classes (except for ZOO where they stayed at the same
level; on other datasets, p-values for ABM1 vs ABM2 on sensitivity were: 0.019 for Credit, 0.008
for Cmc, 1.6E-06 for Car). This configuration (WIG evaluation measure and Average Strengths
classification strategy) will be used in all the subsequent experiments.

The best classification performance of ABM2, especially when the minority classes are con-
cerned, could be mainly due to the classification strategy used. We analysed that the average
support of non-argumented rules was much higher than the support of rules induced from argu-
ments – the ratio ranged from 4 (in Credit) to 40 (in Car). Therefore, without amplifying the
importance of argumented rules in the voting classification strategy, they do not have the chance
to sufficiently impact the classification. This is particularly important for the minority classes, as
argumentation is provided mostly for the difficult minority examples.

We also analysed the influence of argumentation on the structure of induced set of rules –
the average length of each rule (measured in the number of conditions) and the total number of
rules (see Table 8.3). ABMODLEM (using argumentation) generated a slightly smaller set of rules
(except for Car data) than MODLEM (with no argumentation).

8.4 Evaluation of Identification Methods

In Table 8.4 we present the number of examples selected for argumentation by three one-phase
methods: cross-validation method (CV ), disagreement of classifiers method (DoC ) and balanced
disagreement of classifiers (DoC-b). We should remark that in the Cmc dataset, DoC method
initially identified 38 examples which could be argumented – however when we introduced the
arguments for a part of them, the remaining ones could be explained using the same argumentation
(they represented the same reasoning pattern) – so we could stay with a smaller number. It is
clearly visible that in comparison with CV, both DoC methods can substantially decrease the
number of identified examples. Let us recall that in order to keep the balance of examples between
the classes, a DoC-b method has to add some additional (majority) examples.

As the CV method sometimes identified too high a number of examples (more than 100 in case
of Credit and Cmc), we decided to make this procedure semi-automatic and manually select only
a subset of examples. We were choosing the examples for which we were able to provide a reliable
argumentation, true for more than one example (to let the rules generalize over other, possibly also
non-argumented examples). Moreover, among these examples we were trying to maintain the same
proportion of classes as in the whole identified set. To estimate the correct number of examples,
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ZOO

Method Total.args % of examples

CV 10 10

DoC 3 3

DoC-b 4 4

Car

Method Total.args % of examples

CV 50 4.3

DoC 13 1.1

DoC-b 16 1.3

Credit

Method Total.args % of examples

CV 127 12.7

DoC 11 1.1

DoC-b 16 1.6

Cmc

Method Total.args % of examples

CV 137 9.3

DoC 16 1

DoC-b 20 1.3

Table 8.4: A number of examples identified
for argumentation by each method

we used a simple heuristics. We were starting from a small number of examples, argumenting
them, and adding iteratively new examples until the G-mean measure did not further improve.
For instance, for Credit dataset we increased the number of examples by two until 21 when the
G-mean reached 59%, because argumenting more examples did not bring further improvement.

Tables 8.5 and 8.6 present the classification results of using ABMODLEM with different iden-
tification methods. Table 8.5 summarises the number of arguments used on average per fold (see
Section 8.2 for explanation) and the classifier performance evaluated with respect to three mea-
sures: total accuracy, F-measure and G-mean calculated for the selected minority classes. Table
8.6 gives details of classification accuracy for each class. As can be observed, argumentation always
improves the performance. The paired t-tests confirm that the differences are statistically signif-
icant – e.g. tests comparing DoC-b method with non-argumented MODLEM give the following
p-values on accuracy: 5.1E-15 for ZOO, 8.3E-09 for Car, 1.0E-05 for Credit and 0.0004 for Cmc.
Although ABMODLEM with CV argumentation usually achieves the best total accuracy, both
DoC methods lead to quite comparable results by using only about half as many arguments. DoC
method usually gets the best performance with respect to the minority class (Table 8.6), which is
sometimes reflected also in the values of F-measure and G-mean (Table 8.5, e.g. for Credit with
p-values on test comparing CV and DoC equal to 1.3E-13 on G-mean and 3.2E-07 on F-measure).
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ZOO

Method Args per fold Total.acc F-measure G-mean

no args 0 0.89 0 0

CV 5.4 0.97 0.66 0.77

DoC 2.7 0.95 0.65 0.94

DoC-b 3.6 0.96 0.69 0.96

Car

Method Args per fold Total.acc F-measure G-mean

no args 0 0.91 0.23 0.57

CV 29.7 0.95 0.47 0.69

DoC 11.7 0.91 0.37 0.79

DoC-b 14.4 0.92 0.39 0.79

Credit

Method Args per fold Total.acc F-measure G-mean

no args 0 0.73 0.41 0.53

CV 18.9 0.76 0.48 0.59

DoC 9.9 0.71 0.53 0.65

DoC-b 14.4 0.75 0.48 0.59

Cmc

Method Args per fold Total.acc F-measure G-mean

no args 0 0.75 0.31 0.47

CV 36.1 0.77 0.37 0.52

DoC 14.5 0.74 0.36 0.53

DoC-b 18.1 0.76 0.36 0.51

Table 8.5: Classification results depending on the identification method

However, DoC method often increases the recognition of minority class at the expense of the ma-
jority classes. One can also notice that the DoC-b method does not put such emphasis on one class
only but it achieves more balanced results. While using this method, the recognition of minority
class is also increased (although not as much as for DoC ), but it maintains better recognition
of majority classes. As a result, it gives a quite comparable performance to CV method (with
respect to F-measure and G-mean, it is almost the same for Credit and Cmc, slightly worse on Car
and slightly better on ZOO), while using definitely fewer argumented examples. We additionally
inspected the distribution of argumented examples in classes for CV method, to see if it does not
favor any of the classes. It was analogous to the distribution of DoC-b method – the minority class
received much more arguments than the majority classes.
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ZOO

Algorithm Mammal Bird Reptile Fish Amph. Insect Inv.

no args 1 1 0 1 0.25 0.98 0.8

CV 1 1 0.6 1 0.75 1 1

DoC 1 1 0.94 1 0.75 0.98 0.64

DoC-b 1 1 0.96 1 0.75 0.97 0.73

Cas

Algorithm Unacc Acc Good Vgood

no args 1 0.79 0.35 0.56

CV 1 0.95 0.5 0.65

DoC 0.99 0.72 0.69 0.62

DoC-b 0.99 0.79 0.67 0.61

Credit

Algorithm Bad Good

no args 0.32 0.9

CV 0.38 0.92

DoC 0.55 0.78

DoC-b 0.38 0.91

Cmc

Algorithm L-term Other

no args 0.25 0.9

CV 0.3 0.9

DoC 0.33 0.85

DoC-b 0.29 0.9

Table 8.6: Local accuracy in each class depending on the
identification method

8.5 Scalability of the Algorithm

Finally, in the last experiment we analysed the scalability of the argument-based rule learning
approach, to verify if for large datasets this method would not require too many argumented
examples to bring any improvement. In Table 8.7 we summarize the result of this experiment with
using the DoC-b method for the largest dataset – Car. We were stepwise increasing the number
of argumented examples, preserving in each set the proportion of argumented examples in classes
according to the DoC-b method, and recorded the total classification accuracy and sensitivity on
the minority class (good). The changes of sensitivity are presented in Table 8.7. The total accuracy
stabilized at 0.92 after explaining 5 examples.

We can observe that increasing the number of argumented examples improves the classification
performance, however after some steps (when about 16 examples are explained with arguments),
the results become stable. We hypothesize that the method does not require to increase the number
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Total.args 0 2 5 9 12 15 16 19 22

good 0.35 0.42 0.44 0.47 0.55 0.62 0.67 0.68 0.68

Table 8.7: Sensitivity on Car dataset depending on the number of argumented
examples (DoC-b method)

of argumented examples linearly with the size of the dataset, but that a reasonable small number
of arguments (in this case less than 1%) is sufficient to improve the evaluation measures.

8.6 Conclusions

In this Chapter we carried out a series of experiments with ABMODLEM on 4 specially argumented
datasets from UCI repository. Let us summarize the main conclusions from these experiments:

1. Including argumentation in the learning process always led to the improvement of minority
classes. Introducing a new evaluation measure (WIG) and a classification strategy (Aver-
age Strength Strategy) resulted in further improvement. For instance, in ZOO data the
recognition of the reptile minority class increased from 0% to 96%; in Car for good class the
improvement was equal to 15%; and to 6% for the bad credits class in German Credit. On
the one hand, this could be because arguments are often created for difficult, misclassified
examples that come from minority classes in the original set. On the other hand, the ob-
served improvement in the minority classes did not decrease too much the recognition of the
majority classes (no decrease for ZOO , Cmc and Credit, a small percentage only for Car).

2. As a result, using the argumentation always improved also the total accuracy (see Table 8.2)
comparing to standard, non-argumented MODLEM. The differences were statistically signif-
icant according to the statistical test used on each dataset. This is a particularly interesting
characteristics of using an argument-based approach for imbalanced data, as most solutions
dedicated for class imbalance (including the preprocessing approaches and the BRACID al-
gorithm) usually improve the recognition of minority classes at some expense of the majority
classes, which often leads to the deterioration of the total accuracy.

3. In order not to limit the comparison to the MODLEM algorithm, we conducted additional
experiments with (non-argumented) Ripper and C45 algorithm (WEKA implementations).
For ABMODLEM the overall accuracy was still better (from 2 to 12% improvement for
RIPPER and from 4 to 15% for C45, depending on the data) and it worked even better for
imbalanced classes (improvement by up to 75%).

4. Another contribution involves selecting the examples suggested to the expert for explanation.
We compared our methods of identification of examples (CV, DoC and DoC-b) and showed
that both DoC methods select a substantially smaller set of examples than the CV method.
The CV method is in fact semi-automatic, because in case of large datasets a number of
identified examples is too high and they have to be further selected (either randomly or
manually by an expert).

5. The new-proposed disagreement-based methods outperform the CV method, because with
selecting a smaller number of examples, they can reach the same level of accuracy.

6. When the dataset is imbalanced, the DoC method favors the minority class and often does
not select any examples from the majority classes. As a result, this method outperforms
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other methods when the minority class recognition is concerned. However, argumenting only
the examples from the minority class has a negative impact on the recognition of the majority
class. As a result, this method is recommended when the minority class recognition is the
most important. For balanced datasets, the DoC method should select the examples from
both classes and avoid the problem of deterioration in one of the classes.

7. When the minority class is not the only priority and maintaining the recognition of the
majority classes is also important, the DoC-b method helps to preserve a high accuracy in
the majority classes by argumenting also some examples from them.

8. Compared to BRACID, this approach can be an interesting alternative when a more con-
servative approach is needed, which can bring (smaller) improvement on the minority class
without deteriorating the majority classes. Also, BRACID seems to concentrate more on
improving the recognition of the borderline examples, while ABMODLEM could be suited
mostly for rare and outlier examples.

9. The argument-based rule learning approach is scalable, as with the growing size of the dataset,
the number of examples which should be explained by an expert to give some improvement
remains at a reasonable level – at the beginning the performance measures improve quickly
with every argument, and after some time the results plateau, so there is no need to argument
more examples. The ”saturation” can be reached faster when crucial examples are selected
for argumentation at early stages.

10. Finally, concerning the structure of rulesets, ABMODLEM produced slightly smaller sets of
rules than MODLEM. These conclusions are consistent with the results obtained by Bratko
and Mozina with their ABCN2 algorithm.

In conclusion, our study shows that argument-based learning can be seen as a new valid method
for improving rule classifiers learnt from imbalanced data. What is particularly important, with
a proper control of choice of examples which should be argumented, argument based learning can
improve the recognition of the minority class without deteriorating the recognition of majority
classes – which is a limitation for most of the existing solutions dedicated for class imbalance.
This approach is especially useful when the decisions taken have to be easily explicable and ver-
ifiable, as it uses a rule representation which is natural for humans and argumentation leads to
induction of rules more consistent with the expert knowledge. It could be applicable also for large
datasets, as explaining even a few crucial examples can bring a substantial improvement in both
the classification performance and the interpretability of rules.

Let us also observe that argument-based framework and the automatic methods selecting diffi-
cult examples which should be consulted with an expert, might be also considered as a useful tool
to distinguish between the outlying and noisy examples. This idea was also promoted in [41] where
the authors suggested that such examples should be shown and analyzed by an expert; examples
representing real noise should be eliminated from the training set, whereas outliers should be kept
as rules representing valid exceptions.

Our identification method, e.g. DoC method based on the disagreement of classifiers, will most
probably identify in the first place such lonely examples. We could easily extend the argumentation
framework to let the expert decide wheter it is a rare, but important case which should be explained,
or if it is a noisy observation which should be discarded (or corrected, e.g. relabeled, and added
again to the dataset). For this purpose, we could adapt an extention proposed by Bratko in [95],
where the expert could say ”I do not know” if he was unable to explain the example, because it
was unintuitive or noisy. In this case the example was skipped and another example was presented
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to the expert to obtain his argumentation. Distinguishing between noise and outliers in the class
imbalance setting is an important issue, difficult to solve by automatic approaches – see discussion
of approaches to handling noise in imbalanced datasets in Section 3.2.

106



Chapter 9

Summary and Conclusions

This thesis concerned the problem of learning rule classifiers from imbalanced data. As stated
in Section 1.3, our goal was to analyse factors on data-level and on algorithmic-level which make
learning rules from imbalanced data difficult; based on these observations, we wanted to introduce
new rule learning techniques, which are more efficient than the existing solutions in terms of
performance measures dedicated for class imbalance. In our opinion, this goal has been achieved.
To support this claim, we present below the summary of the main contributions.

Study of data-level sources of difficulty
We have presented a literature review summarizing the current understanding of the imbalanced
learning problem (Chapter 2). We share the claim of many researchers that the class imbalance
ratio is not the main and only source of difficulty – the mutual position of examples has also a
crucial impact on learning from imbalanced data. In Chapter 3, we have experimentally analysed
these data factors, but from a different research perspective than the existing studies. First,
contrary to the studies in, e.g., [132, 10], we have assumed that data factors such as overlapping
of classes or noise are more influential than the size of the dataset or imbalance ratio. We have
also focused on the data factors which in our opinion have not received enough attention in the
literature concerning class imbalance – i.e. rare examples and outlier (minority) examples, which
in our opinion should not be treated as noise. Second, we claimed that although the existing
experimental studies already give interesting conclusions about the impact of different data factors
on the classifiers and preprocessing methods, there is a lack of methods which would help to
estimate the occurence of these factors in the real-world datasets. As a result, their conclusions
cannot be easily applied in the real-world settings.

Therefore, in Chapter 3 we wanted to carry out the analysis of data factors in the real-world
imbalanced datasets. First, we have used two visualisation methods (multi-dimensional scaling
and t-SNE) to estimate the occurrence of these four types of examples in the real-world, multidi-
mensional data. Then, to automatically identify the types of examples in the data, a new method
has been introduced which is based on the analysis of the local neighbourhood of the learning
examples, to identify four types of minority examples: safe, borderline, rare and outlier examples.
We have decided to model the neighbourhood using k-nearest neighbour approach and HVDM
distance measure, basing the choice of k and of HVDM on the literature studies. For comparison,
we have also tested other types of neighbourhood.

Using these methods, we have analysed a collection of imbalanced datasets from the UCI
repository and showed that the datasets are of different nature and that usually the distribution
of examples is very complex. The comparison of several popular classifiers showed that they are
sensitive to the types of examples in a different degree. Safe examples are easy to recognize by
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most classifiers, however this type of examples in uncommon in the imbalanced datasets. Borderline
examples are observed in many datasets and they can constitute more than a half of the majority
class. They are more difficult for all the classifiers, but SVM and RBF work better than other
compared classifiers on these examples. Rare and outlier examples, although not that numerous
in the datasets, can represent 20-30% of the minority class. They are extremely difficult for all the
classifiers but, contrary to borderline examples, PART, J48 and sometimes 1NN are less sensitive
to these examples than SVM and RBF.

Preprocessing methods also behave differently depending on the type of examples. Under-
sampling methods (NCR) seem to be better for borderline examples, while for rare and outlier
examples, it is better to use oversampling (SMOTE, SPIDER). According to our experiments,
informed resampling works better than simple random resampling for most classifiers. Only for
RBF we have observed that random oversampling works better compared to other classifiers.

Such a study, analysing several data factors at once in the real-world datasets, has not been
carried out in the literature. The detailed conclusions from these experiments can be found in
Chapter 3. The dataset analysis with our labelling method can be used to:

• point out the most promising directions for the development of methods dedicated for class
imbalance,

• analyse the area of competence of the existing and newly-proposed learning methods,

• suggest an appropriate learning method for a given problem at hand.

Study of algorithmic-level sources of difficulty
We have conducted a comprehensive analytical study of the techniques used in standard rule
learning algorithms. We have discussed such techniques as sequential covering induction tech-
nique, measures used to evaluate rules and classification strategies and showed how they may be
implicitely biased towards the majority classes. We have also carried out a broad review of litera-
ture proposals modifying the rule learning algorithms for the class imbalance setting. To the best
of our knowledge, such a broad review has not been presented yet in the literature.

Bottom-up induction of Rules And Cases for Imbalanced Data
Based on the theoretical analysis presented in Chapters 2-4, we have proposed a new rule learning
algorithm, BRACID (Chapter 5). Compared to the existing methods dedicated for class imbal-
ance, BRACID addresses more comprehensively the problems on both data level and algorithmic
level. The existing methods usually address only a single (or few) of these problems. The main
characteristics of BRACID include using a hybrid representation of rules and instances, changing
the greedy sequential covering, top-down induction technique, using a less biased evaluation mea-
sures, applying a more local classification strategy and different processing of examples depending
on their type. BRACID has been compared to several standard rule learning algorithms as well as
to the solutions dedicated for class imbalance in Chapter 6. The results showed that BRACID can
significantly improve the recognition of the minority class compared to other approaches. BRACID
works well with all types of minority examples distinguished in Chapter 3, but it is especially well
suited for the borderline (and partly rare) examples.

Using expert argumentation for learning rules from imbalanced data
The experiments carried out in Chapters 3 and 7 showed that the safe examples are easy to learn
by most standard learning methods. The recognition of borderline examples can be improved if
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the methods dedicated for class imbalance are used, e.g. by our BRACID algorithm. However,
rare and outlier minority examples are extremely difficult for most of the automatic learning
methods. Even if some methods (such as SMOTE) can sometimes improve the recognition of
these examples, it comes at a cost of deteriorating too much the majority class recognition. In
Chapter 7, we hypothesized that identifying such difficult examples and explaining why they are
assigned to a particular class could be done in co-operation with the domain expert. To the best
of our knowledge, using the expert knowledge in the context of class imbalance has not been
considered yet in the literature. We adapted the paradigm of argument-based learning (originally
formulated by Bratko and Mozina in [94]) for the imbalanced domain, in which an expert can
give additional arguments for the selected difficult examples, explaining the decision taken for it.
Our important contribution is the introduction of a new method, which automatically selects a
small number of most critical examples which should be explained by an expert. The experimental
evaluation of our proposal, called ABMODLEM, showed that it can improve the recognition of the
minority class (Chapter 8). What is more important, this improvement does not come at a cost of
degrading the majority class recognition, which is a problem for most automatic approaches. With
a proper selection of examples which should be explained by an expert, a trade-off between the
recognition of the minority and majority classes can be controlled, according to the preferences of
the user.

The results presented in this thesis have either been already published or are currently under
review in the journals from the field of machine learning and artificial intelligence. Their list is
included in Appendix B.

Additionally, as a part of this thesis, several algorithms have been designed and implemented.
They include the implementation of BRACID and ABMODLEM within the WEKA framework;
the labelling method has been implemented as a WEKA filtering method. This software will be
made available as the open source projects.

Finally, there are still some interesting questions we would like to study in the future:

Using BRACID when multiple minority classes are present. ABMODLEM can be used
when there are several minority classes in the dataset. In this case, arguments for these classes
have to be introduced. In the current version of BRACID, only one minority class has to be distin-
guished, on which the learning algorithm will concentrate. It would be interesting to introduce a
possibility to focus on several minority classes at once. Multiple minority classes are observed, e.g.,
in medical problems, where apart from a single minority class corresponding to a rare illness, there
may be another class, represented by slightly more examples, but equally important. Therefore, it
should not be considered as a majority class.

Comparison of the rulesets induced by BRACID and PART+SMOTE+ENN. In the
experiments carried out in Chapter 6, the most competitive method to BRACID was PART used
with SMOTE+ENN. We hypothesise that the additional argument in favor of BRACID is that its
rules are based solely on the actual examples from the learning set, while rules induced with the
help of SMOTE may depend mostly on the artificial examples. We plan to verify this hypothesis
experimentally and evaluate the structure of rules for these two classifiers in terms of the examples
used to build the particular rules. In general, an analysis of how much the results of a classifier
depend on the artificial examples introduced by SMOTE, is an iteresting research topic.
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Using ABMODLEM to distinguish true noise from outliers. As already discussed in
Section 8.6, argument-based framework used with our method for identification of critical examples
might be be used to let the expert distinguish if a difficult example is a true noise, which should
be removed from the training set, or if it is an outlier important for the definition of a class, which
should be kept. Distinguishing noise from outliers in the class imbalance setting in an important
research challenge and to the best of our knowledge, no satisfactory methods have been proposed
to address this issue.

Studying the impact of the classification strategies on rule classifiers. We have dis-
cussed in Section 4.4 that classification strategies are often biased towards the majority classes.
The experimental evaluation of the components both in BRACID and in ABMODLEM showed
that changing the classification strategy was responsible for an important improvement in the
performance of the final classifier. We could even say that not adjusting the classification strat-
egy undermined the improvements introduced in the previous phases of constructing a classifier.
Therefore, we plan to carry out a more comprehensive study comparing the strategies in the class
imbalance setting, and possibly propose new, more sophisticated strategies which could be used in
learning rules from imbalanced datasets.
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Appendix A – Supplementary Tables

This Appendix contains supplementary tables with experimental results for Chapters 3 and 6.

Table 1: Labelling of datasets – k = 7

Dataset S[%] B[%] R [%] O[%]

abdominal-pain 65.84 20.79 7.92 5.45

acl 70.00 27.50 0.00 2.50

new-thyroid 68.57 31.43 0.00 0.00

vehicle 75.88 24.12 0.00 0.00

car 26.09 60.87 13.04 0.00

scrotal-pain 52.54 33.90 10.17 3.39

ionosphere 46.83 31.75 11.11 10.32

credit-g 12.67 66.00 12.33 9.00

ecoli 31.43 60.00 0.00 8.57

hepatitis 34.38 37.50 12.50 15.63

haberman 9.88 53.09 28.40 8.64

breast-cancer 24.71 42.35 23.53 9.41

cmc 18.32 52.25 15.02 14.41

cleveland 0.00 42.86 20.00 37.14

glass 0.00 11.76 58.82 29.41

hsv 0.00 0.00 28.57 71.43

abalone 8.96 17.31 30.45 43.28

postoperative 0.00 50.00 33.33 16.67

solar-flare 0.00 32.56 30.23 37.21

transfusion 20.22 46.63 18.54 14.61

yeast 1.96 50.98 11.76 35.29
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Table 2: G-mean [%] of compared classifiers

Dataset 1NN 3NN J48 PART RBF SVM

abdominal-pain 79.8 82.6 78.1 78.6 82.6 79.9

acl 81.2 86.6 89.1 84.8 88.8 87.8

new-thyroid 97.3 93.9 94.3 95.3 99.1 94.3

vehicle 92.1 91.9 91.3 91.9 89.7 96.4

car 7.9 7.9 86.8 94.3 67.9 93.3

scrotal-pain 68.7 72.3 67.2 70.7 74.0 74.7

ionosphere 81.8 79.8 87.6 88.8 92.7 93.2

credit-g 63.7 58.1 59.1 60.2 61.0 65.2

ecoli 66.8 66.3 69.2 55.4 65.7 71.1

hepatitis 56.1 51.5 53.9 54.9 71.9 64.7

haberman 44.6 43.9 53.8 46.8 34.4 3.1

breast-cancer 56.1 47.3 53.1 52.9 56.7 59.0

cmc 53.8 53.0 56.9 54.3 32.2 20.0

cleveland 30.7 22.2 34.3 38.2 16.0 14.1

glass 36.2 20.0 36.2 40.7 29.8 0.0

hsv 0.0 0.0 0.0 2.8 1.3 0.0

abalone 43.2 38.8 53.9 41.9 32.2 1.4

postoperative 5.6 0.0 6.2 13.3 16.5 10.0

solar-flare 17.8 16.6 37.6 31.9 18.8 26.8

transfusion 50.2 53.9 59.9 60.2 54.4 8.6

yeast 58.3 43.8 49.7 42.0 27.1 0.0
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Table 3: F-measure [%] of compared classifiers

Dataset 1NN 3NN J48 PART RBF SVM

abdominal-pain 69.9 74.3 69.4 69.1 75.9 72.1

acl 75.8 83.5 85.1 79.3 85.1 84.0

new-thyroid 95.0 91.2 89.5 91.8 96.7 93.6

vehicle 87.3 87.7 86.8 87.5 82.0 93.9

car 5.4 5.4 71.6 89.5 56.0 87.3

scrotal-pain 58.5 64.9 56.9 60.6 66.4 66.1

ionosphere 79.0 77.1 84.9 86.4 90.1 92.1

credit-g 51.7 45.9 45.7 47.1 49.3 53.6

ecoli 49.6 53.1 57.3 45.0 54.3 60.4

hepatitis 46.6 41.9 42.9 45.2 61.0 53.3

haberman 29.9 30.2 39.9 34.9 23.6 2.0

breast-cancer 43.8 35.6 39.3 38.9 44.7 47.0

cmc 35.1 36.0 40.2 36.1 18.6 8.7

cleveland 18.4 15.4 20.9 22.5 12.1 10.1

glass 26.7 18.1 32.0 32.8 23.7 0.0

hsv 0.0 0.0 0.0 2.3 0.8 0.0

abalone 20.9 22.6 36.6 26.9 20.1 0.5

postoperative 4.3 0.0 4.5 11.0 12.1 7.7

solar-flare 11.3 11.5 27.6 17.7 13.2 18.9

transfusion 33.0 38.6 46.2 46.2 41.5 4.2

yeast 39.5 31.2 35.0 28.7 19.0 0.0
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Table 4: Specificity [%] of compared classifiers

Dataset 1NN 3NN J48 PART RBF SVM

abdominal-pain 83.7 87.3 87.9 85.5 91.2 89.5

acl 93.6 97.0 94.0 91.8 95.2 95.2

new-thyroid 98.9 98.9 97.3 98.1 98.7 99.9

vehicle 95.3 96.2 95.9 95.9 91.7 97.6

car 100.0 100.0 98.4 99.6 99.0 99.4

scrotal-pain 83.6 91.8 84.8 81.6 90.6 86.4

ionosphere 97.2 98.0 93.5 94.3 91.6 98.0

credit-g 81.3 85.9 75.7 76.5 85.9 82.1

ecoli 93.7 96.1 95.9 96.2 95.7 96.5

hepatitis 90.7 91.5 87.3 89.7 91.1 90.2

haberman 77.4 84.7 80.5 85.9 90.9 98.7

breast-cancer 82.4 90.1 76.7 72.1 84.3 81.0

cmc 77.8 84.4 83.8 79.5 96.0 96.6

cleveland 90.1 95.1 89.9 89.3 95.8 95.2

glass 94.2 98.4 97.3 96.9 96.6 100.0

hsv 90.4 98.5 92.6 90.0 91.7 99.1

abalone 93.5 97.6 96.9 98.5 99.4 100.0

postoperative 79.1 90.3 73.5 69.3 78.3 75.9

solar-flare 98.4 99.3 99.0 96.8 99.1 98.6

transfusion 81.3 87.0 89.1 88.0 92.7 99.7

yeast 98.0 99.0 98.7 98.6 99.2 100.0

124



Table 5: G-mean for PART used with the preprocessing methods [%]

Dataset None RO NCR SMOTE SPIDER

abdominal-pain 78.6 79.3 81.7 79.0 80.8

acl 84.8 86.5 88.7 87.6 88.4

new-thyroid 95.3 93.5 90.7 95.5 93.7

vehicle 91.9 93.3 93.7 93.9 92.1

car 94.3 85.6 94.6 93.3 94.1

scrotal-pain 70.7 71.1 69.4 71.6 68.5

ionosphere 88.8 88.7 85.0 87.6 87.2

credit-g 60.2 60.5 64.7 62.4 63.7

ecoli 55.4 67.0 78.3 80.0 79.6

hepatitis 54.9 66.3 67.7 64.8 63.6

haberman 46.8 59.0 62.1 62.0 56.0

breast-cancer 52.9 53.6 57.3 53.7 56.0

cmc 54.3 58.8 61.9 58.5 60.4

cleveland 38.2 25.9 50.9 38.9 37.5

glass 40.7 38.5 62.0 52.1 47.5

hsv 2.8 10.3 8.4 15.1 10.2

abalone 41.9 59.4 53.8 67.7 65.6

postoperative 13.3 23.3 31.5 15.8 34.0

solar-flare 31.9 52.5 61.0 49.5 60.5

transfusion 60.2 63.1 62.5 57.9 57.6

yeast 42.0 53.6 47.2 64.1 54.4
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Table 6: F-measure for PART used with the preprocessing methods [%]

Dataset None RO NCR SMOTE SPIDER

abdominal-pain 69.1 69.3 70.9 69.5 69.9

acl 79.3 81.0 82.2 81.9 82.8

new-thyroid 91.8 90.1 85.5 91.8 88.9

vehicle 87.5 89.3 88.5 89.3 85.5

car 89.5 72.8 74.5 84.5 75.2

scrotal-pain 60.6 60.7 58.2 60.8 57.5

ionosphere 86.4 86.3 80.6 83.9 83.7

credit-g 47.1 47.5 53.2 49.6 51.2

ecoli 45.0 52.2 57.3 59.1 61.8

hepatitis 45.2 54.8 52.4 51.1 51.4

haberman 34.9 45.1 48.6 48.6 46.7

breast-cancer 38.9 39.9 47.3 39.9 43.6

cmc 36.1 39.6 42.5 39.0 40.9

cleveland 22.5 14.0 29.0 21.3 21.2

glass 32.8 31.9 45.7 38.2 35.7

hsv 2.3 7.5 5.7 9.0 6.3

abalone 26.9 36.1 35.2 36.9 34.8

postoperative 11.0 17.2 25.2 12.1 25.2

solar-flare 17.7 19.7 29.8 23.9 24.1

transfusion 46.2 46.4 46.7 44.7 44.3

yeast 28.7 30.2 29.0 32.2 28.4
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Table 7: Sensitivity for RBF used with the preprocessing methods [%]

Dataset None RO NCR SMOTE SPIDER

abdominal-pain 75.0 86.5 83.8 84.6 88.9

acl 84.0 90.5 84.5 88.5 88.0

new-thyroid 99.5 100.0 98.5 98.0 98.7

vehicle 88.0 92.4 93.9 93.9 92.4

car 49.6 68.9 89.5 57.8 70.4

scrotal-pain 62.5 78.7 72.4 68.7 78.1

ionosphere 94.2 97.6 94.0 97.2 97.0

credit-g 43.6 74.1 63.7 65.9 76.7

ecoli 54.7 82.0 81.8 77.3 79.0

hepatitis 60.7 69.8 65.5 69.7 67.5

haberman 18.3 57.8 52.1 73.4 70.8

breast-cancer 40.8 65.5 52.9 54.4 67.5

cmc 12.1 50.6 67.2 75.1 72.0

cleveland 9.5 32.2 34.5 28.0 35.3

glass 25.0 37.0 51.0 59.0 45.0

hsv 1.0 6.0 7.0 20.0 9.0

abalone 12.3 18.0 76.0 26.8 19.5

postoperative 13.7 40.0 23.0 16.7 24.7

solar-flare 10.2 31.2 64.6 41.5 54.3

transfusion 32.9 56.2 66.1 79.0 78.9

yeast 15.1 35.3 70.7 55.3 44.5
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Table 8: Types of seed examples for maximally specific rules in BRACID. SB: safe or border
examples; RO: rare or outlier examples. For datasets with no maximally specific rules, the
corresponding cells are empty.

Dataset SB [%] RO [%]

ionosphere 0.00 100.00

cleveland

ecoli 0.00 100.00

haberman

solar-flare 0.00 100.00

transfusion 0.00 100.00

vehicle 0.00 100.00

yeast 0.00 100.00

abalone 0.00 100.00

abdominal-pain 0.00 100.00

car 93.75 6.25

cmc 11.54 88.46

credit-g 14.29 85.71

balance-scale 0.00 100.00

breast-w 0.00 100.00

pima 25.00 75.00

breast-cancer 0.00 100.00

postoperative 0.00 100.00

flags 100.00 0.00

hepatitis

new-thyroid

scrotal-pain 0.00 100.00
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